
Universitat Politècnica de València

Departamento de Informática de Sistemas y Computadores

A solution for the efficient takeoff and flight

coordination of UAV swarms

Master’s thesis
Master’s Degree in Computer and Network Engineering

Author
Jamie Wubben

Advisors
Dr. Carlos Tavares Calafate

Dr. Juan-Carlos Cano

July 2021

Acknowledgements

First of all, I would like to thank both of my advisors, Carlos Tavares Calafate
and Juan-Carlos Cano, for their support and excellent guidance. Thanks to
them, I am able to achieve this goal, and many more in the future. In the
same way, I would like to express my gratitude for the entire team from the
Computer Networks Research Group (GRC). They, too, have contributed
with their knowledge, but most of all by creating a wholesome workplace
where I am working for many hours, but never with reluctance. Finally,
to my parents who, although with difficulties, allowed me to continue my
studies abroad and provide continuous support.

Jamie Wubben
Valencia, July 4, 2021

i

Abstract

In the last decade, we have seen a great increase in the use of Unmanned
Aerial Vehicles (UAVs). This is mainly due to advances in technology and
materials. Nowadays, UAVs are no longer only toys for entertainment, but
also important assets for many enterprises. UAVs are versatile, and thus
many diverse applications exist: search and rescue missions, border surveil-
lance, thermal pipeline inspection, cinematography, and precision agricul-
ture, just to name a few. Now that the industry is incorporating UAVs based
solutions, it is crucial that research advances. The most prominent change
(with respect to UAVs) that we will witness in this decade, is the deploy-
ment of groups of UAVs working collaboratively to fulfill a higher goal. Those
groups, also called swarms, allow us to perform more complex tasks, more
efficiently, or with more redundancy. However, there are inherent challenges
while operating a swarm of UAVs: there must be a good communication
channel between the UAVs, collisions must be avoided, and the individual
UAVs should be used intelligently in order to increase the overall efficiency.

In this master thesis, a solution is given for some of the main problems
concerning Unmanned Aerial Vehicle (UAV) swarms. First, we lay out vari-
ous useful swarm formation patterns. Then we incorporate those formations
in two takeoff procedures - an heuristic and an existing algorithm (Kuhn-
Munkres algorithm (KMA)) - which are extensively tested to decide which
one is the most appropriate for the takeoff of a swarm of UAVs in the most
efficient manner. Once we are able to take off an entire swarm, we continue
our research by providing a solution to keep that swarm organized and sta-
ble during a pre-planned mission. Such solution incorporates mechanisms to
provide resilience to the swarm in such a manner that any number of UAVs
can be removed from the swarm (mid-flight) without disturbing the others
in their mission.

ii

Resumen

En la última década, hemos asistido a un gran aumento del uso de los
VANTs, debido principalmente a los avances en tecnoloǵıa y materiales. Hoy
en d́ıa, los VANTs ya no son sólo juguetes para el entretenimiento, sino
también importantes activos para muchas empresas. Los VANTs son muy
versátiles y, por ello, existen muchas y variadas aplicaciones: misiones de
búsqueda y rescate, vigilancia de fronteras, inspección térmica de tubeŕıas,
cinematograf́ıa y agricultura de precisión, sólo por nombrar algunas. En es-
tos momentos en que las industrias están incorporando soluciones basadas en
VANTs, es crucial que la investigación avance. El cambio más destacado (con
respecto a los VANTs) que presenciaremos en esta década, es el despliegue
de grupos de VANTs trabajando en colaboración para cumplir un objetivo
superior. Estos grupos, también llamados enjambres de drones, permiten re-
alizar tareas más complejas, de forma más eficiente, o con mayor redundan-
cia. Sin embargo, existen retos inherentes al funcionamiento de un enjambre
de VANTs. Debe existir una buena comunicación entre los VANTs, deben
evitarse las colisiones y los VANTs individuales deben utilizarse de forma
inteligente para aumentar la eficiencia global.

En este trabajo fin de máster se da solución a algunos de los principales
problemas relativos a los enjambres de veh́ıculos aéreos no tripulados. En
primer lugar, diseñamos varios patrones de formación de enjambres útiles. A
continuación, incorporamos esas formaciones en dos procedimientos de de-
spegue - una heuŕıstica y un algoritmo ya existente (KMA) - los cuales se
prueban ampliamente para decidir cuál es el más adecuado para despegar un
enjambre de VANTs de la manera más eficiente. Una vez que somos capaces
de despegar de forma sincronizada y segura un enjambre completo, continu-
amos nuestra investigación proporcionando una solución para mantener ese
enjambre organizado, y estable durante una misión pre-planificada. Nues-
tra solución incorpora mecanismos para proporcionar resiliencia al enjambre,
de tal manera que todos y cada uno de los VANTs pueden abandonar el
enjambre (en pleno vuelo), sin perturbar a los demás en su misión.

iii

Contents

Acknowledgements i

Abstract ii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Structure of the Thesis . 2

2 Related works 4
2.1 UAV swarm protocols . 4
2.2 The takeoff problem . 5
2.3 Swarm resilience . 6

3 Unmanned aerial vehicles: an overview 8
3.1 Types of UAVs . 8
3.2 The hardware components of a multicopter 10
3.3 Software . 11

4 ArduSim: a multi-UAV simulation platform 14

5 Swarm formations 18
5.1 Linear . 19
5.2 Circular . 19
5.3 Matrix . 19
5.4 Random . 23

iv

6 Efficient UAV swarm takeoff 26
6.1 Heuristic . 28
6.2 The Kuhn-Munkres algorithm 28
6.3 Takeoff procedure . 31
6.4 Performance assessment . 31

6.4.1 Computation time analysis 32
6.4.2 Travel distance analysis 33
6.4.3 Number of collisions analysis 35
6.4.4 Takeoff time analysis 36

6.5 Summary . 36

7 MUSCOP: a resilient coordination protocol 38
7.1 The MUSCOP protocol V1.0 38
7.2 MUSCOP v2.0 . 41
7.3 Validation . 42

8 Conclusions, publications and future work 49
8.1 Main conclusions . 49
8.2 Publications . 51
8.3 Future work . 51

Acronyms 52

v

List of Figures

3.1 Classification of different drones. 9
3.2 The three dimensions in which a UAV can move: pitch, yaw,

and roll . 10
3.3 Basic components, and wiring of an open source multicopter. . 12

4.1 Menu of ArduSim: selecting general parameters and starting
a specific protocol. 16

4.2 The main window of ArduSim. 17

5.1 Linear formation. 19
5.2 Circle formation. 20
5.3 Example of the steps taken to calculate the position for the

14th UAV in a matrix formation. 21
5.4 Matrix formation. 23
5.5 Random formation. 25

6.1 A graphic presentation of a possible UAV swarm flight assign-
ment. 27

6.2 All possible solutions with only four UAVs. 28
6.3 Average computation time for all UAV formations and assign-

ment algorithms. 32
6.4 Computation time using the heuristic algorithm for various

UAV formations. 33
6.5 Computation time using the Kuhn-Munkres algorithm for var-

ious UAV formations. 33
6.6 Total additional distance travelled by all UAVs when the heuris-

tic algorithm is used for a Matrix and Linear formation. 34
6.7 Total additional distance travelled by all UAVs when the heuris-

tic algorithm is used for a Circle formation. 34

vi

6.8 A comparison of the heuristic vs. the KMA algorithm in terms
of potential collisions when varying the number of UAVs (Cir-
cle and Matrix formations). 35

6.9 A comparison of the heuristic vs. the KMA algorithm in terms
of potential collisions when varying the number of UAVs (Lin-
ear formation). 36

6.10 Total take-off time using the KMA with varying formations
and take-off procedure . 37

7.1 MUSCOP v1.0 messages and their format 40
7.2 The different states for MUSCOP v2.0. 42
7.3 Example of MUSCOP V2.0 providing resilience, so that the

swarm can continue its mission even when a UAV fails. 44
7.4 Time overheads when varying the number of UAVs that fail. . 48

vii

List of Tables

7.1 Time overhead for the different scenarios just when reaching
the next waypoint (0 m). 45

7.2 Time overhead for the different scenarios at 15 m from the
next waypoint. 45

7.3 Time overhead for the different scenarios at 200 m from the
next waypoint. 46

viii

Chapter 1

Introduction

1.1 Motivation

UAVs, colloquially known as drones, are used more and more by the general
public. Popular applications are: aerial photography and video, topography,
entertainment, etc. [1]. Furthermore, UAVs are increasingly used for spe-
cialized, business-oriented applications such as precision agriculture, border
surveillance, parcel delivery, thermal inspections, people monitoring under
the COVID-19 pandemic, and many more [2, 3]. Nowadays, UAVs are also
starting to be used to assist in emergency situations such as search and res-
cue, or disaster scenarios [4, 5], where they can act as supporting nodes for
communications being deployed on demand, and offering a wider communi-
cations range and better line-of-sight (LOS) features than ground infrastruc-
tures. This is all to say that UAV applications are versatile and can be used
to solve real problems (instead of just using them for entertainment).

However, in all the examples above only one UAV is used and managed.
Since the battery lifetime and the lift power of an UAV are limited, inter-
est is growing towards solutions that use multiple UAVs at the same time.
This combination of multiple UAVs working collaboratively is also known as
a UAV swarm. Such a swarm can provide many benefits to existing solu-
tions. In general, tasks can be performed more efficiently and/or with more
redundancy. It also gives rise to new applications such as carrying heavy
loads. However, deploying a swarm of UAVs is not an easy task, and many
challenges remain unsolved. Such challenges include: (i) swarm formation
definition, (ii) takeoff assignment and procedure, (iii) in-flight coordination,
(iv) handling the loss of swarm elements, (v) swarm layout reconfiguration,
(vi) communications and data relaying optimization, and (vii) controlled
landing.

1

1.2 Objectives

The main objective of this thesis is to design, implement, and verify so-
lutions for the first four challenges listed above, i.e. (i) swarm formation
definition, (ii) takeoff assignment and procedure, (iii) in-flight coordination,
(iv) handling the loss of swarm elements. To achieve this, ArduSim [6](a
flight simulation platform for UAVs) will be used. In order to achieve those
global goals, it becomes necessary to accomplish several specific objectives.

Swarm formation definition:

• Designing and implementing widely used formation patterns such as:
a linear, a circle, and a matrix formation.

Takeoff assignment:

• Developing an efficient heuristic to assign UAVs on the ground a posi-
tion in the air based on the desired formation (the assignment problem).

• Implementing the KMA to solve (the same) assignment problem.

• Comparing the two different algorithms in terms of: total distance
travelled, number of possible collisions, etc.

• Designing a comprehensible flowchart to decide which algorithm should
be used depending on the swarm configuration.

Resilient in-flight coordination:

• Developing an algorithm that coordinates the UAV swarm, while they
are following a pre-planned mission, so that the swarm stays coherent.

• Extending that algorithm so that, during the flight, any (and multiple)
UAVs can be removed without disrupting the rest of the swarm in their
mission.

• Testing that algorithm in various scenarios.

1.3 Structure of the Thesis

This Master thesis is organized in 8 chapters. Below, we briefly describe the
contents of each part:

• Chapter 2. Related works. we provide an overview of various
state-of-the-art publications related to UAVs and UAV swarms.

2

• Chapter 3. Unmanned aerial vehicles: an overview. We provide
an overview of the different types of UAVs that exist, and the general
aspects related to the UAVs’ architecture.

• Chapter 4. ArduSim: a multi-UAV simulation platform. We
detail the inner workings of our own open-source multi-UAV flight sim-
ulator. We also detail how to deploy the simulated protocols on real
UAVs for real experiments.

• Chapter 5. Swarm formations. We design, and implement various
swarm formations that will be used for the other protocols.

• Chapter 6. Efficient Takeoff for a swarm of UAVs. We propose
two algorithms to solve the assignment problem: a heuristic, and the
KMA. Both algorithms are then implemented and verified; during the
experiments we measure the effectiveness of the algorithms in terms of:
calculation time, total distance travelled, number of possible collisions,
and the total takeoff time.

• Chapter 7. MUSCOP: a resilient coordination protocol. We
present an existing protocol that is able to maintain a stable flight
formation for a UAV swarm that is following a global planned mission.
This protocol is improved by additional mechanisms that allow for the
failure of any number of UAVs. The protocol is verified by a series of
experiments, where we test different scenarios, and measure the time
overhead introduced by our protocol.

• Chapter 8. Conclusions, publications and future work. We con-
clude this master thesis, present the related publications, and include
some ideas for future work.

3

Chapter 2

Related works

2.1 UAV swarm protocols

As stated before, more and more people are getting interested in UAV-based
applications. A great survey on the core characteristics of drone swarms was
published by Tahir et al. [7]. Together with their survey they also created
a questionnaire (with an academic audience) to review the public awareness
of the swarm technology. In total, they asked 187 participants questions,
about application areas, flying mechanisms, autonomous swarms, etc. Their
results show that there is moderate knowledge about a drone and a swarm
of drones. Despite many participants acknowledged the benefits of using
UAVs, not many would rely on drones in his/her activities/business. This is
probably because over 60% of the participants have security concerns.

A survey about those security and privacy issues is given in [8]. They
analyse various threads from sensors and communication media in the context
of UAVs. Since nearly all UAVs are equipped with a camera, the photos
taken by a UAV can invade privacy in two ways. First, the pilot can fly
over residential areas and (illegally) take pictures; on the other hand, even
when the pictures are taken legally, they are usually stored as a JPEG file.
JPEG files contain metadata, which often include the shooting time and
location. This data can be misused if these pictures are uploaded to social
media platforms (as often occurs). Furthermore, UAVs can also be hacked;
most of the UAVs depend heavily on the GPS signal, which is vulnerable to
jamming and spoofing attacks. Nowadays, drones are often controlled by a
smartphone via Wi-Fi instead of a remote controller. This communication
can also be hacked and, if successful, the hacker can take control over the
UAV.

The work of Mirzaeinia et al. [9] addressed the problem of the increasing

4

number of drones in smart cities. This makes it more difficult to find the
optimal station for each drone after it has completed its mission. When a
drone finishes its mission, it is assigned a destination landing station to be
recharged. Adverse weather situations can result in having the drone as-
signed to a station to take shelter. Their proposal uses the KMA to match
drone charging stations. In their study, three different scenarios were in-
vestigated. The first scenario used drones with the same energy level. The
second scenario, used drones with a different energy level, and finally the
third scenario where drones and stations had different energy levels. The
results showed that a reduction in energy consumption of 30-90% can be
achieved by applying this algorithm in drone station pairing compared to an
algorithm using a randomly preassigned station.

Pestana et al. [10] presented a modular multi-robot swarm architecture.
Their approach was implemented in the Robot Operating System (ROS)
software framework. Since ROS heavily relies on reusable modules, their so-
lution is available for a great audience. They also used the readily available
AR Drone 2.0. In their approach, the only information shared among swarm
agents is the position of each robot, and they rely on a visual-based solution
for localization based on ArUco markers, which are used to sense and map
obstacles. In addition, they rely on an Extended Kalman Filter localiza-
tion and mapping method. However, their approach heavily depends on the
Wi-Fi links between the UAV and the laptop, which caused some problems
according to the authors.

Cho and Kim [11] attempted to minimize consumption in the deployment
of low power drones, arguing that it is an NP-hard problem in the context of
air-to-ground models in a three-dimensional area. To approach this problem,
they studied the established solutions based on heuristic methods, comparing
different heuristic algorithms for optimal UAV deployment. In particular,
they compared the performance of the heuristic algorithms for each scenario
based on the number of UAVs, and presented the speed of convergence to
achieve near optimal solutions.

2.2 The takeoff problem

Above we have provided few examples of works that consider UAV swarms
in general; now we proceed to present publications that specifically consider
a safe takeoff. Unfortunately, only a few works address this topic, of which
many are our own. Three simple takeoff options were explored by N. Dousse
et al. [12]: manual, sequential, and simultaneous. However, especially when
the swarm becomes larger, these simple takeoff procedures are not feasible

5

as they would take too much time (manual, sequential) or be prone to cause
collisions between the UAVs (simultaneous).

For the above-mentioned reasons, there are only a few examples of large-
scale UAV swarms, and most of them were performed by private companies.
Intel was a pioneer in this area by being the first to create a UAV-based
light show. This light show was held in 2015 in Germany, and 100 drones
were used1. Since then some other companies such as EHANG2 and Bilibili3

have done the same. The records for the most unmanned aerial vehicles in
simultaneous flight are changing rapidly, and include already more than 3000
UAVs. It must be said that the light shows are just marketing stunts, and
do not add true value. Nevertheless, they are highly entertaining, and show
the world what UAV swarms are capable of.

2.3 Swarm resilience

Lastly, we present works that consider swarm resilience. When operating a
swarm of UAVs there are basically two approaches: flocking and master-slave
models. Flocking is a behaviour that is common in nature, for instance in a
group of fish, birds or insects. It consists of a few basic rules that are applied
to each entity of the group. When those rules are respected, the group will
stay united without collisions between the group elements. There are various
methods to achieve a flocking behaviour for a group of UAVs, as discussed
below.

Victor Casas et al. [13] developed a flocking model without the use of
a master-slave model. The UAVs in the swarm regularly broadcast and
receive movement information. That information is then used to calculate
two forces: a flock goal force, which guides the flock towards the target
location and aligns the swarm members, and a flock members force, which
provides cohesion and separation to the flock. Those two forces are used to
update a direction vector which points towards the target location, while at
the same time avoids collisions. Their model is tested in simulation and in
real experiments, which show that a collision-free flight is ensured. They
tested the model under various speeds, although all of them were rather slow
(a maximum of 3 m/s). Results also showed that, during real experiments,
the minimum distance between UAVs is decreased; according to the authors,
this is due to GPS inaccuracy.

1https://www.intel.com/content/www/us/en/technology-
innovation/article/coachella-drone-light-show.html

2https://www.popsci.com/china-drone-swarms/
3https://dronedj.com/2021/04/21/drone-qr-code-marketing/

6

Yazhe Tang et al. [14] presented a swarm flocking scheme that was able
to work in a radio silent environment. In contrast to many other works, their
approach was not based on sending (GPS) information between the swarm
elements. They used two types of vision sensors (standard and thermal cam-
eras) to track their leader, and a LiDAR sensor to sense the surrounding
environment for navigation and obstacle avoidance. Because they used var-
ious high-end sensors, their flocking mechanism can be used both during
the day and during the night. Indoor and outdoor experiments performed
in obstacle-rich environments have proven the effectiveness of the proposed
method. Furthermore, their software is implemented in the robot operating
system (ROS) [15], which promotes reusability through its modular design.

While flocking mechanisms are great to keep a swarm of UAVs organized,
they do not provide the flexibility to completely define and change the for-
mation itself. In many applications, it is useful to change the formation (for
instance, from a line to a circle); however, it is difficult to encapsulate such
behaviour using flocking mechanisms. Therefore, in our work, we specifically
focus on changing between different flight formations. Hence, instead of us-
ing a flocking mechanism, we use a master-slave model where the master
instructs the slaves how to safely accomplish the reconfiguration.

Other works address swarm resilience with other solutions. For instance,
Mulgaonkar et al. [16] tested the performance of micro quadcopter swarms
in tight/dense formations. By adding a protective case around the drone,
the micro UAVs could withstand collisions at velocities of 4 m/s. We believe
that micro UAVs are certainly useful. However, due to their low mass, they
cannot be used effectively in an outdoor environment. This makes micro
UAVs only useful for indoor applications, which is not in the scope of this
thesis.

Finally, Chen et al. published a paper [17] that is focused on effectively
reorganizing the surviving UAVs in a severely damaged UAV swarm. They
start by analysing the damage-resilience problem of unified UAV Swarm Net-
works (USNETs). The goal of their work was to design a damage-resilience
mechanism, which is usually divided into multiple disjoint subnets of iso-
lated nodes. Three challenges are investigated: first, the network will be
divided into several disjoint subnets or isolated nodes; secondly, they work
on restoring the network connectivity; finally, they explain how to reduce the
computational and communication overhead.

7

Chapter 3

Unmanned aerial vehicles: an
overview

The topic of UAVs is broad an interesting; one could go into depth about
the flight dynamics[18], propeller types[19], the electronics of the Electronic
Speed Controller (ESC)[20], motor types, legislation[21], and so on. In this
chapter we provide an overview; to put into context the drones we are tar-
geting, detailing the advantages and disadvantages they have with respect
to other types of drone. After that, an overview of the main parts and their
function is given.

3.1 Types of UAVs

Nowadays, we can find a large amount of UAVs of various types. Colloquially
they are often referred to as drones. However, this is a common misconcep-
tion; as shown in Figure 3.1, the concept of drones is broader. A drone can be
any type of unmanned robot, and thus it also includes robots that operate on
land (Unmanned Ground Vehicles (UGV)) or on water (Unmanned Surface
Vehicles (USV) and Unmanned Underwater Vehicles (UUV)). As mentioned
throughout this document, autonomous robots operating in the air are called
UAVs. The UAVs can be further subdivided into fixed wing and copters. The
copters have the unique ability of taking off vertically, and so in the litera-
ture the term Vertical take off and landing (VTOL) is often used to refer to
this ability. Here, we further subdivide the copter category in two: multi-
copters and helicopters. As the name suggests, multicopters have multiple
propellers. The minimum number of propellers is three, although this model
is rare. Much more common are the quadcopters, but also hexacopters and
octacopters exists; they are typically capable of carrying a heavier load, and

8

can withstand the failure of one (or multiple) engines. The protocols in this
master thesis are designed and tested for multicopters. However, they can
be directly used for all VTOL UAVs, and some ideas are even transferable
to fixed wing UAVs.

Drone: Unmanned Robotic Probe

AirLand Water

UGV UAV USV UUV

Fixed Wing Copter

Multicopter Helicopter

Figure 3.1: Classification of different drones.

As mentioned, in this work we have specifically chosen to work with
multicopters. The reason for this is that multicopters have many advantages.
First of all, compared to other types of UAVs, multicopters are the cheapest.
When working with a swarm, this is a particularly important factor. The
price of a multicopter can vary greatly, from a couple of hundred euros for
the cheapest models, up to several thousand for more advanced models. The
main differences between them are: load capacity, battery life, maximum
speed, build quality, camera quality (if included), and proprietary software.
A second advantage is that multicopters have a high level of mobility. Due
to how they are built, a multicopter can quickly rotate in three dimensions
(see Figure 3.2): pitch (forward and backwards), yaw (turning around its
axis), and roll (left and right). Furthermore, they are able to stay still at a
fixed aerial position; this is not possible with a fixed-wing aircraft, but it is a
crucial ability for many applications (e.g. bridge inspection). Furthermore,
they can be equipped with different types of sensing devices. The most
common is a camera; but also lidar, radar and air pollution sensors are often
used. Finally, multicopters are relatively easy to manage.

9

Figure 3.2: The three dimensions in which a UAV can move: pitch, yaw, and
roll

3.2 The hardware components of a multicopter

Although there are many differences between multicopters in terms of ma-
terials, layout, capabilities, price, etc., there are some necessary components
that every multicopter must have. Those components are schematically de-
picted in Figure 3.3. The flightcontroller (in the center) is the brain of the
multicopter, and all the other components are connected and controlled by it.
Although there are many flight controllers in the market, the Pixhawk [22]
open source flight controller is probably the most used one. Essentially, it
is a small lightweight embedded computer with build-in sensors and various
connectors. The Pixhawk 4, for instance, is equipped with an 32-Bit Arm
Cortex-M7, two accel/gyro meters, a magnetometer, a barometer, and a
build-in GPS module. Furthermore, it has various interfaces such as: PWM,
PPM, serial, I2C, SPI, CANbuses, analog inputs, etc.

The multicopter is obviously also equipped with motors (minimum of 3)
and propellers. In most cases these motors are brushless, and they need to
be controlled by an Electronic Speed Controller (ESC). The ESC converts
the low current signal from the flight controller into a higher current signal
that controls the speed of the motor. Thus, to prevent failure of the ESC, it
is very important that an adequate ESC (one that can provide the current

10

drawn by motors) is chosen.
The motors, and the other components to a lesser extent, use energy. In

most cases, this energy is provided by Li-Po batteries. Yet, in the case of
very large multicopters, energy can also be provided by combustion engines.
For the majority of multicopters, Li-Po batteries are preferred because they
have a high power to weight/volume ratio (w.r.t other battery types). Li-Po
batteries typically have a number of cells connected in series. Each cell has
a voltage potential between 3v and 4.2v, depending on the depletion level.
Thus, the number of cells (typically 3 or 4) in one battery determine the
overall battery voltage. Each battery has also a certain capacity, which can
be extended by placing cells or batteries in parallel. For a typically multi-
copter, the battery capacity is 3000 mAh. The battery capacity influences
the maximum flight time. However, since the flight time also depends on the
weight, motors, propellers, and many other factors (including weather condi-
tions), a simple mapping between battery capacity and flight time cannot be
made. Nevertheless, we could say that, in general, a battery with a higher
capacity will increase the flight time. The energy from the battery cannot
be used directly as the various components operate at various voltage levels;
therefore, a power module is used. This power module will distribute the
energy to all other components, except for the ESCs.

In theory, when the above-mentioned components are mounted on a
frame, the multicopter can fly. However, in almost all cases, additional com-
ponents are used. Probably the most important ones are the transmitter and
receiver. With the transmitter, which operates in the 433 MHz band in Eu-
rope, or in the 915 MHz band in the USA, the multicopter can be controlled
by a pilot. A receiver is connected to the Pixhawk to receive the instruc-
tions send by the pilot. For the communication between the transmitter and
receiver a protocol is used. The de facto standard is the Micro Air Vehicle
Link (MAVLink) protocol. Furthermore, usually a switch is added to the
frame to prevent an unwanted takeoff of the drone, as well as a buzzer to
notify the pilot about the states of the multicopter, and a telemetry kit to
send and receive more information. Finally, although not required, the GPS
and compass can be improved by connecting a dedicated sensor.

3.3 Software

As mentioned above, the flight controller is a lightweight embedded com-
puter. The flight controller uses the information it receives from various
sensors (and the pilot) to control the drone. This behaviour is of course
implemented in code. Many different firmwares exist, and it is important

11

Figure 3.3: Basic components, and wiring of an open source multicopter.

that the firmware is compatible with the specific flight controller and drone
model. A very famous one, which is compatible with the Pixhawk, is called
ArduPilot. It is famous because it is very advanced, fully open-source, and it
supports many vehicle types such as: multi-copters, traditional helicopters,
fixed wing aircraft, boats, submarines, rovers and more. The specific project
that contains the code to controls UAVs is called Arducopter [23]. The
project is enormous and Arducopter has many features, the most important
one with respect to our works are the following:

• No vendor lock-in: ArduPilot is fully open source, and free to use.

• Autonomous missions: Arducopter allows to plan flights based on
GPS waypoints, and perform the mission fully automatically. Including
taking off, returning home, landing and disarming the UAV.

• Simulator: The ArduPilot project also includes a simulator, which
allows us to try out our protocols quickly and safely before deploying
them on real UAVs. Unfortunate, this simulator is only capable of

12

simulating one UAV. Therefore, we have developed our own simulator
(explained in Chapter 4) which internally uses the ArduPilot simulator.

• Flight modes: ArduCopter also includes many flight modes such as:
altitude hold, loiter, fully automatic, etc. This allows us to develop
protocols on a higher abstraction level, without being concerned of
maintaining the UAV stable in the air.

Furthermore, the ArduPilot can also receive commands from a radio con-
troller. Our protocols are usually always fully automatic. However, internally
(as explained in chapter 4) we pretend to use a radio controller to control the
drone, while in fact the controls come from a Raspberry Pi. The communica-
tion protocol between the UAV and radio controller is called MAVLink[24].
MAVLink is a well-established lightweight message serialization protocol, and
it is released under the LGPL licence. Typically, the messages are small and
therefore, it can be reliably be transmitted over different wireless mediums
with low data rates. Reliability is ensured a double checksum verification
in its packet header. All these (and others) features make the MAVLink
protocol one of the most popular. The MAVLink protocol already exists of
two versions. The newer version (2.0) released in early 2017 is backward
compatible but includes several improvements such as a signature field of 6
bytes.

13

Chapter 4

ArduSim: a multi-UAV
simulation platform

Performing real experiments with a swarm of UAVs is time-consuming, dan-
gerous, and costly. Therefore, it is very important that we are certain that
our protocols work before deploying them on real UAVs. Therefore, we use
ArduSim [6], a simulation platform that can simulate many UAVs at the
same time and with great accuracy. Any protocol in ArduSim is directly
portable to real multicopters; thus once protocols are thoroughly tested, de-
ployment is somewhat trivial. Furthermore, ArduSim is open source, well
documented, and available online [25] under the Apache License 2.0. It is
developed in Java, and has modular structure; which makes it possible to
implement new protocols without being concerned about the underlying im-
plementations of communication protocols and drone control. The simulator
has many features, which are explained in great detail in [6]. In this work, we
will highlight the key characteristics, and provide an overview of its various
user interfaces. some of the features of ArduSim include:

• Seamless deployment on real UAVs: As mentioned in the previous
chapter, the MAVLink protocol is one of the most frequently used pro-
tocols to control UAVs. ArduSim has incorporated this protocol into
its core, and it uses the MAVLink protocol to fully control the UAV
while it is flying. In order to deploy a protocol developed in ArduSim
on real UAVs, the UAV should have a device capable of running Java
(e.g. Raspberry Pi) attach to its flight controller telemetry port. The
device should also be equipped with a WiFi adapter (with 5Ghz con-
nectivity), so that it can communicate with a Ground Control Station
(GCS) and other UAVs.

• Complete Application Programming Interface (API): ArduSim

14

was designed to abstract the UAV control, and communication between
the UAVs. Developers that want to create a new protocol use an API.
This API includes a complete set of functions to perform the most
common manoeuvres such as: take-off, start a mission, pause a mission,
move to a GPS location, land, communicate with other UAVs, create a
formation, etc. This API allows the developer to ignore the underlying
details and develop new protocols at a fast pace.

• Comprehensive experiment data logging: At the end of an exper-
iment (both in simulations and in real experiments), ArduSim stores a
fast amount of information about the flight. Including, among others,
the path followed, heading, speed, acceleration, distance to origin, etc.
The same path is also stored in Google Earth, ns-2, and OMNeT++
formats. This extensive data logging helps the developer in retrieving
results and/or solving bugs.

• UAV-to-UAV communication simulation: When a protocol is de-
ployed in real UAVs, ArduSim uses a WiFi adapter to connected to an
Ad-hoc network with UDP messages. When ArduSim is used as a sim-
ulator this communication is replicated with the use of virtual links.
The links are based on 802.11a technology, and models obtained by
real experiments are used in order to resemble the realty as good as
possible.

• High scalability: ArduSim was designed to be a multi-UAV simula-
tor. With a high-end computer (Intel Core i7-7700, 32 GB RAM, SSD
hard drive), ArduSim can easily run up to 100 UAVs in near real-time,
and up to 500 UAVs in soft real-time. Performance can be improved by
using a more performant computer, or/and the command line interface.

• Various interfaces: ArduSim can be used in three modes: (i) protocol
testing on simulation, (ii) protocol deployment in a real multicopter,
and also (iii) as a PC companion that aids real multicopters during their
execution. With the PC companion, a user has the ability to start
and stop protocols. It also allows recovering manual control in case
the protocol does not behave as expected, which might avoid a crash.
The simulation mode has two interfaces: graphical and command line.
The graphical interfaces help the developer to design a protocol and
verify its function. Later, the command line interface can be used for
automatic testing. While using the command line interface parameters
are set using parameter files (simple text files, with a specific format).
When the parameter files are changed, no recompilation is required.

15

This allows the developer to write a simple script that changes the
parameter file and executes ArduSim automatically. In this way, many
experiments can be performed rapidly, without the need of intervention
of the developer.

Out of the various interfaces, the graphical simulator is used the most.
When ArduSim is executed in its graphical interface, a menu (shown in Fig-
ure 4.1) is opened. With this interface, the user can check all the general
parameters and alter them where needed. The general parameters, are those
that apply to all protocols in ArduSim; the most important general parame-
ters are: the number of UAVs to simulate; the protocol to execute; the path
towards the file with specific parameters for a given protocol; and the wire-
less communication model. However, as shown in Figure 4.1, many other
parameters exist. For the convenience of the user, a save button is imple-
mented which stores all the general parameters, and recalls them the next
time ArduSim is executed. Depending on the protocol used, a new interface
might appear. In that interface, parameters for specific protocols are shown,
and can be changed as well. Since those parameters are protocol specific, it
is the job of the developer to create that interface.

Figure 4.1: Menu of ArduSim: selecting general parameters and starting a
specific protocol.

16

Once all the parameters are set, ArduSim is loaded and its main window
(shown in Figure 4.2) appears. The largest part of the screen (rectangle 1)
is filled with a map (either from Bing 1 or openstreetmap 2). On that map,
the UAVs are shown, and a thick coloured line is drawn to indicate where
the UAV has flown to. If the UAVs are following a mission, a dotted line
is also drawn to indicate where the UAV will go. Furthermore, to keep the
rendering calculation to a minimum, ArduSim only shows the UAVs in 2D.
Therefore, next to the UAV, the altitude is shown in text. More information
about the UAVs, the state of the protocol, etc. is shown in the upper left
corner (rectangle 3). Right next to it (rectangle 2), some buttons to control
ArduSim are placed.

Figure 4.2: The main window of ArduSim.

1https://www.bing.com/maps
2www.openstreetmap.org

17

https://www.bing.com/maps
www.openstreetmap.org

Chapter 5

Swarm formations

In general, there are two approaches to manage a swarm of UAVs; on the
one hand, one can deterministically design a formation for a swarm and
maintain this formation throughout a mission. On the other hand, one can
use an approach that is called flocking; a behaviour that is common in nature,
for instance in a group of fish, birds or insects. It consists of a few basic rules
that are applied to each entity of the group. When those rules are respected,
the group will stay united without collisions between the group elements.
Both approaches are valid, although one approach can be more suitable for a
specific situation. For this master thesis we have chosen to work with the first
option because it suits better with the applications that we plan to develop
in the future (such as search and rescue missions). Choosing this option
implies that we have to determine the place of each UAV in the swarm, and
maintain this place throughout the mission with methods such as the ones
described in Chapter 7. For that reason, before detailing how those methods
work, we will first explain how we designed the UAVs formations.

Currently, we have implemented four formations in ArduSim: linear, cir-
cular, matrix, and random. The first three formations are regular patterns
that are useful for real applications. For instance, at the start of a search
and rescue mission, the UAVs do not know exactly where the target is. At
that moment it may be useful to spread out the UAVs using a linear forma-
tion. That way, each UAV can use a camera (or another sensor) to search
for the target. Once, a UAV has indicated the target of interest, it is im-
portant to follow the target closely. At that moment a circular formation
around the target might be more useful. Instead, the matrix formation can
be used to cover some area uniformly while providing, e.g., network services.
The random formation does not directly have a useful application, but it
is nevertheless implemented to also validate our algorithms using irregular
patterns.

18

5.1 Linear

The linear formation is the easiest formation, but nevertheless a very use-
ful one. Basically, all the drones are on a line with some minimum spacing
between them (see Figure 5.1). This makes its implementation (see Algo-
rithm 1) very straightforward. The linear formation is used the most when
a large area needs to be covered. This includes applications such as search
and rescue [26], precision agriculture [27], and border surveillance [28].

Figure 5.1: Linear formation.

Algorithm 1 Linear formation(int numUAVs, double minDistance)

1: let positions be a list of FormationPoints of numUAVs elements
2: centerUAV Index = numUAV s

2
3: i = 0
4: for i < numUAVs do
5: x = (i− centerUAV Index)×minDistance
6: positions[i] = new FormationPoint(index=i,x offset=x,y offset=0)
7: end for
8: return positions

5.2 Circular

The second formation we implemented is a circular formation. As shown in
figure 5.2, there is one UAV in the middle (the master) and all others are
place along the rim. Although its implementation is equally straightforward,
there is a small caveat. We have to take into account that, when the number
of UAVs grows, the radius of the circle must grow as well. Otherwise, the
minimal distance between the UAVs defined by the user cannot be guaran-
teed. The circle formation is especially useful for applications which closely
track objects, as it becomes quite difficult for the target to escape from inside
the circle; also, compared to the matrix formation, fewer UAVs are necessary
to cover the same area.

5.3 Matrix

The matrix formation is the most complicated formation that we present in
this work. At first glance, the problem looks easy, just fill the row and the

19

Figure 5.2: Circle formation.

columns. However, we want to be able to use this formation for any n positive
integer number. This means that many times the grid will not be fully filled.
In particular, when we have a large swarm, this can lead to an asymmetric
and unbalanced formation. Furthermore, we also want to make sure that the
UAVs are placed closed to the centre, to improve network connectivity. An
example is given in Figure 5.4; as shown, the outer UAVs are placed: east,
north, and then west. This allows us to maintain symmetry the best we can
(if the swarm had one UAV more, it would have been placed south).

The matrix formation is basically created in two phases: first, a list of
angles is created; second, the UAVs are placed, rotated around the centre,
and shifted outwards. Let us first consider the rotation around the centre
part. Each UAV is placed on location x=1;y=0, and is then rotated (around
x=0;y=0) with a specific angle. This angle is calculated in the function
getStartAngles, and it basically returns the following list: 0, π

4
, 0, π

4
, π
16
, 7∗π

16
,

Each angle in this list is used four times (but each time 90 degrees is added
to it). With this mechanism, UAVs are first placed on the principal axis
(east, north, west, south), and then on the diagonals, etc. Of course, when
the matrix is full, we need to translate the UAV outwards. The smallest
symmetrical matrix that we can make has 9 UAVs (32), the next 25 (52), 49
(72), 81 (92), and so on. In other words, we can check whether we have to
increase the translation distances based on the parity of the base number. To
finally put the UAVs at their correct positions, we have to round the x and y
positions that we have calculated before (otherwise, they are placed more or
less on a circle). For that, we have created a small function ceilAbs(double),

20

Algorithm 2 Circle formation(int numUAVs, double minDistance)

1: let positions be a list of FormationPoints of numUAVs elements
2: if numUAVs ≤ 7 then
3: radius = minDistance
4: else
5: radius = minDistance

2×sin(π
numUAV s−1

)

6: end if
7: positions[0] = new FormationPoint(index=0,x offset=0, y offset=0)
8: for i < numUAVs do
9: x = radius× cos((i−1)×2×π

numUAV s−1
)

10: y = radius× sin((i−1)×2×π
numUAV s−1

)
11: positions[i] = new FormationPoint(index=i,x offset=x, y offset=y)
12: end for
13: return positions

which manipulates the numbers as follows: if the value is close to zero, make
it zero; if the value is positive, round it down; otherwise, round it up (always
to the closest integer).

Figure 5.3 depicts this process for the 14th UAV in the matrix formation.
First, the UAV is placed; since 14 > 32 the UAV is placed on coordinate
(x=2,y=0). Secondly, the appropriate angle out of the list (getStartAngles)
is chosen. Each (start) angle in that list is used 4 times; therefore, the fourth
element is selected (14/4 = 3 integer division, and the list is zero-based
indexing). This angle corresponds to π

4
. Afterwards (step 3), that angle is

incremented with 2× π
2

(because 14-12 = 2). Finally, to ensure that the the
UAV is place on a matrix and not on a circle, its coordinate is rounded to
the closest integer.

(0,0)
Step 1

Step 2

Step 3

Step 4

Figure 5.3: Example of the steps taken to calculate the position for the 14th
UAV in a matrix formation.

21

Algorithm 3 Matrix formation(int numUAVs, double minDistance)

1: let positions be a list of FormationPoints of numUAVs elements
2: startAngles = getStartAngles(numUAVs)
3: distance = 0
4: i = 0
5: for i < numUAVs do
6: currentEven =

√
i %2 == 0

7: nextOdd =
√
i + 1 %2 == 1

8: if currentEven & nextOdd then
9: distance +=1

10: end if
11: x=1,y=0
12: theta = i× π

2
+ startAngles[i/4]

13: y = x× sin(theta)
14: x = x× cos(theta)
15: x = ceilAbs(x× distance×minDistance)
16: y = ceilAbs(y × distance×minDistance)
17: positions[i+1] = new FormationPoint(index=i+1,x offset=x, y off-

set=y)
18: end for
19: positions[0] = new FormationPoint(index=0,x offset=0, y offset=0)
20: return positions
21:

22: Function getStartAngles(numUAVs)

23: numUAVs = numUAVs -1
24: let angles be a list
25: if numUAVs ≤ 8 then
26: angles.add(0.0)
27: angles.add(π

4
)

28: else
29: while numUAVs > 0 do
30: numUAVs = numUAVs-8
31: angles.addAll(getStartAngles(numUAVs))
32: end while
33: length = angles.size()
34: angles.add(π

4×length
35: angles.add(((4× lenght

2
)− 1)× π

4×length
36: end if
37: End Function

22

Figure 5.4: Matrix formation.

5.4 Random

The last formation that we implemented is a random formation. As stated
above, it does not have a real application. There is no good reason to fly
having the UAVs at random positions. However, the UAVs can be placed
on the ground in a random position; or we might want to experiment how
our algorithms perform with asymmetrical formations. We could place the
UAVs in random positions, and relocate the ones that do not keep the min-
imum safety distance until they do. However, that approach does not work
efficiently for a high number of UAVs, which can thus lead to very long calcu-
lation times. Therefore, we opted for a different approach. First, a (square)
grid is created, of which its length depends on the number of UAVs, and an
occupancy rate given by the user. Then the cell numbers (counting from left
to right, and top to bottom) are placed in a list. For each UAV a random
element of that list is picked (and removed once used). Then the UAV is
placed in the cell with some additional random offset, in both x and y, called
jitter. In this way, we can place all UAVs in a random position (efficiently
O(n)), while maintaining the minimal distance.

23

Algorithm 4 Random formation(int numUAVs, double minDistance)

1: let positions be a list of FormationPoints of numUAVs elements
2: occupancyRate = 0.5
3: maxJitter = 0.4

4: lengthSide = ceil(
√

numUAV s
occupancyRate

)

5: let freeSquares be a list of lengthSide2 elements with value equal to the
index

6: halfLength = lengthSide
2

7: positions[0] = new FormationPoint(0,0,0)
8: centerCellNr = halfLength× lengthSide + halfLength
9: freeSquares.remove(centerCellNr)

10: i = 1
11: for i < numUAV s do
12: randomIndex = random.getInteger(max=freeSquares.size())
13: cellNumber = freeSquares.get(randomIndex)
14: freeSquares.remove(randomIndex)
15: row = cellNumber

lengthSide
− halfLength

16: column = (cellNumber%lengthSide)− halfLength
17: jitterX = random.getDouble()×minDistance×maxJitter
18: jitterY = random.getDouble()×minDistance×maxJitter
19: x = row × (1 + maxJitter)×minDistance + jitterX
20: y = column× (1 + maxJitter)×mindistance + jitterY
21: positions[i] = new FormationPoint(index=i,x offset=x, y offset=y)
22: end for

24

Figure 5.5: Random formation.

25

Chapter 6

Efficient UAV swarm takeoff

In the previous chapter we have described how UAVs can be placed in a
specific formation. In this chapter, we will explain how we can take off a
swarm of UAVs efficiently and safely using those formations. Before the
start, the UAVs are placed on the ground in a specific formation, i.e. the
ground formation. The ground formation is normally not important and is
often random. The next step in any protocol is to take off the entire swarm
of UAVs. Once they have taken off, they are supposed to be in a specific
formation in the air, i.e. the flight formation. The flight formation can of
course be chosen by the user, and it depends on the specific protocol or
application. The problem that we solve in this chapter is: which UAV on the
ground goes to which place in the flight formation (see Figure 6.1). From a
user perspective, any assignment is acceptable (because all the UAVs have
the same capabilities). Thus, we search for a solution that minimizes the
total distance travelled by all UAVs, because this will reduce the flight time
and battery usage as well. This problem is commonly referred to as the
assignment problem.

26

1

2

3

4

Gro
un

d
Fo

rm
at
ion

U

5

6

7

8

Air
ta
rg
et

V

Figure 6.1: A graphic presentation of a possible UAV swarm flight assign-
ment.

A first approach could be to just try all the possible arrangements, and
pick the best one. However, the calculation time of such a brute force algo-
rithm has a factorial growth, and therefore cannot be used in practice (even
for a low number of UAVs (< 20)). For instance, as shown in Figure 6.2, there
are already many solutions for just four UAVs. Therefore, in this chapter
we develop, implement, and test two different algorithms: a heuristic which
returns a sub-optimal solution very quickly (O(n2)), and an approach using
the KMA[29], which returns the optimal solution in O(n3).

27

1

2

3

4

5

6

7

8

U V

Figure 6.2: All possible solutions with only four UAVs.

6.1 Heuristic

The first algorithm that we propose to solve the assignment problem is a
heuristic. This means that it will not provide the optimal solution, but
one that comes closer, and most importantly it is very fast. Our heuristic
starts from the brute force algorithm mentioned above, but to decrease the
calculation time we no longer check every solution. In our heuristic, all the
locations on the ground are reduced to one point, which lies in the middle.
Then, the distances between the central position and the air locations is
calculated and stored in a list, which is later sorted in descending order.
Using this sorted list, the UAV closer to each of these positions is then
assigned to it, as shown in Algorithm 5. Since most ground formations are
more or less symmetrical, the impact of this estimation on the total distance
travelled remains small (as shown later). However, it greatly reduces the
calculation time to only O(n2).

6.2 The Kuhn-Munkres algorithm

After a more intensive literature review, we found an algorithm that was
developed by James Munkres in 1957 [29]. It is called the Kuhn-Munkres al-
gorithm (KMA), because his work was based on an earlier work of H.W. Kuhn
[30]. This algorithm (sometimes referred to as the Hungarian algorithm) also
gives an answer for the assignment problem. Due to clever matrix manipula-
tion, it can obtain the optimal solution in only O(n3), which is much better
than the O(n! ·n2) of the brute force algorithm. In the original problem, the
authors were trying to match a set of n persons to a set of n jobs, where
each person had a specific cost for a job. As can be seen, this problem is

28

Algorithm 5 HeuristicTakeOff(numUAVs, groundLocations, flightForma-
tion)

Require: groundLocations .size = numUAVs ∧
flightFormation.size = numUAVs

1: centerLocation = mean(groundLocations)
2: airLocations = f(centerLocation,flightFormation)
3: airList = ∅
4: for loc in airLocations do
5: airList ← (loc, loc.distance(centerLocation))
6: end for
7: sort airList in descending distance order
8: fit = ∅
9: for aLocation in airList do

10: bestError = MAX VALUE
11: for gLocation in groundLocations do
12: error = gLocation.distance(aLocation)2

13: if error < bestError then
14: bestError = error
15: bestID = gLocation.ID
16: end if
17: end for
18: fit ← (id , groundLocations [bestID], aLocation)
19: groundLocations .remove(bestID)
20: end for
21: return fit

29

almost identical to ours. We only have to replace the persons with UAVs on
the ground, the cost with the distance, and the job with locations in the air.
Therefore, we have implemented the KMA in ArduSim as well in order to
compare it against our own heuristic, which is faster but does not give the
optimal solution.

Before we can execute the KMA we need to define a cost matrix. In our
case the cost matrix is created based on the distance between the ground
locations and the flight formation (as shown in Algorithm 6).

The KMA tries to create elements with the value zero, and distinguishes
some zero elements by calling them starred and primed zeros. Furthermore,
it also works with lines (vertically and horizontally across a row or column)
which can be covered or non-covered. Therefore, any element of the matrix
is said to be non-covered, once-covered, or twice-covered, depending on how
many covered lines it lies.

In the beginning of the algorithm: no lines are covered, and no zeros are
starred or primed. Then, for each row, the smallest element is found and
subtracted from the other elements in that row. This will create at least one
zero for each row. Afterwards, consider a zero Z in the matrix. If there is
a non-starred zero in its row or column, star this Z, and repeat this for all
zeros in the matrix. Finally, cover every column containing a starred zero.

After these preliminaries steps, the algorithm begins (Step 1) by choosing
a non-covered zero Z and prime it. If there is no starred zero in its row, go
to Step 2 immediately. Otherwise, cover this row and uncover the column of
Z, repeating until all zeros are covered; then go to Step 3.

In Step 2, a sequence of alternating starred and primed zeros is con-
structed as follows: Denote the only uncovered 0’ as Z0. Then, denote the
0* in Z0’s column as Z1 (if any). Continue by denoting Z2 as the 0’ in Z1’s
row. Continue this sequence until there is no 0* in the column of Zk. Next,
unstar each starred zero in the sequence, and star each primed zero. Remove
all primes, uncover each row, and cover every column containing a 0*. If
all columns are covered, the starred zeros form the desired independent set
(end). Otherwise, return to step 1.

Step 3 consists of getting the smallest non-covered element h of the
matrix, adding h to every element in a covered row, and subtracting it from
every element in an uncovered column. Then return to step 1 without altering
star, prime or covered lines.

30

Algorithm 6 distanceMatrixCalc(numUAVs, groundLocations, flightFor-
mation)

Require: groundLocations of size numUAV s ∧
flightFormation of size numUAV s ∧

1: Let costMatrix be a matrix of size numUAVs * numUAVs

2: for i ∈ {0, . . . , numUAVs} do

3: for j ∈ {0, . . . , numUAVs} do

4: errorMatrix [i][j]← d(groundLocations[i], f lightFormation[j])2

5: end for

6: end forreturn costMatrix

6.3 Takeoff procedure

With the two above-mentioned assignment algorithms we can only determine
which UAV has to go to which place. It does not give us any information
about the order of the takeoff. The takeoff procedure should be as fast as
possible, but also guarantee a collision free flight. Those two restrictions
are somewhat contradictory. In order to take off fast, the takeoff should be
simultaneous. However, this increases the chances of collision. A sequential
takeoff procedure, on the other hand, guarantees a collision-free flight, but it
is much slower.

To address the aforementioned challenge we have implemented a semi-
sequential takeoff procedure, where a UAV takes of vertically up to a certain
altitude Zt, and then it moves diagonally towards its location, following a
straight line. From the moment that the UAV starts moving diagonally, it
will tell other swarm members that another UAV can take off. The UAV
that has to fly the furthest will take off first. This way collisions are avoided,
and the takeoff time is reduced.

6.4 Performance assessment

Above, we have proposed two algorithms to solve the assignment problem:
our heuristic and the KMA. In this section, we will compare the two to decide
which algorithm is the most appropriate to take off a swarm of UAVs in terms
of: calculation time, the total travelled distance, and the number of possible

31

collisions. In all experiments, we have examined the influence of the number
of UAVs, and also the type of flight-formation.

6.4.1 Computation time analysis

As expected, our heuristic (O(n2)) returns an assignment faster than the
KMA (O(n3)). In Figure 6.3, we can observe that there is a difference of
100×. Furthermore, figures 6.4 and 6.5 show that the computation time is
independent on the formation when the heuristic algorithm is used. This
cannot be said for the KMA, which performs notably worse when the UAVs
are spread out over one dimension (linear formation).

Figure 6.3: Average computation time for all UAV formations and assign-
ment algorithms.

32

Figure 6.4: Computation time using the heuristic algorithm for various UAV
formations.

Figure 6.5: Computation time using the Kuhn-Munkres algorithm for various
UAV formations.

6.4.2 Travel distance analysis

Obviously, our heuristic only returns an assignment faster because that as-
signment is not the optimal one. Therefore, we have also measured the total
distance travelled by all the UAVs. As shown in Figures 6.6 and 6.7, our

33

heuristic imposes an additional distance, which grows in an almost linear
fashion. In the case of a circular formation, the additional distance travelled
grows very quickly. This is because our heuristic calculates a centre point on
the ground, and then calculates the distance to all the air locations. Since
those air locations are on a circle, the distances will be very similar, and thus
our heuristic performs poorly.

Figure 6.6: Total additional distance travelled by all UAVs when the heuristic
algorithm is used for a Matrix and Linear formation.

Figure 6.7: Total additional distance travelled by all UAVs when the heuristic
algorithm is used for a Circle formation.

34

6.4.3 Number of collisions analysis

As we mentioned above, a simultaneous takeoff procedure is preferred because
it reduces the takeoff time. However, since there is a chance of collisions (i.e.
flight paths crossing), it is not used in practice. Therefore, we now use a
semi-sequential takeoff procedure. In the future, we would like to improve
this, so that it becomes semi-simultaneous. For such a procedure, it will
be important that the assignment algorithm reduces the number of flight
paths crossing. The lower the chances of collision, the easier it is to take off
simultaneously.

Since the number of flight paths crossing each other will become an im-
portant metric in the future, we decided to measure it already for both as-
signment algorithms. We conducted an experiment where a number of UAVs
took off simultaneously. Then, during the flight, we constantly measured
the distance between all the UAVs. Whenever two UAVs came closer than
5 meters (a typical GPS error), a virtual collision is detected. After that
collision, we allowed both UAVs to continue their flight, and thus they could
collide with another UAVs later on.

From Figure 6.8, the KMA clearly performs better for the Matrix and
Circle formations, where it avoids almost all collisions. However, as shown
in Figure 6.9, the KMA does not fully guarantee a collision-free flight, but it
merely lowers the number of possible collisions.

Figure 6.8: A comparison of the heuristic vs. the KMA algorithm in terms
of potential collisions when varying the number of UAVs (Circle and Matrix
formations).

35

Figure 6.9: A comparison of the heuristic vs. the KMA algorithm in terms
of potential collisions when varying the number of UAVs (Linear formation).

6.4.4 Takeoff time analysis

Finally, we measured the total takeoff time for the simultaneous and semi-
sequential takeoff procedures. As shown in Figure 6.10, taking off all UAVs
one-by-one takes a lot of time (so much that we stopped our tests after 200
UAVs). Therefore, there is a real need for a (semi)simultaneous takeoff.
Those procedures allow to takeoff the UAVs in a nearly constant time. Such
time is not perfectly constant because the total distance travelled will increase
when the minimum distance between UAVs has to be maintained. This effect
is mostly visible for the linear UAV formation.

6.5 Summary

In this chapter, we searched for a way to determine which UAV on the ground
goes to which position in the aerial formation. This problem is called an as-
signment problem, and various algorithms to determine the assignment ex-
ists. The optimal assignment is, in our case, the one that minimizes the total
distances travelled. Since a brute-force search for the optimal assignment is
not doable within an acceptable time frame, and so we proposed and vali-
dated two algorithms: a very fast heuristic, which calculates a sub-optimal
assignment, and the Kuhn-Munkres algorithm, which is slower but returns
the optimal assignment. Experimental results have shown that our heuristic
is faster, and that it only increases the total distance travelled by a small

36

Figure 6.10: Total take-off time using the KMA with varying formations and
take-off procedure

amount. Nevertheless, in most cases, the KMA is better suited than the
heuristic approach. This occurs because it drastically reduces the number
of collisions and, therefore, allows for more simultaneous takeoffs, which in
turn decreases the overall takeoff time. However, when the size of the swarm
grows, the time required to calculate the assignment with theKMA exceeds
the acceptable limits.

37

Chapter 7

MUSCOP: a resilient
coordination protocol

Now that we are able to take off a swarm of UAVs safely and efficiently, we
want to move that swarm according to a pre-planned mission, while main-
taining the swarm in a tight formation. In the past, our research group
created Mission-based UAV Swarm Coordination Protocol (MUSCOP) [31],
that achieves that very goal. However, it relies on a master-slave model, and
in that (initial) version of MUSCOP no attention was given to the possible
UAV failures during the flight. The result was that MUSCOP can maintain
a desired flight formation with minimal time overhead (0.55s per waypoint),
as long as no UAV fails. In this master thesis we will start from that initial
version of MUSCOP(V1.0), and expand it so that it is able to continue the
mission even if UAVs fail during the flight. First, we will briefly describe how
MUSCOP V1.0 works, then we will explain how we improved it, and how we
validated the new version (V2.0) through various experiments.

7.1 The MUSCOP protocol V1.0

As stated above, MUSCOP succeeds at keeping a stable flight formation while
performing a planned mission (which consists of various GPS-waypoints).
The protocol relies on a master-slave model, where the master UAV synchro-
nizes all the slaves at every waypoint in the mission. MUSCOP is a complex
protocol, which depends on many messages, states, transitions, etc. Since it
is well explained in [31], we won’t explain everything in this document. We
will, however, give a general overview, with special enfasis on the things that
will change in the new version.

Since MUSCOP relies on the master-slave model, the first step in the

38

protocol is to define who the master will be throughout the entire mission.
In order to improve network connectivity, the master will be the UAV at
the centre of the formation. Afterwards, the master will send information
about the mission (GPS waypoints) to all the slaves. These waypoints are
slightly adapted for each UAV (with an offset), so that it corresponds to their
position in the formation. Once all the slaves have acknowledged that they
have received their mission, the master will give the order to take off. At the
moment that all the slaves have taken off, the master gives the order to go to
the next waypoint. This order (message) is sent periodically (every 200ms).
According to the authors, this redundant behaviour increases the reliability
of the protocol, as the message sent among the UAVs could be lost due to
distance or the presence of noise in the communications channel. The slaves,
on the other hand, will broadcast periodically the last waypoint they have
visited. The moment the master receives a message from each slave (with the
correct waypoint), it will start broadcasting the order to move to the next
waypoint. This behaviour repeats itself until the last waypoint is reached,
and then the master will give the order to land.

The messages sent and received by the master and slaves determine when
states have to be changed, and they will be used (in MUSCOP v2.0) to detect
the failure of any UAV. Therefore, all messages with their format are shown
in Figure 7.1. Each message starts with a type field, so that the receiver can
identify the message.

At the beginning, the slaves send a Hello message (1). When the master
receives this message, he will (i) add that UAV to its list of UAVs in the
swarm, and (ii) he will calculate the specific mission (GPS waypoints) for that
slave, based on the original mission and the location of that slave (included
in the message).

Then the master sends a Data message (2), which includes the calcula-
tions made earlier, as well as additional information:

• ID - the ID of the target UAV;

• IDc - the ID of the UAV that will be in the centre of the flight formation,
i.e. the master UAV;

• nUAVs - the total number of UAVs in the swarm;

• form - the specific formation in which the UAVs will be flying;

• pos - the position of the target UAV in that formation;

• h - the heading of the swarm;

39

• z - the altitude for the takeoff phase;

• n - the number of waypoints;

• (x, y, z)i - the waypoints.

The master will broadcast these messages (all data messages, but specific for
each slave), until all the slaves have sent back an acknowledgement (DataAck
message 4).

Once all the master receives an acknowledgement for the data messages
(DataAck message (4)), it will start broadcasting the third message: ReadyToFly.
If the slaves receive this message they will (i) arm the engines, and (ii) send
back an acknowledgement message (ReadyToFlyAck (4).

Once the master knows all the slaves are ready to fly, it will periodically
(every 200ms) send the fifth message (moveToWP); this message includes
the waypoint identifier and, since the slaves received the location of that
waypoint (in the data message), they know where to fly to.

Upon arrival at the waypoint, each slave will send message reachWPAcki.
If the master received this message from every slave, it will increment the way-
point identifier in the moveToWP message (which is still periodically broad-
casted). This process will be repeated until the last waypoint is reached. In
that case, the master will stop the broadcasting of the moveToWP message,
and it will start broadcasting the land message.

W\SH LG���

W\SH LG

W\SH LG

���

���

[\

] Q �[�\�]�L

W\SH��� ZD\SRLQW

W\SH LG��� ZD\SRLQW

W\SH���

LGF

KHOOR

Q8$9V� IRUP�� SRV�� GDWD

GDWD$FN��UHDG\7R)O\$FN

UHDG\7R)O\

UHDFKHG:3$FNL

PRYH7R:3

W\SH��� [\ ODQG

K�

Figure 7.1: MUSCOP v1.0 messages and their format

With this functionality, the swarm will be synchronized at every waypoint,
and therefore will not become unstable. Due to the synchronization of swarm
elements, a small time overhead is introduced (just 0.55s per waypoint).

40

7.2 MUSCOP v2.0

As mentioned before, MUSCOP V1.0 works correctly if none of the UAVs
fail. The failure of a UAV can occur for many reasons: a UAV could have
collided with something (bird, building, other UAV, etc.), the batteries could
be depleted, there could be an error in the code, mechanically something can
come loose, or it could just be too far removed from the swarm that it is
unable to communicate. Whatever the reason is, in MUSCOP V1.0 the
entire swarm will be stopped at the next waypoint and unable to continue
the mission. This is because, if the master fails, the slaves will never receive
the message to go to the next waypoint; additionally, if any of the slaves
fail, the master will wait for it before continuing. This results in a swarm
that just keeps hovering at a waypoint, until the batteries are depleted. This
is of course undesirable. To cope with this problem, we propose to use the
messages that are broadcasted periodically. If those messages fail to arrive,
we can assume that the corresponding UAV has failed, and we should act
accordingly.

Basically, there are two cases to consider: the master can fail, or a slave
can fail. In case that a master fails, a new master should be denoted, and it
should take over the function of the previous one. In the case a slave fails,
the master should not wait for messages of that failed UAV and just continue
with the mission.

To replace the master in case it fails, a backup master should be denoted.
To provide full resilience, we have opted to create a list of backup masters
which includes all UAVs since, theoretically, all UAVs could fail, although
such event is extremely rare in real experiments. This list of backup masters
could be chosen randomly. However, as stated before, in order to maximize
the network connectivity, it is in our best interest that the master is in the
middle of the formation. In the chapter dedicated to the takeoff procedure,
we have said that the UAV who has to fly the furthest should take off first.
Since we have done the calculation there, we can just reuse that list. Hence,
in order to get a list of the UAVs closest to the centre, we should just reverse
that list. Now that we have a list of possible backup masters, we still have
to decide when to switch to another master. For that, we propose to use
timeouts. As shown in Algorithm 7, every UAV has a list consisting of the
ID of all the other UAVs. This list also contains a timestamp, which is
updated every time a message of the corresponding UAV is received. When
the UAV arrives at a waypoint, the first thing they do is check the list. If
there is any UAV whose timestamp is older than TimeToLive (set at 5s),
then that UAV is removed from the swarm. We also check if the master
should be changed. With this approach, the swarm is resilient to any and

41

multiple failures.
This process, that takes place in every UAV, is shown in Figure 7.2. Here

we can see that each UAV keeps track of the activity of all the other UAVs
in the swarm by listening to the various messages that are sent. When no
message is received for a period longer than a certain Time To Live (TTL)
value, that UAV is placed in the failed state. Upon arrival at a new waypoint,
the swarm is updated (locally in each UAV). This is done by removing all the
UAVs that are in the failed state from the list of UAVs that are currently in
the swarm. While removing the UAVs from that list, they check if that UAV
was the master. In case that is true, a new master should be selected from
the list of backup masters. This process is fully done locally in every UAV.
If the ID of the new master corresponds with the ID of the that UAV, it will
start broadcasting a message saying that he is the new master of the swarm.
Once the other UAVs receive and acknowledge that message, the new master
will continue by sending the moveToWP message, as explained in MUSCOP
v1.0.

Figure 7.2: The different states for MUSCOP v2.0.

7.3 Validation

To validate our protocol we have set up multiple experiments. In each exper-
iment, we have measured the additional time overhead introduced by MUS-
COP V2, and we compare this with an experiment where no UAV fails (so
it behaves as MUSCOP V1). For all experiments, we have used four UAVs

42

Algorithm 7 UpdateSwarm(numUAVs, listOfMasters)

Require: listOfMasters .size = numUAVs

1: TimeToLive = 5s
Setup phase:

2: Let LastTimeUAV be a hashmap of size(numUAVs)
3: for Id in numUAVs do
4: if Id != selfId then
5: LastTimeUAV.put(Id, currentTime)
6: end if
7: end for

Fly phase:
8: while waypoint not reached do
9: if Message received then

10: Id = readMessage()
11: LastTimeUAV.put(Id, currentTime)
12: Perform actions related to message
13: end if
14: end while
15: while waypoint reached do
16: for UAV in LastTimeUAV do
17: UAVTime = LastTimeUAV.get(UAV)
18: if currentTime - UAVTime > TimeToLive then
19: LastTimeUAV.pop(UAV)
20: ListOfMasters.pop(UAV)
21: end if
22: end for
23: if selfId == ListOfMasters.getFirst() then
24: IamMaster = True
25: end if
26: if IamMaster == True then
27: Perform actions related to master
28: else
29: Perform actions related to slave
30: end if
31: end while

43

that fly at 10 m/s in a linear formation, with a distance of 50 meters between
them. The target mission is shown in Figure 7.3. The value of TimeToLive
was set to 5 seconds.

Figure 7.3: Example of MUSCOP V2.0 providing resilience, so that the
swarm can continue its mission even when a UAV fails.

Since our protocol works with a timeout, we can classify the location
where a UAV fails into three groups: (i) a UAV can fail exactly when it arrives
at the waypoint (worst case scenario); (ii) just before a waypoint; and (iii)
in-between waypoints. We categorize the locations into these three groups
for a specific reason. In case (i) the UAVs will have to wait for the entire
timeout time before removing the failed UAV from their list. This means that
the entire swarm is halted for 5 seconds (i.e. the value of TimeToLive). If,
on the other hand a UAV fails in-between waypoints (iii), then that timeout
will already be surpassed, and thus the UAV will be removed from the list
immediately, without any time overhead. Between those two extremes lies
the second group. In that case, the swarm will have to wait until the time-
out is surpassed, which will be less than the value of TimeToLive. For each
group we tested the following five scenarios:

A: a single slave failing at waypoint 1.

44

B: a single master failing at waypoint 1.

C: two slaves failing at waypoint 1.

D: a master and its backup failing at waypoint 1.

E: a backup master failing at waypoint 1, and the master failing at way-
point 2.

Overall, this results in 15 different experiments, plus one control experiment
where no UAV fails.

In our first set of experiments, the UAVs fail just when they arrive at
the waypoint, which is the worst case scenario. As shown in the Table 7.1,
the time overhead introduced is the same as the value of TimeToLive, i.e., 5
seconds. We can also observe that there is no difference between the failure
of a slave and a master, and that neither is the time overhead increased when
multiple UAVs fail. As one can observe, some values in the table are negative.
This simply means that the execution was a bit faster than the control case.
Overall, those values are very small, and caused by imperfections in ArduSim,
Java itself, or the even in the load on the CPU.

Table 7.1: Time overhead for the different scenarios just when reaching the
next waypoint (0 m).

Section A [ms] B [ms] C [ms] D [ms] E[ms]
0 -198 383 234 -128 -135
1 4999 5601 5601 5383 5002
2 - 3 -397 -397 -394 4802
3 0 203 4 0 0

The results of experiments of group II are shown in Table 7.2. Here the
UAVs fail at 15 meters from the waypoint, which coarsely corresponds to 2.5
seconds before they arrive at the waypoint (half the value of TimeToLive).

Table 7.2: Time overhead for the different scenarios at 15 m from the next
waypoint.

Section A [ms] B [ms] C [ms] D [ms] E[ms]
0 - 77 594 20 123 75
1 2554 2993 2555 2099 3006
2 57 102 -153 -153 2101
3 - 1 301 147 147 -1

45

In Table 7.3 we show the results of our third experiment: where UAVs
fail at 200 m from a waypoint (group III). As shown and expected, no extra
delay is introduced. Since the UAV failed long before the swarm arrived at
the waypoint, its timeout was surpassed, and thus the swarm could respond
without introducing any additional delay.

Table 7.3: Time overhead for the different scenarios at 200 m from the next
waypoint.

Section A [ms] B [ms] C [ms] D [ms] E[ms]
0 150 122 - 32 140 112
1 - 50 - 33 - 1 300 -150
2 -148 -184 -104 - 51 99
3 448 -185 197 200 -206

From these experiments we can conclude that the additional time over-
head introduced by MUSCOP V2.0 is often zero (since in most practical cases
the failure will belong to group III). In the unlikely event a UAV fails close
to a waypoint, the delay is bounded to the value of TimeToLive, as described
in Equation 7.1. Furthermore, we have shown that the delay is independent
on the type of UAV that fails (master or slave) and/or the number of UAVs
that fail.

Delay[s] =

{
TimeToLive− twpi , if twpi ≤ TimeToLive

0, otherwise
(7.1)

In the experiments above, just one UAV fails at one waypoint. Although,
it is unlikely that in real experiments many more UAVs will fail at the same
locations, we still wanted to measure the influence of scaling up. Therefore,
we devised an experiment which tests MUSCOP V2.0 in a more extreme
case. Specifically, we tested our protocol with a high number of UAVs (100), a
moderate number (25), and with a low number (4). In those experiments, we
let UAVs fail at 15 meters from the waypoint (group II). The flight speed was
again set to 10 m/s, and the TimeToLive to 5 seconds. Again we measured
the time, but this time we split it up into two parts: the flight time, and the
wait time (at the waypoints). For each number of UAVs (100, 25, and 4) we
performed three experiments:

a) A control flight where no UAV fails.

b) A flight where half the number of UAVs (and the master) fail at a
particular waypoint.

46

c) A flight where 10% of the UAVs (and the master) fail at consecutive
waypoints (3 failures overall).

The results shown in Figures 7.4a and 7.4b demonstrate that the impact
of scaling-up the swarm is quite low. The flight time is unrelated to the
number of UAVs, and of course it only depends on the travelled distanced
and the flight speed. Notice that the wait time does increase slightly, due to
message buffering. Furthermore, the time overhead is increased a bit when
many UAVs fail at the same time (Scenario B). However, when compared to
the overall flight time, it is negligible. This figure also confirms some of our
previous statements, since one can clearly observe that, in those cases where
UAVs are failing, a delay is introduced. As shown in the last case (10% of
the UAVs failing at each waypoint), the overall delay grows with the number
of times UAVs fail during the mission.

47

(a) Wait time overhead.

(b) Flight time overhead.

Figure 7.4: Time overheads when varying the number of UAVs that fail.

48

Chapter 8

Conclusions, publications and
future work

8.1 Main conclusions

In the last decade there have been many technological advances in the field
of UAVs. As a result, we see that nowadays UAVs are used for many differ-
ent applications such as: surveillance, thermal inspections, the film industry,
entertainment, etc. However, in most cases those applications only consider
one UAV. We believe that, with the proper technologies, UAVs will fly in
swarms in the near future. In many cases, swarms perform better because
they can provide resilience, or complete the task more efficiently. Sometimes
a swarm is even necessary, for instance to carry a heavy load, or to provide
network connectivity over a large area. Swarms have one disadvantage, how-
ever; in general they are more complicated to manage, and the chance of
collisions with other UAVs in the swarm is high. The most prominent chal-
lenges nowadays are the following: (i) swarm formation definition, (ii) takeoff
assignment and procedure, (iii) in-flight coordination, (iv) handling the loss
of swarm elements, (v) swarm layout reconfiguration, (vi) communications
and data relaying optimization, and (vii) controlled landing.

In this Master thesis we have solved the first four problems. Below we
briefly summarize how we solved those problems, and what results were ob-
tained.

Swarm formation definition: In total we have designed and imple-
mented four different swarm formations: Linear, Circle, Matrix, and ran-
dom. The algorithms that create these formations are flexible, and they can
be used for any number of UAVs; also, a minimal distance between each UAV
can be set by the user.

49

Takeoff assignment and procedure: The takeoff is the first and ar-
guably the most important step any swarm has to undertake. It should be
safe (collision free) and efficient (short takeoff time). The takeoff consists
of two phases: first, in the assignment phase, an algorithm calculates which
UAV on the ground has to go to which position in the air; secondly, a takeoff
procedure determines the order and when the UAVs have to take off. We de-
veloped two algorithms to calculate the assignment. One very fast heuristic
that gives a sub-optimal (in terms of total distance travelled) solution, and
one slower algorithm (the KMA) that returns the optimal solution. After
many experiments, we came to the conclusion that the KMA is the most
appropriate algorithm, even though its calculation time is longer. This is
because the KMA reduces the number of flight paths crossing each other, as
well as the total distance travelled. The calculation time is many magnitudes
smaller than the time it takes to take off all UAVs. Therefore, the extra time
spent on calculations is easily compensated. The safest takeoff procedure is
a sequential one, because no UAVs will cross each other (at least for planar
formations), and thus collisions are avoided at all times. However, a pure
sequential algorithm takes a lot of time, especially when the number of UAVs
is large. To keep the risk of collisions at zero, but also to decrease the takeoff
time, we implemented a semi-sequential takeoff procedure where at most two
UAVs are flying towards their location at the time.

The problem of in-flight coordination and handling the loss of
swarm elements is solved by extending the MUSCOP protocol. In the new
version, the swarm will maintain a stable flight and continue their mission
even if multiple UAVs have failed, whereas in the first version, the swarm
would be halted indefinitely if even a single UAV failed. This new functional-
ity is made possible by: (i) creating a list of backup masters, so that a failed
master can be replaced; and (ii) using timeouts to detect if the UAVs are
still active. Through many experiments we have shown that the new version
of MUSCOP will, in most cases, not introduce any additional time overhead.
In worst case scenarios, only a small additional time overhead exists. This
time overhead, which corresponds one-to-one to the timeout value to detect
if the UAVs remain alive, can be set by the user, and it has a default value of
five seconds. Other experiments have also shown that neither the time over-
head nor the stability of the swarm are significantly effected by increasing
the swarm size.

50

8.2 Publications

This section lists the publications that have been produced as a result of this
master thesis.

The following works have been published:

• Jamie Wubben, Francisco Fabra, et al. “A novel resilient and recon-
figurable swarm management scheme”. In: Computer Networks 194
(2021), p. 108119. issn: 1389-1286. doi: https://doi.org/10.1016/
j.comnet.2021.108119

• Jamie Wubben, Izan Catalán, et al. “Providing resilience to UAV swarms
following planned missions”. In: 2020 29th International Conference
on Computer Communications and Networks (ICCCN). 2020, pp. 1–6.
doi: 10.1109/ICCCN49398.2020.9209634

• Francisco Fabra, Jamie Wubben, et al. “Efficient and coordinated ver-
tical takeoff of UAV swarms”. In: 2020 IEEE 91st Vehicular Tech-
nology Conference (VTC2020-Spring). 2020, pp. 1–5. doi: 10.1109/

VTC2020-Spring48590.2020.9128488

• Jamie Wubben, Francisco Fabra, et al. “Mecanismo de resiliencia ante
la pérdida de elementos en enjambres de VANTs”. In: 2021 las Jor-
nadas SARTECO. 2021, pp. 1–7

8.3 Future work

At the beginning of this chapter we mentioned seven of the most promi-
nent challenges that still have to be solved with respect to UAV swarms.
Throughout this thesis we have given solutions for the first four, and thus
three challenges still remain unsolved. At the moment we are working on: (v)
swarm layout reconfiguration, and (vi) communications and data relaying op-
timization. The last challenge, (vii) controlled landing, will most likely also
be resolved in the future. Currently, the takeoff procedure is semi-sequential,
which represents an improvement upon a sequential takeoff, but still requires
a lot of time if the swarm is large. In this thesis, we have tested an as-
signment algorithm that reduces the number of possible collisions. This can
make a semi-simultaneous takeoff possible, and that is something that we
definitely want to address in the future. Finally, once all the most promi-
nent challenges are solved, it will become important to combine all solutions,
and create applications such as search and rescue, precision agriculture, and
providing network connectivity.

51

https://doi.org/https://doi.org/10.1016/j.comnet.2021.108119
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108119
https://doi.org/10.1109/ICCCN49398.2020.9209634
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128488
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128488

Acronyms

API Application Programming Interface

ESC Electronic Speed Controller

GCS Ground Control Station

KMA Kuhn-Munkres algorithm

LOS line-of-sight

MAVLink Micro Air Vehicle Link

MUSCOP Mission-based UAV Swarm Coordination Protocol

UAV Unmanned Aerial Vehicle

UAVs Unmanned Aerial Vehicles

UGV Unmanned Ground Vehicles

USV Unmanned Surface Vehicles

UUV Unmanned Underwater Vehicles

VTOL Vertical take off and landing

52

Bibliography

[1] Goldman Sachs Research. Drones: Reporting for Work. https://www.
goldmansachs.com/insights/technology-driving-innovation/

drones/. Accessed: 2021-05-17. 2014.

[2] BBVA Dory Gascueña. Drones to stop the COVID-19 epidemic. https:
//www.bbva.com/en/drones-to-stop-the-covid-19-epidemic/.
Accessed: 2021-05-17. 2020.

[3] H. Shakhatreh et al. “Unmanned Aerial Vehicles (UAVs): A Survey on
Civil Applications and Key Research Challenges”. In: IEEE Access 7
(2019), pp. 48572–48634. doi: 10.1109/ACCESS.2019.2909530.

[4] Patrick Vincent and Izhak Rubin. “A Framework and Analysis for Co-
operative Search Using UAV Swarms”. In: Proceedings of the 2004
ACM Symposium on Applied Computing. SAC ’04. Nicosia, Cyprus:
ACM, 2004, pp. 79–86. isbn: 1-58113-812-1. doi: 10.1145/967900.
967919. url: http://doi.acm.org/10.1145/967900.967919.

[5] M. Aljehani and M. Inoue. “Multi-UAV tracking and scanning sys-
tems in M2M communication for disaster response”. In: 2016 IEEE
5th Global Conference on Consumer Electronics. Oct. 2016, pp. 1–2.
doi: 10.1109/GCCE.2016.7800524.

[6] Francisco Fabra et al. “ArduSim: Accurate and real-time multicopter
simulation”. In: Simulation Modelling Practice and Theory 87 (July
2018). doi: 10.1016/j.simpat.2018.06.009.

[7] Anam Tahir et al. “Swarms of Unmanned Aerial Vehicles — A Survey”.
In: Journal of Industrial Information Integration 16 (2019), p. 100106.
issn: 2452-414X. doi: https://doi.org/10.1016/j.jii.2019.

100106. url: https://www.sciencedirect.com/science/article/
pii/S2452414X18300086.

[8] Yueyan Zhi et al. “Security and Privacy Issues of UAV: A Survey”.
In: Mobile Networks and Applications 25 (Feb. 2020). doi: 10.1007/
s11036-018-1193-x.

53

https://www.goldmansachs.com/insights/technology-driving-innovation/drones/
https://www.goldmansachs.com/insights/technology-driving-innovation/drones/
https://www.goldmansachs.com/insights/technology-driving-innovation/drones/
https://www.bbva.com/en/drones-to-stop-the-covid-19-epidemic/
https://www.bbva.com/en/drones-to-stop-the-covid-19-epidemic/
https://doi.org/10.1109/ACCESS.2019.2909530
https://doi.org/10.1145/967900.967919
https://doi.org/10.1145/967900.967919
http://doi.acm.org/10.1145/967900.967919
https://doi.org/10.1109/GCCE.2016.7800524
https://doi.org/10.1016/j.simpat.2018.06.009
https://doi.org/https://doi.org/10.1016/j.jii.2019.100106
https://doi.org/https://doi.org/10.1016/j.jii.2019.100106
https://www.sciencedirect.com/science/article/pii/S2452414X18300086
https://www.sciencedirect.com/science/article/pii/S2452414X18300086
https://doi.org/10.1007/s11036-018-1193-x
https://doi.org/10.1007/s11036-018-1193-x

[9] Amir Mirzaeinia, Savannah Bradley, and Mostafa Hassanalian. “Drone-
station matching in smart cities through Hungarian algorithm: power
minimization and management”. In: AIAA Propulsion and Energy 2019
Forum. 2019, p. 4151.

[10] J. Pestana et al. “A Vision-based Quadrotor Swarm for the participa-
tion in the 2013 International Micro Air Vehicle Competition”. In: 2014
International Conference on Unmanned Aircraft Systems (ICUAS).
May 2014, pp. 617–622.

[11] Jun-Woo Cho and Jae-Hyun Kim. “Performance comparison of heuris-
tic algorithms for UAV deployment with low power consumption”.
In: 2018 International Conference on Information and Communication
Technology Convergence (ICTC). IEEE. 2018, pp. 1067–1069.

[12] Nicolas Dousse, Grégoire Heitz, and Dario Floreano. “Extension of a
ground control interface for swarms of Small Drones”. In: Artificial
Life and Robotics 21.3 (Sept. 2016), pp. 308–316. issn: 1614-7456. doi:
10.1007/s10015-016-0302-9. url: https://doi.org/10.1007/
s10015-016-0302-9.

[13] Victor Casas and Andreas Mitschele-Thiel. “Implementable Self-Organized
Flocking Algorithm for UAVs Based on the Emergence of Virtual Roads”.
In: Proceedings of the 6th ACM Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications. DroNet ’20. Toronto, Ontario,
Canada: Association for Computing Machinery, 2020. isbn: 9781450380102.
doi: 10.1145/3396864.3399702. url: https://doi.org/10.1145/
3396864.3399702.

[14] Yazhe Tang et al. “Vision-aided Multi-UAV Autonomous Flocking in
GPS-denied Environment”. In: IEEE Transactions on Industrial Elec-
tronics PP (Apr. 2018), pp. 1–1. doi: 10.1109/TIE.2018.2824766.

[15] Stanford Artificial Intelligence Laboratory et al. Robotic Operating Sys-
tem. Version ROS Melodic Morenia. May 23, 2018. url: https://www.
ros.org.

[16] Y. Mulgaonkar, G. Cross, and V. Kumar. “Design of small, safe and
robust quadrotor swarms”. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). May 2015, pp. 2208–2215.

[17] Ming Chen et al. “SIDR: A Swarm Intelligence-based Damage-Resilient
Mechanism for UAV Swarm Networks”. In: IEEE Access PP (Apr.
2020), pp. 1–1. doi: 10.1109/ACCESS.2020.2989614.

54

https://doi.org/10.1007/s10015-016-0302-9
https://doi.org/10.1007/s10015-016-0302-9
https://doi.org/10.1007/s10015-016-0302-9
https://doi.org/10.1145/3396864.3399702
https://doi.org/10.1145/3396864.3399702
https://doi.org/10.1145/3396864.3399702
https://doi.org/10.1109/TIE.2018.2824766
https://www.ros.org
https://www.ros.org
https://doi.org/10.1109/ACCESS.2020.2989614

[18] Gabriel Hoffmann et al. “Quadrotor Helicopter Flight Dynamics and
Control: Theory and Experiment”. In: (Aug. 2007). doi: 10.2514/6.
2007-6461.

[19] Bart Theys et al. “Influence of propeller configuration on propulsion
system efficiency of multi-rotor Unmanned Aerial Vehicles”. In: June
2016, pp. 195–201. doi: 10.1109/ICUAS.2016.7502520.

[20] elprocus. What is Electronic Speed Control (ESC) and Its Working.
https://www.elprocus.com/electronic- speed- control- esc-

working-applications/. Accessed: 2021-05-21. 2020.

[21] European Union Aviation Safety Agency (EASA). Civil drones (Un-
manned aircraft). https://www.easa.europa.eu/domains/civil-
drones-rpas. Accessed: 2021-05-21. 2020.

[22] PX4 autopilot. Pixhawk 4. https : / / docs . px4 . io / master / en /

flight_controller/pixhawk4.html. Accessed: 2021-05-19. 2020.

[23] ArduPilot Dev Team. Introducing Copter. https://ardupilot.org/
copter/docs/introduction.html. Accessed: 2021-05-21. 2020.

[24] L. Meier. MAVLink Micro Air Vehicle Communication Protocol. url:
http://qgroundcontrol.org/mavlink (visited on 03/26/2019).

[25] GRCDev. ArduSim: Accurate and real-time multi-UAV simulation. https:
//github.com/GRCDEV/ArduSim. Accessed: 2021-05-26. 2020.

[26] Ross Arnold, Hiroyuki Yamaguchi, and Toshiyuki Tanaka. “Search and
rescue with autonomous flying robots through behavior-based cooper-
ative intelligence”. In: Journal of International Humanitarian Action
3 (Dec. 2018). doi: 10.1186/s41018-018-0045-4.

[27] Panagiotis Radoglou-Grammatikis et al. “A compilation of UAV appli-
cations for precision agriculture”. In: Computer Networks 172 (2020),
p. 107148. issn: 1389-1286. doi: https://doi.org/10.1016/j.

comnet . 2020 . 107148. url: https : / / www . sciencedirect . com /

science/article/pii/S138912862030116X.

[28] Sarra Berrahal et al. “Border surveillance monitoring using Quadcopter
UAV-Aided Wireless Sensor Networks”. In: Journal of Communica-
tions Software and Systems 12 (Mar. 2016), pp. 67–82. doi: 10.24138/
jcomss.v12i1.92.

[29] James Munkres. “Algorithms for the assignment and transportation
problems”. In: Journal of the society for industrial and applied mathe-
matics 5.1 (1957), pp. 32–38.

55

https://doi.org/10.2514/6.2007-6461
https://doi.org/10.2514/6.2007-6461
https://doi.org/10.1109/ICUAS.2016.7502520
https://www.elprocus.com/electronic-speed-control-esc-working-applications/
https://www.elprocus.com/electronic-speed-control-esc-working-applications/
https://www.easa.europa.eu/domains/civil-drones-rpas
https://www.easa.europa.eu/domains/civil-drones-rpas
https://docs.px4.io/master/en/flight_controller/pixhawk4.html
https://docs.px4.io/master/en/flight_controller/pixhawk4.html
https://ardupilot.org/copter/docs/introduction.html
https://ardupilot.org/copter/docs/introduction.html
http://qgroundcontrol.org/mavlink
https://github.com/GRCDEV/ArduSim
https://github.com/GRCDEV/ArduSim
https://doi.org/10.1186/s41018-018-0045-4
https://doi.org/https://doi.org/10.1016/j.comnet.2020.107148
https://doi.org/https://doi.org/10.1016/j.comnet.2020.107148
https://www.sciencedirect.com/science/article/pii/S138912862030116X
https://www.sciencedirect.com/science/article/pii/S138912862030116X
https://doi.org/10.24138/jcomss.v12i1.92
https://doi.org/10.24138/jcomss.v12i1.92

[30] Harold W Kuhn. “The Hungarian method for the assignment problem”.
In: Naval research logistics quarterly 2.1-2 (1955), pp. 83–97.

[31] Francisco Fabra et al. “MUSCOP: Mission-based UAV Swarm Coor-
dination Protocol”. In: IEEE Access PP (Apr. 2020), pp. 1–1. doi:
10.1109/ACCESS.2020.2987983.

[32] Jamie Wubben et al. “A novel resilient and reconfigurable swarm man-
agement scheme”. In: Computer Networks 194 (2021), p. 108119. issn:
1389-1286. doi: https://doi.org/10.1016/j.comnet.2021.108119.

[33] Jamie Wubben et al. “Providing resilience to UAV swarms following
planned missions”. In: 2020 29th International Conference on Com-
puter Communications and Networks (ICCCN). 2020, pp. 1–6. doi:
10.1109/ICCCN49398.2020.9209634.

[34] Francisco Fabra et al. “Efficient and coordinated vertical takeoff of
UAV swarms”. In: 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring). 2020, pp. 1–5. doi: 10.1109/VTC2020-Spring48590.
2020.9128488.

[35] Jamie Wubben et al. “Mecanismo de resiliencia ante la pérdida de
elementos en enjambres de VANTs”. In: 2021 las Jornadas SARTECO.
2021, pp. 1–7.

56

https://doi.org/10.1109/ACCESS.2020.2987983
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108119
https://doi.org/10.1109/ICCCN49398.2020.9209634
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128488
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128488

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Structure of the Thesis

	Related works
	UAV swarm protocols
	The takeoff problem
	Swarm resilience

	Unmanned aerial vehicles: an overview
	Types of UAVs
	The hardware components of a multicopter
	Software

	ArduSim: a multi-UAV simulation platform
	Swarm formations
	Linear
	Circular
	Matrix
	Random

	Efficient UAV swarm takeoff
	Heuristic
	The Kuhn-Munkres algorithm
	Takeoff procedure
	Performance assessment
	Computation time analysis
	Travel distance analysis
	Number of collisions analysis
	Takeoff time analysis

	Summary

	MUSCOP: a resilient coordination protocol
	The MUSCOP protocol V1.0
	MUSCOP v2.0
	Validation

	Conclusions, publications and future work
	Main conclusions
	Publications
	Future work

	Acronyms

