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Resum
Actualment, arxius de tot el món estan digitalitzant grans col·leccions de do-

cuments manuscrits amb la finalitat de preservar-los i facilitar la seua difusió a
investigadors i usuaris generals. Aquest fet està motivant una gran evolució en les
tècniques de reconeixement de text manuscrit (HTR per les seues sigles en anglés),
que permeten accedir als continguts textuals de les imatges digitals mitjançant con-
sultes de text pla, de la mateixa manera que es fa amb els llibres i altres documents
digitals.

Dins del conjunt de documents manuscrits sense transcripció, ens trobem que
aproximadament més de la meitat dels documents es corresponen amb documents
estructurats. Aquests documents contenen informació de tota mena: registres de
naixement, de navegació, quaderns de bitàcola, etc. Tota aquesta informació és
sovint imprescindible per a usos jurídics, estudis demogràfics, estudis de l’evolució
del clima, etc.

L’objectiu d’aquest treball és desenvolupar nous mètodes que permeten realitzar
cerques segons el model “atribut-valor” sobre aquests documents, on els “atributs”
són les capçaleres de les columnes i files que formen la taula i els “valors” són la resta
de cel·les de la taula que no són capçalera. Per a això, ens basarem en el marc de la
indexació probabilística (que està en certa manera relacionat amb el camp conegut
com “keyword spotting”). En aquest marc, cada element d’una imatge que es puga
interpretar com una paraula és detectat i emmagatzemat, juntament amb la seua
posició dins de la imatge i la corresponent probabilitat de rellevància.

Així doncs, emprant la informació geomètrica dels índexs probabilístics en con-
junt amb l’ús de distribucions Gaussianes, es pretén permetre realitzar aquest tipus
de cerques des d’una perspectiva completament probabilística. Sota aquest enfo-
cament, a més de la cerca, s’estudia l’extracció de la informació amb objectiu de
bolcar els continguts específics de les imatges digitals a un format compatible amb
bases de dades convencionals. En totes dues tasques s’han aconseguit resultats que
superen el baseline proposat.

Paraules clau: Reconeixement de Formes, Processat d’Imatges, Documents Es-
tructurats Manuscrits, Indexació Probabilística i Cerca, Extracció d’Informació
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Resumen
Actualmente, archivos de todo el mundo están digitalizando grandes colecciones

de documentos manuscritos con el fin de preservarlos y facilitar su difusión a in-
vestigadores y usuarios generales. Este hecho está motivando una gran evolución en
las técnicas de reconocimiento de texto manuscrito (HTR por sus siglas en inglés),
que permiten acceder a los contenidos textuales de las imágenes digitales mediante
consultas de texto plano, de la misma manera que se hace con los libros y otros
documentos digitales.

Dentro del conjunto de documentos manuscritos sin transcripción, nos encontra-
mos con que aproximadamente más de la mitad de los documentos se corresponden
con documentos estructurados. Estos documentos contienen información de todo ti-
po: registros de nacimiento, de navegación, cuadernos de bitácora, etc. Toda esta
información es a menudo imprescindible para usos jurídicos, estudios demográficos,
estudios de la evolución del clima, etc.

El objetivo de este trabajo es desarrollar nuevos métodos que permitan realizar
búsquedas según el modelo “atributo-valor” sobre estos documentos, donde los “atri-
butos” son las cabeceras de las columnas y filas que forman la tabla y los “valores”
son el resto de celdas de la tabla que no son cabecera. Para ello, vamos a basarnos
en el marco de la indexación probabilistica (que está en cierto modo relacionado con
el campo conocido como “keyword spotting”). En este marco, cada elemento de una
imagen que se pueda interpretar como una palabra es detectado y almacenado, junto
con su posición dentro de la imagen y la correspondiente probabilidad de relevancia.

Así pues, empleando la información geométrica de los índices probabilísticos en
conjunto con el uso de distribuciones gausianas, se pretende permitir realizar este
tipo de búsquedas desde una perspectiva completamente probabilística. Bajo este
enfoque, además de la búsqueda, se estudia la extracción de la información con
objetivo de volcar contenidos específicos de las imágenes digitales a un formato
compatible con bases de datos convencionales. En ambas tareas se han logrado
resultados que superan el baseline propuesto.

Palabras clave: Reconocimiento de Formas, Procesado de Imágenes, Documentos
Estructurados Manuscritos, Indexación Probabilística y Búsqueda, Extracción de
Información
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Abstract
Currently, all archives around the world are digitising large collections of manuscripts,

aiming to preserve and facilitate their dissemination to researchers and general users.
This fact is motivating a fast evolution in handwritten text recognition (HTR) tech-
niques, which allow accessing to the textual contents of digital images by means of
plain-text queries, in the same way as with books and other digital documents.

Among the huge set of manuscripts without transcription, more than half of the
documents contain structured text. This is the case of birth records, navigation
logs, etc. The information contained in these documents is often needed for legal
matters, demographic studies, weather evolution studies, etc.

The purpose of this work is to develop new methods that allow to perform
searches according to the “attribute-value” model about these documents, where
the “attributes” are, for example, column or row headers in tables and the “values”
are the corresponding table cells. For this purpose, we will rely on the so-called
probabilistic indexing framework (which in a certain sense is related with the field
known as “keyword spotting”). In this framework, each element of an image that
can be interpreted as a word is detected and stored, along with its position within
the image and the correspondence relevance probability.

This way, by using the geometric information available in the probabilistic indices
and Gaussian distributions, we aim at allowing this type of search from a completely
probabilistic perspective. Following this approach, in addition to information search,
we study how to actually extract specific textual contents of the digital images in
standard formats compatible with conventional databases.

Key words: Pattern Recognition, Image Processing, Structured Handwritten Doc-
uments, Probabilistic Indexing and Search, Information Extraction
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CHAPTER 1

Introduction

Nowadays, archives from all over the world are digitising huge collections of hand-
written documents without transcription with the purpose of preserving them and
facilitating their dissemination among researchers and users in general. However,
despite digitising documents helps to preserve them, their textual richness is still
hidden behind the billions of pixels that conform these images. This fact is moti-
vating an evolution on the Handwritten Text Recognition techniques (HTR), which
allows accessing to the textual content of the images through plain text, in the same
way as it is done in digital books.

1.1 Motivation

Within the set of handwritten documents without transcription, we find that ap-
proximately more than half of them correspond to structured documents. These
documents contain all kinds of information: birth, marriage and death registers, no-
tarial data, navigation records, logbooks, etc. All this information is often essential
with juridical purposes, to perform demographic and genealogical studies, analyse
the weather’s evolution, etc. Given this information, it becomes a relevant task to
obtain a reliable automatic transcription of their contents.

This task is very challenging due to a variety of factors:

In first place, the layout of the tables might be variable, inconsistent and even
erratic, given that depending on the collection of documents that we are consid-
ering, the tables can be completely handwritten (structure and contents), hybrid
(printed structure and handwritten contents) or even completely printed (structure
and contents). Examples are shown in Fig. 1.1.

In second place, the text lines that conform the contents of the table are generally
shorter than the lines present in regular handwritten documents. This is due to the
fact that they typically account for concrete and short attributes such as proper
names, ages, coordinates, sailing data, etc. This fact makes the line detection more
difficult, but also the word recognition as the shorter lines lack the linguistic context,
which typically helps to provide accurate hypotheses.

In addition to these difficulties, we would like to remark that we are looking for
not only an automatic transcription, but one that takes into account the nature and
relationships found in the textual contents of the documents in order to unleash all

1



2 Introduction

Figure 1.1: Example of two documents containing tables, the first one corresponds to the
Passau dataset meanwhile, the second one corresponds to the HisClima dataset. In the
first table, it can be seen that the structure and contents of the image are handwritten,
whereas in the second image, the structure of the table is printed and its contents are

handwritten.

the possibilities that these documents have to offer. Therefore, the main purpose of
this thesis is to allow users to perform tabular queries, which are queries where the
user specifies the column and/or row that he wants to query, as well as the value
that he is looking for in that column and/or row. Moreover, given that many times
it is also necessary to extract all this information to fill an external database, we
also consider the information extraction task.

1.2 State of the art

The information search and extraction over structured handwritten documents is a
relevant task that has been attacked over the years with different perspectives and
techniques. Typically, it has been solved by first performing Layout Analysis over
the images to infer information about the structure of the images (such as the lines
that conform a table, the box that denotes a register, etc.) and then, perform HTR
over the delimited zones.

Following this approach, in [2] they first recognise the graphical lines that con-
form the structure of the table. Then, they perform template matching over the
graphical structure and obtain the columns and the headers structure of the table.
Finally, they use two different approaches (Conditional Random Fields and Graph
Convolutional Networks) to determine which column and row correspond to each
cell.

In [8], they firstly locate the table on the page employing an algorithm that
makes use of the printed anchors of the table. Once they have located the table,
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they split the table into the different rows and columns that conform it. Finally,
they apply a CNN or an RNN to transcribe the textual content of each cell.

Despite being possible to face this task as two different consecutive problems
(the detection of the cell region and the transcription of the cell contents), other au-
thors have proposed layout-agnostic solutions, where the table’s structure is directly
inferred from the geometric information of the transcription of the contents.

In [7] there is proposed an information search and extraction technique that is
layout-agnostic. In this technique, the column headers of the tables are considered
“anchors” that determine the width of the queried column. Therefore, after applying
geometric reasoning over the document, it can be inferred the structure of the table
and it is straightforward to allow the users to perform tabular queries.

The major drawback of this approach is that despite having achieved good re-
sults over a variety of different collections [7, 11], it relies on holistic assumptions to
determine, during the geometric reasoning step, the width of the columns that con-
form the tables. In this thesis, we aim at substituting these heuristics by well-known
statistical models, which are more robust and theoretically motivated.

1.3 Objectives

Therefore, the main objective of this thesis is to allow the users to perform tabular
queries over the images of the handwritten manuscripts, employing a probabilistic
framework that replaces all the heuristics that are found in [7] by well-known sta-
tistical models. With this purpose, we have defined the following minor objectives:

• Propose a probabilistic framework for tabular queries.

• Try different machine learning models to estimate the required probabilities.

• Measure the performance of the proposed systems when searching and extract-
ing information.

1.4 Thesis structure

In order to explain how to perform information search and extraction over these
documents, this thesis is structured in 5 chapters:

In Chapter 2 we explain the theoretical foundations that are employed in this
work, as well as the performance metrics employed.

In Chapter 3 we detail our proposal of probabilistic framework to perform dif-
ferent types of tabular queries, as well as an explanation on how we have adapted
this framework to perform information extraction.

In Chapter 4 can be found the experimental results obtained when performing
search and information extraction, along with an exploratory analysis of the data
and a description of the employed corpus.

Finally, in Chapter 5 we conclude and propose possible future works that could
be explored after this thesis.





CHAPTER 2

Theoretical foundations

This section details the theoretical foundations considered in this thesis, giving a
brief explanation of their nature and use. Moreover, we provide an explanation of
the different evaluation measures considered.

2.1 Technological context

2.1.1. Graphical Models

Graphical models [1] can be defined as a compact and graphical representation of the
joint distribution of a set of variables employing directed graphs (Bayesian networks)
or undirected graphs (Markov random fields). This representation is very powerful,
as it combines graph and probability theory elegantly into a unique model. Among
the different useful properties that these networks have, we want to highlight the
following:

Firstly, they provide an intuitive and easy way to visualise and create new proba-
bilistic models. Secondly, they provide details about the structure of the model, such
as the conditional independence between variables, their relationships, etc. Finally,
they provide a mechanical way of inferring and learning complex models through
graphical manipulations.

Now, we are going to focus on Bayesian networks because we have employed
them in this work.

A Bayesian network is defined as a Directed Acyclic Graph (DAG) where nodes
represent random variables and edges represent the different dependencies between
the different variables that conform the network. A Bayesian network defines a joint
probability distribution for nodes x1, x2, ..., xn as:

P (x1, x2, ..., xn) =
D∏
i=1

P (xi | a(xi))

where a(xi) denotes the values of the variables associated to the ancestors of xi.

5



6 Theoretical foundations

P S

D

L

X

Figure 2.1: Example of Bayesian network.

Fig. 2.1 shows an example of a simple bayesian network, which models the
relationship between symptoms and external factors that are related to lung cancer.
The random variables considered are the following:

• P: Denotes the degree of external pollution received by the person during his
life, either high (h) or low (l).

• S: Denotes if the patient is a smoker, either yes (y) or no (n).

• D: Denotes if the patient suffers dyspnoea, either yes (y) or no (n).

• X: Denotes the result of the x-ray radiography. It can be either positive (p),
uncertain (u) or negative (n).

• L: Denotes if the patient has lung cancer, either yes (y) or no (n).

Then, following the network defined in Fig. 2.1, the joint probability can be
calculated:

P (P, S, L,D,X) = P (P )P (S)P (L | P, S)P (X | L)P (D | L)

Please note that independence assumptions are made explicit graphically in the
network. For instance, the fact that the degree of external pollution received by a
person is conditionally independent of the fact that he is a smoker or not.

Now, employing the Bayes theorem, we can make inferences easily employing
the network structure. For example: Which is the probability that a person does
not suffers lung cancer given that he does not smoke, the results of the X-ray are
negative but he suffers dyspnoea? This question can be modelled as:

P (L = n | P, S = n,D = y,X = n) =

∑
iεP P (L = n, P = i, S = n,D = y,X = n)∑

iεP P (P = i, S = n,D = y,X = n)

= P (L = n | P, S = n)
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2.1.2. Gaussian distribution

In order to model the different probabilities that conform our probabilistic frame-
work, we have assumed that the different variables of our model follow a Gaussian
distribution.

The Gaussian distribution is a parametric model that estimates the probability
distribution p(x) of a random variable x, given a finite set of observations x1, x2,...,
xN . This model is governed by two parameters, the mean, which denotes the centre
of the probability distribution, and the variance, which denotes the “spread” of the
distribution.

We start by defining the particular case of the univariate Gaussian, which is
defined by the following formula:

N (x|µ, σ2) =
1

(2πσ2)
1
2

exp
{
− 1

2σ2
(x− µ)2

}

where x is the single variable we want to estimate its probability, µ is the mean
value and σ2 is the variance. Examples of univariate Gaussian distributions with
different values for their parameters can be found in Fig. 2.2. It can be seen
explicitly that the centre of each distribution corresponds to the value of µ and that
the probability mass is distributed according to σ2 (the larger σ2, the spreader the
associated probability distribution).

Figure 2.2: Different Gaussian distributions according to the values of the parameters
µ and σ2. Extracted from https://en.wikipedia.org/wiki/Normal_distribution the

21st of June 2021.

Now, the formula that defines the multivariate Gaussian is:

N (x|µ,Σ) =
1

(2π)
D
2

1

|Σ| 12
exp

{
− 1

2
(x− µ)T Σ−1 (x− µ)

}
where x denotes the D-dimensional vector of which we want to estimate its

probability, µ is the mean vector and Σ is the covariance matrix. It is worth noting
that the number of free parameters in Σ is D(D+1)/2. Given this, the number

https://en.wikipedia.org/wiki/Normal_distribution
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Figure 2.3: Shape of three different gaussians according to Σ. a) Accounts for a full
covariance matrix, b) accounts for a diagonal covariance matrix and c) accounts for a
covariance matrix proportional to the identity matrix. Extracted from Pattern recognition

and Machine learning, (2006) Bishop, C. M.

of parameters grows quadratically with D and, for large values of D, it might be
prohibitive to operate and manipulate Σ. As a possible solution to this problem,
the covariance matrix can be constrained to be diagonal, reducing the number of
parameters to D, or even to be proportional to the identity matrix. In the case of
constraining Σ to be diagonal, we will find that the isometric contours that define
the distribution are aligned with the coordinate axis, meanwhile in the case of being
proportional to the identity matrix, the contours are concentric circles. Moreover, we
would like to remark that these constraints might be interesting not only to reduce
the number of parameters to estimate but also to avoid overfitting. Examples of
Gaussian distributions in 2D with different Σ can be found in Fig. 2.3.

Finally, in order to estimate the parameters that govern each Gaussian, we have
employed the maximum likelihood criterion. The formulas to estimate them are the
following:

µ̂ =
1

N

∑
n

xn

Σ̂ =
1

N

∑
n

(xn − µ̂)(xn − µ̂)T

2.1.3. Probabilistic Indexing framework

In order to deal with the intrinsic word-level uncertainty generally exhibited by
handwritten text in images and in particular handwritten structured documents, as
discussed in Chap. 1, we employ the Probabilistic Indexing [16] (PrIx) framework.
This framework draws from ideas and concepts previously developed for keyword
spotting (KWS), both in speech signals and text images. However, rather than car-
ing for “key” words, any element in an image which is likely enough to be interpreted
as a word is detected and stored, along with its relevance probability (RP) and its
location in the image. These text elements are referred to as “pseudo-word spots”.

KWS can be seen in this context as the binary classification problem of deciding
whether a particular image region x is relevant for a given query word v, i.e. try to
answer the following question: “Is v actually written in x?”. As in [15, 9, 16], we
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denote this image-region word RP as P (R = 1 | X = x, V = v), but for the sake of
conciseness, we will omit the random variable names, and for R = 1, we will simply
write R.

As discussed in [16], this RP can be simply approximated by the maximum value
of the posteriorgram for v in x, P (v | x, i, j), which denotes the probability that v
is written in a subimage of x which includes the pixel (i, j). An example a of full
posteriorgram for P (v = “matter” | x, i, j) can be found in Fig. 2.4. Therefore:

P (R | x, v) ≈ max
i,jvx

P (v | x, i, j) (2.1)

where v denotes geometric containment (i.e., i, j v x is the set of coordinates
of pixels contained in x).

Figure 2.4: Example of full posteriorgram at pixel level for P (v = “matter” | x, i, j)

This expression can be more conveniently written in terms of all possible small,
word-sized image sub-regions or bounding boxes (BB) in x which may contain a
depiction of the writing of the word v as:

P (R | x, v) ≈ max
bvx

max
i,jvb

P (v | x, b, i, j) ≈ max
bvx

P (v | x, b) (2.2)

where P (v | x, b) is the posterior probability needed to “recognise” the BB image
(x, b). Therefore, assuming the computational complexity entailed by the maximi-
sation in Eq. (2.2) is algorithmically managed, any sufficiently accurate isolated
word classifier can be used to obtain P (R | x, v). Image region word RPs do not
explicitly take into account where the considered words may appear in the region x,
but the precise positions of the words within x are easily obtained as a by-product.
According to Eq. (2.2), the best BB for v in the image region x can be obtained as:

b̂v = arg max
bvx

P (v | x, b) (2.3)
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If image regions are small (for example text-line regions), it is unlikely that
interesting words appear more than once in the region. Therefore the BB obtained in
Eq. (2.3) generally provides good information about the location and size of v within
x. This can be straightforwardly extended to cases where the image regions are larger
(for example page images) and/or if multiple instances of the same interesting word
are expected to appear in x. To do this, rather than finding the (single) best BB
in Eq. (2.3), the n-best BBs and the corresponding relevance probabilities can be
obtained as:

b̂1, ..., b̂n = n-best
bvx

P (v | x, b), Pi(R | x, b̂i) = P (v | x, b̂i), 1 ≤ i ≤ n (2.4)

By setting n large enough, all the sufficiently relevant location and size hypothesis
for a word v in x are obtained. As a result, the PrIx of a image x consists of a list
of spots of the form:

[x, v, Pi, b̂i], Pi
def
= P (v | x, b̂i), v ∈ V, 1 ≤ i ≤ n (2.5)

where V is a set of relevant words or “pseudo-words”. An example of a PrIx can be
found in Fig. 2.5

Figure 2.5: Example of PrIx. Firstly, we can observe the ID of the page at the beginning
of the index. Then, we find the data stored in a tabular format. In each row of the table,
we find the stored pseudo-word, the relevance probability for that pseudo-word in that
position and the corresponding BB. Moreover, in this image we find marked the spots for

“matter” and “matters” according to their probability.



2.2 Performance metrics 11

2.2 Performance metrics

As performance metrics for this work, we have considered five well-known informa-
tion retrieval metrics: the precision, the recall, the Average Precision, the Mean
Average Precision and the F-measure.

Firstly, let Q be a set of queries and let τ be a specified threshold. Then, we
define the recall, ρ(q, τ) and the precision, π(q, τ), for a given query q ε Q as:

ρ(q, τ) =
h(q, τ)

r(q)
, π(q, τ) =

h(q, τ)

d(q, τ)

where r(q) denotes the number of relevant image regions to the query q according
to the ground-truth, h(q, τ) denotes the number of relevant regions, according to the
ground-truth, retrieved by our system when querying q and d(q, τ) accounts for the
number of retrieved images when querying for q. It can be seen that the precision
denotes the proportion of matches that is relevant among all the matches retrieved
by the system, meanwhile the recall denotes the proportion of relevant matches
found in the ground truth that is retrieved by the evaluated system.

Typically, the use of these performance metrics shows an interesting trade-off
that is present when performing information search and extraction. For instance, if
a user chooses a high value for the threshold τ , it is likely that the system’s preci-
sion will improve, as the higher threshold will reduce the number of false positives.
However, it is also likely that the system’s recall is going to decrease, as some of the
relevant regions might have a lower confidence score associated than the minimum
threshold, increasing then the number of false negatives. Thus, if instead of increas-
ing the threshold value, the user would have decided to decrease it, we would have
probably observed the opposite phenomenon, an increase in the recall and a decrease
in the system’s precision. This trade-off can be seen graphical through R-P curves
[4], where for each threshold, the precision and recall are plotted. An example of
R-P curve can be seen in Fig. 2.6.

Figure 2.6: Example of R-P curve. It can be seen that, as the threshold increments,
typically the precision increases and the recall decreases.
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A well-known measure that takes into account this trade-off is the Average Pre-
cision (AP) [10], which is defined as the area under the R-P curve. Formally, it is
defined as:

π̄q =

∫ 1

0

πq(ρ)dρ

Another well-known information retrieval metric that takes into account this
trade-off is the Mean Average Precision (mAP), which is the arithmetic average of
the AP of all the queries that form Q. Formally, it is defined as:

¯̄πq =
1

|Q|
∑
qεQ

π̄q (2.6)

Finally, the F1-measure is an information retrieval metric that takes into account
the balance between precision and recall. Formally, it is defined as:

F1(q, τ) = 2 ∗ π(q, τ) ∗ ρ(q, τ)

π(q, τ) + ρ(q, τ)



CHAPTER 3

Proposed probabilistic framework

In this section, we present our probabilistic framework to perform column queries
and row queries. Moreover, we also discuss how to perform the intersection of
these two types of queries and how to adapt this framework to perform information
extraction.

In our proposed framework, we wish to be agnostic with respect to possibly
predefined table layouts, but we assume tables to be organised into orthogonal rows
and columns. Each column typically has a column header and each row may have
(or not) a row header. The textual content of interest is contained in value cells
which are the intersection of columns and rows. An example of table can be seen in
Fig. 3.1.

Figure 3.1: Example of table of the HisClima dataset. It is denoted in red the region of
the table that corresponds to column headers, in blue the region that corresponds to row

headers and in green the region that corresponds to value cells.
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3.1 Col-header Cell-Value Queries

Firstly, we consider the problem of performing column queries. We want to compute
the relevance probability P (R | x, q), where x is a table image and q is a query. In
this subsection we assume q = (qch, qv), where qch is a column header “attribute”
query and qv a value or cell query. For simplicity, we assume that the regions of
x matching qch and qv are small bounding boxes (BBs), bch, bv , respectively, each
tightly containing the words specified by the corresponding query.

To simplify notation, we will drop x from the formulation, assuming that all the
probabilities are always conditioned by x. Therefore:

P (R | x, q) ≡ P (R | q) ≡ P (R | qch, qv)

P (R | x, q) can be approximated as:

P (R | x, q) =
∑

bch,bvvx

P (R, bch, bv | qch, qv) ≈ max
bch,bvvx

P (R, bch, bv | qch, qv)

= max
bch,bvvx

P (bch | qch, qv)P (bv | bch, qch, qv)P (R | bch, bv, qch, qv)

≈ max
bch,bvvx

P (bch | qch)P (bv | bch, qv)P (R | bch, bv, qch, qv)

≈ max
bch,bvvx

P (bch)P (bv | bch)P (R | bch, bv, qch, qv)

(3.1)

where, as in [16], P (R | bch, bv, qch, qv) can in turn be approximated as:

P (R | bch, bv, qch, qv) ≈ P (qch, qv | bch, bv) ≈ min(P (qch | bch), P (qv | bv)) (3.2)

Firstly, we approximate the sum over all the possible BBs for bch and bv by the
maximum, as has been done in Eq. (2.1). Then, we consider qch and qv condition-
ally independent employing the Naïve Bayes assumption. This assumption seems
reasonable, as the queried value cell does not necessarily depend on the queried
column header. Thirdly, we employ the Naïve Bayes assumption to consider that,
bch and bv are conditionally independent of qch and qv respectively. Finally, the last
approximation comes from the fact that an attribute-value query (qch, qv) is just a
Boolean AND query, qch ∧ qv , and according to [14], AND relevance probability
can be better approximated using the minimum rather than the product.

Finally, from Eq. (3.1) and (3.2):

P (R | qch, qv) ≈ max
bch,bvvx

P (bch)P (bv | bch) min(P (qch | bch), P (qv | bv)) (3.3)

The first factor, P (bch), is a prior probability for the position of the column header
in the x-axis and the second, P (bv | bch), is the conditional probability of the position
and geometry of bv, given the position and geometry of the corresponding header,
bch . The last two factors, P (qch | bch) and P (qv | bv) are obtained by combining
the relevance probabilities of the pseudo-words involved in qch and qv , directly
provided by the PrIx of the table image x. The bayesian network representing this
probabilistic model can be seen in Fig. 3.2.
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Bch

Qv

R

Bv Qch

Figure 3.2: Bayesian network describing the probabilistic model to compute the relevance
of a column query.

3.2 Row-header Cell-Value Queries

Now, we are going to consider the problem of performing row queries. With this
purpose, we want to compute the relevance probability P (R | x, q), where x is a
table image and q is a query. In this subsection we assume q = (qrh, qv), where
qrh is a row header “attribute” query and qv a value or cell query. For simplicity,
we assume the regions of x matching qrh and qv are small bounding boxes, brh, bv,
respectively, each tightly containing the words specified by the corresponding query.
Therefore:

P (R | x, q) ≡ P (R | q) ≡ P (R | qrh, qv)

Then, it can be seen that Eq. (3.3) can be straightforwardly adapted to perform
row queries as:

P (R | qrh, qv) ≈ max
bch,bvvx

P (brh)P (bv | brh) min(P (qrh | brh), P (qv | bv)) (3.4)

The first factor, P (brh), is a prior probability for the position of the row header in
the y-axis and the second, P (bv | brh), is the conditional probability of the position
and geometry of bv, given the position and geometry of the corresponding row header,
brh. The last two factors, P (qrh | brh) and P (qv | bv) are obtained by combining
the relevance probabilities of the pseudo-words involved in qrh and qv , directly
provided by the PrIx of the table image x. The bayesian network representing this
probabilistic model can be seen in Fig. 3.3.



16 Proposed probabilistic framework

Brh

Qv

R

Bv Qrh

Figure 3.3: Bayesian network describing the probabilistic model to compute the relevance
of a row query.

3.3 Row-column Intersection Queries

Now, we are going to consider the problem of performing row-column queries. With
this purpose, we want to compute the relevance probability P (R | x, q), where x is
a table image and q is a query. In this subsection we assume q = (qrh, qch, qv), where
qrh is a row header “attribute” query, qch is a column header “attribute” query and
qv a value or cell query. For simplicity, we assume the regions of x matching qrh, qch
and qv are small bounding boxes, brh, bch and bv respectively, each tightly containing
the words specified by the corresponding query. Therefore:

P (R | x, q) ≡ P (R | q) ≡ P (R | qrh, qch, qv)

Following the approximation presented in [14] to combine probability distribu-
tions, it can be seen that P (R | qrh, qch, qv) can be approximated as:

P (R | qrh, qch, qv) ≈ min(P (R | qrh, qv), P (R | qch, qv)) (3.5)

where P (R | qrh, qv) and P (R | qch, qv) denote the probability associated to the
row and column queries respectively of which we want to obtain the intersection.

3.4 Extension to information extraction

Despite our proposal is mainly aimed at information search, it can be naturally
extended to perform information extraction with the help of wildcard queries.

A wildcard query could be defined as a query where we find a sequence of char-
acters of any length followed by the character “*”, which denotes another sequence of
characters of any length. Given this information, the task of performing information
extraction can be seen as a regular tabular query where the queried value-cell qv is
the symbol “*”.

Please note that, when querying for P (R | qrh, qch, qv = ∗), the value of qv would
be expanded into all the possible pseudo-words that appear in the PrIx, leading
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this to retrieve a probability distribution of hypothesis for that cell instead of a
plain transcription, which is the usual format at this task. Of course, this format
is not compatible with a standard database, given that it provides a probabilistic
transcription. However, it opens the need of working and developing probabilistic
databases for this type of tasks, where the entries would be formed by the pseudo-
words found in that region along with their probabilities. By doing this, the users
could retrieve the n-best BBs for each cell, as is shown in Eq. (2.4), (and obtain
as a by-product the pseudo-words attached to them), where the value of n would
depend on the user needs for each application.

As a first approximation to this paradigm, we have decided to retrieve only the
BB of higher probability for each cell. By doing this, we obtain a format that is
directly suitable for standard databases. Firstly, we could calculate the relevance
probability when extracting information from an intersection between a column
query qch and a row query qrh as:

P (R | qrh, qch, qv = ∗) ≡ max
wεW

min(P (R | qrh, qv = w), P (R | qch, qv = w)) (3.6)

where W denotes all the pseudo-words that appear in the PrIx. Finally, the best
extraction for that cell can be obtained as a by-product:

q̂v = arg max
wεW

min(P (R | qrh, qv = w), P (R | qch, qv = w)) (3.7)





CHAPTER 4

Experiments and Results

4.1 Corpus

The employed corpus to assess the ideas proposed in this thesis is the first version of
the HisClima database [11]. This corpus is compiled from the logbook of Jeannette, a
ship which sailed the Arctic ocean from July of 1880 until February of 1881. During
this expedition, the sailors recorded Climatic information several times a day: wind
speed, temperature, coordinates, the form of the clouds, etc.

In this logbook, we find that each annotated date typically corresponds to two
contiguous pages: the left page, which contains tabular information about the
weather conditions at certain times of the day, and the right page, which contains
miscellaneous information about the events that occurred during that day. Thus,
this corpus is composed of 419 pages, where 208 correspond to tabular pages, and
the other 211 correspond to descriptive pages. Examples of both types of pages can
be seen in Fig. 4.1. Clearly, in this work we will only focus on the tabular pages.

Figure 4.1: Examples of tabular and miscellaneous pages that conform the collection.

Now, if we take a look at Fig. 4.2 we can observe that each tabular page is
composed of five regions: Firstly, the header of the document, where we find the
date and title of the page. Secondly, we find the first table region, where we can
see the column headers of the table, which correspond to the Climatic conditions
that were recorded several times during a day. In this table region, the values
annotated correspond to the measurements performed before noon, as it is denoted

19
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by the header “A. M.”, present in the first column of the table. In third place, we
find a structured region where there are recorded other relevant events, which were
measured less frequently than the information found in the table regions. In fourth
place we find another table region, which shares the columns headers found in the
first table and accounts for the measured events in the afternoon, as it is denoted
by the header “P. M.”, present in the first column of the table. Finally, we can find
another structured region. In this work, we will only focus on the table regions.

Figure 4.2: Example of tabular page from the Jeannette logbook. The title region is
represented in green, the table regions are coloured in red and the register regions are

denoted in blue.



4.1 Corpus 21

Now, if we take a closer look at Fig. 4.3, we can observe some of the challenges
that should be taken into account when working with the tables of this collection.

Firstly, the width of each column is completely different. For instance, the
wind direction column is wider than all the columns that account for the barometer
information.

Secondly, it can be seen that frequently, when the measured value of a cell is the
same as the value of the last annotated predecessor in the column, the writer of the
document decided to write the quotation marks symbol (denoting that the content
is the same as the content of the predecessor cell on the column) instead of writing
the value.

Finally, if we observe the column whose header value is “Forms of Clouds by
symbols”, it can be seen that when the content of a value cell is larger than the cell
size, it is split into multiple adjacent cells in the same column. It is worth noting
that, when performing information search and/or extraction, we will aim to retrieve
all the contents that are semantically related to the queried row, even when the
content of a cell is divided into multiple cells.

Figure 4.3: Example of table region of the HisClima dataset. Some of the challenges of
this collection can be found in this image. For instance, in the cell that is the intersection
of the column “Courses steered” and the row “6”, we can see that its value is the quotation
marks. Moreover, in this table we find that the contents of two cells of the column “Forms

of clouds by symbols” are split into three cells each.
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4.2 Exploratory Analysis of the data

In order to decide which attributes of the data are interesting to take into account
when modelling the probabilistic framework presented in Chap. 3, we have per-
formed an exploratory analysis of the data.

Firstly, we have looked at the attributes that could be interesting to model P(bch).
The two attributes considered are the position in the x-axis and the position in the
y-axis.
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Figure 4.4: Distribution of column header BB in function of their y coordinate
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Figure 4.5: Distribution of column header BB in function of their x coordinate

If we observe the plots, it seems reasonable to discard the x-axis, as the data
is normally distributed across it. Therefore, P (bch) could be modelled employing a
univariate Gaussian distribution over the y-axis.
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Secondly, as attributes that could be interesting to model P (bv | bch) we have
considered the width of the value-cell BB (denoted as wv) and the geometric centre
of it in the x-axis (denoted as cxv). In order to generalise to all the different column
shapes, we have employed the deviations of each attribute with respect to the width
and geometric centre of the associated bch (wch and cxch respectively).
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Figure 4.6: Scatter plot showing the relation between wv − wch and cxv − cxch

If we observe Fig. 4.6, two differentiated clouds of points can be seen. On the
one hand, if we take a look at the cloud of points that is found on the left, it can
be seen that the width of the cell-values is much smaller than the width of the
queried column header. This is due to the fact that the quotation marks are tiny,
meanwhile the column headers might be much larger. On the other hand, if we
look at the cloud of points found on the right, it can be seen that the difference
between the widths is in a reasonable range and that typically, the geometric centre
of the cell-values is similar to the geometric centre of the associated column headers.
Taking all this information into account, it seems reasonable to model P (bv | bch) as
a two-dimensional Gaussian with diagonal covariance matrix, where one dimension
would be wv − wch and the other one would be cxv − cxch.
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Now, we are going to take a look at the attributes that could be interesting to
model P (brh). The two attributes that we have considered at first glance are the x
coordinate and the y coordinate of brh.
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Figure 4.7: Distribution of row header BBs in function of their x coordinate
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Figure 4.8: Distribution of row header BBs in function of their y coordinate

First of all, we would like to remark that the most informative dimension is the
x-axis, as in this collection the row header is the first cell of each row of the table.
Finally, we have decided to discard the information of the y-axis, since the data is
normally distributed over the two tables that conform each page. Given this, we
have decided to model P (brh) as a univariate Gaussian over the x-axis dimension.

Finally, let’s see how could we model P (bv | brh). Analogously to P (bv | bch), this
probability can be modelled employing hv − hrh and cyv − cyrh, where cyv − cyrh
denotes the deviation between the geometric centre in the y-axis of bv and the
associated geometric centre of brh, and hv − hrh represents the difference between
the height of bv and the height of brh.
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Figure 4.9: Scatter plot showing the relation between hv − hch and cyv − cych

If we observe Fig. 4.9, it can be seen that the cell values are typically centred in
the y-axis with respect to cych. However, it is not always the case, as sometimes the
deviation is larger than 100 pixels. This is due to the fact that when the data does
not fit into a single cell, the writer of the document decided to distribute it across the
adjacent cells in the vertical axis, leading to these large deviations between cyv and
cych. Given this information and the shape of the scatter plot, it seem reasonable to
model P (bv | brh) as a two dimensional Gaussian with diagonal covariance matrix,
where the two dimensions are hv − hch and cyv − cych.

4.3 Experimental setup

To evaluate empirically the ideas proposed in this thesis, we have performed different
experiments. In this section, we describe the considered partitions of the corpus,
the software that has been employed to estimate the probability distributions, the
performed experiments, the evaluation protocol and the input and output of our
system.

First of all, from the 208 tabular pages that can be found in the HisClima
database, we have made two different partitions: the train partition, which has
been used to train the statistical models, and the test partition, which has been
employed to assess the performance of our system. Statistics about these partitions
can be found in Tab. 4.1. Please note that the row “Rel. information” accounts for
the number of cell values found in each partition.

Train Test Total

Pages 158 50 208
Lines 25 901 7 838 33 739
Rel. information 11 938 3 533 15 741

Table 4.1: Basic statistics of the HisClima partitions.
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Secondly, as library to estimate the different probability distributions and their
parameters, we have employed the Armadillo [13] toolkit.

Thirdly, to assess the ideas presented in this thesis we have performed two ex-
periments: one aimed at information extraction and another aimed at information
retrieval.

The first task that we have considered is information extraction, as it is one of the
main goals in this collection. In this task, the objective is to obtain a transcription
for each cell of the table, in order to fill this information into a standard database.
The second experiment that we have considered is aimed at information retrieval.
Concretely, we have decided to emulate the behaviour of the users when searching
information at column level. For instance, one example of query would be: “In which
days the direction of the wind was North East?”.

As query set for the information extraction experiment, we have employed all
the possible combinations between row and column headers, as we are interested
in retrieving the contents of all the cells that conform each table, meanwhile in
the information retrieval experiment we have employed as query set all the existing
tuples <column, keyword> present in the GT.

Moreover, given the different objectives of the two experiments, we would like to
remark that we have employed different criteria to evaluate them.

On the one hand, the evaluation of the information extraction experiment is
performed at cell level. In this experiment, a match is considered a true positive
(TP) when the retrieved content of the cell by the system is exactly the same as
the content of the cell found in the ground truth (GT). Otherwise, the match is
considered a false positive (FP). Finally, if the content of a cell in the GT is not
retrieved by the system, this is considered as a false negative (FN).

On the other hand, the evaluation of the information search experiment is per-
formed at column level. Given this, a match is considered a true positive (TP) when
the retrieved keyword by the system appears in the same column in the GT. Other-
wise, the match is considered a false positive (FP). Finally, if a keyword in a column
in the GT is not retrieved by the system, this is considered as a false negative (FN).

Now, we are going to discuss the input of our system. Unfortunately, at the
moment of writing this thesis we do not have reliable PrIx for this collection. How-
ever, we have a 1-best transcription, which accounts for the best transcription of
our system for each line. Nevertheless, given that in this collection the lines are
annotated at cell level and taking into account that each line typically holds only
one pseudo-word, we can replace the use of the PrIx by the 1-best transcription
in this particular case. Given this, the probabilities of the probabilistic framework
are estimated employing the BBs associated to the line where appears the queried
pseudo-words. Moreover, the use of the 1-best transcription makes our results com-
parable to the ones presented in [11], which we are going to consider as baseline in
our experiments.

Finally, as output for our system, in the case of information extraction we are
going to return a hypothesis for each cell of each table, along with its relevance
probability, meanwhile for the information retrieval experiment we are going to
return a list of pages where the queries match the system hypothesis, along with a
relevance probability for each page.
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4.4 Information extraction

In order to perform information extraction at cell level, we have followed these steps:

For each value-cell of the table, firstly we have retrieved the BB associated to
the line of the pseudo-word that matches qch. This fact is sound in this collection
because we know that there is at least one unique and distinctive pseudo-word for
each column. Secondly, we have performed the analogous procedure to locate the
row header BB associated to qrh. Thirdly, we have retrieved all the BBs present
on the page and we have considered them as possible bv. Then, we have calculated
P (R | qrh, qch, qv) as detailed in Chap. 3 for each bv. Next, we have approximated
the distribution that accounted for all the possible qv in that precise cell by the qv
which leads to the highest P (R | qrh, qch, qv) employing Eq. (3.6). Finally, for those
cells whose BB of maximum probability is a quotation mark we have performed
a post-process to substitute them by their semantic value. With this purpose, we
would consult the qv associated to the maximum RP hypothesis of the precedent
cell in the vertical axis. If it is empty or it is another a quotation mark, then we
would look into the next precedent cell. Otherwise, we would return as value the
qv of that cell. Moreover, we would like to remark that the final probability of the
quotation mark cell is the minimum between the probabilities of all the cells which
have been visited until achieving the first value cell which is not a quotation mark.

It is worth noting that, in the third step of this task, many possible configurations
of Gaussian distributions could be fitted to model the different probabilities that
account for P (R | qrh, qch, qv). In order to determine the best configuration for this
collection, we have performed different experiments. Results can be found in Tab.
4.2.

Approach P R F1

Baseline 0.79 0.79 0.79

1G col-value and 1G row-value v1 0.68 0.49 0.57
1G col-value and 1G row-value v2 0.70 0.51 0.59
11G col-value and 24G row-value 0.74 0.77 0.76
11G col-value and 1G row-value 0.81 0.80 0.81

Table 4.2: Information extraction precision, recall and F1 at cell level.

For all the experiments, we have employed a univariate Gaussian to model P (bch)
and another to model P (brh). Now, we are going to detail the different configurations
for P (bv | bch) and P (bv | brh) that have been tried. Firstly, we have modelled
P (bv | bch) employing a Gaussian and P (bv | brh) employing another Gaussian, as
was proposed in Sec. 4.2.

In this first experiment, we tried two different training data to estimate P (bv |
brh). In the first version, denoted as “v1”, we employed all the data that is shown
on Fig. 4.9 to estimate the parameters of the Gaussian, meanwhile for the second
version, denoted as “v2”, we only employed the data which was not present in the
column of “Form of clouds”. The main idea behind the second version is that some
lines in that column are annotated as the row where they semantically belong, which
is different from the physical row where the lines are found. This is due to the fact
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that, when the contents they wanted to write in that cell were larger than it, they
decided to split them into the vertical adjacent cells. If we observe Tab. 4.2, it can
be seen that we have achieved better results with the second configuration. Given
this, in the following experiments we will employ the second criteria to choose the
training data to estimate P (bv | brh).

Nevertheless, we would like to remark that the results were very poor in both
versions, being the F1 score 22 and 20 points worse than the baseline results. In view
of this, we decided to observe the system’s predictions and found that, frequently,
our system returned as best hypothesis the adjacent cell (either in the vertical or
horizontal axis). This was due to the fact that trying to model P (bv | bch) and
P (bv | brh) employing a unique Gaussian for each was too demanding for the system
(for instance, a large deviation of a value cell with respect to its column header in a
wide column might be negligible, meanwhile the same deviation in a smaller column
could be critical).

Then, we tried the opposite experiment, employing a different Gaussian for each
column (11 Gaussians in total to model P (bv | bch)) and a different Gaussian for each
row (24 Gaussians in total to model P (bv | brh)). It can be seen that we improved
17 points the F1 score with respect to the first approximation. Again, we took a
closer look at the mistakes that were made by our system and we found that, in
the rows which were not typically filled in the training set, the Gaussian parameters
were estimated with fewer data and tended to overfit.

As a possible solution to this problem, we repeated the experiment but employing
a unique Gaussian to model all the rows. We thought that this assumption was
sound, given that we have modelled P (bv | brh) employing relative deviations and
that all the rows have the same height and length. It can be seen that with this
approach we have achieved our best performance (81 of F1 score).

Now, let’s take a look at where is the system failing. We find two main problems:
the skew and the multi-row contents of the column associated to the header “form
of clouds”.

Figure 4.10: Example of HisClima page with severe skew. The red line is parallel to the
x-axis.
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Firstly, there are some pages that present skew, which makes difficult for our
system to make the correct prediction. For instance, if we take a look at Fig.
4.10, it can be seen that if we draw a horizontal line at the position of the fourth
row, it seems more reasonable to assume that the cell value “Nimb” is accounting
for the row header “4” instead of “3”, which is its real row header. Despite there
exist techniques to alleviate this problem [6] which could work on an homogeneous
corpus like the HisClima database, this problem could not be easily solved for a more
heterogeneous corpus where the structure of the tables is handwritten and erratic,
such as the Passau Tables collection.

Figure 4.11: Example of multi-row cell contents.

Secondly, the other major problem is the cells which contents are distributed over
the adjacent vertical cells. For instance, in Fig. 4.11, we find that the content that
semantically belongs to the central cell is distributed into three cells. Our system,
would retrieve each line in each physical cell, accounting for three false positives,
as the first and last cell are annotated as empty in the GT and the middle cell is
annotated as the combination of the three cells, and a false negative, as we have
not retrieved the cell contents. This fact hinders the performance of our system
severally. As a possible solution to this problem, we could combine the contents
of the upper and lower cell into the middle cell in a post-process. However, this
task is also challenging, as not all the contents of cells in that column are split into
multi-rows.

4.5 Information search

The process to perform information retrieval at column level is the following:

Firstly we have retrieved the BB associated to the line of the pseudo-word that
matches qch. Secondly, we have retrieved all the BBs present in the page that
correspond to qv. Finally, we have calculated P (R | qch, qv) as detailed in Chap. 3
for each bv. Results can be found in Tab. 4.3.

It can be seen that our system improves the baseline AP by 3 points and the
mAP by 4 points. This might be due to the fact that the baseline approach only
retrieves a binary result for each query (either the query is fulfilled or not by a
page), meanwhile our system returns a probability for each possible query, allowing
the user to choose the threshold that suites most its needs. This can be seen in Fig.
4.12, where the baseline is denoted by a perfect rectangle whereas our approach is
denoted by a curve.
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Approach AP mAP

Baseline 0.86 0.80

1G col-value and 1G row-value 0.89 0.84
11G col-value and 1G row-value 0.89 0.84

Table 4.3: Information retrieval AP and mAP at column level

Moreover, we would like to remark that our system achieves the same results
employing our first approximation to the problem or the most complex approxi-
mation that yielded the best results at information extraction. This is due to the
fact that, during the information extraction experiments, when employing the first
approximation sometimes the best result was an adjacent cell and the system was
retrieving as result the qv with the highest probability, meanwhile the correct tran-
scription according to the GT was usually the second or third best hypothesis. This
situation motivated the use of more specific Gaussians for each column in the infor-
mation extraction task. Nevertheless, as in information retrieval the user specifies
the queried pseudo-word qv, the system does retrieve the hypothesis that matches
the performed query, and therefore, we do not face the maximisation problem that
motivated the use of specific Gaussians for each column.

Finally, we would like to remark that some of the major concerns that appeared
in information extraction are not a problem anymore in information retrieval. For
instance, as we are evaluating this task at column level, the skew problem is alle-
viated given that we do not take rows into account, and therefore, row skew does
not hinder the performance of our system. Furthermore, the multi-row cells are no
longer a problem, given that these rows belong to the same column and therefore,
they will be retrieved correctly.
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Figure 4.12: RP curves for the information retrieval task. “B” denotes the baseline
method, meanwhile “G” denotes our first approach, based in employing a Gaussian to

model P (bv | bch) and another Gaussian to model P (bv | brh).



CHAPTER 5

Conclusions and future works

5.1 Conclusions

At the beginning of this thesis, we had proposed three objectives to accomplish:
Proposing a probabilistic framework for tabular queries, trying different machine
learning models to estimate the required probabilities and measuring the perfor-
mance of the proposed systems when searching and extracting information.

For the first objective, we have defined a probabilistic layout agnostic framework
that allows performing tabular column queries, row queries and the intersection of
both. Moreover, we have discussed how to adapt it to perform information extrac-
tion.

For the second objective, we have tried different configurations of Gaussian dis-
tributions to model P (bv | bch) and P (bv | brh) at information extraction and infor-
mation retrieval tasks. We have seen empirically that the use of multiple Gaussians
accounting for the different columns of the tables yields a huge improvement with
respect to employing a unique Gaussian to model P (bv | bch) at the information
extraction task. However, this gain is only present at information extraction, as
we have achieved the same performance when employing a unique Gaussian for
P (bv | bch) at the information retrieval experiment.

For the third objective, we have measured the performance of the system over
these tasks and we have discussed which are the main advantages of our system
when performing information search and extraction compared to the baseline, but
also which are the main concerns that the system is facing when performing those
tasks.

Finally, the achievement of these three minor objectives, as well as the favourable
results in information search and extraction, makes possible to affirm that we have
achieved the main objective of this work: proposing a probabilistic framework that
substitutes the heuristics employed in the baseline method for well known statistical
models, achieving comparable performance.
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5.2 Future works

As possible future works that could be performed we find:

• Assess the ideas presented in this thesis over a more heterogeneous corpus such
as the Passau Tables collection and compare our results against the proposed
baseline [7].

• Try other machine learning models to estimate the different probabilities of the
probabilistic framework. In this work, we have focused on the use of Gaussian
distributions due to their model explainability and their easiness of estimation
and use. However, other machine learning models could have been used for
this task, as for example, a Neural Network such as the Perceptron [12], a
Gradient Boosting Regressor [5] or an SVM [3].

• Perform information search and extraction over the non-table structured re-
gions of the pages. In this work, we have only aimed at searching and ex-
tracting information from the handwritten tables. However, there are other
structured regions, below the tables, that also contain information that might
be relevant for the users.

• When available, repeat the experiments of this work employing probabilistic
indices. Despite being sound the use of the 1-best transcription instead of a
probabilistic index for this collection, we hope achieving better results with
the PrIx, as where the 1-best fails to transcript the contents of the image there
might be other accurate hypotheses for that region in the PrIx.

• Assess the performance of the system when performing information retrieval
at cell level. For instance, instead of asking for a concrete temperature on a
concrete day, ask for a concrete temperature at a determined moment of the
day.

• Develop range queries in order to allow the users to ask for ranges of values
instead of a unique keyword. This would allow the users to ask for a range of
temperatures instead of asking for a concrete temperature. This type of query
would answer questions like “In which days the air temperature was between
20 and 30 degrees?”.

• Develop a post-process to mitigate the effects of the multi-row cell contents
for information extraction.
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