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Abstract 

This thesis is focused on the construction and uses of genome-scale metabolic models 
to efficiently obtain biofuels, such as ethanol and hydrogen. As a target organism, 
cyanobacterium Synechocystis sp. PCC6803 was chosen. This organism has been studied as 
a potential photon-fuelled production platform, for its ability to grow only from carbon 
dioxide, water and photons. This dissertation verses about methods to model, analyse, 
estimate and predict the metabolic behaviour of cells. Principal goal is to extract 
knowledge from the different biological aspects of an organism in order to use it for an 
industrial relevant objective.  

This dissertation has been structured in chapters accordingly organized as the 
successive tasks that end up building an in silico cell that behaves as the carbon-based 
one. This process usually starts with the genome annotation files and ends up with a 
genome-scale metabolic model able to integrate –omics data. First objective of present 
thesis is to reconstruct a model of this cyanobacteria’s metabolism that accounts for all 
the reactions present in it. This reconstruction had to be flexible enough as to allow 
growth under the different environmental conditions under which this organism grows in 
nature as well as to allow the integration of different levels of biological information. Once 
this requisite was met, environmental variations could be simulated and their effect 
studied under a system-wide perspective. Up to five different growth conditions were 
simulated on this metabolic model and differences were evaluated. 

Following assignment was to define production strategies to weigh this organism’s 
viability as a production platform. Genetic perturbations were simulated to design strains 
with an enhanced production of three industrially-relevant metabolites: succinate, 
ethanol and hydrogen. Resulting sets of genetic modifications for the overproduction of 
those metabolites are, thus, proposed. Moreover, functional reactions couplings were 
studied and weighted to their metabolite production importance. Finally, genome-scale 
metabolic models allow establishing integrative approaches to include different types of 
data that help to find regulatory hotspots that can be targets of genetic modification. Such 
regulatory hubs were identified upon light/dark shifts and general metabolism operational 
principles inferred. All along this process, blind spots in Synechocystis sp. PCC6803 
metabolism, and more importantly, blind spots in our understanding of it, are revealed. 

Overall, the work presented in this thesis unveils the industrial capabilities of 
cyanobacterium Synechocystis sp. PCC6803 to evolve interesting metabolites as a clean 
production platform. 

  



 
 

  



 
 

 
 

Resum 

Esta tesis es centra en la construcció i els usos del models metabòlics a escala 
genòmica per a obtenir eficientment biocombustibles, com etanol i hidrogen. Com a 
organisme diana, s’elegí el cianobacteri Synechocystis sp. PCC6803. Aquest organisme ha 
segut estudiat com una plataforma de producció nodrida per fotons, per la seva habilitat 
per créixer a partir únicament de diòxid de carboni, aigua i fotons. Aquesta tesi versa 
sobre mètodes per a modelitzar, analitzar, estimar i predir el comportament metabòlic de 
cèl·lules. La principal meta és extreure coneixement del diferents aspectes biològics d’un 
organisme de manera que s’usen per a un objectiu industrial rellevant.  

La tesi ha segut estructurada en capítols organitzats d’acord a les successives tasques 
que acaben construint una cèl·lula in silico que es comporta, idealment, com la que està 
basada en carboni. Aquest procés generalment comença amb els arxius de l’anotació del 
genoma i acaba amb un model metabòlic a escala genòmica capaç d’integrar dades –
òmiques. El primer objectiu de la present tesi és la reconstrucció d’un model del 
metabolisme d’aquest cianobacteri que tinga en compte totes les reaccions que hi estan 
presents. Esta reconstrucció havia de ser prou flexible com per permetre la simulació del 
creixement en les diferents condicions ambientals en les quals aquest cianobacteri creix 
en la natura, així com permetre la integració de diferents nivells d’informació biològica. 
Una vegada que aquest requisit fou assolit, es pogueren simular variacions ambientals i 
estudiar els seus efectes amb una perspectiva de sistema. S’han simulat fins a cinc 
condicions de creixement en este model metabòlic i les seves diferències han segut 
avaluades. 

La següent tasca fou definir estratègies de producció per a valorar la viabilitat d’aquest 
organisme com a plataforma de producció. Es simularen pertorbacions genètiques per al 
disseny de soques amb producció millorada de metabòlits de rellevància industrial: 
succinat, etanol i hidrogen. Així, es proposen conjunts de modificacions genètiques per a 
la sobreproducció d’aquests metabòlits. També s'han estudiat reaccions acoblades 
funcionalment i s’ha ponderat la seva importància en la producció de metabòlits. 
Finalment, els models metabòlics a escala genòmica permeten establir criteris per integrar 
diferents tipus de dades que ens ajuden a trobar punts importants de regulació. Eixos 
centres reguladors, que poden ser objecte de modificacions genètiques, han segut 
investigats baix canvis dràstics d’il·luminació i s’han inferit principis operacionals del 
metabolisme. Al llarg d'aquest procés, s’han revelat punts cecs al metabolisme de 
Synechocystis sp. PCC6803 i, el més important, punts cecs en la nostra comprensió 
d'aquest metabolisme.  

En general, el treball presentat en aquesta tesi dona a conèixer les capacitats 
industrials del cianobacteri Synechocystis sp. PCC6803 per a produir metabòlits d'interès, 
tot sent una plataforma de producció neta i sostenible.  



 
 

  



 
 

 
 

Resumen 

Esta tesis se centra en la construcción y usos de los modelos metabólicos a escala 
genómica para obtener biocombustibles de manera eficiente, como etanol e hidrógeno. 
Como organismo objetivo, se ha elegido a la cianobacteria Synechocystis sp. PCC6803. Este 
organismo ha sido estudiado como una potencial plataforma de producción alimentada 
por fotones, dada su capacidad de crecer solamente a partir de dióxido de carbono, agua y 
fotones. Esta tesis versa acerca de los métodos para modelar, analizar, estimar y predecir 
el comportamiento del metabolismo de las células. La principal meta es extraer 
conocimiento de los diferentes aspectos biológicos de un organismo con el fin de utilizarlo 
para un objetivo industrial pertinente. 

Esta tesis ha sido estructurada en capítulos organizados de acuerdo con las sucesivas 
tareas que terminan con la construcción de una célula in silico que se comporta, 
idealmente, como la que está basada en el carbono. Este proceso suele comenzar con los 
archivos de anotación del genoma y termina con un modelo metabólico a escala genómica 
capaz de integrar datos –ómicos. El primer objetivo de la presente tesis es la 
reconstrucción de un modelo del metabolismo de esta cianobacteria que tenga en cuenta 
todas las reacciones presentes en la misma. Esta reconstrucción tenía que ser lo 
suficientemente flexible como para permitir el crecimiento en las distintas condiciones 
ambientales bajo las cuales este organismo crece en la naturaleza, así como permitir la 
integración de diferentes niveles de información biológica. Una vez que se cumplió este 
requisito, se pudieron simular variaciones ambientales y estudiar sus efectos desde una 
perspectiva de sistema. Se han estudiado hasta cinco diferentes condiciones de 
crecimiento en este modelo metabólico y sus diferencias han sido evaluadas. 

La siguiente tarea fue definir estrategias de producción para sopesar la viabilidad de 
este organismo como una plataforma de producción. Se simularon perturbaciones 
genéticas para el diseño de cepas con producción mejorada de tres metabolitos de 
relevancia industrial: succinato, etanol e hidrógeno. Así, se proponen conjuntos de 
modificaciones genéticas para la sobreproducción de estos metabolitos. Por otra parte, se 
han estudiado reacciones acopladas funcionalmente y se ha ponderado su importancia en 
la producción de metabolitos. Finalmente, los modelos metabólicos a escala genómica 
permiten establecer criterios para integrar diferentes tipos de datos que ayuden a 
encontrar puntos importantes de regulación que pueden ser objeto de modificación 
genética. Estos centros reguladores han sido investigados bajo cambios drásticos de 
iluminación y se han inferido principios operacionales del metabolismo. A lo largo de este 
proceso, se han revelado puntos ciegos en el metabolismo de Synechocystis sp. PCC6803 
y, lo más importante, los puntos ciegos en nuestra comprensión de dicho metabolismo. 

En general, el trabajo presentado en esta tesis presenta las capacidades industriales de 
la cianobacteria Synechocystis sp. PCC6803 para producir metabolitos de interés, siendo 
una plataforma de producción limpia y sostenible. 
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Preface 

If we had to observe your university under 
the same limitations that bind us in our 
observation of the Lusitanian aborigines, we 
would no doubt conclude that humans do 
not reproduce, do not form kinship groups, 
and devote their entire life cycle to the 
metamorphosis of the larval student into the 
adult professor. We might even suppose that 
professors exercise noticeable power in 
human society. A competent investigation 
would quickly reveal the inaccuracy of such 
conclusion. 
–Joao Figueira Alvarez, published 
posthumously in Xenological Studies, 
22(4):49-193 

Orson Scott Card, Speaker for the dead, Tor 
Books Publisher, 1986 

 
 

 

If you want to travel fast, go alone; but if you 
want to travel far, go together. 

Traditional African saying 
 

Esta és la part de la tesi a la que, sent sincers, més vegades havia desitjat 
aplegar. Primerament, perquè és senyal de que la feina comença a estar acabada, 
que aquest camí llarg, ple d’esforços i farcit d’alegries, comença a veure la seva fi. 
Segonament, perquè és emotiu girar el cap, observar les petjades en la sorra de la 
platja i donar-te compte del camí que has fet, dels motius pel qual l’has fet i de 
qui t’acompanya en el viatge. Et permet recordar gent i situacions que tan marcat 
i gràcies a les quals eres qui eres, com eres i on eres. Com dedicà Pat aquell curt, 
“a nuestros recuerdos, porque sin ellos la vida sólo sería futuro”. 

Ni esta tesi i ni la meva persona s’haguera pogut desenvolupar sense una 
família al voltant. No hauria passat res, de res, si dos persones no s’hagueren 
trobat fa molts anys i decidit continuar el camí juntes. Estes persones són mon 
pare i ma mare. Tinc la estranya sensació que no hauria tingut interès en la 
biologia, i per tant no haguera entrat en la Facultat de Biologia, si no fos pels 
contes de Gerald Durrell o per les xarrades sobre animalets de la meva infància. 
Ells dos, deixant-me tremenda llibertat per les eleccions, varen causar el fet de 
que un camí comencés, el meu. Així que res d’açò tindria sentit sense ells dos. 
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Gràcies a mon pare, Joan, que faltà a meitat camí de la realització d’esta tesi i a la 
memòria del qual voldria dedicar-la. Gràcies per haver sabut donar-me una base 
humanista i moral, per haver-me encaminat, molt intel·ligentment, a ser la 
persona que vull ser. Que espere es parega, en alguna cosa, a la persona que a tu 
t’haguera desitjat que jo fora. Gràcies a ma mare Lidia, per sempre estar ahí, per 
sempre haver-me donat una espenta quan ho necessitava, per sempre preguntar 
socràticament sobre les coses, per la llibertat i per la responsabilitat. Gràcies per 
ésser i estar, este treball en molta part és teu. Continuant amb els aforismes 
africans, hi ha un que m’encantà en el moment en que el vaig sentir: “És feina de 
tota una tribu educar un nen”. La meva tribu, a banda de mons pares, han segut 
ells: Gràcies a Hernando, Maria Dolores, Alba i Àlex. Gràcies a Elisa, Paco, Angela, 
Laura i Àngela. Gràcies per haver-me aguantat estos anys i per haver confiat en mi 
quasi més del que confiava jo. Gràcies també a un membre de la família d’una 
altra espècie que, de tant en tant, em reconeixia com un igual, Onyx. Tindrà pau 
allà on estiga. 

Recorde haver-ho tingut ben clar des de ben petit: sóc una persona curiosa, 
m’agrada saber, aprendre. Si la via més llarga de l’aprenentatge era fer una 
carrera i fer un doctorat, allà aniria. Per això, trobe que els primers agraïments 
des del punt de vista científic han d’anar a les persones que, estant a l’altra banda 
de la porta em digueren “endavant, passa”. Vaig entrar, i fins avui hem compartit 
àrea científica. Estes persones son Pedro Fernández de Córdoba i Javier 
Urchueguía. Han segut els meus directors de tesi, els que trobaven temps per a 
animar-me en moments d’ànims baixos i ficar-me els peus a terra en moments de 
vols per les altures. Sense ells jo no haguera començat aquest treball ni molt 
probablement entrat en este camp d’investigació. 

I feel the need to deeply thank Kiran Raosaheb Patil. And I think that deeply 
barely scratches the level of acknowledgement I owe to him. It is not an 
exaggeration to say that without him this thesis would not have seen an end. I 
thank him for the efforts, the time and thoughts that he altruistically dedicated to 
these works. I am grateful to him for welcoming me in his group in Copenhagen, 
and later to bring me the opportunity to tag along him as he moved to Heidelberg. 
You have truly showed me that science is the place where I want to be and 
opened new horizons in my scientific career. I am grateful that I can call you 
friend. In this line, I would also like to thank his colleagues and students Ana Rita, 
Ana Paula, Sarah, Aleksej, Sergej, and Thomas who, since my stay in Copenhagen, 
have been my friends and workmates. All of them have built up a working 
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atmosphere where it’s easy to see days go by, enjoy your time, feel at home and 
be productive at the same time. 

Uns agraïments força especials han d’anar a Emilio Navarro. Ell em tutelà, de 
forma més o menys conscient, en la meva entrada a l’aventura de la tesi doctoral. 
Em va veure i assistir en eixir de l’ou, créixer i desenvolupar-me com a científic. He 
tingut el plaer de ser el seu padawan. He aprés moltes coses d’ell en molts àmbits 
de la vida (i de la no científica, també) i tinc la estranya sensació de que hi havia 
més classes a les que ja no podré assistir. Gràcies per ésser i estar, per les 
xarrades científiques, ocioses, futbolístiques i banals. Gràcies pel temps compartit 
en els diferents llocs del món on ens han portat les conferències i estàncies: eixe 
cigarret a 45°C en Doha, eixa matinà a Hong Kong, eixa pizza a Mumbai, eixa crêpe 
a París, eixe Celtic-Lakers al TD Garden a Boston, eixa llagosta amb dominó de 9 a 
la platja cubana. Hi ha tants moments, que em donaria per un llibre. Parlant de 
llibres, de fet, encara pense que el llibre sobre sociologia de la ciència seria tot un 
èxit. La vida és curta, però prou llarga com per a que ens tornem a trobar algun 
dia pel camí, company. 

Continuant l’àmbit professional, he d’agrair a la resta de gent d’InterTech. 
D’entre tots ells, crec que li dec més favors a la meva benvolguda i apreciada 
Minerva Báguena. No recorde les vegades que ha aconseguit salvar-me d’entre les 
poderoses ones de la burocràcia. No recorde quantes xarrades hem passat Emilio, 
ella i jo intentant solucionar el món a la vora d’un got de cafè. Gràcies per sempre 
estar ahí, a l’hora que calgués, el dia que calgués, per ficar els teus coneixements 
al servei d’un novato com jo. Ademés vull agrair les xarrades als fotònics Albert, 
Miguel Angel, Mario i, especialment, Carles per intentar explicar-me una i deu 
vegades els vostres articles sense que els vostres esforços tingueren massa fruit. 
Gràcies per ensenyar-me que la ciència es tan vasta que puga incloure les vostres 
investigacions i les meves. Tampoc vull oblidar-me del temps i els riures passats 
amb Pilar. A demés, una forta abraçada ha d’anar a la gent d’ixa illa on el realisme 
màgic pren cos: Cuba. Raymari, Vinelia, Julián, Garrido, Ramón, Juan Carlos, Dago, 
Castañeda, Falcón i Pérez. Allí passaren coses que per molt que les explique, la 
gent pensa que són ficció. De vegades, inclús jo pense que foren ficció. Salud 
hermanos! 

Entrar al món universitari no sol ser un pas senzill. Amb els canvis que solen 
venir en la tardo-adolescència es junta el canvi d’ambient, d’estil d’ensenyament i 
de grup de gent. Per sort, hi ha vegades que et trobes a gent que et fa eixe canvi 
molt més fàcil, com el meus amics i companys de classes de la Facultat de 
Biologia: Núria, Regina, Caterina, Jessica, Guillem, Òscar, Adrià, Pau, Pepo i Carlos 
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Edo. Entre tots féreu que les classes més avorrides i les esperes més llargues es 
feren molt menys pesades al so de les “copetes” i amb converses 
interessantíssimes. Gràcies per la vostra amistat i confiança. Gràcies per les 
eixides, per les converses, pels concerts, per intentar explicar-me la diferència 
entre arbres o entre pardalets. Continuant en la Facultat, trobe que les meves 
ganes de seguir endavant un camí ple de pedres afilades i parets empinades 
vingueren animades, conscient o inconscientment, per una sèrie de professors: 
Isabel Fariñas, Juli Peretó, Amparo Latorre, Sari Gil, Mercè Pamblanco, Eladio 
Barrio, Ignacio Marín, Ismael Mingarro, Joaquín Moreno, i segur que me deixe a 
algú... Gràcies a tots pels granets d’arena. 

Agraïments també han d’anar a la competició estudiantil del iGEM, ja que 
gràcies a ella vaig conèixer a gent amb una (de)formació comparable a la meva 
però diferent en direcció: físics, químics, matemàtics, biotecnòlegs, enginyers de 
vàries escoles. Li dec a Jesús Salgado haver entrat en aquesta aventura. Gràcies 
Jesús, per aquella conversa en la cafeteria de Farmàcia, sens dubte un dels 
moments claus de creuers de camins en la meva vida, gràcies per ensenyar-me on 
estava la porta i lo fàcil que era obrir-la. A més a més, no puc oblidar-me de tots 
els estudiants dels projectes Valencia iGEM que han passat estius sencers currant. 
Gràcies per les vostres idees, bogeries, esperances i somnis. Gràcies pels caps de 
setmana sense dormir a Boston; per eixe “Hotel California”, versió Gipsy Kings, en 
l’autobús; per les llagostes, ai, les llagostes... He aprés molt de vosaltres, força 
més del que heu aprés de mi, em tem. Molt especialment, vull agrair l’haver 
compartit les primeres passes en el camí científic a la gent del iGEM 2006, a la 
vella guardia, molts d’ells ja doctors, tots ells amics: Diana, Cristina, Caterina, 
Alberto, Gus, Chevi, Carl, Edo. Foren uns mesos molt intensos, en molts aspectes; 
ens divertírem molt. 

Finalment i no menys que la gent que els ha precedit, voldria donar les meves 
més sinceres gràcies als meus amics de tota la vida. A eixe grup de germans, eixa 
band of brothers, que ens juntarem sent adolescents i que hem crescut 
paral·lelament. Gràcies a Jose, Dani, Pat, Luis, Vicente, Pablo, Roberto, Anaïs, 
Ferran i Ana. Gràcies per ficar els peus a terra, per volar per les altures, pels 
somnis, pels desitjos, pels fets, pels records, per la confiança, per les crítiques, 
pels riures. Gràcies per permetre’m usar-vos com a espills i companys en el joc 
dialèctic de la forja i el creixement personal. Gràcies per haver segut els meus 
camells culturals i haver-me deixat ser el vostre. Gràcies per acompanyar-me a la 
recerca de Comala, Macondo i Nova Tanelorn. Per compartir temps i, fent-ho, 
celebrar que el pas del temps hem reafirma en allò que digué Jacques Bergier: 
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“Amb els amics, estic en desacord en tot, menys en lo essencial”. Sou part d’este 
viatge que ens durà lluny. 

Per últim, vull agrair a Beorn Khaariss i a Roark Bumaye (entre altres) ésser ahí, 
ja que no seria qui sóc sense vosaltres. Gràcies a Tamriel, a Nova Tanelorn i al 
Regne de Takhisis pel temps passat, per les ensenyances, per la diversió, per 
l’aprenentatge, per l’evasió, per la vida. 

 

A tots vosaltres, mil gràcies. Espere que us haja marcat tant com vosaltres 
m’heu marcat a mi. I no us tindre massa en compte si deixeu de llegir esta tesi ací, 
ja que com digué Machado (i molt ben glosà Robe), a continuació, 

“Veréis llanuras bélicas y páramos de asceta 
–no fue por estos campos el bíblico jardín–: 
son tierras para el águila, un trozo de planeta 
por donde cruza errante la sombra de Caín.” 
 –Por tierras de España, Campos de Castilla, 1912 
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Aims and Objectives 

Interactions of scientific and technological fields are a sensitive matter, but of 
high importance to society as they have generated much of the advances we have 
in our world today. In fact, interactions between Mathematical modelling and 
Biology have already shown their potential and will be of critical importance for 
our future. This kind of interactions will not be safe from the struggles that regular 
interfaces have; neither will they have less potential than these have. The 
following work will study topics at this crossroads: the use of cyanobacteria in 
order to obtain biofuels, and understand their metabolism as a whole using 
mathematical models. 

Mathematical models in Biology have eased the way researchers treat multi-
functionality, non-linearity and complexity, three properties that emerge from 
even simple biological systems. They are no more, and no less, than tools that 
allow scientists to gather knowledge out of the tons of information that new high 
throughput biotechnological techniques produce. Furthermore, the construction 
of a model is intimately bound to the generation of hypothesis, that drive 
researchers to perform certain experiment that, in turn, can be used as proof to 
change parameters and variables in order to have improved models. This iterative 
process is of critical importance in order to discover and comprehend cellular 
mechanisms. Models have been used in biotechnology since its very beginning, 
solving problems in areas like biomedicine, chemicals and food industry. Models, 
as we will see in present dissertation, can be used to assess, explore and design 
production strategies for industrially relevant metabolites, such as biofuels. 

Metabolism of an organism can be modelled into a network of metabolites and 
enzymes. This should integrate all biochemical reactions known on that organism 
in order to have a production platform, a cell factory. This process will start with 
the genotyping and annotation of a desired genome. These efforts will be the 
founding stones of future model that will have this information crosschecked with 
a variety of databases and deep literature surveys. In order to be able to model 
this set of reactions, it is important to recover and organize information on the 
boundary parameters that will affect organism growth, influx of substrates and 
efflux of products.  

Unfortunately, having detailed, dynamical simulations is complicated. 
Considering all the metabolism mechanics would lead to quantitative predictions 
on cellular dynamics, but lack of knowledge on the intracellular reactions and its 
parameters makes this approach unfeasible. Constraint-based stoichiometric 
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models can by-pass this problem assuming intracellular reactions are much faster 
than organism’s ones, i.e. growth. Then, internal metabolites would rapidly reach 
steady state, allowing researchers to ignore the dynamics of intracellular 
metabolism. Metabolism’s state can then be studied through the set of fluxes 
these intracellular reactions have, later called flux landscape in the dissertation. 
Comparison of flux landscapes between different environmental perturbations is 
of high importance in order to infer metabolic knowledge of organisms. 
Furthermore, study of the organism resilience to genetic changes at the 
metabolism level is important to evaluate the impact on a given strategy of a 
knock out, knock in, knock down, etc. 

Constraint-based stoichiometric models can also be used to study 
transcriptomic data, the set of RNA present in the cell upon some environmental 
or genetic condition, under a new light. The identification of regulatory hubs in 
the metabolic network outstands as potential design target of a biotechnological 
strategy. This thesis is devoted to the reconstruction and use of such model aimed 
at improving biofuels producing strategies in cyanobacterium Synechocystis sp. 
PCC6803. 

 

Objectives. 

The principal objectives of this dissertation are the following: 

a) Reconstruct a genome-scale metabolic model for Synechocystis sp. 
PCC6803. 

Cyanobacterium Synechocystis sp. PCC6803 has been targeted as a potential 
photon-fuelled production platform. Genome-scale metabolic models are a pre-
requisite to study metabolism potentials as well as perturbations. 

b) Study environmental and genetic variations under a system-wide 
perspective. 

Cyanobacterium Synechocystis sp. PCC6803 will not be a desirable production 
platform if researchers do not know its behaviour under perturbations. Genome-
scale metabolic model allows the integrative study of the entire metabolism 
under such variations, like the different growth modes of this cyanobacterium or 
mutations performed on its genome. This may allow detecting which variations 
are critical to the well-being of this organism. 
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c) Define production strategies. 

Three metabolites have been identified as desirable products from this 
organism: succinate, ethanol and hydrogen. Their theoretical production limits 
and functional coupled reactions need to be assessed. Enhanced-production 
mutants need to be studied and discussed under a system-wide perspective. 

d) Integrate different levels of information  

Finally, strategies need to be performed in order to efficiently integrate 
different levels of biological information: genome, transcriptome, metabolome 
and fluxome. Genome-scale metabolic models allow establishing integrative 
approaches to such include different data and infer novel conclusions for the 
preceding step. 

 

Thesis outline. 

The first pages serve as introduction to the three scientific fields on which this 
PhD thesis stands on: systems biology, cyanobacterial biology and energy 
engineering. In the interphase of these three scientific fields is where this work is 
located: systems biology offers us techniques that will be applied to cyanobacteria 
in order to obtain biofuels. The following chapters will encompass different 
consecutive aspects of this project.  

Chapter 2 reviews the efforts for the reconstruction of a genome-scale 
metabolic model of Synechocystis sp. PCC6803. Reconstruction is explained in 
detail, two versions of our model are presented and connectivity analyses are 
done. Biomass composition is described in detail as well as some ideas on how to 
improve it. Furthermore, our model is located among the state of the art of 
Synechocystis sp. PCC6803 metabolic models. 

Chapter 3 is devoted to the studies of the flux landscapes of Synechocystis sp. 
PCC6803 and their variance upon environmental conditions changes. Flux balance 
analysis is used in order to have these flux simulations. Functional constraints are 
explained, simulations are described and variances among different 
environmental situations are clarified. Flux variability analysis is presented on 
changes in growth condition.  

Genetic perturbations are studied in Chapter 4, where essential genes are 
evaluated as well as mutations that lead Synechocystis sp. PCC6803 to be a 
production platform of value-added metabolites, such as succinate, ethanol and 
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hydrogen. Single, double and triple knock out strategies are studied and 
theoretical production limits are assessed in the light of these overproducing 
strains. 

Chapter 5 is devoted to the study of functional coupled reactions. Couplings 
across growth conditions, in the photosynthesis pathway and in the biofuels 
production pathways are studied. For these we have taken advantage of flux 
coupling analysis that studies the potentiality of reactions in pairs. Blocked 
reactions, as reactions that do not carry flux under a given set of conditions, are 
also identified. 

In a first step to leap the simulation of constraint-based metabolic models to 
the chemostat conditions of Synechocystis sp. PCC6803 growth, Chapter 6 bears 
an analysis on growth conditions of this cyanobacterium. Five variables that 
define different aspects of three main growth conditions were assessed and 
statistically evaluated after 4699 data growth points were recovered. 

Integration of transcriptomic data on the metabolic network is the scope of 
Chapter 7. This data is analysed under the light of metabolic-reactions 
connectivity and of flux coupling connectivity. Regulatory hubs upon shift of light 
regime are identified and explained in a system-wide integrative manner. 

Finally, Chapter 8 gathers conclusions among all chapters and draws some 
milestones that need to be considered if we expect to have a Synechocystis sp. 
PCC6803 production platform for biofuels, specifically hydrogen. 
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1 
Introduction 

 
Where PhD applicant uses first pages of this dissertation to describe the scientific fields he 
has roamed around and on the fields’ interaction this thesis is located on: metabolic 
models, cyanobacteria and biofuels. 
 

 

 

 

 

 

 

 

 

 

Contents of this chapter are based on the following journal article: 

• Montagud et al Synechocystis sp. PCC6803 metabolic models study for the 
enhanced production of biofuels. Manuscript in preparation.  

“Remember, the enemy's gate is down.” 
Molo, Soup, Vlad, Dumper, and Crazy Tom all 
laughed. They remembered, too. 
And Ender also laughed. It was funny. The adults 
taking all this so seriously, and the children 
playing along, playing along, believing it too until 
suddenly the adults went too far, tried too hard, 
and the children could see through their game. 

Orson Scott Card, Ender’s game, Tor Books 
Publisher, 1985 
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1.1 Systems biology, metabolic models and fluxes. 

Systems biology is the scientific area of Biology that tries to exploit, gather, 
organize and, finally, understand as many information as possible from a given 
biological system. Systems biology has been defined as “the study of the 
interactions between the components of biological systems, and how these 
interactions give rise to the function and behaviour of that system” (Snoep and 
Westerhoff, 2005). In taking this holistic point of view, this scientific area goes 
against the reductionist tide that has engulfed Molecular Biology since its 
explosion when DNA was first modelled (Watson and Crick, 1953) and the Central 
Dogma of Molecular Biology was published (Crick, 1970). In fact, Sauer, 
Heinemann and Zamboni stated the importance of studying the cell metabolism 
under a system-level approach in 2007: “Rather than a reductionist viewpoint 
(that is, a deterministic genetic view), the pluralism of causes and effects in 
biological networks is better addressed by observing, through quantitative 
measures, multiple components simultaneously, and by rigorous data integration 
with mathematical models. Such a system-wide perspective (so-called systems 
biology) on component interactions is required so that network properties, such as 
a particular functional state or robustness, can be quantitatively understood and 
rationally manipulated” (Sauer et al., 2007). 

Systems biology works trying to integrate as much information as possible, 
prefers all-inclusive explanations rather than local knowledge. Researchers can 
think of the complexity, hard work and emerging properties that this may lead to, 
but citing Hiroaki Kitano: “It is often said that biological systems, such as cells, are 
complex systems. A popular notion of complex systems is of very large numbers of 
simple and identical elements interacting to produce complex behaviours. The 
reality of biological systems is somewhat different. Here large numbers of 
functionally diverse, and frequently multifunctional, sets of elements interact 
selectively and nonlinearly to produce coherent rather than complex behaviours” 
(Kitano, 2002). This idea of simplicity from complexity or coherence from 
complexity was not new in literature, see Palsson (2000), and is a recurring 
explanation for experimental results. In addition, this idea differentiates biological 
processes from other complex systems. 

In present dissertation, we have worked on the integrative view of 
metabolism. We had the need to understand metabolic physiology quantitatively 
in order to design and optimize biofuel-production bioprocesses. To this end, we 
used mathematical models. A model is a simplified description, especially a 
mathematical one, of a system or process, to assist calculations and predictions 
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(Soanes and Stevenson, 2010). This simplification is achieved defining relevant 
factors that will be included and others that will be de-emphasised. The criteria of 
which factors are selected must be chosen in accordance to the purpose of the 
model, because as the saying goes, a model is neither good nor bad, a model is 
either useful or useless. Obviously, different purposes will need different models 
and, thus, different factors may be emphasized. This richness has widened the 
field of mathematical modelling of cells and cell populations. 

Our goals were to understand metabolism and how this could help us develop 
strategies for enhanced biofuels production. Hence, considerable attention has 
been devoted towards the mathematical description of metabolic function or 
metabolic models. 

Metabolic model reconstruction.  

Metabolism of an organism can be modelled into a network of metabolites and 
enzymes. This should integrate all biochemical reactions for which we have proof 
and/or evidence of presence in the desired cell. This information can be retrieved 
from different databases, genomic annotations and literature surveys. First 
studies, like the ones from Fell and Small (1986), Mavrovouniotis et al. (1992) and 
Savinell and Palsson (1992b), did not take into account all reactions in the 
metabolism, mostly because in the previous years of the genome sequencing 
boom having a whole genome sequenced was somewhat closer to a dream than 
to reality. This caused researchers to denote as genome-scale metabolic models 
when all the reactions from a genome annotation are included in a model. 
Additionally, the advent of metabolic studies of Escherichia coli (Edwards and 
Palsson, 2000b; Varma and Palsson, 1993a, 1993b), Haemophilus influenzae Rd 
(Edwards and Palsson, 1999) and Saccharomyces cerevisiae (Förster et al., 2003) 
as well as the dissemination of genome-sequencing projects (and the huge cut on 
sequencing prices) established a context where it was feasible to build genome-
scale metabolic model of a desired organism (Figure 1.1). 
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Figure 1.1 - Sequenced genomes versus genome-scale metabolic models. Hits count 
in Scopus database of terms “genome sequencing” and “genome-scale metabolic 
model OR network”. Major milestones are depicted. Note that between 2008 and 
end of 2011 genome sequencing costs per megabase of DNA dropped 1000 times 
(Wetterstrand, 2012). For a complete review see Metzker (2010). 

A proper metabolic reconstruction project should start with the annotated 
genome. This information should be processed gathering up all reactions that are 
documented for this organism, for a very instructive work on this see Förster et al. 
(2003). This draft has to be iteratively corrected with alternative information from 
several databases and from the study of the network in order to avoid the 
presence of false positive (and false negative) reactions. Recently, some works 
have described this correction process in detail, trying to establish a common 
protocol (Feist et al., 2009; Thiele and Palsson, 2010). This process ends up with a 
network of metabolites and enzymes that encode biochemical reactions taking 
place within the cell. Nodes usually represent metabolites and edges usually 
represent reaction rates or metabolic fluxes. We usually differentiate between 
internal fluxes as reactions occurring within cells and exchange fluxes as 
exchanges between cells and their environment (like drains of substrates and 
formation of products). It is important to gather information on these exchange 
fluxes, which act as boundary parameters, in order to be able to model this set of 
reactions, as we will see in the following section. Therefore, physiological 
requirements, under which there is relevant growth of the organism, had to be 
gathered. This information usually comes from deep diving into the bibliomic 
information of this organism, that is, searching for experiments where growth 
substrate is controlled and, ideally, where cell’s products are measured. For 
instance, metabolites that are ingested or secreted by the organism are of crucial 



 
 
 
 
 

Introduction 

31 
 
 
 
 
 

knowledge, as they hint that some pathway are present that uptake or produce 
that metabolite or a metabolite derived from it. Chapter 2 is devoted to the 
reconstruction of genome-scale metabolic models. 

Once the metabolic model is completed and curated, this network can be the 
departing point of several other studies, such as: 

• Network connectivity. 

• Comparative evolutionary studies to find patterns among organisms. 

• Phenotypic phase plane analyses. 

• Strain improvement: gene deletions and additions 

• Network robustness studies. 

• Study regulatory constraints. 

• Reactions’ flux analysis and variability. 

In present work, we were interested in simulate the organism’s metabolic 
behaviour, that is to know each reaction’s flux. The set of flux values, later defined 
as flux vector, characterizes metabolic state of cells, its phenotype or flux 
landscape, i.e. the metabolism’s behaviour at a given time. Metabolic flux is a 
fundamental determinant of cell physiology and the most critical parameter of a 
metabolic pathway (Orth et al., 2010; Stephanopoulos and Stafford, 2002). 
Accurate quantification of pathway fluxes therefore is an important goal in 
metabolic engineering, especially where the aim is to convert as much substrate 
to desired metabolic product via strain improvement. 

Perfect scenario would be to have detailed and dynamical simulations that 
would consider overall cell mechanics and would lead to quantitative predictions. 
Sadly, lack of knowledge on the intracellular reactions and its parameters 
hampers efforts to have a cell-wide dynamical model, even though some efforts 
have been focused on that direction (Gerdtzen et al., 2004; Nielsen and Villadsen, 
1992; Rizzi et al., 1997). 

In order to have a genome-scale metabolic model able to simulate flux 
landscapes attention has been drawn on constraint-based stoichiometric models 
(Llaneras and Picó, 2008). These models can obtain complete flux information 
making some assumptions. One of the algorithm researchers use to work with 
constraint-based stoichiometric models is flux balance analysis (FBA), described 
hereafter. 
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Constraint-based stoichiometric description of metabolism is not new, since 
1986 (Fell and Small, 1986) and 1988 (Clarke, 1988), and peaking in the mid-1990s 
(Mavrovouniotis et al., 1992; Savinell and Palsson, 1992a, 1992b; Schuster and 
Schuster, 1993; Stephanopoulos et al., 1998; Varma et al., 1993a, 1993b; Varma 
and Palsson, 1993a, 1993b, 1994a), several studies paved the way to describe 
metabolic flux distributions and cell growth. This approach has yielded accurate 
and valuable information about how microbial cells utilize their metabolic fluxes 
and optimize their growth rates. There have been several initiatives towards 
development of the metabolic flux model in order to gain information about 
metabolic physiology of the culture in a quantitative manner (Bonarius et al., 
1997; Schilling et al., 1999; Stephanopoulos et al., 1998; Varma and Palsson, 
1994b). In fact, in 2007, a metabolic flux analysis technique was reported to be 
applied to hydrogen production using growth of Escherichia coli on glucose 
(Manish et al., 2007).  

Flux balance analysis. 

Flux balance analysis (FBA) is a widely used approach for studying biochemical 
networks, in particular the genome-scale metabolic network reconstructions. In 
present dissertation, we have used FBA in order to study cell growth and 
metabolite productivity. FBA retrieves information on reactions’ fluxes and is, 
thus, very insightful in locating pathways and reactions where flux has changed 
upon a genetic or environmental variation. It is, hence, a valuable tool to study 
flux landscapes. 

We will start considering metabolites’ concentration changes in time: 

𝑑𝑋𝑖
𝑑𝑡

= 𝑆𝑖𝑗 · 𝑣𝑗 , ∀𝑖 ∈ 𝑀,∀𝑗 ∈ 𝑁 

The concentrations of all metabolites are represented by the vector 𝑋𝑖, with 
length 𝑚. The flux through all of the reactions in a network is represented by the 
vector 𝑣𝑗, which has a length of 𝑛. Metabolic reactions are represented as a 
stoichiometric matrix (𝑆𝑖𝑗) of size 𝑚 × 𝑛. Systems being composed of 𝑚 
compounds (rows) and 𝑛 reactions (columns), entries in each column are the 
stoichiometric coefficients of the metabolites participating in a reaction. There is a 
negative coefficient for every metabolite consumed and a positive coefficient for 
every metabolite that is produced. A stoichiometric coefficient of zero is used for 
every metabolite that does not participate in a particular reaction. 𝑆𝑖𝑗 is a sparse 
matrix because most biochemical reactions involve only a few different 



 
 
 
 
 

Introduction 

33 
 
 
 
 
 

metabolites (Orth et al., 2010). Typically, the number of reactions (𝑛) exceeds the 
number of metabolites (𝑚). 

In order to solve this underdetermined set of equations, which results in an 
infinite number of solutions of a continuous variety, we make an assumption that 
allows this dynamic problem to be a static one: we consider steady state of the 
system. Consequently, intracellular metabolites’ concentrations are not allowed 
to change in time, and are consequently balanced. On the contrary, extracellular 
metabolites can change in time as they are not balanced and these will be the 
uptake of substrates and formation of products. We have now reached the point 
where the phrase flux balance analysis makes sense (Figure 1.2). 

Steady state assumption is widely accepted in systems biology as it allows 
researchers to avoid the need of detailed dynamic descriptions of metabolism 
that account for kinetics and regulation of individual enzymes, which has proven 
difficult to obtain. Additionally, steady state can be justified by the fact that 
metabolic transients are more rapid than both cellular growth rates and the 
dynamic changes in the organism’s environment. Metabolism typically has 
transients that are shorter than a few minutes and thus metabolic fluxes are in a 
quasi-steady state relative to growth and typical process transients (Varma and 
Palsson, 1994a). 

Thus, our system would be: 

��𝑆𝑖𝑗 · 𝑣𝑗

𝑁

𝑗=1

𝑀

𝑖=1

= 0, 

As the stoichiometry matrix 𝑆𝑖𝑗 is known from the genome annotation, we 
treat the metabolic reaction fluxes, 𝑣𝑗, as the unknown quantities that need to be 
determined.  

Researcher can constrain the elements of the vector 𝑣𝑗 for the definition of 
irreversible (𝑣𝑗,𝑖𝑟𝑟) and reversible (𝑣𝑗,𝑟𝑒𝑣) reactions, adding further information to 
the problem: 

𝑣𝑗,𝑖𝑟𝑟 ∈ 𝑅+ 

𝑣𝑗,𝑟𝑒𝑣 ∈ 𝑅 

Again, further assumptions have to be made if we want to solve this 
underdetermined set of equations. As typically 𝑛 > 𝑚, a plurality of solutions 
exist and researchers can find an infinite number of combinations on the 
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metabolic fluxes distribution. Two factors affect this space of solutions. On one 
hand, the stoichiometric matrix S: if a reaction is added or deleted the space of 
solutions is affected. On the other hand, some reactions are constrained to certain 
biologically relevant values in order to build up the allowable solution space, such 
as: 

𝑣𝑗,𝑐𝑜𝑛𝑠𝑡 ∈ 𝑅, 𝑣𝑚𝑖𝑛 < 𝑣𝑗,𝑐𝑜𝑛𝑠𝑡 < 𝑣𝑚𝑎𝑥 

𝑣𝑗,𝑢𝑝𝑡𝑎𝑘𝑒 ∈ 𝑅, 𝑣𝑚𝑖𝑛 < 𝑣𝑗,𝑢𝑝𝑡𝑎𝑘𝑒 < 𝑣𝑚𝑎𝑥 

Where two set of equations have been established, 𝑣𝑗,𝑐𝑜𝑛𝑠𝑡, constrained 
metabolic reactions, and 𝑣𝑗,𝑢𝑝𝑡𝑎𝑘𝑒, uptake reactions, known metabolic 
requirements for growth, which were bound by experimentally determined values 
from the literature. This set of constraints is the reason behind some researchers 
name this kind of modelling constraint-based metabolic models (Llaneras, 2010). 
The result of these two effects is that the allowable space of solutions is now an n-
dimensional polytope. We have defined the possible space of solutions –with the 
help of the stoichiometry matrix– and reduced it to the biologically feasible space 
of solution –thanks to the set of constraints. 

 

 

Figure 1.2 - The conceptual basis of constraint-based modelling. After Figure 1 of 
Orth et al. (2010). Without constraints, the flux distribution of a biological network 
may lie at any point in a solution space. When mass balance constraints are imposed 
by the stoichiometric matrix S and biological constraints are applied to a network, it 
defines a biologically feasible solution space, an 𝑛-dimensional polytope. The 
network may acquire any flux distribution within this space, but points outside this 
space are denied by the constraints. Through optimization of an objective function, 
FBA can identify a single optimal flux distribution that lies on the edge of the 
allowable solution space. 

The last step on this algorithm is to make such a rule that we can identify a 
single relevant result inside this polytope that makes sense in our work. This 
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objective will be to optimize for an objective function. Through this, FBA can 
identify a single optimal flux distribution that lies on the allowable solution space, 
on an edge of the 𝑛-dimensional polytope. First studies on the matter were 
conducted by chemical engineers whose goal was to know a given product yield: 
the maximum amount of product that can be generated per unit of substrate, 
𝑌𝑝

𝑠�
. Given that reaction’s stoichiometry was already used in generating matrix S, 

it was reasonable that stoichiometric yields, 𝑌𝑋
𝑆�

, were used instead as output of 

the system. Stoichiometric yields differ from product yields in that multiple 
biomass components (e.g. lipids) and biomass precursors (e.g. amino acids) have 
to be quantified in proportion to each other (Feist and Palsson, 2010). 

In the early years of flux studies in metabolism several objective functions 
were used and discussed (Pramanik and Keasling, 1997; Savinell and Palsson, 
1992a, 1992b; Varma and Palsson, 1994a) until the term biomass synthesis, or 
composition or equation, (and, more importantly, the idea behind) became 
standard. Biomass composition is a stoichiometric yield for biomass, a theoretical 
construct that is defined by the molar composition of a mole of biomass. In FBA 
context, it is considered as a drain of precursors or building blocks into a 
hypothetical biomass component. Flux through biomass composition reaction, 
being the biomass formation rate, is directly related to growth of the modelled 
organism (Stephanopoulos et al., 1998). Thus, the goal of our optimization is 
cellular growth: researchers consider that cells will tend to grow as much as 
resources allow them. According to Varma and Palsson (1994a), there are three 
reasons behind choosing optimal metabolic behaviour.  

First, optimization of growth usually confers a growth advantage that is 
selected for by natural processes. Thus, the determined flux distribution can be 
used to describe experimental results and to predict how cells will respond to 
changes in their environment.  

Second, one can determine the maximum allowable production capability of a 
particular strain and appropriate metabolic engineering strategies can be 
developed for strain design.  

Third, a bioprocess engineer can seek to optimize process design and control, 
for instance, through optimal medium formulation.  

It can be argued that, from a pure Darwinian perspective, organisms will tend 
to adapt to a given environment, not just grow. Nevertheless, it is no less true that 
in a closed environment under controlled conditions, small experimental times –in 
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the order of hours or days— and little room for environmental perturbations, 
fight for resources will be quite limited to competition in terms of growth rates. 

Nowadays there are a set of software tools that ease the work with this 
algorithm. In present work we have extensively used OptGene software, that can 
be used offline (Patil et al., 2005; Rocha et al., 2010) and also online through 
BioMet Toolbox (Cvijovic et al., 2010). Other software are COBRA Toolbox (Becker 
et al., 2007), and latest version of Pathway Tools (Latendresse et al., 2012) that 
allows the solving of linear programming problems such as flux balance analysis. 

The reconstruction and the flux balance analysis allow us to have a metabolic 
network that incorporates all information of cell’s metabolism, a growth 
simulation of this network and a flux landscape that depends on the network 
architecture and the biological constraints that we have applied to it. Now we will 
see how we can study perturbations on this network and its flux landscape. 

Method of minimization of metabolic adjustment. 

Once we have this metabolic network and its growth and fluxes descriptions, 
we can go further into the study of its environmental and genetic variations. 
Environmental changes can be simulated with the study and variations of the 
constraints imposed on the system as well as changing the nutrients of the 
system, i.e. alternative carbon sources, as we study in Chapter 3. This has been 
investigated for a handful of reasons, namely media composition optimization 
(Diamant et al., 2009). On the same scope, researchers have used metabolic 
models in order to investigate on knock outs, and knock ins, of genes studying 
their flux variations. These works have been used for several objectives, for 
instance to study knock outs with increased production of a given industrially 
relevant product. 
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Figure 1.3 - The optimization principles underlying FBA and MOMA. Inspired in 
Figure 1A from Segrè et al. (2002). A schematic 2D depiction of the feasible space for 
the wild type (ФWT) and for mutant of flux j (Фj) is represented by the blue and 
superimposed green polygons. The coordinates are two arbitrary representative 
fluxes, an extremely simplified version of the multidimensional flux space. The 
solution to the FBA problem is the point that maximizes the objective function (red 
line). An optimal FBA prediction can be computed both for the wild type (a) and for a 
knock out (b). The alternative MOMA knockout solution (c), calculated through 
quadratic programming, can be thought of as a projection of the FBA optimum onto 
the feasible space of the mutant (Фj). The mutant FBA optimum and the 
corresponding MOMA solution are, in general, distinct. 

First knock out studies were done altering the stoichiometric matrix (deleting 
the reaction column) according to the reaction whose deletion was simulated. 
FBA was subsequently simulated with the new matrix and with the assumptions 
this algorithm needs in order to find a single, meaningful solution. Segrè, Vitkup 
and Church were concerned on the assumption that mutant organisms will tend 
to grow optimally forced by genetic evolution. Hence, they addressed this point 
by introducing the method of minimization of metabolic adjustment (MOMA) as 
the same argument may not be valid for genetically engineered knock outs or 
other bacterial strains that were not exposed to long-term evolutionary pressure, 
although the assumption of optimality for a wild-type bacterium is justifiable 
(Segrè et al., 2002). With this method, they claim to have a better approximation 
of mutants’ flux states than with FBA simulations. 
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MOMA is based on the same stoichiometric constraints as FBA, but relaxes the 
assumption of optimal growth flux for the mutants. MOMA tests the hypothesis 
that the corresponding mutant flux distribution is better approximated by the flux 
minimal response to the perturbation than by the optimal one, as can be seen in 
Figure 1.3.  

This algorithm searches for a point in the feasible space of the solutions space 
of the knock out (Фj) that has minimal distance from a given flux vector 𝑤. The 
goal is to find the vector x ∈ Фj such that the Euclidean distance 

𝐷(𝑤, 𝑥) = ��(𝑤𝑖 − 𝑥𝑖)2
𝑁

𝑖=1

 

is minimized. 

Chapter 4 is devoted to the use of these algorithms on our genome-scale 
metabolic models of Synechocystis sp. PCC6803. 

 
1.2 Metabolic models of cyanobacteria. 

We have centred our work in cyanobacterium Synechocystis sp. PCC6803. An 
organism whose first strain was sampled in a freshwater lake in Wisconsin, USA in 
1949 and is part of Pasteur Culture Collection, previously known as Berkeley 
Culture Collection (Allen and Smith, 1969; Gugger and Biological Resource Center 
of Institut Pasteur, 2011a, 2011b). Cyanobacteria are commonly accepted to have 
played a crucial role in the Precambrian phase by contributing oxygen to the 
atmosphere (Schopf, 2000). This strain of a somewhat diverse genus (Swingley 
and Blankenship, 2008) has been a good candidate for biotechnology uses and 
molecular biology studies not only for its ability to be naturally transformed by 
exogenous DNA (Kufryk et al., 2002), but also for its ability to grow 
photoautotrophically (out of light and CO2) or its potential as hydrogen producer 
(Houchins, 1984; Tamagnini et al., 2007), among other reasons. Interestingly, 
cyanobacteria are held to be the evolutionary ancestors of chloroplasts under the 
endosymbiont hypothesis (Douglas, 1998; Raven and Allen, 2003) and since these 
organisms are believed to be the ones that changed the ancient anoxygenic 
environment to oxygenic by photosynthesis (Kim et al., 2008; Schopf, 2000), many 
scientists have also used cyanobacteria as an ideal model organism to study 
adaptation to various abiotic environmental conditions (Douglas, 1998). 
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Studies on this organism had a boost when molecular tools started to be 
developed in the 1980s. In scarcely ten years extensive strain designations, 
restriction endonucleases, and cyanobacterial plasmids and cloning vectors had 
been developed (Houmard and Tandeau de Marsac, 1988) and allowed the 
components to be ready for assembly into sophisticated systems for genetic 
analysis of cyanobacteria (Thiel, 1994). Since then, Synechocystis sp. PCC6803 has 
become a cyanobacterial model organism for its robust growth characteristics. At 
present, there is probably no other cyanobacterium that has been investigated in 
such detail, making it an interesting organism for biotechnological applications 
(Gutthann et al., 2007) such as heterologous production of metabolites like 
isoprene (Lindberg et al., 2010), poly-beta-hydroxybutyrate (Wu et al., 2001), 
alcohols (Angermayr et al., 2009), bio-hydrogen (Tamagnini et al., 2007) and 
others biofuels (Liu et al., 2010). Synechocystis sp. PCC6803 is thus an attractive 
candidate for developing a clean and sustainable platform for biotechnological 
processes aimed at value-added products formation (Ducat et al., 2011b). 

Synechocystis sp. PCC6803 genome was sequenced and annotated in 1995 by 
Kazusa’s laboratory (Kaneko et al., 1996, 1995). Genome-wide transcriptional 
microarrays, first used to study stress responses in Saccharomyces cerevisiae in 
2000 (Gasch et al., 2000), were developed in 2001 for this cyanobacterium (Hihara 
et al., 2001; Suzuki et al., 2001) and works have been published since then using 
this transcriptomic technique (Foster et al., 2007; Gill et al., 2002; Hihara et al., 
2003; Huang et al., 2002b; Hübschmann et al., 2005; Kanesaki et al., 2002; Schmitt 
and Stephanopoulos, 2003; Singh et al., 2009, 2003; Summerfield and Sherman, 
2008; Suzuki et al., 2006; Wang et al., 2004; Yamaguchi et al., 2002; Zhang et al., 
2008). Finally, and following the work of pioneering metabolic studies of 
Haemophilus influenzae Rd (Edwards and Palsson, 1999), Escherichia coli (Edwards 
and Palsson, 2000b; Varma and Palsson, 1993a, 1993b) and Saccharomyces 
cerevisiae (Förster et al., 2003), several groups have developed metabolic models 
for this organism (Knoop et al., 2010; Kun et al., 2008; Montagud et al., 2010, 
2011; Navarro et al., 2009; Shastri and Morgan, 2005; Yang et al., 2002b; 
Yoshikawa et al., 2011). Chapter 2, devoted to the reconstruction of genome-scale 
metabolic models, bears a comparison of all the metabolic models developed up 
to date for Synechocystis sp. PCC6803. 

These metabolic models have been used for several goals, principally, database 
building, growth simulation and production yield evaluation. They have 
broadened the knowledge on Synechocystis sp. PCC6803 metabolism and have 
helped researchers focus on this organism’s potential. Nowadays it is unthinkable 
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to consider a metabolic engineering project that is related to Synechocystis sp. 
PCC6803 and fails to use one, or more, of these metabolic models. 

 

1.3 Biofuels and Biohydrogen. 

In present dissertation, we will focus on using Synechocystis sp. PCC6803 
metabolic models in order to find and evaluate strategies to design strains that 
have an enhanced production of a set of interesting metabolites. These 
metabolites will be related to biofuels, mainly ethanol and hydrogen. Motivation 
for this comes from the involvement of our research group in a hydrogen-
producing consortium in the frame of a EU FP6 project: BioModularH2 (2005). 

Biofuels overview. 

Today, 83% of the United States of America’s energy mix (U.S. Energy 
Information Administration, 2011b) and 78% of Europe’s (European Commission, 
2011b) comes from carbon-rich fossil fuels: oil, natural gas, and coal. With 
demand increasing worldwide, existing oil reserves could peak within 20 years 
(Zucchetto and National Research Council, 2006), followed by natural gas and coal 
sources. This limitation on the availability of fossil fuels does not come alone; 
energy dependence among countries as well as political turmoil in geographical 
areas with such fossil fuels reserves has compelled science-funding agencies from 
developed countries to sponsor research into alternative energies. In addition to 
this scenario, exploration of such alternatives has been spurred on by several 
international agreements aiming at the reduction of CO2 emissions (United 
Nations, 1998, 2009), as 82% of emission of greenhouse gases are related to 
energy production solely in USA (U.S. Energy Information Administration, 2011a). 

As it was outlined in the Clean Development Mechanisms of the Kyoto Protocol 
(United Nations, 1998), several alternatives of CO2 emission-free energy 
production are already available, for instance, nuclear and renewable energies, as 
can be seen in figures 1.4 and 1.5. These solutions have been greatly developed in 
industrial and residential sectors, but not as much in transportation where energy 
is required to be in most cases in the form of a fuel. The transition from our 
dependence on oil for transportation to a cleaner and more efficient energy 
source is an issue of great importance. In fact, studies show that oil consumption 
in the transportation sector accounts for up to 66% of the net oil consumption in 
USA (U.S. Energy Information Administration, 2011a) with similar figures in 
Europe (European Commission, 2011a). 
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Figure 1.4 - Distribution of energy consumption in the transportation sector. Data 
from USA and European countries members of OECD from BP Review of World 
Energy (BP p.l.c., 2011). 

It makes sense to turn to such a promising area as biotechnology in order to 
try to find a clean, wireless, transportation sector-friendly source of energy. 
Biotechnology has boosted its fruits in recent years due to a set of factors, like 
consolidation of genome-scale sequencing, high-throughput techniques, 
increased applied focuses and multidisciplinary education programs, like 
international Genetically Engineered Machine competition (iGEM) (2012). Thus, 
bearing in mind the advances that biotechnology has driven in health 
(Hockemeyer et al., 2011; Ro et al., 2006), bioremediation (Hong-Bo et al., 2008; 
de Lorenzo, 2006) or food (Prust et al., 2005), it is not strange that several 
biotechnological candidates have been proposed to partially substitute oil as 
energy demand. In fact, biofuels like biodiesel or ethanol seem to be in the short-
term suitable candidates to substitute partially the oil demand. They share 
distribution systems with conventional fuel and even current engines are 
compatible to them (Shinnar and Citro, 2006). Both alternatives have advantages 
but even if all USA’s corn and soybean production were dedicated to biofuels 
production, it would only meet 12% of gasoline demand and 6% of diesel demand 
(Hill et al., 2006). Active projects in the production processes are under 
development, for instance, trying to widen the spectrum of usable biomass, thus 
extending the source to cellulose in order to enhance ethanol production (Abril 
and Abril, 2009; Hamelinck et al., 2005).  

Efficiency of the different production processes of fuels could be improved 
with these energy vectors. Nevertheless, if we are to satisfy the increasing energy 
demand and to be able to produce energy at a lower environmental impact, even 
more resources have to be invested in biotechnology and alternatives have to be 
found in a medium or long term. At this point, hydrogen appears as a very 
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promising candidate as a future energy vector (Momirlan and Veziroglu, 2005). 
Hydrogen is relevant to all of the energy sectors, like transport, residential, and 
industrial. It can provide storage options for base-load (geothermal), seasonal 
(hydroelectric) and intermittent (photovoltaic and wind) renewable resources and 
when combined with emerging decarbonisation technologies, can reduce the 
climate impacts of continued fossil fuel utilization (Elam et al., 2003). 

USA and Europe have invested, and are investing, large amounts of resources 
on this alternative. In fact, the Committee on Alternatives and Strategies for 
Future Hydrogen Production and Use of the USA’s National Research Council 
recommended in 2004 increased funding emphasis on the Carbon dioxide-free 
energy technologies section, with aims like the increase exploratory and 
fundamental research on hydrogen production by photobiological, 
photoelectrochemical, thin-film solar, and nuclear heat processes (Committee and 
National Research Council, 2004). Hydrogen can be produced from renewable 
sources and used in a wireless manner. Additionally, it has a clean combustion 
and an extraordinary energy density (142 MJ kg-1 for H2 against 42 MJ kg-1 for oil) 
which allows weight reduction per heat unit when compared to other biofuels. 

In spite of that, reports set the horizon of a clean hydrogen-based economy in 
2015 at the soonest, that is to start introducing production facilities, adapting 
distribution networks and developing engines. The goal is to have a fully 
developed market at 2025 (United States Government, 2011). This is mainly due 
to two factors: on one side, the lack of competitiveness of fuel cell vehicles and 
hydrogen compared to conventional (e.g. gasoline and diesel) fuel vehicles and 
hybrid gasoline electric vehicles. On the other side, fuel cells cost that are still a 
factor of 10 to 20 times too expensive, have short durability, and have low energy 
efficiency for light-duty-vehicle applications (Committee and National Research 
Council, 2004). An additional technical problem is also the fact that hydrogen gas 
is one of the lightest gasses known in nature (0.08988 g L-1 at 0°C and 101.325 
kPa), making it difficult to store large volumes of it.  
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Figure 1.5 - Biofuels production in millions of tonnes oil equivalent. (MTOE). Data 
from USA and European countries members of OECD from BP Review of World 
Energy (BP p.l.c., 2011). 

 

Hydrogen production. 

Work is under way to overcome problems and, in fact, hydrogen is being 
produced nowadays at industrial level, mainly due to steam reforming of natural 
gas (Das and Veziroglu, 2008). This process is costly efficient and is neither 
renewable nor clean, as it has associated sulphur and CO2 emissions. In fact, this is 
a good example of hydrogen production using fossil fuels as source, as most of the 
processes from fossil fuels generate approximately twice as much CO2 per amount 
of hydrogen produced, in moles (Agrawal et al., 2007). Therefore, society would 
benefit if we could be able to use renewable and clean sources to produce 
hydrogen. In order to reach that primary goal several alternatives are under 
development: 

• Electrolysis from a renewable source of energy. 

Electrolysis using carbon-free electricity sources like wind or solar is one of the 
simplest ways of producing hydrogen and is currently the only way to produce 
large quantities of hydrogen without emitting the traditional undesirable by-
products associated to fossil fuels. Its main limitation factor is the electricity cost 
for its production from renewable sources (Department of Energy, 2007).  
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• Reforming biomass and wastes. 

Reforming biomass and wastes is another way to produce hydrogen efficiently 
(Kroposki et al., 2006). It is done mainly by three processes (gasification, 
pyrolysis/reforming and high-pressure water). It has been demonstrated that it is 
costly effective, in fact it is the most promising economic route for converting 
syngas into transportation fuels (Milne et al., 2002). Nevertheless, major 
limitations of this application are the availability of feedstock, efficient and 
durable catalysts for gas conditioning and efficient integration of processes.  

• Solar thermal water splitting. 

This production process probably represents the most efficient way to produce 
hydrogen as solar energy is directly used to split water molecules (Greene et al., 
2009; Perret, 2005). The main drawback of this technology is that it requires very 
high temperatures (circa 2500 °C ). This temperature need can be reduced using 
some additional chemical transformations that retrieves minimal residues. 
Currently commercial plants of this kind are under development in order to make 
it costly efficient (Greene et al., 2009). 

• Photoelectrochemical water splitting. 

This strategy allows hydrogen production from light in a one-step process 
splitting the water with an illuminated semiconductor immersed in an aqueous 
solution (Carty et al., 1981; Fujishima and Honda, 1972). The potential efficiency 
of this process is between 10 and 20% of the light irradiation on the 
semiconductor but the main disadvantage is that the required combination of 
physical, chemical, structural and economic properties is so restricted that no 
known material satisfies all of them in order to trigger an industrial production. 

• Photobiological water splitting. 

This biotechnological alternative is based on the light absorption and charge 
separation reactions in the photosynthesis performed by some organisms, with an 
absorbance capacity of 40 - 45% of solar energy (BioModularH2, 2005; Das and 
Veziroglu, 2001, 2008). Such an efficiency is relevant as theoretical estimations 
states that cultivation surface of 500 km2 would be enough to produce enough 
energy to fulfil the world’s transportation needs (Turner et al., 2008). Nowadays, 
works have obtained transient efficiencies of up to 13% by using a combination of 
processes (Melis, 2007). If this production could be sustained in time, this 
hydrogen production strategy would be cost efficient. Therefore, the reliability of 
this method of hydrogen production strongly depends on the future development 
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of this area, which is where this thesis comes to play. A more extended review of 
the different biological hydrogen production can be found in (Hallenbeck, 2002). 

Thus, change to a clean economy based on hydrogen implies addressing 
several questions related to its production strategy and methods. Furthermore, 
hydrogen also raises technical issues related with its transportation and storage 
that are neither covered in this chapter nor in this thesis, but that have to be 
addressed and partially solved (Committee on Alternatives and Strategies for 
Future Hydrogen Production and Use and National Research Council, 2004; Turner 
et al., 2008). Most probably, the final global solution will come from a 
combination of technical solutions from different technologies.  

Biological hydrogen production. 

Biological hydrogen production is a known capacity of some microorganism 
since 1970 (Postgate, 1970) that involves two kind of enzymes: hydrogenases, 
refer to Tamagnini et al. (2002) for a detailed classification of them, and 
nitrogenases, involved in the nitrogen fixation metabolism. The main bio-
hydrogen production mechanisms can be grouped in two categories: 

a) Fermentation 

Many anaerobic organisms like Enterobacter aerogenes (Fabiano and Perego, 
2002), Bacillus licheniformis (Kalia et al., 1994), Rhodopseudomonas palustris P4 
(Oh et al., 2002) or Clostridium sp. (Taguchi et al., 1996) are able to produce 
hydrogen as a by-product of the dark fermentation of sugars, amino acids and 
fatty acids. Process can be direct, anaerobically consuming sugars, or stepwise, 
first generating sugar complexes from other carbon sources like CO2 and then 
fermenting them anaerobically. Fermentation has the advantage that it can use a 
wide range of substrates and that can be coupled to other industrial processes, 
like agricultural activities. This strategy is being successfully used industrially for 
hydrogen production (Maniatis, 2010; Solazyme Inc., 2012). 

However, this mechanism has two drawbacks that need to be addressed. The 
first one is related to the cost of the substrate used as energy source for 
hydrogen. The most energetically suitable one is glucose, but its cost is a limiting 
factor to be a cost-efficient alternative. Nevertheless, this problem can be tackled 
in the same way that it has been solved for ethanol production: extending suitable 
sources to agricultural residues like lignocelluloses, which could provide a 
sustainable feedstock, would cut down prices, and would not divert stocks from 
human food chain. The second problem is related to the stoichiometry of 
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fermentation metabolism. Fermentation has a very low efficiency in terms of 
hydrogen production from glucose, in fact from a metabolic analysis of the 
reactions involved in the process each molecule of glucose can produce 
theoretically 4 molecules of hydrogen, while 2 - 3 molecules are produced under 
lab conditions (Thauer, 1976). This represents that just 40% (in terms of standard 
enthalpy of combustion) of the glucose energy input can be recovered in the form 
of hydrogen as theoretical maximum, and only 20 - 30% has been achieved 
experimentally. The rest of the energy is stored in cell’s biomass (meaning growth 
of the organism) and other fermentation products like acetic acid, alcohols or 
lactic acid. 

b)  Photon-fuelled hydrogen production 

Photosynthetic organisms are able to use solar energy to make their own 
feedstock to live. Among them, cyanobacteria and some algae are able to use this 
energy to produce hydrogen as a transient by-product. The process of hydrogen 
production is based on the photosynthetic transport chain, which is shown in 
Figure 1.6. Schematically, the process consists of the absorption of photons by the 
photosystem II (PSII), which energy is used to split the water molecules into two 
protons and oxygen releasing two electrons to the electron transport chain. This 
electron transport chain, through a set of redox reactions, leads these electrons to 
the photosystem I (PSI) which can route them back through plastoquinone (PQ) 
into the cyclic electron flow or can drive the electrons to a NADPH dehydrogenase 
(FNR) into the non-cyclic electron flow. In several steps of the photosynthesis, 
namely PSII, PQ and cytochrome b6-f complex, protons are pumped from 
cytoplasm to the thylakoid lumen, where they can be transported back to 
cytoplasm, dissipating the proton gradient, through ATP synthase, which uses this 
energy to phosphorylate ADP to ATP. The cyclic process generates a proton 
gradient (thus ATP) and the non-cyclic process generates proton gradient and 
NADPH. Furthermore, depending on the actual cell requirements of NADPH (also 
known as redox potential of the cell) and ATP (major energy vector of the 
organism) the ratio of cyclic-to-non-cyclic photosynthesis is controlled by the cell 
metabolic regulation. 
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Figure 1.6 - Photosynthetic transport chain. In cyanobacteria, photosynthetic 
transport chain share several enzymes with the respiratory transport chain 
(Figure1.7), this fact allows the possibility of using electrons from glucose or other 
substrates in order to produce hydrogen 

Cyanobacteria have a [Ni-Fe] hydrogenase, which produces hydrogen from 
NADPH according to the reaction  

NADPH + H+ →  NADP+ + H2 

Green algae commonly have a [Fe-Fe] hydrogenase, which is linked to a 
ferredoxin enzyme of PSI taking directly the electrons from the electron transport 
chain and producing hydrogen. Recently there have been some efforts on 
heterologous hydrogenases’ cloning in cyanobacteria. For instance, bacterial 
[FeFe] hydrogenase from Clostridium acetobutylicum has been expressed in the 
cyanobacterium Synechococcus elongatus together with the necessary maturation 
systems, and, under anoxic conditions, the resulting light-dependent H2 evolution 
increased over 500 times compared to H2 evolution from the endogenous [NiFe] 
hydrogenase (Ducat et al., 2011a). 

However, the main limitation in order to have a cost-effective hydrogen 
production by photosynthesis is the fact that hydrogenases’ activity is highly 
repressed by the oxygen, which is an inherent product of photosynthesis. Several 
projects (Barstow et al., 2011; Stapleton and Swartz, 2010) deal with this problem 
trying to find a naturally-occurring oxygen-tolerant hydrogenase, like the one 
from Ralstonia eutropha H16 (Burgdorf et al., 2005), or to design a synthetic one 
and expressing it in cyanobacteria or green algae, as in many projects like 
BioModularH2 (2005). 
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In nature, this problem has been addressed by some cyanobacteria separating 
in space the region in which oxygen is produced from the area in which hydrogen 
is produced. For instance, in cyanobacteria genus Nostoc, hydrogen is produced as 
a residual product of nitrogen fixation by nitrogenase in the heterocyst region. In 
order to use this cyanobacterium for industrial use, the main problem is that 
efficiencies are limited as nitrogen fixation is energetically expensive. 
Nevertheless, a review of works in this line could be found in Lopes Pinto et al. 
(2002). 

An alternative to face this problem has been to temporally separate the 
hydrogen production and the oxygen production. One of the most successful 
strategies following this alternative has been developed by Melis et al. (2000). 
Their strategy is based on sulphur deprivation of algae, in such a way that the 
organism will not be able to normally repair the structural units of photosystem II, 
namely D1, which is a protein that requires a fast turnover (approximately 30 
minutes). This effect produces a decrease of water splitting, and, thus, a reduction 
in the O2 production associated to photosynthesis up to a level that is lower than 
(or, at least, much closer to) the oxygen consumed by the respiration system, 
oxidative phosphorylation, Figure 1.7. This mechanism is able to produce a 
(micro)anaerobic environment which activates the hydrogenase enzyme 
producing hydrogen during a relatively long time span if we are to compare it with 
previous results. This mechanism, however, relies on the availability of a 
substrate, such as succinate, NADH, acetate and the like, to be able to reduce the 
oxygen produced by photosynthesis and provide electrons to hydrogen 
production. In fact, we can say that the biomass produced during the active 
photosynthesis phase (without sulphur deprivation) is then fed to the electron 
transport chain to produce hydrogen, turning this hydrogen evolution process 
much more industrially interesting.  

There is another possibility consisting on a combination of both basic 
strategies, in what is called photofermentation. In this alternative the residues 
from fermentation are used to feed photosynthetic bacteria in an anaerobic 
media, resulting in a continuous hydrogen production (Melis and Melnicki, 2006). 
We could also consider that sulphur deprivation strategy is closer in design to 
photofermentation, as one could consider this approach as a stepwise coupling of 
biomass generation and hydrogen production. 
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Figure 1.7 - Oxidative phosphorylation. In cyanobacteria, photosynthetic transport 
chain share several enzymes with the respiratory transport chain, such as PQ and cit 
b6f that performs C3 functions. 

Microbial pathway engineering has been mainly applied to industrial processes 
for biosynthesis of products of high economic value, which is not yet the case for 
hydrogen, and is one of the motivations of this thesis. Mathematical modelling of 
hydrogen metabolism is therefore important to evaluate maximum theoretical 
product yield and to understand the interactions between biochemical energy, 
carbon fixation and assimilation pathways from a system-wide perspective.  
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2 
Reconstruction of 

cyanobacterial 
metabolism 

 
Where PhD applicant explains how he faced the disperse, divergent, non-structured data 
sources that the selected organism has among the literature, and how he gathered this 
information up to get the first genome-scale metabolic model of this organism. 
 
 
 
Parts of the contents of this chapter are based on parts of the following journal articles: 

• Montagud et al. Flux coupling and transcriptional regulation within the metabolic 
network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnology 
Journal 2011, 6:330-342. 

• Montagud et al. Reconstruction and analysis of genome-scale metabolic model of a 
photosynthetic bacterium. BMC Systems Biology 2010, 4:156.  

Science is knowledge which we understand so well 
that we can teach it to a computer; and if we don't 
fully understand something, it is an art to deal 
with it. 
Donald Knuth, 1974 Turing Award Lecture, 
Communications of the ACM 17, 12:668 
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 2.1 Introduction. 

In recent years, the need for a clean, sustainable and efficient chemical 
production platform for biofuels has trapped considerable interest of the society. 
Future energy requirements demand a sustainable alternative for the use of fossil 
fuels, to restrict further global warming and pollution. For instance, advances 
have been achieved in the design and implementation of microbial processes for 
the first, second and third generation biofuels. However, the design of a clean 
industrial production platform stands as a cornerstone for the next step in green 
biotechnology, focused on getting energy from light source and relieving air of 
CO2. Such a strategy offers the much-needed avoidance of diversion of energy 
from human food chain or the recollection of vegetal leftover from the fields.  

One of the best places to search for such alternative solutions is naturally 
occurring microorganisms, where the goal of trapping light and CO2 has already 
been achieved several millennia back. Photoautotrophs harvest energy from 
photons through the photosynthesis and shape carbon skeletons out of 
atmospheric CO2 through Calvin cycle’s carbon fixation. Nowadays, the capability 
of taming such organisms to the production of energy-rich compounds for use as 
biofuels, e.g., alcohols or hydrogen, is a goal that is within our reach (Tamagnini et 
al., 2007). In the search for such an ideal system, focus has been set on algae and 
cyanobacteria. These unicellular organisms have been targeted due to their ease 
of cultivation, little nutritional demands and tolerance – its wide range of habitats 
include aquatic (saltwater and freshwater), terrestrial and extreme environments 
(including frigid lakes of the Antarctic or hot springs). Synechocystis sp. PCC6803 is 
a cyanobacterial model organism for its robust growth characteristics and is 
naturally transformable (Kufryk et al., 2002). Synechocystis sp. PCC6803 genome 
was sequenced, annotated and made publicly available in 1995 (Kaneko et al., 
1996, 1995) and has been the target of some metabolic modelling effort, as we 
will later discuss. 

Metabolic models at the genome-scale are one of the pre-requisites for 
rational metabolic engineering approaches as well as for eventually developing 
synthetic cell factories (Barrett et al., 2006; Patil et al., 2004). Towards this end, a 
variety of tools/algorithms are available (Patil et al., 2004) and can be applied on 
metabolic models. Among them, we can find flux balance analysis (FBA) (Edwards 
et al., 1999; Varma and Palsson, 1993a), minimization of metabolic adjustments 
(MOMA) (Segrè et al., 2002), regulatory on-off minimization (ROOM) (Shlomi et 
al., 2005), flux variability analysis (FVA) (Mahadevan and Schilling, 2003) and 
metabolic control analysis (MCA) (Kacser and Burns, 1973; Rapoport et al., 1974). 
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Genome-scale metabolic network reconstruction is, in essence, a systematic 
assembly and organization of all the reactions, which build up the metabolism of a 
given organism. This work has been of great interest in the post-genomic era as it 
offers an opportunity to systematically analyse omics datasets in the context of 
cellular metabolic phenotypes and thereby allows researchers to gain insights into 
the operational principles of the cell factories. Genome-scale metabolic modelling 
approach has been applied to a diversity of organisms in a variety of conditions in 
the context of metabolic engineering, pathway re-routing and systems biology in 
general. This chapter presents such manually curated genome-scale 
reconstruction for Synechocystis sp. PCC6803 and its comparison to other works 
on Synechocystis metabolic models. 

 

2.2 Genome-scale metabolic models of Synechocystis sp. PCC6803. 

Reconstruction process. 

A complete literature examination, including databases, biochemistry 
textbooks and the annotated genome sequence, was needed in order to extract 
the current state of the art on known metabolic reactions within the metabolic 
network of Synechocystis sp. PCC6803. For a thorough overview of the process of 
metabolic model reconstruction, refer to very instructive work by Forster et al. 
(2003) as well as review by Feist et al. (2009). 

In detail, the reconstruction started with download of Synechocystis sp. 
PCC6803 genome and annotation files (Kaneko et al., 1996, 1995) from NCBI 
Entrez Genome repository as of date 10 of September of 2008 (NCBI, 2011). These 
files were organized with Pathway Tools software (Karp et al., 2002) in order to 
build an object-oriented database of all the genes, proteins and metabolites 
presents in the organism. Proteins supposed to mediate reactions were retrieved 
from this database and, if possible, connected together. We complemented this 
draft list of reactions with queries to a set of public databases, most of them 
specific on genomes (Karp et al., 2005), pathways (Kanehisa et al., 2008), enzymes 
(Bairoch, 2000; Chang et al., 2009) or proteins (The UniProt Consortium, 2007), 
some even specific to cyanobacteria (Nakao et al., 2010). See Figure 2.1 for an 
overview of the process. However, the lack of quality had to be considered as a 
major drawback of some of the databases: false positives, false negatives as well 
as wrongly annotated objects may hinder efforts of collecting accurate data 
(Weise et al., 2006). Consequently, manual reconstruction by detailed inspection 
of each and every reaction, ideally relating to published articles, biomass equation 
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based on metabolic building blocks (such as amino acids and nucleotides), 
consistency and integrity of the network is a pre-requisite for creating a high 
quality and useful metabolic model (Feist et al., 2009). 

 

 

Figure 2.1 - Overview of the process of reconstruction of the genome-scale 
metabolic model. Metabolic map from KEGG database (www.genome.jp/kegg). 

Reactions’ EC numbers and stoichiometry were checked and verified with the 
help of the Enzyme nomenclature database (Bairoch, 2000) and KEGG pathway 
database (Kanehisa et al., 2008). No lumped reactions were made and 
photosynthesis was described as a set of 19 reactions, thus enabling the tracing of 
the corresponding fluxes. Reactions were elementally balanced except for 
protons, so that chemical conversions were coherent. In some of the reactions 
present in these databases, metabolites were reported in a non-specific form (e.g. 
an alcohol). This is insufficient for metabolic model simulation and, so, 
corresponding organism-specific metabolites had to be identified (Förster et al., 
2003). Additionally, in a large number of reactions cofactors were not completely 
clarified: an enzyme being capable of using NADH or NADPH or both. In the latter, 
two reactions were included in the reconstructed metabolic network. 
Determination of reversibility of the reactions was assisted by specific enzyme 
databases, like BRENDA (Chang et al., 2009). If no conclusive evidence was 
reported, reactions were set to be reversible. 

Parts that characterize Synechocystis network, like the incomplete TCA cycle 
(Pearce and Carr, 1967; Vazquez-Bermudez et al., 2000) [recently found to be 
complete through succinic semialdehyde by Zhang and Bryant (2011)], the 
presence of the glyoxylate shunt (Yang et al., 2002c), the interconnected 
photosynthesis and oxidative phosphorylation (Löffelhardt and Schmetterer, 
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1999), the amino acid transport reactions (Labarre et al., 1987) or the cyclic and 
non-cyclic electron transport related to these latter processes (Albertsson, 2001; 
Allen, 2002; Camacho Rubio et al., 2003), were accounted for in detail. In fact, in 
the reconstruction of the metabolic model, many reactions were found to be 
necessary for the production of the monomers, precursors or building blocks, that 
are considered in the biomass equation but which have no corresponding enzyme 
coding gene assigned (see Table 2.1). In consequence, many genes that were not 
annotated before should be considered, as they code for enzymes that should be 
present to allow the formation of biomass. For instance, enzymes malyl-CoA lyase 
and isocitrate lyase were not allocated in the annotation of the genome albeit 
their activities have been measured (Pearce and Carr, 1967; Yang et al., 2002c) 
and their presence is necessary to complete the glyoxylate shunt; consequently, 
they were included in the model. This was an example of information that was 
absent from databases, but was present in literature and was vital for the correct 
simulation of metabolism.  

As transcriptomic analysis was one of the tasks we wanted to do with this 
model, gene presence and correspondence to a cognate reaction were also 
accounted for. At the end of the reconstruction process, four kinds of 
relationships were present in the database: reaction with cognate genes, 
reactions that needed to be included in the model in order to have metabolic 
precursors in the network (with no assigned genes), non-enzymatic reactions that 
have no related gene, and genes described in the annotations but with no 
assigned function.  

Versions. 

The product of this reconstruction process was a set of reactions that 
encompass all the known metabolite conversions that take place in Synechocystis 
sp. PCC6803. We have performed two reconstructions of this cyanobacterium’s 
metabolism, iSyn669 in late 2009 and iSyn811 in mid-2010.  

• iSyn669 

The resulting network, iSyn669, consists of 882 metabolic reactions and 790 
metabolites. A total of 669 genes were included, to which 639 reactions were 
assigned (see Additional file 1.1 for details); the difference between the number 
of genes and assigned reactions is due to the presence of considerable number of 
protein complexes (e.g. photosynthetic or respiratory activities) and isoenzymes. 
Interestingly, when bidirectional reactions are converted to unidirectional, the 
number of reactions is extended to 1045. Reactions with no cognate genes are 
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also present in iSyn669, 20 passive transport reactions and 39 chemical 
conversions (not mediated by enzymes) were included. Additionally, 79 reactions 
were included on the basis of biochemical evidence or physiological 
considerations, but currently with no annotated Open Reading Frame (ORF). 
iSyn669 genome-scale metabolic model is available in Additional file 1.2 (in 
OptGene (Patil et al., 2005) format). Table 2.1 shows, at a glance, this information. 

iSyn669 spans all the biologically relevant flux nodes in the Synechocystis 
metabolism. Pyruvate, phosphoenolpyruvate (PEP), 3-phosphoglycerate, 
erythrose-4-phosphate and 2-oxoglutarate are main flux nodes for amino acids 
biosynthesis. Acetyl-CoA is an important flux node for fatty acids production, with 
high relevance for metabolic engineering towards biofuel production. Biosynthesis 
of nucleic acids comes from different metabolites, namely, ribose-5-phosphate, 5-
phospho-beta-D-ribosyl-amine, L-histidine and L-glutamine. Moreover, with the 
information publicly available on databases, it was plausible to conclude that 
Synechocystis sp. PCC6803 bears an incomplete tricarboxylic acid cycle (TCA 
cycle), as it lacks 2-ketoglutarate dehydrogenase (EC 1.2.4.2). It has been 
published that glyoxylate shunt completes this cycle (Yang et al., 2002c), 
permitting the recycling of TCA metabolites. Alternatively, aspartate transaminase 
(reaction 2.6.1.1a in iSyn669) can interconvert 2-ketoglutarate and oxaloacetate, 
thus bridging the gap of 2-ketoglutarate dehydrogenase, but short-circuiting TCA 
cycle. More recently Zhang and Bryant (2011) have successfully discussed an 
alternative hypothesis of completing cyanobacterial TCA cycle: through succinic 
semialdehyde and show solid proofs of it. 

• iSyn811 

Our previous genome-scale metabolic model was updated to iSyn811. We 
included and corrected many isoenzymes and complexes that were incomplete in 
iSyn669. We also incorporated several pathways that were believed to be in 
Synechocystis but that lacked many reactions (i.e. set of reactions that may have 
been wrongly annotated and are disconnected to the rest of the network). 
iSyn811 bears 976 reactions, 866 of them with cognate genes, 922 metabolites 
and 811 genes (see Additional file 1.3 for details). Again, the difference between 
866 reaction catalysed by genes and the set of 811 genes that catalyse them are 
due to the multiple correspondence between genes and reactions in isoenzymes 
and complexes. As a matter of curiosity, when bidirectional reactions are 
converted to unidirectional, the number of reactions is extended to 1245. 
Reactions with no cognate genes are still present, 10 passive transport reactions 
and 28 chemical conversions (not mediated by enzymes) were included. 
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Additionally, proper databases searches and studies allowed us to assign reactions 
based on biochemical evidence or physiological considerations to ORF. Thus, we 
could identify 68 genes to those reactions, leaving 11 of the without a cognate 
gene. Table 2.1 can be used for this comparison. 

 

Table 2.1 - Distribution of the model reactions as per cognate genes. 

 iSyn669 iSyn811 

Number of genes 669 811 

Number of metabolites 790 922 

Number of reactions 882 976 

- With assigned genes 639 866 

· Protein-mediated transport  78 78 

- With no cognate gene 221 108 

· Chemical conversion 39 28 

· Transport reactions 20 10 

· EC reactions not annotated 79 11 

· Needed for biomass simulation 75 59 

 

iSyn811 genome-scale metabolic model is available in Additional file 1.4 (in 
OptGene (Patil et al., 2005) format). Both versions have been compiled in 
OptGene/BioOpt format (Patil et al., 2005) in order to be readily usable with this 
software and is available at BioMet Toolbox webpage 
(http://www.sysbio.se/BioMet) (Cvijovic et al., 2010).  

Biomass equation. 

As we have discussed in the previous chapter, in order to be able to simulate 
metabolic fluxes under steady state, what we know as flux balance analysis (FBA), 
an objective function needs to be optimized. We have already seen the causes 
and consequences of biomass being the objective function and why that is 
important to mimic biomass growth. The present model features a detailed 
biomass equation which encompasses all the building blocks that are needed for a 
flux distribution simulation that reflects observed phenotype.  

In present work, biomass equation needed to relate to molecular building 
blocks, such as amino acids (Feist et al., 2007), deoxyribonucleotides (Herdman et 
al., 1979), ribonucleotides (Allen and Smith, 1969), lipids (Tasakal et al., 1996), 



 
 
 
 
 

58 
 
 
 
 
 

carbohydrates (Burrows et al., 2008) and antenna chromophores (Miao et al., 
2003). Table 2.2 encompasses biomass composition description with references 
where the information was retrieved from. All these building blocks with their 
respective stoichiometric coefficient is converted into one gram of dry cell weight 
(denoted as gDW

-1). Biomass equation is reaction Biomass in Additional files 1.2, 
1.4, 2.1 and 2.2. Some of the references used for this do not come from 
Synechocystis sp. PCC6803, like the one from amino acids that comes from 
Escherichia coli model (Feist et al., 2007), and others are from cyanobacteria but 
are so old that this organism was assigned to a different domain, such as blue-
green algae, like the one from nucleic acids in Allen and Smith (1969). The process 
of experimentally retrieving this information is not trivial and most of the time is 
buried in articles that aim otherwise or higher in terms of scientific impact. This 
makes the process of collecting this information a challenging task. That is why we 
hope Table 2.2 will be useful to many people.  
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Table 2.2 - iSyn669 and iSyn811 biomass composition. Units in mmol gDW
-1. 

Metabolite mmol / gDW Metabolite mmol / gDW 

Amino acids (Feist et al., 2007)  Deoxyribonucleotides (Herdman et al., 1979)  

Alanine 0.499149 dATP 0.0241506 

Arginine 0.28742 dTTP 0.0241506 

Aspartate 0.234232 dGTP 0.02172983 

Asparagine 0.234232 dCTP 0.02172983 

Cysteine 0.088988 Ribonucleotides (Allen and Smith, 1969)  

Glutamine 0.255712 AMP 0.14038929 

Glutamate 0.255712 UMP 0.14038929 

Glycine 0.595297 GMP 0.12374585 

Histidine 0.092056 CMP 0.12374585 

Isoleucine 0.282306 Lipids (Tasakal et al., 1996)  

Leucine 0.437778 16C-lipid 0.20683718 

Lysine 0.333448 (9Z)16C-lipid 0.01573412 

Methionine 0.149336 18C-lipid 0.00351776 

Phenylalanine 0.180021 (9Z)18C-lipid 0.03188596 

Proline 0.214798 (9Z,12Z)18C-lipid 0.03568367 

Serine 0.209684 (9Z,12Z,15Z)18C-lipid 0.01797109 

Threonine 0.246506 (6Z,9Z,12Z)18C-lipid 0.05031906 

Tryptophan 0.055234 (6Z,9Z,12Z,15Z)18C-lipid 0.01448179 

Tyrosine 0.133993 Antenna chromophores (Miao et al., 2003)  

Valine 0.411184 Chlorophyll a 0.02728183 

Carbohydrates (Burrows et al., 2008)  Carotenoids 0.00820225 

Glycogen 0.014506   
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2.3 Connectivity analysis of genome-scale metabolic models. 

Before going into the metabolic flux analysis, we studied the network topology 
of the reconstructed models. This approach has been widely used in systems 
biology, with many works from many researchers from different fields, like 
Mathematics and Statistics. One of the major players in this field has been 
Professor Barabási, with pioneering works (Albert et al., 1999; Barabási and 
Albert, 1999) and reviews (Barabási and Bonabeau, 2003). This interdisciplinary 
approach, as it usually happens, has caused debate about ostensibly grand 
conclusions, like the one that construction of biological systems networks, as well 
as World-Wide Web network, follow a power law distribution, termed “scale-free” 
distribution (Keller, 2005, 2007). 

From the network topology perspective, iSyn669 and iSyn811 display the 
connectivity distribution pattern similar to that of the other microbial genome-
scale networks, e.g. yeast (Förster et al., 2003) and Escherichia coli (Feist et al., 
2007) (Table 2.3 and 2.4). While most of the metabolites have few connections, 
few metabolites are involved in very many reactions and are often referred to as 
metabolic hubs. Homeostasis of such highly connected metabolites will affect 
globally the metabolic phenotype (as reflected in metabolite levels and fluxes) 
and therefore of interest for studying the organization of regulatory mechanisms 
on the genome-wide scale. Most connected metabolites include those related to 
energy harvesting (e.g. ATP, NADP+, oxygen), a key metabolite in the porphyrin 
and chlorophyll metabolism (S-adenosyl methionine), a couple of amino acids and 
its precursors (L-glutamate, L-glutamine and glutathione) and a key metabolite in 
the lipid biosynthesis pathway (malonyl-ACP). High connectivity of these 
metabolites hints to their potential central role in the adjustments of fluxes 
following environmental perturbations. In order to discover the corresponding 
regulatory mechanisms, additional studies should be done that are beyond the 
scope of this chapter –e.g. putative regulatory sequence motifs associated with 
the neighbours of these highly connected metabolites (Zelezniak et al., 2010). 
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Table 2.3 - Most connected metabolites in metabolic networks. 

Metabolite 
Neighbours 
in iSyn669 

Neighbours 
in iSyn811 

Neighbours 
in E. coli 

Neighbours 
in yeast 

H2O  213 219 697 - 

ATP  144 136 338 166 

phosphate  108 112 81 113 

ADP  103 111 253 131 

diphosphate  97 84 28 - 

H+  74 153 923 188 

CO2  72 72 53 66 

NADP+  64 68 39 61 

NADPH  63 68 66 57 

NAD+  46 52 79 58 

L-glutamate  45 44 52 56 

NADH  42 48 75 52 

AMP  36 21 86 48 

oxygen O2 36 40 40 31 

ammonia  28 28 22 - 

S-adenosyl-L-methionine 25 28 18 19 

glutathione  25 26 17 10 

a malonyl-ACP  23 23 15 10 

L-glutamine  22 21 18 23 

coenzyme A  21 23 71 39 
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Table 2.4 - Most connected metabolites (cofactors filtered) in metabolic networks.  

Metabolite 
Neighbours 
in iSyn669 

Neighbours 
in iSyn811 

Neighbours 
in E. coli 

Neighbours 
in yeast 

L-glutamate  45 44 52 56 

S-adenosyl-L-methionine  25 28 18 19 

glutathione  25 26 17 10 

a malonyl-ACP  23 23 15 10 

L-glutamine  22 21 18 23 

S-adenosyl-L-homocysteine  21 24 12 14 

cysteinylglycine  21 21 5 - 

pyruvate  20 20 61 20 

5-oxoproline  20 20 - - 

acetyl-CoA  15 15 34 24 

L-aspartate  15 15 23 20 

tetrahydrofolate  14 14 10 13 

2-ketoglutarate  13 13 27 29 

D-glyceraldehyde-3P 12 12 14 13 

fructose-6-phosphate  10 10 18 18 

phosphoenolpyruvate  10 10 26 12 

L-methionine  10 10 15 15 

L-serine  9 8 26 17 

5-phosphoribosyl 1-pyroP 9 9 2 2 

isopentenyl diphosphate  9 9 6 4 

 

2.4 Our metabolic models and the state-of-the-art. 

When we started working on Synechocystis sp. PCC6803 metabolic model 
reconstruction some central carbon metabolism models were published for this 
cyanobacterium. Hence, we had the chance to compare our advances to these 
works, but from that moment (mid-2008) until now, many efforts have been 
gathered around the metabolic reconstruction of this organism. In a sense, this 
makes researchers feel part of a community, but has also some downsides, like 
competition towards publication. 

Anyhow, as a PhD candidate, I feel that our models have to be framed with the 
rest of these works in order to see which models owe efforts to which ones. 
Therefore, Synechocystis sp. PCC6803 metabolic models are hereby gathered and 
described. We have classified the models between genome-scale metabolic 
models and central carbon metabolic models. 
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a) genome-scale metabolic models are the ones that (1) include all reactions 
annotated in the genome and (2) a biomass equation that encompasses 
all building blocks in the cell metabolism. 

b) central carbon metabolic models are the ones that (1) include reactions 
from glycolysis, tricarboxylic acid (TCA) cycle and pentose phosphate 
pathway and, in some cases, an additional set of reactions that connect 
some metabolites to amino acids and/or (2) a biomass equation without 
all building blocks. 

We have described all metabolic models published to this date on this 
cyanobacterium and outlined their characteristics. For further details, refer to the 
correspondent paper.  

• Yang et al. central model (2002c) 

Seminal work published in 2002, it was the first time ever a metabolic model 
was developed for Synechocystis sp. PCC6803. Researchers build a metabolic 
network and simulated it under heterotrophic and mixotrophic growth conditions. 
Photosynthesis (only working under mixotrophy) was represented as one lumped 
reaction. This model bears 20 reactions and 15 metabolites and was used as a 
central-carbon scaffold for transcriptomic, metabolomic and fluxomic data 
produced by the same group (Yang et al., 2002a, 2002c).  

• Shastri and Morgan central model (2005) 

This model, published in 2005, extended the simulations to autotrophic growth 
and compared their results to the ones from Yang et al. (2002c). A list of reactions 
is presented that connects amino acid production to central carbon metabolites 
and photosynthesis is represented as one lumped reaction. This model bears 70 
reactions (plus 23 for amino acids formation) and 50 metabolites. 

• Kun et al. genome-scale model (2008) 

This model, published in 2008, has its main sources on the automated 
reconstruction generated from the annotated genome and deposited in the 
MetaCyc database (Caspi et al., 2006; Krieger et al., 2004) and on the previous 
Shastri and Morgan central model (2005). Authors were interested in the study of 
sets of autocatalytic molecules, not on the analysis of flux behaviour or the 
integration of different levels of biological information. This model bears 916 
reactions and 879 metabolites. 

• Navarro et al. central model (2009) 
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Published in 2009, this central carbon metabolic model was developed 
independently by our group and simulates all three growth conditions on the 
same metabolic network. Obviously we compared our reconstruction and results 
to the ones from Yang et al. (2002c) and Shastri and Morgan (2005) and found 
improvements in oxygen evolution (of high importance in a photosynthetic 
bacterium) and flux distributions. Among other functions, we used this model in 
order to find out maximum hydrogen production titters and propose improved 
hydrogen producing strategies. This model has 90 reactions and 56 metabolites. 

• Fu central model (2008) 

Published in August 2008, this model claims to be genome-scale but fails in 
having a proper biomass equation. Its list of reactions are certainly from all the 
genome, meaning not only from a selected set of pathways, but this list is 
uncurated, featuring lumped key reactions (like the ones for the generation of 
NADPH and ATP, reaction 732 in Supplementary materials) and missing transport 
reactions. This model, however, is not suitable for genome-scale simulations due 
to lack of proper biomass equation, as a drain of cellular building blocks. 
Researcher takes biomass equation formulation from Shastri and Morgan (2005), 
so simulation results do not give more information than the ones already 
published by them. Despite that, phenotypic phase planes were performed to 
study usage of substrates to optimize cell growth and ethanol production 
strategies were assessed. This model has 831 reactions and 704 metabolites. 

• iSyn669 genome-scale model (Montagud et al., 2010) 

Our first genome-scale metabolic model sent to BMC Systems Biology on 5 
February 2010 and accepted on 17 November 2010. Apparently, process of 
revision took so long as one of the reviewers that accepted to peer-review the 
manuscript failed to answer editors in due time, and several times. As we have 
detailed in this chapter, this metabolic model was gathered from public databases 
and literature in order to be able to simulate all possible growth modes under 
which this organism can grow. This metabolic model is one of the main characters 
of present chapter. Additionally in following chapters, we will detail other 
analyses done on top of this model: flux balance analysis in Chapter 3, 
transcription data integration in Chapter 7, productivity analysis in Chapter 4, etc. 
This model has 882 reactions (1045 unidirectional) and 790 metabolites 

• Knoop et al. genome-scale model (2010) 

This model, published in 2010, reconstructs Synechocystis sp. PCC6803 mainly 
from annotation files and KEGG database information, even though a selected 
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core set of reaction is selected to produce biomass. Authors study flux behaviour 
under different growth conditions using FBA algorithm. Interestingly, they shed 
light on the functioning of the oxidative reaction of the RuBisCO enzyme under 
photorespiration. This model has 380 reactions and 291 metabolic compounds. 

• iSyn811 genome-scale model (Montagud et al., 2011) 

Our update of iSyn669, sent to Biotechnology Journal on 23 June 2010 and 
accepted on 7 November 2010. Available online right away, it was published on a 
special issue of Biotechnology Journal on Applications in Biotechnology issued on 
February 2011. Update was based on enlarging the reaction set with isoenzymes 
and complexes as well as reactions that were disconnected to the rest of the 
network. Major changes were also made on the gene-reaction correspondence. 
As with iSyn669, this metabolic model is one of the main characters of present 
chapter, but you will also find it in following ones. Over this model we studied and 
applied an interesting study of flux capabilities, termed flux coupling analysis 
(Burgard et al., 2004), which is the main topic of Chapter 5. This model has 976 
reactions (1245 unidirectional) and 922 metabolites. 

• Yoshikawa et al. genome-scale model (2011) 

This work presents yet another genome-scale metabolic model of 
Synechocystis sp. PCC6803 published in mid-2011. Authors compare their model 
to Knoop et al. (2010) and to iSyn669 (Montagud et al., 2010) as to their accuracy 
to experimental fluxes obtained by Yang et al. (2002c). This model has 493 
reactions and 465 metabolites. 

 

2.5 Conclusions. 

We have explained the reconstruction of a genome-scale metabolic network 
for Synechocystis sp. PCC6803, which allows simulating production of all the 
metabolic precursors of the organism. This reconstruction has two versions: 
iSyn669 and iSyn811. The metabolic reconstruction represents an up-to-date 
database that encompasses all knowledge available in public databases, scientific 
publications and textbooks on the metabolism of this cyanobacterium. 

These models are, up to our knowledge, the most complete and 
comprehensive work for Synechocystis sp. PCC6803 to date, which has its 
potential as the photosynthetic model organism, as we can appreciate in 
following chapters. 
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In order to facilitate the use of the Synechocystis sp. PCC6803 model, we have 
compiled our work as a Pathway Tools Tier 2 Pathway-Genome Database (PGDB). 
Searches for genes, reactions, proteins, pathways and regulations can be 
performed on this service. Our Synechocystis sp. PCC6803 database consists of 
3622 genes, 3572 proteins, 58 transport reactions, 701 compounds, 43 tRNAs and 
889 enzymatic reactions distributed among 180 MetaCyc pathways. Metabolic 
model have also been compiled in OptGene and SBML formats in order to be 
readily usable with different software and are available at BioMet Toolbox 
(Cvijovic et al., 2010) webpage (http://www.sysbio.se/BioMet). 

Altogether, the genome-scale metabolic network of Synechocystis sp. PCC6803 
is a valuable tool for the applied and fundamental research of Synechocystis sp. 
PCC6803, as well as for the broad field of metabolic systems biology. Applicability 
of iSyn669 and iSyn811 metabolic models is demonstrated by using a variety of 
computational analyses in following chapters. 

Work from this chapter has been updated and has been used as founding 
stone to a (semi-)automated process developed by colleagues Gamermann and 
Reyes. 
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3 
Flux landscapes of 
Synechocystis sp. 

PCC6803 
 

Where PhD applicant uses the model developed previously to have virtual snapshots of 
different fluxes landscapes that correlate to experimental snapshots gotten from people in 
other labs, in other continents. 
 

Parts of the contents of this chapter are based on parts of the following journal articles: 

• Montagud et al. Flux coupling and transcriptional regulation within the metabolic 
network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnology 
Journal 2011, 6:330-342. 

• Montagud et al. Reconstruction and analysis of genome-scale metabolic model of a 
photosynthetic bacterium. BMC Systems Biology 2010, 4:156. 

• Pinto et al. Construction of a chassis for hydrogen production: physiological and 
molecular characterization of a Synechocystis sp. PCC6803 mutant lacking a 
functional bidirectional hydrogenase. Microbiology (Reading, England) 2011, 
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Socrates: Heracleitus [of Ephesus] says, you know, that 
all things move and nothing remains still, and he likens 
the universe to the current of a river, saying that you 
cannot step twice into the same stream. 
[origin of the aphorism everything flows (pantha rhei)] 

Plato, Cratylus, Paragraph 402 section a line 8, in Harold 
N. Fowler, Plato in Twelve Volumes, Vol.12, Harvard 
University Press, 1921 
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3.1 Introduction. 

As we said in previous chapter, genome-scale metabolic models have been 
used in many works to gain insights into the metabolic behaviour of the cell. If a 
genome-scale metabolic model is formulated properly, it is expected to allow 
simulating environmental and genetic perturbations in the metabolic network. 
Thus, together with appropriate constraints, a metabolic model would partially 
represent a virtual organism –an in silico model that allows studying possible flux 
distributions inside the cell under different environmental conditions and for a 
given genetic make-up. Studying how metabolic homeostasis buffers 
environmental perturbations is the main goal of present chapter. We will leave 
the study of how metabolism deals with genetic changes for following chapter. 

In order to study how metabolic behaviour deals with environmental 
perturbations we will use flux balance analysis (FBA) described in Chapter 1 as in 
many other works (Orth et al., 2010; Stephanopoulos et al., 1998). As a quick 
remainder, let me draft that this analysis needs to work with the stoichiometric 
information of the organism’s metabolism, a set of boundary constraints and an 
objective function. In present case, stoichiometric information is given by 
Synechocystis sp. PCC6803 genome annotation, set of boundary constraints were 
uncovered in tons of bibliography and some personal communications with 
experimentalists (mainly Tamagnini’s group at IBMC in Porto and Wright’s group 
at University of Sheffield, England) and, finally, objective function as it is common 
in this kind of analysis has been selected to be biomass growth, i.e. cell growth. 

Synechocystis sp. PCC6803 is capable of growing under three different growth 
conditions as marked by the utilized carbon source or sources (Herrero and Flores, 
2008). This causes that three distinct modes of operation are interweaved over 
the same metabolic network, viz.: 

- photoautotrophy, where energy comes from light and carbon from CO2 
- heterotrophy, where energy and carbon source is a saccharide, for instance 

glucose  
- mixotrophy, a combination of the above two, where light is present as well 

as a combination of two carbon sources: glucose and CO2 

Other authors like Vermaas (1996) consider three more growth conditions 
according to light and oxygen presence: anaerobiosis (with glucose or other fixed-
carbon as source), and split heterotrophy into photoheterotrophy, light-activated 
heterotrophy and dark heterotrophy. 
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Furthermore, different analyses are performed by using this metabolic 
reconstruction, including reaction knock out simulations, flux variability analysis 
and identification of transcriptional regulatory hotspots. Overall, iSyn669 and 
iSyn811 are valuable tools towards the development of a photo-biological 
production platform. These models have also contributed to the existing set of 
genome-scale models with the virtue of being one of the first stoichiometric 
models that completely accounts for photosynthesis. 

 

3.2 Synechocystis sp. PCC6803 fluxes landscape. 

iSyn669 and iSyn811, together with appropriate physiological constraints, were 
used as a stoichiometric simulation model by using FBA algorithm 
(Stephanopoulos et al., 1998). This model simulates steady state behaviour by 
enforcing mass balances constraints for all metabolic intermediates (again, please 
refer to Chapter 1 for further information).  

FBA simulation is solved by optimizing an objective function, which most of the 
time is cell growth. Biomass synthesis, a theoretical abstraction for cellular 
growth, is considered as a drain of some of the intermediates, i.e. building blocks, 
into a general biomass component. Presence of photosynthesis allows these 
metabolic models to “grow” (i.e., FBA results in a feasible solution) under four 
metabolic states: photoautotrophy, mixotrophy and two modes on heterotrophy, 
as we will further down. Different studies have reported that the simulation 
results do not usually vary drastically when using a common biomass equation for 
different growth condition (Shastri and Morgan, 2005; Varma and Palsson, 
1993a). Nevertheless, experimental efforts should be directed at the depiction of 
the best precursors and composition that could characterize, at least, the three 
main growth modes, viz., autotrophy, heterotrophy and mixotrophy, in the scope 
of recent results (Schuetz et al., 2007). Due to the lack of such data, the present 
work uses one single biomass equation in the simulations of all three metabolic 
states (described in Table 2.2).  

Growth under pure heterotrophy, or dark heterotrophy (in the absence of 
light) is a subject under study (Anderson and McIntosh, 1991; Carr and Whitton, 
1982), being the regular experimental design to give a short light pulse prior to 
the pure heterotrophic phase (termed light-activated heterotrophy). 
Nevertheless, the theoretical flux distribution under heterotrophic conditions is 
interesting by itself –especially in comparison with the flux distribution in a light-
fed energy metabolism. Moreover, fluxes in the heterotrophy mode may help in 
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obtaining insight into the variations under the mixotrophic condition, which is of 
high relevance for industrial applications (Navarro et al., 2009). 

Constraints used for flux balance simulations. 

Some capacity constraints had to be added in order to have a feasible solution 
for the linear programming problem. All FBA simulations were carried out under 
the appropriate constraints to match an autotrophic specific growth rate of 0.09 
h-1. As some examples, maximum carbon uptake rate was found to be 3.4 mmol 
gDW

-1 h-1 into the cell, with HCO3
- and CO2 as carbon sources (Shastri and Morgan, 

2005). Additionally, we fixed the maintenance requirement for the heterotrophic 
case to be 1.67 ATP moles per mole of glucose consumed as was determined by 
Shastri and Morgan (2005), and was maintained for autotrophic and mixotrophic 
growth. For the sake of comparison across the different conditions, uptake rates 
for the corresponding carbon sources were matched based on normalization per 
number of carbon atoms. These parameters were maintained for comparative 
purposes in the heterotrophic condition, glucose being the sole carbon source and 
blocking photons input in the dark heterotrophy. Some of the constraints were 
altered in the mixotrophic conditions in order to simulate the characteristic flux 
distribution of this growth mode. Phosphate, water, sulphate, nitrate, ammonia as 
well as carbon monoxide and hydrogen peroxide transport across the membrane 
were considered and properly bounded. Some of the reversible reactions 
involving NADH and NADPH were constrained to be irreversible so that spurious 
transhydrogenation was controlled. Main constraints across different growth 
conditions can be seen in Table 3.1. 

Table 3.1 - Major constraints across different growth conditions. Units in mmol 
gDW

-1 h-1. 

Simulated 
conditions 

Autotrophy Mixotrophy 
Photo-

heterotrophy 
Dark 

heterotrophy 

Light input in PSI 0.8 0.8 0.8 0 

Light input in PSII 0.8 0.8 0.8 0 

Glucose feeding 0 0.2835 0.567 0.567 

CO2 feeding 1.7 0.85 0 0 

HCO
3

_ feeding 1.7 0.85 0 0 

RuBisCO 
carboxylase unbound unbound 0 0 
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Results of the subsequent FBA simulations for the three different growth 
conditions are presented in the following. Some of the reactions that are 
physiologically relevant for each of the conditions are summarized in Table 3.2 
and Figure 3.1. Flux values for the rest of the reactions, including the upper and 
lower bounds are provided in Additional file 2.1 and 2.2.  

 

 

Figure 3.1 - Selected reactions in iSyn669 and iSyn811 network that display flux 
changes across the three basic growth modes. Flux values (in mmol gDW

-1 h-1) for 
selected reactions in the Synechocystis sp. PCC6803 metabolism. These reactions 
mark changes across the three basic growth modes, viz., autotrophy, heterotrophy 
and mixotrophy. Corresponding flux ranges can be found in Table 3.2 and in 
Additional file 2.1 and 2.2 for all the reactions in iSyn669 and iSyn811, respectively. 

Simulations of the three metabolic modes. 

• Heterotrophy 

Heterotrophy was simulated by considering glucose as the sole carbon source 
with uptake rate of 0.567 mmol gDW

-1 h-1 (3.4 mmol divided by 6 carbon atoms), 
entering the system through glcP glucose transporter (reaction TRANS-RXN59G-
152). With the purpose of having a pure heterotrophic state, photon uptake rate 
was constrained to 0; this caused photosynthesis fluxes to be shut down. In this 
case, glucose will be the source for the formation of carbon backbones for the 
building blocks of the cell, depicted in the biomass equation. The glycolytic and 
the oxidative mode of the pentose phosphate pathway were found to be active. 
Oxidative pentose phosphate pathway is the major pathway for glucose 
catabolism as was reported years ago (Pelroy et al., 1972). 
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Table 3.2 - Comparison of selected fluxes across different growth conditions. Units in mmol gDW
-1 h-1. 2.7.1.2a, glucokinase, is the reaction that 

phosphorylates beta-D-glucose upon entrance in the cell, marking the start of the glycolysis. The flux direction changes can be seen in reaction 
4.2.1.2, fumarate hydratase, from TCA cycle and 5.3.1.6, ribose-5-phosphate isomerase, from the pentose phosphate pathway. _UQ and _1.6.5.3 
are reactions that reduce UQH2 from photosystem II or NADH oxidation, respectively, causing a pumping of protons to the thylakoid. _3.6.3.14 is 

the ATP synthase that forms ATP shuttling protons from the thylakoid to the cytosol. 6.2.1.1, acetate-CoA ligase, is the reaction that generates 
acetyl-CoA from acetate and coenzyme A, that would be a major flux hub in an ethanol-producing strain, standing as the first step of fermentation. 

 

Reaction 
name 

Autotrophy 
Minimum 

flux 
Maximum 

flux 
Mixotrophy 

Minimum 
flux 

Maximum 
flux 

Dark 
Heterotrophy 

Minimum 
flux 

Maximum 
flux 

Photo-
heterotrophy 

Minimum 
flux 

Maximum 
flux 

Reaction description 

2.7.1.2a 0 0 0 0.567 0.566 0.567 0.567 0.566 0.567 0.567 0.566 0.567 beta-D-glucose + ATP → beta-D-
glucose-6-phosphate + ADP 

4.2.1.2 12.67 12.667 +∞ 14.67 14.657 +∞ 0.905 0.884 +∞ 2.148 1.836 +∞ malate ↔ fumarate + H2O 

5.3.1.6 1.201 1.2 +∞ 1.269 1.269 +∞ -0.054 -0.051 -0.055 0.066 0.067 +∞ D-ribose-5-phosphate ↔ D-
ribulose-5-phosphate 

_UQ 0.8 0 0.8 0.8 0 0.8 0 0 0 0.8 0 0.8 PSII* + UQ + 2 H+ → PSII + 
UQH2 

_1.6.5.3 0 0 +∞ 0 0 +∞ 2.134 0 +∞ 0 0 +∞ NADH + UQ + 7 H+ → NAD+ + 
UQH2 + 4 H+_peribac 

_3.6.3.14 38.348 15.7 +∞ 21.727 21.7 +∞ 4.98 4.95 +∞ 6.292 6.281 +∞ 3 H+_peribac + phosphate O4P + 
ADP ↔ 3 H+ + H2O + ATP 

6.2.1.1 0.008 -∞ +∞ -30.017 -∞ +∞ -2.124 -∞ +∞ -4.635 -∞ +∞ coenzyme A + acetate + ATP ↔ 
acetyl-CoA + diphosphate + AMP 
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Phosphoenolpyruvate carboxylase (reaction 4.1.1.31) is the main anaplerotic flux 
to the Tricarboxylic (TCA) cycle. Carbon fixation efficiency is around 60 %, the rest 
being released in the form of CO2, as reported in a previous work from our group 
(Navarro et al., 2009). 

In contrast to dark heterotrophy, if a photoheterotrophy simulation is run, light 
enters the system and RuBisCO enzyme is active (reaction 4.1.1.39), fixing all the 
CO2 that was released in dark heterotrophy, boosting carbon efficiency to a 
theoretical 100%. In this case, global flux distribution as well as flux ranges 
resemble that of autotrophy more than that of the dark heterotrophy. Carbon 
skeletons are still produced through glycolysis and NAD(P)H is reduced along the 
glycolysis, pyruvate metabolism and TCA cycle. On the other hand, pentose 
phosphate pathway has shifted to the reductive mode due to RuBisCO activation, 
and the corresponding flux is increased in magnitude. Carbon fixation happens at 
the RuBisCO level, thereby assimilating the CO2 produced by the glucose 
metabolism, and the production of ATP and NADPH through photosynthesis 
relieves the oxidative phosphorylation from draining NADPH to generate ATP.  

We have also researched into a special subset of conditions: anoxic dark 
heterotrophy. Under these conditions, cell drains carbon reserves under anoxic 
conditions performing fermentation and generating products like ethanol. Global 
flux distribution as well as flux ranges are identical to that of dark heterotrophy, 
with the exception of ethanol production whose flux is enhanced and there is a 
consequent decrease in biomass production. Oxidative pentose phosphate 
pathway is still the major pathway for glucose catabolism and carbon efficiency is 
also 60% (carbon is now released, as CO2 as before, and also fermented in the 
form of ethanol). 

• Autotrophy 

Photoautotrophy was initially simulated considering an illumination of 0.15 mE 
m-2 s-1. Assuming that the mass of a typical Synechocystis sp. PCC6803 cell is 0.5 pg 
(Loferer-Krössbacher et al., 1998) and its radius is 1.75 μm (Lawrence et al., 1998), 
we estimated that the theoretical maximum illumination is 41563.26 mE gDW

-1 h-1. 
Nevertheless, in order to estimate physiologically meaningful photon uptake 
values that were closer to the experimental measurements an additional 
optimization step was performed. First, carbon uptake rate was found that 
resulted in a specific growth rate of 0.09 h-1 (Shastri and Morgan, 2005), while the 
light intake was unconstrained. Next, the carbon uptake rate was constrained to 
this value and the second optimization problem was solved where light uptake 
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was minimized. This minimization resulted in photon uptake for photosystem I 
(reaction _lightI) and photosystem II (reaction _lightII) being 0.8 mE gDW

-1 h-1. 
Carbon sources used in simulating photoautotrophy conditions were carbon 
dioxide and carbonic acid, and its entrance to the metabolism was mediated by 
RuBisCO (reaction 4.1.1.39) and carbonic anhydrase (reaction 4.2.1.1b) 
respectively.  

As our models’ biomass equation encompasses all essential metabolite 
precursors, these will be the sinks of our network, while photons, carbon dioxide 
and/or carbonic acid will be the sources. Thus, autotrophic fluxes will flow in the 
gluconeogenic direction and through the Calvin cycle, which is the reductive mode 
of the pentose phosphate pathway. Phosphoenolpyruvate carboxylase is the main 
anaplerotic flux to the TCA cycle and glyoxylate shunt is inactive. 

• Mixotrophy 

Photons, carbon dioxide and glucose are independent feed fluxes in this 
simulation. These fluxes entered the system through the same reactions as 
described for the previous growth modes. Carbon source presents, in this case, 
one more degree of freedom than in the rest of the conditions. In order to keep a 
comparative criterion across conditions, we normalized CO2 and glucose inputs to 
the same carbon uptake flux as in the case of the autotrophy and the 
heterotrophy. Photon uptake rates were also normalized in a similar manner to 
match the autotrophic state.  

Having the same metabolic sinks as the two previous modes and the sources 
from the both of them, it is logical to think that the resulting flux distribution will 
be equidistant to the autotrophic and heterotrophic simulations. Indeed, we 
observed that the mixotrophic flux distribution lies in-between the previous two 
states, being a bit closer to the heterotrophy. Glycolysis is present and glyoxylate 
shunt is shut down, an active photosynthesis is present, oxidative phosphorylation 
is less stressed than in heterotrophy as the energy can be produced from the 
photon uptake and Calvin cycle is active, as carbon sources are CO2 and glucose. 

 

3.3 Flux variability analysis. 

Flux balance analysis presented above guarantees to find the optimal objective 
function value (in this case, biomass formation rate or cell growth). However, the 
predicted intra-cellular flux distribution is not necessarily unique due to the 
presence of multiple pathways that are equivalent in terms of their overall 
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stoichiometry. Thus, often the system exhibits multiple optimal solutions and 
further elucidation requires additional constraints based on experimental 
evidences (e.g. carbon labelling data). Alternatively, physiological insight can be 
still obtained by studying the variability at each flux node given the objective 
function value –a procedure referred to as flux variability analysis (Mahadevan 
and Schilling, 2003).  

 

 

Figure 3.2 - Overview of the flux adjustments between different growth conditions. 
Comparison of flux variability between autotrophy vs. mixotrophy, autotrophy vs. 
dark heterotrophy and autotrophy vs. photoheterotrophy (light het). Minimum and 
maximum flux ranges were compared for each reaction. 

In order to gain insight into the flux changes underlying the changes in the 
Synechocystis sp. PCC6803 metabolism due to the (un)availability of light, we have 
compared the autotrophic growth with the other two growth modes by using flux 
variability analysis (Figure 3.2). Interestingly, autotrophy permits an overall 
broader flux landscape than heterotrophy (let it be dark or light-activated). On 
the other hand, autotrophic flux ranges are in general narrower than the 
mixotrophic ranges. Figure 3.1 and Table 3.2 depict some of the physiologically 
relevant reactions for which the feasible flux range differs across conditions. 
These include glucokinase from glycolysis, fumarate hydratase from TCA cycle, 
ribose-5-phosphate isomerase from pentose phosphate pathway, NADH 
dehydrogenase from oxidative phosphorylation or photosystem II oxidation. 
These reactions identify the key nodes in the metabolic network that must be 
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regulated in order to adapt to a change in the available energy/carbon source. 
Mechanisms underlying such changes will be of particular interest not only for 
biotechnological applications but also from the biological point of view. As a 
glimpse of the detailed flux (re-)distributions in each of the studied growth 
conditions, Figure 3.3 describes fluxes in the pyruvate metabolism.  

 

 

Figure 3.3 - Fluxes of reactions around pyruvate. Flux values (in mmol gDW
-1 h-1) for 

reactions that produce or drain pyruvate in Synechocystis sp. PCC6803 metabolism. 
Negative sign in bidirectional reactions means pyruvate consumption. Reactions 
names can be traced in reaction list in Additional files 1.2 and fluxes can be found in 
Additional file 1.4. 

 

3.4 Conclusions. 

We have demonstrated the use of a genome-scale metabolic network 
reconstruction to simulate Synechocystis sp. PCC6803 metabolic behaviour under 
different environmental conditions. Suitability of the presented model for 
performing in silico metabolic engineering analysis was demonstrated by using 
OptGene software framework (Patil et al., 2005) and this suitability will be further 
developed in following chapters.  

This is the first chapter where we demonstrate applicability of Synechocystis 
metabolic models by using a variety of computational analyses. In this chapter, 
flux balance analysis was applied in order to simulate the three physiologically 
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important growth conditions of cyanobacteria, viz., heterotrophic, mixotrophic 
and autotrophic. Our metabolic model was capable of simulating the production 
of the monomers or building blocks that build up the cells, in the range that is in 
agreement with the reported growth experiments. Flux split reactions and major 
pathway directions are in accordance with experimental fluxes (Yang et al., 
2002b). Our photosynthetic metabolic model includes all of the central metabolic 
pathways that previous works (Shastri and Morgan, 2005; Yang et al., 2002b) 
considered. Regarding the parts from our model that overlap with the previous 
works (part of the central carbon metabolism), the predictions for the flux 
directionality changes following light shift match between those models and 
iSyn669 and iSyn811. In fact, our models expand the flux study to all the pathways 
described in the Synechocystis sp. PCC6803 genome annotation.  

Further insight into metabolic engineering of Synechocystis sp. PCC6803 are 
presented in following chapter, where we study mutants with improved 
production of a set of industrially relevant metabolites. 

 

3.5 Methods. 

Linear programming for flux balance analysis 

In this chapter, we have extensively used linear programming to solve an FBA 
problem. The set of biochemical reactions of the genome-scale metabolic model 
were formulated as a steady state stoichiometric model: 

��𝑆𝑖𝑗 · 𝑣𝑗

𝑁

𝑗=1

𝑀

𝑖=1

= 0, 

The details are described elsewhere, for example in Chapter 1 or 
Stephanopoulos et al (Stephanopoulos et al., 1998). This model describes cellular 
behaviour under pseudo steady-state conditions, where S is stoichiometric matrix 
that contains the stoichiometric coefficients corresponding to all internal 
(balanced) metabolites. v is flux vector that corresponds to the columns of S. 
Given a set of experimentally-driven constraints, former equation was solved by 
using linear programming, the approach known as flux balance analysis, or FBA 
(Edwards et al., 1999). 

Since the number of reactions is typically larger than the number of 
metabolites, the system becomes underdetermined. In order to obtain a feasible 
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solution for the intracellular fluxes, an optimization criterion on metabolic 
balances has to be imposed. This can be formulated by maximizing one of the 
biochemical reactions, e.g. biomass equation, subject to the mass balance and the 
capacity constraints.  

For instance, 

Max (𝑣𝑗)   subject to  ∑ ∑ 𝑆𝑖𝑗 · 𝑣𝑗𝑁
𝑗=1

𝑀
𝑖=1 = 0, 

𝑣𝑗,𝑖𝑟𝑟 ∈ 𝑅+ 

𝑣𝑗,𝑟𝑒𝑣 ∈ 𝑅 

𝑣𝑗,𝑐𝑜𝑛𝑠𝑡 ∈ 𝑅, 𝑣𝑚𝑖𝑛 < 𝑣𝑗,𝑐𝑜𝑛𝑠𝑡 < 𝑣𝑚𝑎𝑥 

𝑣𝑗,𝑢𝑝𝑡𝑎𝑘𝑒 ∈ 𝑅, 𝑣𝑚𝑖𝑛 < 𝑣𝑗,𝑢𝑝𝑡𝑎𝑘𝑒 < 𝑣𝑚𝑎𝑥 

where 𝑣𝑗 is the rate of the jth reaction. The elements of the flux vector v were 
constrained for the definition of reversible and irreversible reactions, 𝑣𝑗,𝑟𝑒𝑣 and 
𝑣𝑗,𝑖𝑟𝑟, respectively. Additionally, two set of equations were established, 𝑣𝑗,𝑐𝑜𝑛𝑠𝑡, 
constrained metabolic reactions, and 𝑣𝑗,𝑢𝑝𝑡𝑎𝑘𝑒, uptake reactions, which were 
bound by experimentally determined values from the literature. Biomass 
synthesis was considered as a drain of precursors or building blocks into a 
hypothetical biomass component. Flux through biomass synthesis reaction, being 
the biomass formation rate, is directly related to growth of the modelled 
organism (Stephanopoulos et al., 1998). Table 2.2 shows the biomass composition 
that was considered in the iSyn669 and iSyn811 metabolic model.  

Simulations were performed with the OptGene software (Patil et al., 2005), 
nowadays available online at Biomet Toolbox (Cvijovic et al., 2010) 
(http://www.sysbio.se/BioMet). 
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4 
Genetic variations of 

Synechocystis sp. 
PCC6803 metabolism 

 
Where PhD applicant takes advantage of simulation’s abilities to experiment with the 
organism’s genome in order to have the metabolism behaving as he desires, or close to 
the desired scenario. 
 
 
 
Parts of the contents of this chapter are based on parts of the following journal articles: 

• Montagud et al. Flux coupling and transcriptional regulation within the metabolic 
network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnology 
Journal 2011, 6:330-342. 

• Montagud et al. Reconstruction and analysis of genome-scale metabolic model of a 
photosynthetic bacterium. BMC Systems Biology 2010, 4:156.  

Viver não é necessário; o que é necessário é criar 
[Living is not necessary, what is needed is to create] 

Fernando Pessoa, Navegar é preciso 
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4.1 Introduction. 

Microorganisms are widely used for producing pharmaceutical, food and 
energetic products. Currently there is an increasing trend to replace chemical 
synthesis processes with biotechnological routes. In order to economically 
produce desired compounds from microbial cell factories it is, however, generally 
necessary to reorient the metabolism’s goal, since microorganisms are typically 
evolved for maximizing growth in their natural habitat. 

In later years, rational design strategies based on genetic engineering have 
been applied with an increasing success. These strategies, often termed metabolic 
engineering include many experimental and mathematical tools that have been 
developed for introducing directed genetic modifications that will lead to 
desirable metabolic phenotypes resulting in improved production of desirable 
compounds (Nielsen, 2001; Patil et al., 2005). 

Microbial metabolism is often subjected to tight regulation and is constrained 
by mass and energy conservation laws on a large number of intracellular 
metabolites, and this makes it difficult to predict the effects of introducing genetic 
modifications in a given cell. Moreover, as metabolic pathways and related 
regulatory processes form complex molecular and functional interaction networks 
(Ideker et al., 2001; Patil and Nielsen, 2005), it is only through analysis of the 
metabolism as a whole in an integrative systems approach (Stephanopoulos et al., 
2004) that one may evaluate the effect of specific genetic modifications. 

One of the goals of present thesis is the study of the construction of a photon-
fuelled cell factory. We search an ideal system where energy is harvested from 
photons through the photosynthesis and carbon skeletons are shaped out of 
atmospheric CO2 through Calvin cycle’s carbon fixation. As a starting point, focus 
has been set on algae and cyanobacteria (Tamagnini et al., 2007). These 
organisms, apart from being of easy cultivation and little nutritional demands, 
would not suffer from the disadvantages encountered with the current strategies, 
being capable of producing biofuels in an essentially continuous process 
(Angermayr et al., 2009). 

Synechocystis sp. PCC6803 is a cyanobacteria model organism interesting for 
biotechnological applications (Gutthann et al., 2007) such as heterologous 
production of metabolites like isoprene (Lindberg et al., 2010), poly-beta-
hydroxybutyrate (Tyo et al., 2006; Wu et al., 2001), alcohols (Angermayr et al., 
2009), biofuels (Liu et al., 2010) and bio-hydrogen (Tamagnini et al., 2007). 
Synechocystis is thus an attractive candidate for developing a clean and 
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sustainable platform for biotechnological processes aimed at value-added 
products formation. 

Metabolic models at the genome-scale are needed for rational metabolic 
engineering approaches targeted at designing synthetic cell factories (Barrett et 
al., 2006; Morange, 2009; Patil et al., 2004). As we have seen in previous chapters, 
genome-scale metabolic models can be reconstructed and their metabolic 
behaviours uncovered with the aid of several mathematical tools, in this chapter 
we will focus on the capacity of targeting possible changes in the genome 
landscape according to a given desired metabolic behaviour, like manufacture of a 
value-added metabolic product. That is, we will use tools such as flux balance 
analysis (Edwards et al., 1999; Varma and Palsson, 1993a) and minimization of 
metabolic adjustments (Segrè et al., 2002) in order to design our own 
photosynthetic bio-refinery. 

 

4.2 Construction of a photon-fuelled cell factory. 

Towards studying the behaviour of metabolism to genetic fluctuations, we will 
use our metabolic models iSyn669 and iSyn811. In the reconstruction phase, we 
developed a database of gene-reaction relationship that will be of high interest 
for present task. 

The comprehensive set of reconstructed biochemical equations of iSyn669 and 
iSyn811 and simulations done in Chapter 3 enabled us to further analyse the 
characteristics and potential of the Synechocystis metabolic network. Firstly, we 
studied reactions (and thereby the corresponding genes) that are necessary for 
growth, identifying a set of reactions that should not be deleted and, secondly, to 
identify in silico proper targets for maximization of a given metabolite of socio-
economic interest.  
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Essential genes. 

iSyn669 network consists of 790 metabolites and 882 reactions. Among these, 
350 genes (36% of the total, Figure 4.1) were found to be necessary for the 
formation of the biomass under the mixotrophic growth conditions by using FBA 
and MOMA algorithms, and performing it in triplicate in order to check for 
possible multiple solutions. This set of genes can be divided in to two categories: 
1) essential genes, deletion of which completely inhibits biomass growth (304 
genes, 34% of the total, with FBA); and 2) genes deletion of which causes a 
reduced growth rate (46 genes, 2% of the total, with FBA). The set of 304 essential 
genes can be understood as the core of the metabolism, as deleting them would 
produce an unviable organism. The results based on MOMA algorithm essentially 
tally these numbers: 311 essential genes, 35% of the total, and 45 that cause a 
reduced growth rate, 5% of the total, (Additional file 4.1). 

 

 

Figure 4.1 - Essential genes in Synechocystis sp. PCC6803. Distribution of gene knock 
out results for three model organisms, simulated by using FBA and MOMA algorithm, 
classified as wild-type growth, constrained growth and no growth. 

Interestingly, if we compare the proportion of the essential genes under FBA 
simulation in the metabolic networks of E. coli (187 genes, 15% of the total) (Feist 
et al., 2007) and Saccharomyces cerevisiae (148, 10% of the total) (Förster et al., 
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2003) with iSyn669, we find that Synechocystis has a significantly larger fraction of 
metabolic genes whose deletion obliterates biomass formation (304 genes, 34% 
of the total). One possible explanation for the difference in the relative proportion 
of essential genes in these three organisms would be an incomplete or incorrect 
annotation of the genome of Synechocystis sp. PCC6803. For example, if only one 
of the isoenzymes corresponding to a reaction is annotated, the corresponding in 
silico knock out will result in a false negative prediction. It is also important to 
note that the computational predictions of gene essentiality based on FBA are 
highly dependent on the growth medium used for the simulations. Thus, the 
comparison across different species may not be straightforward. Moreover, the 
natural growth conditions of Synechocystis may have dictated selection for a 
relatively high proportion of essential genes. Such hypotheses need careful 
consideration of several factors and are beyond the scope of this chapter. 

Production of value-added compounds. 

Synechocystis sp. PCC6803 is considered as a candidate photobiological 
production platform —it can potentially produce molecules of interest by using 
CO2 and light (Lindberg et al., 2010). To this end, iSyn669 and iSyn811 can be used 
to perform simulations, not only for assessing the feasibility of producing a given 
compound, but also to identify potential metabolic engineering targets towards 
improved productivity. For example, flux simulations can help in estimating 
maximum theoretical yields for the products and intermediates of interest. As an 
example, we will present studies on productivity of different target metabolites: 
succinate, ethanol and hydrogen. These results are extended in Additional file 4.2. 

a) Succinate. 

Succinate is an important metabolite for its biotechnological applications as 
well as for being a metabolite that bridges the TCA cycle with the electron transfer 
chain. As an example of the usefulness of the present metabolic model we have 
designed an in silico metabolic engineering strategy to improve the production of 
succinate. The underlying idea is to design a succinate over-producing metabolic 
network (through reaction knock out simulations), whereas the intracellular fluxes 
are distributed so as to maximize the biological objective function (e.g. growth) 
(Stephanopoulos et al., 2004). To this end, OptGene algorithm (Patil et al., 2005) 
was used together with minimization of metabolic adjustment (MOMA) algorithm. 
MOMA (Segrè et al., 2002) has been reported to provide better description of flux 
distributions in mutants or under non-natural growth conditions as opposed to 
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FBA. A design objective function which copes with the metabolite of interest, 
succinate, has been determined maintaining the biological objective function as 
the biomass formation. Additionally, simulations were performed in triplicates in 
order to check for possible multiple solutions. 

OptGene simulations for single, double and triple knock out strategies were 
performed to obtain solutions with improved succinate production, but without 
drastically diminishing the biomass production. A schematic view can be found in 
Figure 4.2. We used mixotrophic conditions on iSyn669, for which wild type 
optimal growth rate was 0.17909 mmol gDW

-1 h-1. Titters can be compared to 
closest case scenario found in literature: a recombinant Escherichia coli bearing 
carbonic anhydrase from cyanobacterium Anabaena sp. 7120 that increase its 
succinate yield from 0.19 mol mol glucose-1 to 0.39 mol mol glucose-1 (Wang et al., 
2009). Resulting strain had, then, a production of 0.195 mmol gDW

-1 h-1. 

 

Table 4.1 - Proposed single knock outs for an improved succinate production. Units 
for objective function (biomass production) and design function (succinate 
production) in mmol gDW

-1 h-1. 

Reaction 
in model 

Gene 
% of wild type 

objective function 
Design 

function 
Times improvement 
on design function 

2.7.1.40d pykF 95.8123 0.591745 3858 

2.7.4.6d ndkR 95.9174 0.396922 2588 

4.1.1.31 ppc 52.9414 0.191257 1247 

2.6.1.1a aspC 94.9190 0.086242 562 

3.6.1.1 mazG 99.2886 0.0572139 373 

_1.9.3.1 ctaCDE 84.8552 0.0325218 212 

4.2.1.2 fumC 99.7160 0.0163946 106 

4.3.2.2a purB 99.8532 0.0111579 72 

6.3.4.4 purA 99.8532 0.0111579 72 

3.5.2.3 pyrC 95.9204 0.0110457 72 

 

The best single knock out (Table 4.1) under mixotrophy was found to be the 
mutant of pyruvate kinase (reaction 2.7.1.40c in iSyn669 and genes sll0587 and 
sll1275) that has a succinate evolution of 0.591745 mmol gDW

-1 h-1 with a growth 
rate of 0.1716 mmol gDW

-1 h-1. Blocking this reaction, preventing pyruvate and 
phosphoenolpyruvate from using GTP and GDP would drive a high increase in 
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succinate production. The flux between pyruvate and phosphoenolpyruvate can 
still be accomplished with reactions 2.7.1.40a and 2.7.9.2, but using ATP and ADP 
as cofactors. Best double deletion strategy under mixotrophy was a combination 
of best single deletion candidate, pyruvate kinase (reaction 2.7.1.40c in iSyn669 
and genes sll0587 and sll1275) and third best single deletion candidate, 
phosphoenolpyruvate carboxylase (reaction 4.1.1.31 in iSyn669 and gene sll0920) 
that has a succinate evolution of 0.9476 mmol gDW

-1 h-1 with a growth rate of 
0.0847 mmol gDW

-1 h-1. 

 

Table 4.2 - Proposed double knock outs for an improved succinate production. 
Units for objective function (biomass production) and design function (succinate 
production) in mmol gDW

-1 h-1. 

Pair of reactions Pair of genes 
% of wild type 

objective function 
Design 

function 
Times improvement 
on design function 

2.7.1.40d, 4.1.1.31 pykF, ppc 47.3270 0.947654 6180 

2.7.1.40d, 2.7.1.40c pykF, pykF 94.1968 0.853623 5566 

2.7.1.40d, 2.6.1.1a pykF, aspC 92.0526 0.792371 5167 

2.7.1.40d, 1.1.1.38 pykF, me 96.3736 0.684984 4467 

2.7.1.40d, 2.7.4.6c pykF, ndkR 95.3242 0.639151 4168 

2.7.1.40d, 4.2.1.2  pykF, fumC 95.5193 0.637601 4158 

2.7.1.40d, 2.2.1.2 pykF, talB 86.5027 0.635146 4142 

2.7.1.40d, 2.7.7.6b pykF, rpoABC1C2 95.3640 0.624174 4070 

2.7.1.40d, 3.6.1.1 pykF, ppa 98.4841 0.621069 4050 

2.7.1.40d, 2.7.7.7b pykF, dnaEX 95.7289 0.618392 4033 

 

Furthermore, the best triple knock out under autotrophy was found to be the 
combination of dihydrodipicolinate reductase (either be reaction _1.3.1.26a, that 
uses NADPH, or reaction _1.3.1.26b, that uses NADH, in iSyn811 and gene 
sll1058), cytochrome c oxidase (either be subunit I, reaction _cit c in iSyn811 and 
gene slr1137, or subunit II, reaction _1.9.3.1 in iSyn811 and gene sll0813), and 
CysQ protein homolog that pumps ammonia to the cell using NADPH (reaction 
ammonia TRANS-RXN59G-178 in iSyn811 and gene sll0895). In fact, the 
combinations of these genes make up top four triple knock out strategies. Best 
strategy has a succinate evolution of 0.3478 mmol gDW

-1 h-1 (68361 times higher 
than wild type strain) with a growth rate of 0.0482 mmol gDW

-1 h-1 (53.85% of wild 
type growth). 
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These studies on knock outs are reaction centred, even though the in vivo 
knock out building will ultimately be through gene manipulations. This is the 
reason underlying the fact that we found 2.7.1.40c knock out as the best result. 
This design would hint at the idea of selection of a mutated pyruvate kinase 
protein specific for ATP cofactor. This may be difficult to achieve on the bench, 
but has high biotechnological expectations. 

 

 

Figure 4.2 - Schematic view of candidate knock outs for succinate production. 
Single, double and triple knock out candidates are depicted on the pathways that 
produce succinate. Note that reaction 2.7.1.40d uses dGTP and has been annotated 
as reversible 

Additionally, theoretical productivity of succinate was probed by solving a 
series of linear optimization problems. Using autotrophic, mixotrophic and dark 
heterotrophic growth conditions, and fixing carbon and light feeds, theoretical 
succinate production rate vs. growth was studied (Figure 4.3). 
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Figure 4.3 - Theoretical productivity of succinate as predicted by using iSyn811. 
Maximum ethanol production rate and biomass-product coupled yield are shown as 
a function of minimal demand on biomass formation under A) mixotrophic growth 
and B) autotrophic and heterotrophic growth. A) Blue squares represent succinate 
formation rate. Orange squares represent biomass succinate coupled yield (a 
measure of productivity). B) Dark blue circles represent the succinate production 
rate as a function of growth under autotrophy, green triangles the same under dark 
heterotrophy. Red circles represent biomass succinate coupled yield under 
autotrophy. Violet triangles represent productivity of succinate under dark 
heterotrophy. 

Under autotrophy, maximum succinate productivity was reached at specific 
growth rate of 0.04476 h-1 with 0.85 mmol gDW

-1 h-1 of succinate production flux. 
Under dark heterotrophy, maximum succinate productivity was reached at 0.0403 
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h-1 with 0.567 mmol gDW
-1 h-1 yield of succinate. Values of photoheterotrophy are 

comparable to dark heterotrophy. Under mixotrophy, maximum succinate 
productivity was reached at 0.0895 h-1 with production rate of 1.7 mmol gDW

-1 h-1.  

b) Ethanol. 

Another interesting compound of socio-economic importance that can be a 
potential product of Synechocystis cell factory is ethanol. As we did with 
succinate, theoretical productivity of ethanol was probed using FBA, performing it 
in triplicate in order to check for possible multiple solutions on the design 
function. 

OptGene simulations for single, double and triple knock out strategies were 
performed to obtain solutions with improved ethanol production, but without 
drastically diminishing the biomass production. A schematic view can be found in 
Figure 4.4. We used autotrophic conditions on iSyn811, for which wild type 
optimal growth rate was 0.08909 mmol gDW

-1 h-1. 

 

Table 4.3 - Proposed single knock outs for an improved ethanol production. Units 
for objective function (biomass production) and design function (ethanol production) 
in mmol gDW

-1 h-1. 

Reaction in 
model 

Gene 
% of wild type 

objective function 
Design 

function 
Times improvement 
on design function 

2.7.4.6d ndkR 24.0458 0.0120599 1940 

_1.6.5.3 ndhF4 82.1790 0.00401518 646 

3.6.1.1 ppa 6.5486 0.00245396 395 

2.7.4.3a adk 98.8572 0.00117039 188 

3.5.1.2a glutaminase 96.1825 0.00108895 175 

Phosphate TRANS-
RXN59G-90 

sll0681 99.1500 0.00069941 113 

2.1.3.2 pyrB 97.9768 0.00045113 73 

4.1.1.23 pyrF 97.9768 0.00045113 73 

3.5.2.3 pyrC 97.9771 0.00045064 73 

1.3.3.1 pyrD 97.9771 0.00045064 73 

 

The best single knock out was found to be the mutant of nucleoside-
diphosphate kinase (reaction 2.7.4.6d in iSyn811 and gene sll1852) that has an 
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ethanol evolution of 0.0120599 mmol gDW
-1 h-1 with a growth rate of 0.0215255 

mmol gDW
-1 h-1 (Table 4.3). Blocking this reaction, preventing dGDP from using ATP 

to get dGTP would drive a high increase in ethanol production. Interestingly, 
second best strategy would be to knock out NADH dehydrogenase that starts 
oxidative phosphorylation pathway. 

 

Table 4.4 - Proposed double knock outs for an improved ethanol production. Units 
for objective function (biomass production) and design function (ethanol production) 
in mmol gDW

-1 h-1. 

Pair of reactions Pair of genes 
% of wild type 

objective 
function 

Design 
function 

Times 
improvement on 
design function 

·2.3.3.9, _cit c 
malate synthase, 

ctaDI 
47.6568 0.00873415 2930 

·4.1.3.1, _1.9.3.1 
isocitrate lyase, 

ctaCDE 
47.6567 0.00873414 2930 

_1.3.99.1, _cit c sdhB, ctaDI 47.6568 0.00873413 2930 

_1.3.99.1, _1.9.3.1 sdhB, ctaCDE 47.6568 0.00873411 2930 

·2.3.3.9, _1.9.3.1 
malate synthase, 

ctaCDE 
47.6569 0.0087341 2930 

·4.1.3.1, _cit c 
isocitrate lyase, 

ctaDI 
47.6569 0.00873409 2930 

2.2.1.2, _1.9.3.1 talB, ctaCDE 45.8546 0.00842123 2825 

2.2.1.2, _cit c talB, ctaDI 45.8534 0.00842067 2825 

_1.9.3.1, Phosphate 
TRANS-RXN59G-90 

ctaCDE, sll0681 47.7421 0.00798751 2680 

_cit c, Phosphate 
TRANS-RXN59G-90 

ctaDI, sll0681 47.7418 0.00798738 2680 

 

Double deletion improved the results from the single knock out strain, evolving 
50% more ethanol with 20% more growth rate (Table 4.4). This strain would have 
two genes knocked out: malate synthase from glyoxylate shunt (reaction ·2.3.3.9 
in iSyn811) and cytochrome c oxidase (subunit I, reaction _cit c in iSyn811 and 
gene slr1137) in the thylakoid membrane. This would direct biomass flux to 
ethanol production reducing growth in half. 
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Figure 4.4 - Schematic view of candidate knock outs for ethanol production. Single, 
double and triple knock out candidates are depicted on the pathways that produce 
ethanol. 

Furthermore, the best triple knock out was found to be the combination of 
malate synthase (reaction ·2.3.3.9 in iSyn811), cytochrome c oxidase (reaction _cit 
c in iSyn811 and gene slr1137) and periplasmic beta-type carbonic anhydrase 
(reaction 4.2.1.1b in iSyn811 and gene slr0051). This simulated strain has an 
ethanol evolution of 0.0134116 mmol gDW

-1 h-1 (4500 times higher than wild type 
strain) with a growth rate of 0.0524567 mmol gDW

-1 h-1 (59% of wild type growth). 
This design combines the blocking of glyoxylate shunt and the cytochrome c flux 
with the deletion of the interconversion of CO2 to HCO3

-. This would lead to a 
situation where acetate is going to TCA cycle only what is strictly needed for 
biomass with the rerouting of flux in thylakoid membrane. Second best triple 
knock out is the same as the best, substituting gene slr1137 with gene sll0813, 
both part of the cytochrome c oxidase complex (Additional file 4.2). 
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Figure 4.5 - Theoretical productivity of ethanol as predicted by using iSyn811. 
Maximum ethanol production rate and biomass-product coupled yield are shown as 
a function of minimal demand on biomass formation under (A) mixotrophic growth 
and (B) autotrophic and heterotrophic growth. A) Blue squares represent ethanol 
formation rate. Orange squares represent biomass ethanol coupled yield. B) Dark 
blue circles represent the ethanol production rate as a function of growth under 
autotrophy, green triangles the same under dark heterotrophy. Red circles represent 
biomass ethanol coupled yield under autotrophy. Violet triangles represent 
productivity of ethanol under dark heterotrophy. 

Under autotrophy, maximum ethanol productivity was reached at specific 
growth rate of 0.0448 h-1 with 0.85 mmol gDW

-1 h-1 of ethanol production flux 
(Figure 4.5). Under dark heterotrophy, maximum ethanol productivity was 
reached at 0.0402 h-1 with 0.567 mmol gDW

-1 h-1 yield of ethanol. Values of 
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photoheterotrophy are comparable to dark heterotrophy. Under mixotrophy, 
maximum ethanol productivity was reached at 0.0895 h-1 with production rate of 
1.7 mmol gDW

-1 h-1. Note that theoretical limits of succinate and ethanol are very 
similar due to their closeness in the metabolism, sharing many precursors that 
behave similarly when over-producing these metabolites. 

Even though Synechocystis sp. PCC6803 has negligible production of this 
metabolite in wild type strains (P. Wright, personal communication), recombinant 
strains that have genes from other cyanobacteria can be used instead for 
comparative purposes. Joule Unlimited (www.jouleunlimited.com) has reported in 
the patent literature a cyanobacterium that secretes ethanol at a rate of 1 mg L-1 
h-1 (Devroe et al., 2010), and academic literature report typical levels of 0.2 mg L-1 
day-1 (Deng and Coleman, 1999). 

c) Hydrogen. 

A product of obvious interest is hydrogen. Hydrogen production drains energy 
from NADPH pool (if we consider native Synechocystis hydrogenase) and, thus, is 
coupled to photosynthesis, if we pretend to produce it in an autonomous manner. 
To do things worse, oxygen, a by-product of photosynthesis, competes with 
protons for hydrogenase, inhibiting the production of hydrogen. As a matter of 
fact, oxygen also competes for electrons, further reducing the hydrogen 
production capacity. Previously, we estimated maximum theoretical hydrogen 
production values that are far from the current state of experimental reports 
(Navarro et al., 2009). We propose here, and in Chapters 5 and 8, in silico studies 
that can direct the efforts and counsel the scientists towards a hydrogen 
producing cyanobacterium that could be of impact.  

OptGene simulations for single, double and triple knock out strategies were 
performed to obtain solutions with improved hydrogen production, but without 
drastically diminishing the biomass production. Simulations were performed in 
triplicates in order to check for possible multiple solutions on the design function. 
We used autotrophic conditions on iSyn811, for which wild type optimal growth 
rate was 0.08909 mmol gDW

-1 h-1. It is important to consider that this knock out 
simulations work with a steady state behaviour of the metabolism. At present, 
hydrogen production in cyanobacteria has been reported to be a transient, and 
almost residual, phenomenon. Hence, knock out results should be taken as 
potential modifications of a continuous hydrogen producer. 
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Figure 4.6 - Theoretical productivity of hydrogen as per iSyn811. Productivity of 
hydrogen was studied by maximizing H2 evolution at different minimal demand 
constraints on biomass formation under autotrophic growth condition. Blue squares 
represent the value of hydrogen evolution, while red squares represent biomass 
hydrogen coupled yield –a measure of productivity of hydrogen, the product of 
hydrogen and biomass production rates. 

The best single knock out was found to be the mutant of a component of 
methyleneTHF enzyme, specifically the enzyme responsible of the methylation of 
10-formyl-tetrahydrofolate (reaction 3.5.4.9a in iSyn811 and gene sll0753) that 
has a hydrogen evolution of 1.66·10-6 mmol gDW

-1 h-1 with a growth rate of 
0.0894655 mmol gDW

-1 h-1. Blocking this reaction prevents the recycling of oxidized 
redox cofactors. Best second mutation would involve blocking glucose-6-
phosphate isomerase, inhibiting such a reaction from the upper part of glycolysis 
should not have effect on growth titters, but increases hydrogen evolution. 
Anyway, there is not a single knock out candidate that increases hydrogen 
evolution more than twice the wild type’s titters. 

Double deletion greatly increased results from the single knock out strains. 
Best double knock out is the combination of deletions of transaldolase and 
carbamate kinase (reactions 2.2.1.2 and 2.7.2.2a and genes talB and arc). This 
strain had an hydrogen evolution of 5.80·10-5 mmol gDW

-1 h-1, 81 times higher than 
wild type, and with a growth rate of 0.0884473 mmol gDW

-1 h-1. This strain would 
have a disabled pentose phosphate pathway and the fixation of carbon dioxide 
into carbamoyl-phosphate. This would optimize the carbon incorporation through 
RuBisCO, having more NADPH to direct electrons to hydrogen.  
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Table 4.5 - Proposed single knock outs for an improved hydrogen production. Units 
for objective function (biomass production) and design function (hydrogen 
production) in mmol gDW

-1 h-1. 

Reaction in 
model 

Gene 
% of wild type 

objective function 
Design 

function 
Times improvement 
on design function 

3.5.4.9a folD 99.9407 1.66E-06 2 

5.3.1.9c pgi 99.9602 1.42E-06 2 

_2.3.2.2p ggt 99.9640 1.34E-06 2 

magnesium TRANS-
RXN59G-53 

rfrO 99.9618 1.23E-06 2 

_1.1.1.86 ilvC 99.8987 1.20E-06 2 

1.4.1.4 gdhA 99.9649 1.16E-06 2 

_2.4.1.21b glgA 99.9682 1.11E-06 2 

_2.4.1.21a glgA 99.9632 1.10E-06 2 

_2.3.2.2m ggt 99.9722 1.09E-06 2 

2.7.4.1 ppk 99.9703 1.08E-06 2 

 

Furthermore, the best triple knock out was found to be the combination of 
transaldolase (reaction 2.2.1.2 in iSyn811and gene slr1793), cytochrome c oxidase 
(reaction _cit c in iSyn811and gene slr1137), and aldehyde dehydrogenase 
(reaction 1.2.1.3c in iSyn811 and gene slr0091). This simulated strain has a 
hydrogen evolution of 0.014248 mmol gDW

-1 h-1 (1788 times higher than wild type 
strain) with a growth rate of 0.040269 mmol gDW

-1 h-1 (45% of wild type growth). 
This design combines shutting down a critical enzyme for the pentose phosphate 
pathway, such as transaldolase, and the production of acetate from acetaldehyde 
and the inhibition of cytochrome c oxidase. This would increase the available 
NADPH for hydrogen production (Additional file 4.2). 
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Table 4.6 - Proposed double knock outs for an improved hydrogen production. 
Units for objective function (biomass production) and design function (hydrogen 
production) in mmol gDW

-1 h-1. 

Pair of reactions Pair of genes 
% of wild type 

objective 
function 

Design 
function 

Times 
improvement on 
design function 

2.2.1.2, 2.7.2.2a sll0573, talB 98.8033 5.80E-05 81 

3.5.4.9a, ·1.3.1.75b 
divinyl chlorophyllide 

a reductase, folD 
99.9395 3.05E-06 4.28 

3.5.4.9a, _3.6.3.27 sll0683, folD 99.9419 2.99E-06 4.19 

3.5.4.9a, _3.6.3.5 slr0797, folD 99.9411 2.98E-06 4.17 

3.5.4.13a, 3.5.4.9a sll0753, dcd 99.9409 2.97E-06 4.17 

3.5.4.9a, 3.4.11.2a sll1343, folD 99.9351 2.96E-06 4.14 

_4.2.1.20b, 3.5.4.9a sll0753, trpB 99.9435 2.95E-06 4.14 

5.3.1.9c, 3.5.4.9a sll0753, pgi 99.9407 2.94E-06 4.13 

3.5.4.9a, 3.1.3.5k sll1108, folD 99.9420 2.93E-06 4.11 

3.5.4.9a, ·2.7.1.1 
hexokinase type IV, 

folD 
99.9420 2.93E-06 4.11 

 

As in case of ethanol, theoretical limit on the productivity of hydrogen was 
simulated with FBA. Using autotrophic growth conditions, and fixing carbon and 
light feeds, H2 evolution was studied as a function of minimal demand on biomass 
formation (Figure 4.6). Maximum hydrogen productivity was observed at specific 
growth rate 0.0448 h-1 with corresponding maximum H2 production rate 0.085 
mmol gDW

-1 h-1. Wild type production of hydrogen is highly dynamic in nature, 
being present mostly at the beginning of photosynthetic activity, this production 
usually reaches values of 3.149·10-4 mmol gDW

-1 h-1 even though recent genetic 
engineering has been able to increase it to 0.004985 mmol gDW

-1 h-1, both after 
48h cultivation (Baebprasert et al., 2011).  

As it is known, usually wild-type Synechocystis produces hydrogen in a 
transient manner; some authors have proposed that the organism may use 
hydrogen as temporal electron storage (Tamagnini et al., 2007). This dynamic 
behaviour and the fact that its production is coupled with NADPH pool, makes it 
terribly difficult to give a realistic list of knock outs with improved hydrogen yield. 
Further thoughts and works on this can be found in Chapter 8. 
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4.3 Conclusions. 

We have here demonstrated the use of Synechocystis as a photon-fuelled 
production platform in order to generate metabolite of interest such as succinate, 
ethanol and hydrogen. Among these, hydrogen is the one that has gathered more 
interest. Evaluation of the theoretical potential of this organism to produce 
hydrogen was assessed, in support of the efforts directed to this direction from 
several groups (Lopes Pinto et al., 2002; Navarro et al., 2009; Pinto et al., 2011; 
Tamagnini et al., 2007) and scientific council initiatives (BioModularH2, 2005). 
Present hydrogen production projects are far from the theoretical potential, but 
efforts in this field can trigger a very significant increase of the present hydrogen 
evolution rates in Synechocystis sp. PCC6803 or other photobiological production 
platforms candidates, e.g. Chlamydomonas reinhardtii, Nostoc punctiforme and 
Synechococcus species. 

Single reaction/gene knock out simulations revealed 311 genes that are 
essential for the survival. Bearing in mind the distance from the efforts taken in 
the annotation of the genome of the bacteria and yeast models to that of the 
cyanobacterium, our study shows that Synechocystis sp. PCC6803 has a larger 
fraction of genes that are essential for producing biomass, as opposed to 
Escherichia coli and Saccharomyces cerevisiae. Further investigation of the causes 
for this difference will be of definite interest in understanding the genome 
annotation and/or the evolution of the metabolic network of Synechocystis sp. 
PCC6803.   
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4.4 Methods. 

Minimization of metabolic adjustment algorithm 

Segrè et al. (2002) introduced the method of minimization of metabolic 
adjustment (MOMA) to better understand the flux states of mutants. MOMA is 
based on the same stoichiometric constraints as FBA, but relaxes the assumption 
of optimal growth flux for the mutants, testing the hypothesis that the 
corresponding flux distribution is better approximated by the flux minimal 
response to the perturbation than by the optimal one. 

 

MOMA algorithm searches for a point in the feasible space of the solutions 
space of the knock out (Фj) that has minimal distance from a given flux vector 𝑤. 
The goal is to find the vector x ∈ Фj such that the Euclidean distance 

𝐷(𝑤, 𝑥) = ��(𝑤𝑖 − 𝑥𝑖)2
𝑁

𝑖=1

 

is minimized. For details, please address to Chapter 1 and to Segrè et al (2002). 

We have used minimization of metabolic adjustment algorithm with OptGene 
(Patil et al., 2005), nowadays available at BioMet Toolbox (Cvijovic et al., 2010).  

All knock out simulations using FBA or MOMA were done in triplicate in order 
to check for multiple solutions on the design functions. 
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5 
Flux coupling analysis 

of Synechocystis sp. 
PCC6803 

 
Where PhD applicant digs into fluxes behaviour and finds functional correlations among 
reactions, some of them being straight-forward to explain, while others are more complex 
to elucidate. 
 
 
 
Parts of the contents of this chapter are based on parts of the following journal article: 

• Montagud et al. Flux coupling and transcriptional regulation within the metabolic 
network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnology 
Journal 2011, 6:330-342.  

En la vida, igual que en la literatura, no se descubre 
tierra nueva sin acceder a perder de vista primeramente, y 
por largo tiempo, toda costa. 
[In life, as in literature, new land is not found unless one 
consents firstly to lose sight, and for a long time, all 
coastlines] 

Enrique Vila-Matas, citing André Gide, Llavaneres, 28 
June 2009 
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5.1 Introduction. 

In the postgenomic era, each cellular function, biological actor or physiological 
event can be seen in the context of a complex network of interactions. Variations 
in cellular components, or environmental fluctuations, will have local, but also 
system-wide effects, as we have seen in previous chapter. Cells are open systems 
that affect, and are affected by, the environment. This chapter studies one of the 
tools that cells use in order to cope with environment changes and genetic 
fluctuations.  

One of the interesting approaches for understanding the operating principles 
and capabilities of a microorganism is to analyse the reactions functional 
relationships at steady state –an approach termed flux coupling analysis and 
presented by Burgard et al. (2004). Quoting this work, “An overarching attribute 
of metabolic networks is their inherent robustness and ability to cope with ever-
changing environmental conditions. Despite this flexibility, network stoichiometry 
and connectivity do establish limits/barriers to the coordination and accessibility 
of reactions.” Flux coupling analysis focuses in finding these limits where 
network’s flexibility does not reach and does not allow feasible flux behaviour. 
This algorithm has been used to study flux capabilities of Saccharomyces 
cerevisiae and Escherichia coli (Notebaart et al., 2008) and has facilitated 
metabolic flux analysis (Suthers et al., 2010). It allows the identification of blocked 
reactions and functional reactions subset as other works (Kholodenko, 1995; 
Klamt et al., 2003; Pfeiffer et al., 1999; Rohwer et al., 1996; Schilling et al., 2000; 
Schuster et al., 1994), but it circumvents the problems that these algorithms have 
when handling large networks, such as genome-scale metabolic networks (Golub 
and Van Loan, 1996). 

We first presented in Chapter 1 an updated genome-scale metabolic model 
that has been thoroughly tested for the use with the steady state metabolic 
simulation algorithms (see Chapter 3 and 4). This model has been the basis of flux 
coupling analysis which uncovers coupling potential among reactions. That is, the 
algorithm points to reactions whose flux is affected upon change in a given 
reaction’s flux, uncovering behavioural relationships that may not be straight-
forward to guess and see. 

Genome-scale metabolic modelling approach has been applied to a diversity of 
organisms in a variety of conditions in the context of metabolic engineering and 
systems biology. In this sense, Synechocystis metabolic models, like the ones from 
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Chapter 2 are a good start to use these in silico design approaches toward 
creating a resilient photosynthetic bio-refinery. 

 

5.2 Blocked reactions.  

Reactions that could not carry steady state flux for a given set of 
environmental constraints (autotrophic, mixotrophic, dark heterotrophic, or, 
light-activated heterotrophic, see Methods] were identified as blocked reactions.  

iSyn811 blocked reactions range between 39.45% under autotrophy to 41.25% 
under dark heterotrophic, some more than Escherichia coli (28%) (Edwards and 
Palsson, 2000a) and similar to Saccharomyces cerevisiae (39.2%) (Förster et al., 
2003) both under aerobic heterotrophy (Table 5.1). Focusing on the different 
growth conditions of Synechocystis, mixotrophy stands as the condition with the 
least number of blocked reactions, but not far from the other conditions. 
Autotrophy has the import of glucose and the phosphorylation of glucose blocked. 
Many of the folate biosynthesis reactions, photosynthesis reactions, and Calvin 
cycle (CO2 fixation) can have non-zero steady state flux only under autotrophic 
and mixotrophic conditions. Dark heterotrophic has most of the photosynthesis 
pathway blocked and, as light-activated heterotrophic and mixotrophy, allows flux 
in the upper part of the glycolysis and the import of glucose. Mixotrophy, as the 
condition with least blocked reactions, stands in between autotrophy and 
heterotrophy: flux is feasible through folate biosynthesis, Calvin cycle, 
photosynthesis as well as all the glycolysis; additionally, many coenzyme A 
biosynthesis reactions have potential non-zero flux only in this condition. 

Blocked reactions in iSyn811 are in comparable numbers to that of E. coli and 
S. cerevisiae (Table 5.1). Altogether, almost 40% of the known metabolic reactions 
in those genome-scale models cannot carry flux under commonly used growth 
conditions. Among the main reasons for this apparent dispensability are: 
incomplete description of the biomass composition and medium composition 
used in simulation. With that said, it is not awkward to consider that a large 
number of metabolic reactions are possibly active only under environmental 
conditions not typically used in laboratory studies. Differences observed between 
the different growth modes of Synechocystis sp. PCC6803 are in accordance with 
the physiological information and previous modelling studies (Navarro et al., 
2009): autotrophy has glucose transport and catabolism blocked and in 
heterotrophy, blocked reactions are among photons usage and carbon fixation. 
Mixotrophy stands as the growth mode in which less blocked reaction are 
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present. In fact, this mode has more uptake freedom degrees than the previous: 
glucose and CO2 can be used as carbon source and glucose and photons as energy 
source. 

 

Table 5.1 - Flux blocked reactions across different species. Data from Escherichia 
coli and Saccharomyces cerevisiae were retrieved from Burgard et al (2004). LH 
stands for photoheterotrophy and DH stands for dark heterotrophy. 

  Blocked Total 

Escherichia coli 
 207 740 

% 28 100 

Saccharomyces cerevisiae 
 460 1173 

% 39.2 100 

Synechocystis autotrophic 
 503 1275 

% 39.45 100 

Synechocystis mixotrophic 
 497 1275 

% 38.9 100 

Synechocystis LH 
 524 1275 

% 41.09 100 

Synechocystis DH 
 526 1275 

% 41.25 100 

 

5.3 Flux coupling study. 

We adapted the flux coupling finder procedure developed by Burgard et al. 
(2004) to analyse the functional associations between the reactions of the 
genome-scale metabolic network of Synechocystis sp. PCC6803 across the four 
different simulated growth conditions. This constraint-based modelling approach 
relies on minimization and maximization of the intracellular flux ratios to 
determine the extent of the dependency between any two reactions within the 
network, given the mass-balance constraints and the exchange fluxes with the 
environment, as Figure 5.1 summarizes. A detailed description of the algorithm 
can be found in Methods. 

As reported by Burgard et al. (2004), an imposed constant stoichiometry 
biomass composition leads to the generation of one large coupled reaction set 
that is mostly fully coupled. This biomass reaction serves to the simulation 
purpose of draining the compounds necessary for cell growth (e.g. amino acids 
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and nucleotides) in a pre-specified stoichiometry. We have seen that the coupling 
sets of networks with and without biomass-coupled reaction are essentially the 
same in terms of diversity and relative fraction of different types of couplings 
(data not shown). In fact, only one set of reactions, which is the drain of 
monomers to the biomass reaction, is additionally present in the latter (set that 
represents 67 reactions, 5.25% of the total reactions in iSyn811). As the biomass 
reaction is an abstraction of growth and has purely simulation purposes, we here 
present only the results of networks with independent biomass monomer drains 
under the four studied growth modes. 

 

 

Figure 5.1 - Graphical representation of flux couplings. For details, refer to Methods 
and to work from Burgard et al. (2004). 

 

iSyn811 presents similar relative distribution of coupling patterns as E. coli and 
S. cerevisiae, with twice more directionally coupled sets than fully coupled and 
almost one fifth of partially coupled groups (Table 5.2). Furthermore, the 
Synechocystis model portrays less fully coupled reactions and two-fold more 
partially coupled reactions than S. cerevisiae model. The distribution of coupled 
reactions is shown in Table 5.2 and the complete sets of coupled reactions are 
provided in Additional file 5.1.  
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Table 5.2. Relative distribution of reactions among different flux coupling 
relationships. Percentages of reactions in each coupling type are depicted in shaded 
cells. A reaction can participate in more than one coupling set and hence the number 
of reactions in a coupled group do not necessarily sum up to the total number of 
reactions. LH stands for photoheterotrophy and DH stands for dark heterotrophy. 

 
 

Directionally 
coupled 

Fully 
coupled 

Partially 
coupled 

Reactions 
in model 

Escherichia coli 
 421 353 — 1176 

% 35.8 30 
  

Saccharomyces cerevisiae 
 473 265 44 1204 

% 39.3 22 3.6 
 

Synechocystis autotrophic 
 527 214 113 1275 

% 41.3 16.8 8.8 
 

Synechocystis mixotrophic 
 517 226 111 1275 

% 39.4 16.4 8.7 
 

Synechocystis LH 
 517 227 111 1275 

% 40 16 8.7 
 

Synechocystis DH 
 512 213 111 1275 

% 39.6 15.7 8.7 
 

 

Couplings of the three metabolic modes. 

• Autotrophy 

In this growth condition, light is the source of energy and molecular CO2 of 
carbon skeletons. Photosynthesis is essential in this mode in order to fulfil the 
cellular needs of ATP and redox potential. Looking at the effect of growth 
conditions on flux coupling analysis, we observed that the autotrophy has slightly 
less fully coupled sets and a few more directionally coupled reactions (Figure 5.2 
and Table 5.2). An interpretation of the different coupling cases from a biological 
perspective can be found in Figure 5.3. 

Most coupled reactions are directionally coupled, with the corresponding 
reactions spanning all functional pathways in the Synechocystis metabolic model. 
Directionally coupled reactions are relationships where activity in one reaction 
obliges another to have activity but not the other way around. The carbon fixation 
and the entrance of CO2 to the cell stand in the centre of the network together 
with ATP production in the thylakoid membrane (which is the node with the 
highest degree, 254), leaving the rest of the coupling sets to stem from them. 
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Notably, almost all the fatty acid biosynthesis is directionally coupled to many 
central pathways as glycolysis, pentose phosphate pathway and Calvin cycle. 
Almost all reactions from photosynthesis are directionally coupled (only 5 
couplings are left to be fully coupled) and in such a way that follows the 
photosynthesis pathway structure, as they are coupled also with the oxidative 
phosphorylation (Figure 5.4).  

 

 

Figure 5.2 - Flux coupling network for autotrophic growth condition. Nodes 
represent reactions and are coloured according to the pathway they belong to (for 
instance, orange is photosynthesis, dark grey is oxidative phosphorylation, dark pink 
is Calvin cycle, dark green is glutathione metabolism, red is fatty acids and different 
grades of green are different amino acids syntheses). Edges represent flux coupling 
and are coloured according to the type of interaction (blue - directionally, red - fully 
and green - partially coupled). 

 

In the fully coupled reaction network there is one big cluster, several medium 
size clusters (with four or more reactions) and many 2- and 3-mer sets. Fully 
coupled reactions are reactions whose flux ratios have a constant value, thus 
activity of one reaction forces another one to have a specific, unique, value. 
Interestingly, the large cluster (highly interconnected with 102 reactions and 5151 
connections) is made up of most of the reactions (11 out of 13) of the chlorophyll 
pathway interconnected between them and connected with reactions from fatty 
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acid biosynthesis, from carotenoid biosynthesis, and several amino acids 
(aspartate, histidine and glutamate, among others). Medium-sized clusters are an 
8-mer set for the of NAD(P) metabolism, an 8-mer set for biosynthesis of steroids 
and a 5-mer for purine metabolism.  

 

 

Figure 5.3 - Examples of potential applications of iSyn881 flux coupling analysis for 
metabolic engineering. 

 

Finally, partially coupled reactions are the reactions that are mutually needed, 
but whose fluxes can have a range of values. In partially coupled reactions sets, 
we have found two noteworthy groups. First, a complex of 111 reactions made up 
of a core of 11 reactions part of the porphyrin and chlorophyll metabolism 
(specifically, S-adenosyl methionine, or SAM, formation) and 17 reactions part of 
the fatty acid biosynthesis (malonyl-CoA formation and its union with acyl carrier 
protein are coupled with the oligomerization reaction of lipids). The second group 
is made of the carboxylative reaction of the ribulose-1,5-bisphosphate 
carboxylase oxygenase (RuBisCO) and the phosphoribulokinase reaction, this is, 
the reaction that fixes the atmospheric carbon and the one that generates the 
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substrate in which CO2 will be fixed. These sets are a good example of partially 
coupled reactions. For example, flux ratios between SAM formation and 
chlorophyll synthesis have a minimum value (as chlorophyll a needs SAM and is 
also needed for the cell composition), but the activity on reaction 2.5.1.6 
(formation of SAM) is not the only reaction where SAM can be produced and, 
thus, has a range of possible values in order to fulfil the need of chlorophyll. 

• Heterotrophy 

In this growth condition, energy and carbon come from glucose or other 
carbohydrates. Cyanobacteria researchers identify this condition as “dark 
heterotrophy”, in order to differentiate it from a “photoheterotrophy” condition 
where photons are permitted to enter the system, hence activating 
photosynthesis, but with no CO2 fixation. Little differences in the coupling 
distribution or network clustering have been found across these two conditions 
(Table 5.2). The only difference comparing both conditions is that the light-
activated heterotrophic network has a complete photosynthesis cluster, which 
embeds the reactions from the oxidative phosphorylation, while the dark 
heterotrophic network has only the photosynthetic reactions needed for a proper 
oxidative phosphorylation pathway, as both share some elements in the thylakoid 
membrane. 

Directional coupling is a predominant characteristic in this network, even 
though as a major difference to autotrophic condition, glucose entering the cell 
and its phosphorylation are centrally located in the network together with ATP 
synthase, which is again the most connected reaction with a degree of 251. This 
change alters the networks in such a way that all other groups and cluster are 
arranged around these reactions. Nonetheless, as in the autotrophic case, almost 
all of the fatty acid biosynthesis, NAD(P) metabolism and porphyrin and 
chlorophyll metabolism reactions are directionally coupled between themselves 
and connected to these two reactions. Moreover, purine and pyrimidine 
biosynthesis and glutamate and proline pathways are coupled in a linear way, but 
independent of the core of the network. 

Fully coupled reactions sets in dark heterotrophic are analogous to 
autotrophic. The highly-connected big cluster is also found (with 102 reactions 
and 5151 connections inter and intra pathways), made out of chlorophyll 
pathway, fatty acid biosynthesis, carotenoid biosynthesis and several amino acids 
reactions. The similarity in the smaller sets is notable: medium clusters are 
present, like the ones with reactions of the steroids biosynthesis, NAD(P) 
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metabolism, and fatty acid biosynthesis and several smaller like most of the 
glutathione metabolism (forming 2-mers) as well as groups of reactions from fatty 
acid biosynthesis and amino acids. Nevertheless, some small sets stand out as 
different, like some reactions from pyruvate metabolism and pentose phosphate 
pathway, a few reactions from photosynthesis, as well as the appearance of the 
oxidative reaction of the RuBisCO enzyme that works as a source of glycolate, 
needed for the glyoxylate shunt. 

Heterotrophic partially coupled reactions are different from the ones in the 
autotrophic: SAM coupled to all the reactions of chlorophyll metabolism and fatty 
acid biosynthesis are present, but the partial coupling of ribulose-1,5-
bisphosphate production and use is no more present. If there is no carbon 
fixation, it is clear that ribulose-1,5-bisphosphate will not be drained at RuBisCO 
carboxylase reaction.  

• Mixotrophy 

This condition is a blend of the previous two conditions. Glucose, molecular 
CO2 and photons are present in the system; hence, carbon and energy have more 
than one source. Interestingly, we see a different network topology of coupling 
networks from the previous conditions: fewer clusters and less connectivity are 
found in this condition, due to the fact that the mixotrophic condition has more 
feeding sources and is, thus, more flexible in the flux distribution, i.e., with more 
degrees of freedom. Molecular carbon fixation and glucose transport and 
phosphorylation are coupled, but only connected to the ATP production, which is 
the reaction at the core of the network. This coupling permits the mixed flux 
behaviour that was observed in the previous works (Montagud et al., 2010; 
Navarro et al., 2009; Shastri and Morgan, 2005). Photosynthesis cluster is present 
analogously to the autotrophic condition. In our mixotrophic coupling network, 
ATP synthase is the most connected reaction with a degree of 256. Furthermore, 
mixotrophy is the condition with fewer couplings, which is due to the increase in 
the degrees of freedom of the flux distribution.  

As it happens with the other two conditions, directionally coupled reactions 
are the largest set of coupling pairs in the network. In this case, though, carbon 
entering the system is detached from the nucleus of the network, leaving that 
place to the ATP production from which the biomolecular-building pathways 
stem. Fatty acid biosynthesis, NAD(P) metabolism, pyrimidine and purine 
biosynthesis, porphyrin and chlorophyll metabolism, sucrose metabolism and TCA 
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cycle reactions are directionally coupled inter pathways, and some of them also 
intra pathway.  

Fully coupled reactions follow the trend of the other conditions. The highly 
connected big cluster is present with 102 reactions (and 5151 connections inter 
and intra pathways): fatty acid biosynthesis, porphyrin and chlorophyll 
metabolism are included, as well as several amino acids. As in the previous cases, 
the medium-sized sets include clusters for the biosynthesis of steroids, NAD(P) 
metabolism and purine metabolism. Smaller sets include 2-mers from Calvin cycle, 
glycolysis, pentose phosphate pathway, photosynthesis, porphyrin and 
chlorophyll metabolism and almost all the glutathione metabolism. 

Mixotrophic partially coupled reactions are the same as in the heterotrophic 
case. Feeding of ribulose-1,5-bisphosphate is not found in partial couplings and 
has gone to the less restrictive directional coupling set due to the increase in the 
degrees of freedom of the mixotrophic network. 

Coupling networks across growth conditions. 

In all three conditions, directionally coupled reactions are dominant. Fully 
coupled reactions follow and partially coupled reactions are far behind (Table 
5.2). Even though there are significant differences, the network of coupled 
reactions has quite similar topology: metabolic precursors needed for cell growth 
stem out of the reactions responsible of ATP production and carbon transport and 
metabolism (Calvin cycle in autotrophy, upper part of glycolysis in heterotrophy). 
Apart from the central nodes of the network, topology is almost identical. This 
suggests the idea that, once carbon has been metabolized by the cell and energy 
has been drained from it, the coupling of the anabolic part of the metabolism is 
independent of the growth condition.  

Metabolic flux coupling of Synechocystis sp. PCC6803 has evolved around the 
need to be flexible in the acquisition of skeletons for building blocks, but is 
conservative on the construction of these building blocks (fatty acids, amino acids, 
nucleic acids, etc.) as well as on the ATP production. Following the “bow tie” 
description of metabolism (Csete and Doyle, 2004), Synechocystis appears flexible 
to growth conditions on the first half of the metabolism (catabolism of 
environmental molecules to construct precursors), but conservative on the 
anabolism of polymers and complex assemblies. This characteristic can help to 
explain the wide range of living conditions in which cyanobacteria is found in 
nature and the scarce needs it has for its growth on the bench (Baebprasert et al., 
2011; Whitton and Potts, 2000). 
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Photosynthesis couplings. 

Apart from direct biotechnological designs, iSyn881 model and present 
analyses can also be of use for the study of biochemical questions, like the 
functioning of the photosynthesis pathway (Figure 5.4). Photosynthesis, present in 
autotrophy, mixotrophy and photoheterotrophy, is mostly directionally coupled 
intra pathway and, with the reactions from oxidative phosphorylation, embedding 
four fully coupled clusters following the entrance of photons to photosystem I and 
II, the ADP recycling and the NADP+ reduction to NADPH. Photosynthesis and 
oxidative phosphorylation clusters are directionally coupled to the rest of the 
network through only one reaction –ATP synthase, which plays a central role in 
the network, as it is the most connected one in all the conditions and is coupled to 
reactions from almost all the pathways present in the cell metabolism. 

 

 

Figure 5.4 - Flux coupling network of photosynthesis and oxidative 
phosphorylation. Photosynthesis is depicted in light yellow and oxidative 
phosphorylation in dark grey. Directional couplings are blue edges and full couplings 
are red. 

 

Photosynthesis can work in a linear manner (that includes photosystem I and 
II) or in a cyclic manner (around photosystem I). These different routes produce 
different products: linear evolves ATP and NADPH and cyclic produces solely ATP. 
In our coupling network, _PSI and _PSII (reactions for photosystem I and II 
excitation, respectively) are directionally coupled to ATP synthase, independently 
to each other. Thus, photosystem I and II are uncoupled between them, meaning 
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that there is no fixed flux ratio, or fixed ratio values window, between the two 
reactions. This ratio can be calculated as a result of the photons that actually 
enter each photosystem (in fact, usually studies look to the easier-to-measure 
electrons that flow on each photosystem), but the potentialities of the network 
do not constraint the values of that ratio. Additionally, neither photosystem I, II or 
ATP synthase are coupled to NADPH reduction in thylakoid membranes (reaction 
_1.18.1.2, Figure 5.4). This reaction is fully coupled to _FNR, reaction that links 
ferredoxin oxidation to NADPH reduction. The scarce couplings of _1.18.1.2 can 
be interpreted as that there are many reactions that reduce NADPH among the 
metabolism or that reduce NADH and then this is converted to NADPH. 

 

Biofuels and flux coupling. 

An obvious interest from these coupling analyses is their effects on biofuel-
producing strain design. Here, we have focused on the flux couplings of two 
industrially-relevant metabolites like hydrogen and ethanol. For FBA simulations 
on productivity of those metabolites please refer to Chapter 4, section 2. 

Hydrogen production is fully coupled to NADPH formation as well as 
directionally coupled to different pathways linking to the metabolic potential of 
the cell, like carbon fixation through RuBisCO reaction, 1,3-diphosphateglycerate 
production in glycolysis and NADP metabolism. This indicates that those reactions 
may be bottlenecks for boosting the H2 production in this organism and should be 
considered as genetic targets when aiming at increased hydrogen production 
strains. 

Another interesting compound of socio-economic importance that can be a 
potential product of Synechocystis cell factory is ethanol. Ethanol production is 
directionally coupled to the pyruvate metabolism and to ATP synthase, as well as 
to some reactions from the central carbon metabolism, e.g. glycolysis and 
pentose phosphate pathway. Additionally, it is partially coupled to Calvin cycle 
under autotrophic condition. In order to increase the ethanol yield, the central 
carbon metabolism must be engineered –fluxes around pyruvate must be re-
routed so as to increase alcohol production. Uptake fluxes of carbon and photons 
are also predicted targets for interesting genetic modifications. These findings will 
be useful in exploiting the photo-fermentative metabolism –so called photanol 
strategy (Angermayr et al., 2009). 
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5.4 Conclusions. 

In summary, we have demonstrated the use of steady-state flux coupling 
analysis to gain insight into the metabolic potential of Synechocystis sp. PCC6803. 
The first steps of carbon acquisition and catabolism have been identified as the 
versatile centre of the coupling network, having a stable core of biological building 
blocks built around, which can explain the relative plasticity of this organism in 
terms of growth conditions and habitats. 

Photosynthesis was not found to have physical constraints to be in a given 
PSII/PSI ratio window, in terms of flux capabilities. This ratio has no stoichiometric 
limitation in order to have other values than the ones found in the steady state 
flux analysis of Chapter 3. Hydrogen production is entangled to NADPH 
production and ethanol to the central carbon metabolism. From that couplings, 
potential bottlenecks for hydrogen and ethanol optimised strains production were 
identified.  

Mutant generations can be hindered by many effects, some cannot be 
predicted, but a set of others, can. Flux coupling analysis tries to uncover part of 
the latter, giving researchers the idea that mutants may not only affect 
neighbouring reactions but also some others that we do not realise, because we 
did not have prior knowledge on them or just because their connectivity was not 
plausible. The identification of flux couplings can help metabolic engineers 
perform mutants that have a better probability of real-world success. 

This work, together with previous chapter, will be useful for direct 
biotechnological applications as well as identifying misunderstandings in the 
model or finding weaknesses in knowledge annotation. These results will be 
valuable for designing and implementing fine-tuned Synechocystis sp. PCC6803 
strains and will thereby help toward building of an economically viable and 
environment-friendly biofuel production platform. 

 

5.5 Methods. 

Constraints used for flux coupling analysis studies simulations 

We were consistent with the constraints taken in Chapter 3 when doing the 
FBA simulations, to match an autotrophic specific growth rate of 0.09 h-1. As some 
examples, maximum carbon uptake rate was found to be 3.4 mmol gDW

-1 h-1 into 
the cell, with HCO3

- and CO2 as carbon sources (Shastri and Morgan, 2005). For the 
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sake of comparison across the different conditions, uptake rates for the 
corresponding carbon sources were matched based on normalization per number 
of carbon atoms. Main constraints across different growth conditions can be seen 
in Table 3.1. 

Flux coupling analysis 

We adapted the flux coupling finder procedure developed by Burgard et al. 
(2004) to analyse the functional associations between the reactions of the 
genome-scale metabolic network of Synechocystis sp. PCC6803. The difference 
between our implementation and the original algorithm (Burgard et al., 2004) is 
that we did not create coupled reaction sets; instead, we examined each of the 
reaction pairs for the type of flux coupling relationship. Computational 
requirements were on the order of minutes for the complete genome-scale 
model. The algorithm was implemented in Matlab® (MathWorks®) by using GLPK 
as linear programming solver (http://www.gnu.org/software/glpk) and is available 
upon request.  

Firstly, the upper and lower limits of all flux ratios need to be determined (i.e., 

𝑅𝑚𝑎𝑥 = max𝑣1 𝑣2�  , 𝑅𝑚𝑖𝑛 = min𝑣1 𝑣2� ). Burgard et al. transformed this non-
linear optimization problem to a linear one by performing the variable 
transformation (𝑣� = 𝑣 · 𝑡) (see Burgard et al. (2004) for an extensive proof of 
equivalency). Thus, problem is reduced to: 

 

Maximize 𝑅𝑚𝑎𝑥 = 𝑣�1             (or minimize 𝑅𝑚𝑖𝑛 = 𝑣�1) 

subject to    ∑ 𝑆𝑖𝑗𝑣�𝑗𝑀
𝑗=1 = 0                    ∀ 𝑖 ∈ 𝑁 

  𝑣�2 = 1 

  𝑣�𝑗
𝑢𝑝𝑡𝑎𝑘𝑒 ≤ 𝑣𝑗

𝑢𝑝𝑡𝑎𝑘𝑒_𝑚𝑎𝑥 · 𝑡,     ∀ 𝑗 ∈ 𝑀𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 

  𝑣�𝑗 ≥ 0,                                 ∀ 𝑗 ∈ 𝑀 

  𝑡 ≥ 0 

 

Here the variables 𝑣� are the metabolic fluxes normalized by 𝑣2. The above 
linear program can be interpreted in biological terms, as responses of metabolic 
networks to the perturbation of particular fluxes. Constraint 𝑣�2 = 1 sets a 
reference flux to a unit value, whereas the optimization criteria are used to probe 
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flux variability for each tested reaction. Uncoupled fluxes are not affected by flux 
perturbations, whereas fluxes through coupled reactions decrease or increase in 
accordance with the encountered type of coupling (Burgard et al., 2004).  

Four types of flux coupling relationships were considered (Figure 5.4 bears 
their graphical interpretation):  

(i) fully coupled: non-zero flux in one reaction implies non-zero and fixed 
flux through the other reaction, and vice versa;  

(ii) partially coupled: non-zero flux in one reaction implies non- zero but 
variable flux in the other reaction;  

(iii) directionally coupled: non-zero flux in one reaction implies non-zero 
flux in the other, but not necessarily the reverse; 

(iv) uncoupled: presence of flux through one reaction does not bound flux 
through the other and vice versa (reactions are stoichiometrically 
independent at steady-state).  

The flux coupling results shown here are from the calculations run without 
including a biomass formation reaction (description of the constraints used can be 
found in Table 3.1, and coupled reactions can be found in Additional file 5.1). The 
biomass equation was excluded in order to avoid coupling of a large number of 
fluxes to the biomass formation reaction. However, all biomass components were 
allowed to be drained independent of one another. Calculations performed with 
the biomass formation reaction present retrieved similar coupling patterns within 
the rest of the reactions (data not shown). 
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6 
Growth studies of 
Synechocystis sp. 

PCC6803 
 

Where PhD applicant performs a wide study on different variables that, when properly 
tuned, should build a perfect environment for the growth of this organism. 
 
 
 
 
 
 
 
Parts of the contents of this chapter are based on the following journal article: 

• Lopo et al. Experimental and modelling analysis of Synechocystis sp. PCC6803 
growth. Accepted in Journal of Molecular Microbiology and Biotechnology 2012.  

Colonel Saul Tigh: It all traces back to us. 
Tory Foster: No! … Go back far enough it’s always them! 
Colonel Saul Tigh: You point a finger back far enough, 
and some germ gets blamed for splitting in two. No. We 
share the blame… 

Battlestar Galactica, Episode 4.15, “No Exit”, script 
coordinated by Ryan Mottesheard, 2009 
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6.1 Introduction. 

We have seen in previous chapters how we can construct an in silico model of 
the metabolic behaviour of a photosynthetic microorganism. However, we were 
also interested in studying and modelling a system where we could take into 
account all the inputs that are usually considered when growing cyanobacteria. 
With efforts from Chapters 2 and 3, model responded to environmental changes 
in carbon source and amount of light and presence or absence of oxygen, nitrate 
and water. We considered important to leap the distance between this and the 
environmental conditions usually considered when growing unicellular non-
nitrogen fixing Synechocystis sp. PCC6803. Consequently, we started by studying 
and experiencing on the factors that affect cyanobacterial growth at the batch 
level. 

Cyanobacteria are known to survive a wide spectrum of environmental 
stresses, such as temperature shock (Waterbury, 2006), photo-oxidation, nutrient 
deficiency, pH changes (Blanco-Rivero et al., 2005), salinity, osmotic stress, and 
ultraviolet light (Mullineaux, 2008). As it has already been mentioned in Chapter 
1, according to Vermaas (1996), Synechocystis sp. PCC6803 can potentially grow 
under photoautotrophy (CO2, light, and active photosystem II and photosystem I), 
photoheterotrophy (glucose and active and constant photosystem II or 
photosystem I), mixotrophy (glucose, CO2, and active photosystem II and 
photosystem I), light-activated heterotrophy (glucose and 5 minutes of light per 
day), and anaerobiosis (glucose or other fixed-carbon as source). Additionally, 
there is some controversy whether Synechocystis sp. PCC6803 can, in fact, grow 
under strict dark heterotrophic conditions, i.e. without the 5 minutes shot of light 
(Anderson and McIntosh, 1991; Bricker et al., 2004).  

Many physiological studies have addressed the effects of environmental 
factors affecting cyanobacteria growth and Synechocystis sp. PCC6803 in 
particular: 

a) Light 

This factor plays a crucial role in all photosynthetic organisms by regulating 
growth, as we saw in Chapter 3, altering gene expression, as we will see in 
Chapter 7, and resetting circadian rhythms, among others (Gill et al., 2002; 
Mullineaux, 2008), but it can also be harmful to the photosynthetic machinery. It 
has been observed in Synechocystis sp. PCC6803 that visible light might play a 
double role, inducing damage to photosystem II when it is strong and inducing 
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repair of the photodamaged photosystem II when it is weak (Allakhverdiev and 
Murata, 2004).  

b) Temperature 

Cyanobacteria are found in environments with different temperature ranges. 
Most cyanobacteria are mesophilic and live on environments where temperature 
may range from freezing to 40°C. They typically have growth optima between 20 
and 35°C; however, organisms that can grow up to 75°C have been found 
(Castenholtz, 1969).  

c) Nitrogen 

Nitrate is the most common nitrogen source used by cyanobacteria, it is widely 
utilized for their growth and its limitation induces a well-characterized set of 
cellular responses such as: visible chlorosis or yellowing (Allen and Smith, 1969), 
degradation of phycobiliproteins (Collier and Grossman, 1992), alteration of the 
ratio of phycocyanin to allophycocyanin (Yamanaka and Glazer, 1980), 
degradation of thylakoid membranes, a decrease in chlorophylls, an increase in 
carotenoid content or carotenoid/chlorophyll ratio, as well as an increase in 
glycogen content (Stevens et al., 1981). Most of these alterations are related to 
light harvesting antenna physiology, thus critical in photosynthetic organisms. 

d) pH 

Under laboratory conditions, cyanobacteria have generally been reported to 
prefer neutral to slightly alkaline media (Kratz and Myers, 1955). In natural 
environments, however, cyanobacteria extend their distribution to pH values as 
low as 4 (Kurian et al., 2006; Steinberg et al., 1998). Kallas and Castenholz (1982) 
analysed cytoplasmic pH homeostasis in cyanobacteria and observed that the 
growth rate of Synechococcus sp. was inhibited at pH 7.0 and below, and no 
sustained growth took place at pH 6.0. However, even when these cells were 
exposed to pH 4.8, they retained a higher intracellular pH, suggesting that there 
are other factors involved in the acid tolerance mechanisms of these 
photosynthetic microorganisms to maintain homeostasis within the cell 
(Summerfield and Sherman, 2008). It has also been shown that acid-tolerant 
cyanobacteria maintain a neutral cytoplasmic pH, although how they keep a 
strong transmembrane pH gradient is still unknown (Steinberg et al., 1998). As 
well as being acid tolerant, cyanobacteria are among the most alkaliphilic 
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microbes and frequently dominate alkaline environments such as soda lakes and 
microbial mats (Summerfield and Sherman, 2008).  

All the factors mentioned above affect Synechocystis sp. PCC6803 metabolism 
in a variety of manners and to different extents, which are only partially 
understood. Therefore, we have performed a holistic analysis in order to take into 
account the complete metabolism and the factors that perturb it.  

In this chapter, done in close collaboration with researchers headed by Paula 
Tamagnini in IBMC Porto (Portugal), we have studied different environmental 
parameters such as temperature, irradiance, nitrate concentration, pH, and an 
external carbon source to unveil their influence in Synechocystis sp. PCC6803 
growth. Porto group was the experimental part and used a high throughput 
system equivalent to batch cultures. Valencia group (mainly myself) performed a 
statistical analysis of this set of non-homogeneous data to compare these time 
series and to retrieve hidden governing factors.  

 
6.2 Growth conditions study. 

 

 

Figure 6.1 - Experimental design of growth study. Four clear-sides cuvettes with 2 
mL of Synechocystis sp. PCC6803 culture on acrylic rack inside growth chamber. 
Photograph taken from Paula Tamagnini group. 
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We performed Optical Density (OD) measurements of cyanobacteria growing 
in cuvettes (Figure 6.1), as a proxy of a batch-like growth study. Three growth 
conditions were considered: photoautotrophic, mixotrophic and heterotrophic. 
Table 1 describes all the possible combinations of which we did relevant subsets 
that characterized each condition. 

 

Table 6.1 - Experimental matrix with conditions/parameters to be tested on 
Synechocystis sp. PCC6803 growth. Units are light in µE m-2 s-1, temperature in °C, 
glucose in mM and nitrate in g L-1. 

Condition States 

Heterotrophic 

light temperature glucose nitrate pH 

0 25, 30, 33 2, 5, 7 0.1, 0.75, 
1.5 

7.5, 8, 8.5, 
9, 10, 10.5, 

11 

Autotrophic and 
Mixotrophic 

light temperature glucose nitrate pH 

20, 40, 60 25, 27, 30, 
33, 35 0, 2, 5, 7 0.1, 0.75, 

1.5 

7.5, 8, 8.5, 
9.0, 10, 
10.5, 11 

 

• Autotrophic growth 

Out of all the possible combinations described in Table 1, a subset of 72 
autotrophic conditions was selected. 2221 Optical Density measurements were 
performed for the 254 samples. At least three independent experiments 
(biological replicates) were performed. Each experiment run in average during 8 
days and the measurements were performed daily. The data were statistically 
analysed with a four-way ANOVA. In this statistical study a model with all the 
effects and interactions up to the third order was tested. Results showed that 
initial pH, temperature, and level of irradiance are the main factors affecting 
maximum autotrophic growth, with highly significant p-values (p < 10-16). Nitrate 
levels initially present in the culture showed p-values close to 0.4, which clearly 
discards any influence in growth results. Among the possible two- and three-way 
interaction terms in the model, there are two that showed a clear statistical 
influence in growth (p-value < 10-16): the interaction between initial pH and 
illumination level and between temperature and pH. In other words, illumination 
and temperature modify the way in which pH affects growth.  
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Figure 6.2 - Temperature profile of maximum specific autotrophic growth with 
different initial nitrate concentrations. The grey shaded area corresponds, at 95% 
confidence level, to the region of maximum growth if all nitrate levels (0.1, 0.75, and 
1.5 g L-1) are averaged. Data markers show the result for specific levels of nitrate: 
hollow circles correspond to 0.1 g L-1, hollow squares correspond to 1.5 g L-1 and 
black circles (and dashed line) to 0.75 g L-1. In all tests irradiance was 20 µE m-2 s-1 
and HEPES buffer was used for cultivation with an initial pH of 8.5. 

To reveal the pairwise differences between the experimental sets obtained at 
different levels of the main parameters, a Student t-distribution analysis was 
performed to represent the confidence regions of maximum specific growth at 
the different conditions (using a confidence level of α=0.05). Figure 6.2 depicts 
experimental results representing the sample mean of maximum specific growth, 
𝜇𝑚𝑎𝑥, at different levels of nitrate, initial pH of 8.5 (HEPES buffer) and 20 µE m-2 s-

1 irradiance. The grey shaded area represents the range of the confidence region 
(α=0.05) of the maximum specific growth at the different temperatures after data 
are averaged over the different levels of nitrate. The dashed curve and isolated 
data markers represent maximum specific growth results at particular values of 
initial nitrate (0.1, 0.75 and 1.5 g L-1). As it can be observed, growth reaches a 
maximum value around 30°C and decreases at higher temperatures whilst results 
at particular levels of nitrate fall within the confidence region of the nitrate-
averaged curve. Again, this shows that, from the statistical point of view, nitrate 
concentrations did not have a noticeable influence on Synechocystis sp. PCC6803 
growth (Figure 6.4), not even with values as low as 0.1 g L-1 (1.2 mM) which is 
reported in the literature as N-limited conditions (Schmitz et al., 2002). However, 
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before grand conclusions on this are drawn, one should bear in mind, as we do in 
following Discussion section, that the endogenous nitrogen reserves build up 
during the maintenance growth in BG11 medium might fulfil the organism needs. 

 

 

Figure 6.3 - Temperature profiles of the 95% level confidence regions of maximum 
specific autotrophic growth at different irradiance levels. The upper black filled 
area corresponds to experiments with a level of irradiance of 20 µE m-2 s-1, and the 
lower grey area to experiments with a level of 40 µE m-2 s-1. Results of experiments 
at different nitrate concentrations were averaged and HEPES buffer was used for 
cultivation with an initial pH of 8.5. 
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Figure 6.4 - Growth of Synechocystis sp. PCC6803 under different nitrate 
conditions. Cells were grown autotrophically in BG11 (A), heterotrophically (B) and 
mixotrophically (C) in BG11 supplemented with 5 mM glucose at 30°C, pH 8.5 and 20 
μE m-2 s-1. 
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Figure 6.3 compares autotrophic maximum specific growth at the two tested 
illumination levels (20 and 40 µE m-2 s-1) with an initial pH of 8.5. Results obtained 
at the lower level of illumination, 20 µE m-2 s-1, are significantly above those 
measured at 40 µE m-2 s-1, indicating that, in the case of such small cuvette 
volumes, light saturating conditions were probably reached already at 20 µE m-2 s-

1, with bleaching becoming noticeable at 40 µE m-2 s-1. This effect is not so clear at 
lower initial pH values, when maximum growth is also lower. Additional growth 
profiles are depicted in Figure 6.5. 

 

 

Figure 6.5 - Growth of Synechocystis sp. PCC6803 under different light intensities 
(20 and 40 µE m-2 s-1). Cells were grown autotrophically in BG11 at pH 8.5 and 30°C. 

From these observations, it was rather apparent that initial pH is strongly 
affecting culture growth. pH values rose considerably during cultivation time in 
the buffered conditions with lower pHs, as well as in the “no buffer” conditions, 
stabilizing around pH 10 (data not shown). As expected, the increase in pH was 
faster in the absence of any buffer, but occurred nonetheless in HEPES buffered 
medium reaching similar equilibrium values. This observation brought about the 
idea of using different buffers to sustain higher values of pH. Representative 
results of these measurements are shown in Figure 6.6, where the maximum 
growth results, 〈𝜇𝑚𝑎𝑥〉, are compared for different types of buffers and initial pH 
conditions. A very significant increase in maximum growth was obtained at initial 
pHs of 9 and 10 in CHES buffered medium and 33°C. Results obtained with CAPS 
buffered medium and without buffer, also exposed in Figure 6.6, clearly confirm 
this trend in growth and increase in the optimum growth temperatures. Values of 
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growth reach up to about 1.8 day-1 in optimum conditions (CAPS buffer, pH 11 and 
33°C) compared to a typical value of 0.7 day-1 in CHES buffered conditions taken 
as reference (Figure 6.7). 

 

 

Figure 6.6 - Temperature profiles of the 95% level confidence regions of maximum 
specific autotrophic growth at different levels of initial pH. Cultures grown with 
different buffers: CAPS (initial pH 11) upper dashed limited grey area, CHES (pH 9) 
dark grey area, and HEPES (pH 7.5) lower light grey area. In all tests irradiance was 
20 µE m-2 s-1.  
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Figure 6.7 - Growth of Synechocystis sp. PCC6803 under different temperatures. 
Cells were grown autotrophically in BG11 at pH 11 (A) and mixotrophically in BG11 
supplemented with 5 mM glucose (B) at pH 10.5 and 20 µE m-2 s-1. 

To complete the description of pH related behaviour, in Figure 6.8 the relative 
maximum growth vs. relative cell density evolution of three representative 
samples has been compared. The curve with filled circles corresponds to high 
growth conditions (CHES buffer, initial pH 9), whereas the curves with hollow 
squares and circles represent HEPES growth conditions at pH 8.5 and 7.5, 
respectively. With CHES buffer, maximum growth is reached already in the 0 - 1st 
day of cultivation and decreases rapidly afterwards. At a relative cell density of 
about 70% (with respect to cell density at the end of cultivation) a second growth 
maximum arises in what appears to be a diauxic type of growth profile. This type 
of profile is also found in CAPS buffered conditions, where even episodes of cell 
death (OD decrease) show up (data not shown). This phenomenon can also be 
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observed in some mixotrophic conditions with HEPES or CHES buffer. In contrast, 
HEPES buffered growth curve displays maximum growth in the 3rd - 4th day of 
cultivation. There, diauxic growth features seem to appear, but only at the very 
end of the experiment.  

 

 

Figure 6.8 - Relative growth vs. relative cell density in autotrophic growth samples 
in different buffer/initial pHs. The horizontal axis represents cell concentration 
relative to maximum cell concentration (at the end of batch growth) and the vertical 
axis growth values relative to maximum growth. In all tests irradiance was 20 µE m-2 
s-1, temperature 30°C, and initial nitrate concentration 0.75 g L-1. Dark circles 
correspond to CHES buffer pH 9, hollow squares and hollow circles represent HEPES 
at pH 8.5 and 7.5, respectively.  

Summarizing, it seems clear from these data that cells find their optimum 
growth conditions at high pH values (between 9 and 11) and at temperatures 
close to 33°C (Figure 6.9). In media with higher starting pHs, with CHES or CAPS 
buffer, optimum growth conditions are reached in an earlier stage of cultivation, 
followed by decay in growth and then another growth burst at higher cell density 
values (Figure 6.8). This diauxic growth dynamic, points to some metabolic shift 
which, as will be explained in following section, could be connected to the carbon 
dioxide and carbonate assimilation mechanisms of the cell. 
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Figure 6.9 - Growth of Synechocystis sp. PCC6803 under different pHs. Cells were 
grown autotrophically in BG11 at 33°C (A) and mixotrophically in BG11 
supplemented with 5 mM glucose at 33°C (B) and 20 µE m-2 s-1. 

Furthermore, results from a scale-up showed no significant differences 
between growth in the cuvettes and 100 mL cultures in Erlenmeyer flasks showing 
that our cuvettes are reliable system to evaluate Synechocystis sp. PCC6803 
growth (see Figures 6.10a and 6.11a).  
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Figure 6.10 - Growth of Synechocystis sp. PCC6803 in different volumes. Cells were 
grown autotrophically in BG11 at 40 µE m-2 s-1 (A), and both autotrophically and 
mixotrophically (B) in BG11 supplemented with 5 mM glucose at 20 µE m-2 s-1with 
orbital shaking (100 rpm) at 30°C. 
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Figure 6.11 - Growth of Synechocystis sp. PCC6803 in different volumes. Cells were 
grown autotrophically in BG11 at 40 µE m-2 s-1 (A), and both autotrophically and 
mixotrophically (B) in BG11 supplemented with 5 mM glucose at 20 µE m-2 s-1 under 
static conditions at 30°C. 

 

• Mixotrophic growth 

For mixotrophic samples, irradiation was held constant at 20 µE m-2 s-1. A 
subset of 86 conditions was selected giving a total of 258 samples and 2154 OD 
measurements. As before, four-way ANOVA results showed that temperature, 
initial pH, and glucose concentration are the main factors affecting maximum 
mixotrophic growth. Of all possible interactions, the one with a clearer significant 
statistical influence (p-value < 10-3) on growth is the interaction between the 
glucose concentration and temperature. As in autotrophic growth, nitrate 
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concentration initially present in the culture can be discarded as having an effect 
on growth (with a non-significant p-value = 0.32). 

 

 

Figure 6.12 - Maximum specific growth vs. temperature profile of 95% confidence 
regions in mixotrophic vs. autotrophic growth. Irradiance was 20 µE m-2 s-1, glucose 
concentration 2, 5, or 7 mM, and initial pH 8.5 or 10. Light grey area with dashed 
lines depicts maximum specific mixotrophic growth with 7 mM glucose, dark grey 
area corresponds to 5 mM glucose, and filled triangles correspond to 2 mM glucose, 
all with HEPES buffer pH 8.5. Hollow circles correspond to mixotrophic growth with 5 
mM glucose and CAPS buffer pH 10, the lower light grey area shows autotrophic 
growth with HEPES buffer pH 8.5 (used as reference). 

Results regarding mixotrophic maximum growth are shown in Figure 6.12, 
where maximum specific growth results at different temperature levels for the 
three different glucose concentrations (2, 5 and 7 mM) are presented. 
Autotrophic maximum growth values, with the same initial pH and buffers, are 
shown for comparison. Significantly higher growth values are always observed in 
mixotrophic growth. At 25°C, maximum specific growth is 2 - 2.5 times larger in 
mixotrophic than in autotrophic conditions and there is a steady increase with 
higher glucose concentration. The results at 30°C depict a smaller relative 
difference between growths in mixotrophic vs. autotrophic conditions (1.5 fold) 
and also between records with different glucose concentrations. 
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Figure 6.13 - Relative growth vs. relative cell concentrations curves of mixotrophic 
growth (5mM glucose) at 30°C and initial pH 8.5 with two different buffers. The 
three replicates of the same sample with HEPES buffer are represented by filled 
symbols: squares, triangles, and circles. The dashed curve with hollow circles 
corresponds to one replica with CHES buffer. 

The use of CHES buffer, with higher initial pH, offered what seemed to be at 
first sight an unexpected result. It was observed that, irrespective of pH, 
differences between growths of different replicas with CHES buffer became 
systematically quite large, i.e. the confidence intervals of maximum specific 
growth broadened substantially. Another noticeable effect was the shortening of 
the lag phase, whereby the number of days to reach maximum growth shifted 
from 3 - 4 days with HEPES buffer to 0 - 1 day with CHES buffer. This behaviour is 
exemplified in Figure 6.13, in which curves displaying relative growth vs. relative 
cell concentrations in mixotrophic growth under 30°C and initial pH of 8.5, are 
presented for three replicas of one HEPES buffer culture (full symbols) and one 
replica of a CHES buffered culture (hollow circles). The curves corresponding to 
HEPES cultivation show the same general profile, which is completely different 
from the CHES curve. In the latter, phases of cell death (relative cell concentration 
drops from one day to the other) and diauxic growth can be observed. The growth 
profile of the rest of CHES buffered cultures consistently displays this type of 
irregularities with large quantitative differences between replicas grown under 
the same conditions. These observations suggest that, in conditions in which light-
based and glucose-based cell growth mechanisms have a similar potential (as in 
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CHES conditions near 30°C) the resulting growth may become unstable. On the 
contrary, if one mechanism is predominant, culture growth becomes regular.  

Additionally, a scale-up experiment was performed revealing that growth in 
these mixotrophic conditions is consistently higher than in the aforementioned 
autotrophic conditions (see Figures 6.10b and 6.11b). 

• Heterotrophic growth 

Finally, to study heterotrophic growth, 12 different conditions were selected 
totalizing 36 samples and 324 OD measurements. Glucose level was held constant 
at 5 mM and temperature was kept at 30°C in all tests. ANOVA results show that 
neither nitrate concentration nor initial pH substantially affect maximum specific 
growth within the confidence level chosen.  

The overall averaged maximum heterotrophic growth value of 0.42 day-1 can 
be compared to the value of around 0.8 day-1 obtained for autotrophic growth 
and around 1.1 day-1 in mixotrophic growth under equivalent conditions. 
Furthermore, the analysis of growth profiles indicates that, systematically, after 
reaching the stationary phase (about the 5th - 6th day), cell cultures undergo a 
noticeable decrease in population with cell death rates that reach up to 50% of 
maximum specific growth rate (data not shown). 

 

6.3 Discussion. 

The wide and multifactorial set of experiments shown in this study was 
developed to highlight the importance and effect of the main variables relevant 
for Synechocystis sp. PCC6803 metabolism and to establish the optimum growth 
conditions for the use of this organism as a model for future molecular biology 
developments.  

Following the results from previous authors (Anderson and McIntosh, 1991; 
Bricker et al., 2004; Vermaas, 1996), and in the line of our results, Synechocystis 
sp. PCC6803 can grow photoautotrophically (a condition requiring both 
photosystems to be functional), mixotrophically, photoheterotrophically (under 
constant light), and light-activated heterotrophically (using glucose as carbon 
source and with a daily pulse of light). We did not achieve a pure dark 
heterotrophic growth of significance (data not shown). 
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a) Light 

Reports from the literature are arguably consensual regarding optimum light 
intensity for Synechocystis sp. PCC6803 or cyanobacteria in general. Depending on 
the culture volume, flask geometry and inoculum, Synechocystis sp. PCC6803 is 
able to withstand higher light intensities. For instance, Anderson and McIntosh ( 
1991) exposed 75 mL cultures to 40 µE m-2 s-1, whereas Bricker et al. (2004) grew 
150 mL cultures at the same light intensity. 

Some studies point out that Synechocystis sp. PCC6803 cells can grow under a 
wide range of light intensities, up to approximately 1000 µE m-2 s-1 or even more. 
Hihara et al. (2001) exposed 50 mL cultures of this cyanobacterium to a shift of 
light intensity from what they considered low light: 20 µE m-2 s-1, to high light: 300 
µE m-2 s-1, and concluded that the higher intensity was sufficient to induce large 
changes in the gene expression profile. In their environmental study, 
Allakhverdiev and Murata (2004) grew Synechocystis sp. PCC6803 cells in 120 mL 
glass tubes at 70 µE m-2 s-1. Subsequently, to assess the photodamage-repair cycle 
of photosystem II, the cells were exposed to various light intensities in 4.5 mL 
cuvettes for short periods, never exceeding 90 minutes. These light intensities 
were: 250, 500, 750, 1000, 1500 and 2000 µE m-2 s-1 and the authors considered 
values up to 1000 µE m-2 s-1 as weak light and from then onwards strong light. 
They concluded that the rate of photodamage was proportional to light intensity 
and that the rate of repair also depended on light intensity: it was high under 
weak light and reached a maximum at 300 µE m-2 s-1. However, according to 
Vermaas (1996), Synechocystis sp. PCC6803 cells grow best at 40 - 70 µE m-2 s-1 
and are photoinactivated easily at higher light intensity.  

Our results show that for small volumes (2 mL) and our cuvette’s geometry, 20 
µE m-2 s-1 is closer to the optimum light intensity than the second irradiance 
chosen (40 µE m-2 s-1), an indication that saturated light condition regime may 
have been reached at this higher intensity. It seems clear that the debate 
regarding optimum light intensity for Synechocystis sp. PCC6803 is still open and 
researchers need to realize how important it is to clarify, describe and consider all 
the parameters involved such as: culture volume, flask geometry, cell density and 
time of exposure, to name just a few. 
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b) Temperature 

Previous observations have shown that Synechocystis sp. PCC6803 cells seem 
to suffer from low- and high-temperature stress below 25°C and above 40°C 
respectively, an effect associated to photosystem II sensitivity, with a complete 
arrest of growth at 15°C and 45°C (Berry and Bjorkman, 1980). In another study, 
regarding growth temperature acclimation and high-temperature effects on 
photosystem II of Synechocystis sp. PCC6803, Inoue et al. (2001) observed that 
maximum growth was obtained at 30°C, but that growth rates were similar in 
temperatures ranging from 25 to 40°C, which agrees with the rate of 
photosynthesis at these temperatures. 

While growth limitation at high temperatures seems to be due to limitation of 
photosystem II activity, acclimation to low temperatures appears to take place in 
parallel with an increase in the desaturation level of thylakoid membranes fatty 
acids (Los et al., 1993). It has been shown that a rise in the desaturation level of 
fatty acids in the thylakoid galactolipids increases the resistance of the 
cyanobacterial cells to low temperatures (Wada et al., 1994). However, Sakamoto 
and Bryant (1998) saw that Synechocystis sp. PCC6803 cells grown at 15°C 
aggregate and undergo chlorosis, even though this may be due to nitrogen 
limitation. 

Our results indicate that Synechocystis sp. PCC6803 growth holds critical 
temperature dependence: in autotrophic growth with HEPES buffered cultures 
(pH between 7.5 and 9), maximum growth is observed around 30°C; while with 
CHES buffer (pH between 9 and 11) it occurs at 33°C. Also temperature seems to 
be an asymmetric factor: growth rate of a given HEPES-buffered culture, with an 
optimum temperature of 30°C, dropped 50% when grown at 25°C, but only 
decreased 25% when grown under 35°C. 

c) Carbon source 

The presence of an exogenous carbon source (i.e. glucose) has proven to be a 
very important factor in Synechocystis sp. PCC6803 growth. In our experiments, 
the exact same culture was grown in media where the only difference was the 
amount of glucose concentration: autotrophic (without glucose) and mixotrophic 
(2, 5 and 7 mM glucose). Mixotrophic growth was approximately 2 - 2.5 times 
larger than autotrophic growth at 30°C at a concentration of 5mM. A further 
increase of concentration between 5 mM and 7 mM, does show a further effect, 
though non-significant, on growth (Figure 6.12). Yoo et al. (2007) obtained similar 
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significant results when growing Synechocystis sp. PCC6803 cells with and without 
5 mM glucose. Experiments by other authors show the same type of enhanced 
growth when glucose is added (Williams, 1988). 

d) Nitrogen 

In our set of experiments the influence of nitrate on specific growth was below 
the statistical significance threshold. This behaviour may be explained by the fact 
that during maintenance growth in BG11 medium (1.5 g L-1 of NaNO3) the 
organism may have acquired sufficient nitrogen reserves to survive the 
experiment’s time-span (of about one week), in which low nitrate concentrations 
were maintained. It is known that growth under nitrogen-limiting conditions 
favours glycogen production in Synechocystis sp. PCC6803. Yoo et al. (2007) 
observed, using transmission electron microscopy, that in these conditions 
glycogen particles accumulate in large amounts and fill the cytosol of the cells.  

e) pH 

Cyanobacteria are among the most alkalotolerant or alkalophilic microbes and 
preferably grow at pHs ranging from neutral to 11 (Langworthy, 1978; Lopez-
Archilla et al., 2004). Additionally, there is a well-documented connection 
between the action and effects of the photosynthesis machinery of the cells and 
their ability to increase the surrounding pH (Becking et al., 1960). In normal 
laboratory conditions, it is known that Synechocystis sp. PCC6803 cells increase 
their surrounding pH by 1 - 2 units over several days. In fact, when placed in acid 
stress situation at a tolerable pH (4.4 or above), this organism’s cells are able to 
increase their surrounding pH to 6 and above within a few minutes. Synechocystis 
sp. PCC6803 exhibits a predictable physiological response to acid stress and is 
incapable of growing in media with a pH lower than 4.4. However, this capability 
is cell density dependent, as high cell concentration cultures have been able to 
withstand pH shock as low as 3.5 (Huang et al., 2002a). 

The ability of cyanobacteria to grow at alkaline pH implies the presence of 
mechanisms for the maintenance of an intracellular pH more acidic than that of 
the environment (Miller et al., 1984). Indeed, an increase in the external pH of 2 
units results only in an increase of 0.2 units in both the cytosol and the thylakoid 
lumen. Such changes alter the [CO2]/[HCO3

-] ratio within the cell, and regulation of 
this ratio is essential for maintaining the carboxylase activity of RuBisCO, vital for 
the cell as the carbon fixing enzyme (Summerfield and Sherman, 2008). 
Additionally, there is a common pH-buffering mechanism in freshwater systems 
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that uses these two carbon molecules: the carbon dioxide/bicarbonate/carbonate 
equilibrium. Halophilic or halotolerant cyanobacteria are thought to possess a 
membrane-associated Na+/H+ antiport system that could participate in pH 
homeostasis. This could be the case of Synechocystis sp. PCC6803, since its 
genome contains information for such potential pumps (Maestri and Joset, 2000).  

In the present work Synechocystis sp. PCC6803 cultures (initial pH 8.5) were 
grown in continuous light under pH-unstressed conditions, i.e. without buffer. The 
pH increase observed (to up to 10.5) in the buffered (after 10 days) and non-
buffered (after 5 days) conditions may be attributable to carbon fixation through 
photosynthesis, which can shift the aforementioned pH-buffering system, the 
carbon dioxide/bicarbonate/carbonate equilibrium. This light-dependent increase 
of external pH can be observed in nature (Pierson et al., 1999) and is particularly 
remarkable in hypereutrophic systems, as a consequence of a very high primary 
production (Lopez-Archilla et al., 2004). Besides, photosynthesis is favoured under 
more alkaline conditions, since alkaline systems act as a trap for atmospheric 
carbon dioxide (Imhoff et al., 1979) which, in turn, is more available for primary 
production. Moreover, at high pHs nutrients such as phosphorous become more 
soluble (Talling and Talling, 1965). Evidence that Synechocystis sp. PCC6803 cells 
must photosynthesize to increase external pH is provided by the fact that cells 
placed in the dark do not grow and do not increase the external pH, even with a 
carbon source (such as glucose) added to the media as it was observed in our 
experiments. In addition, if an autotrophic culture is switched to dark, pH tends to 
decrease to the initial level. This effect is not observed in heterotrophic 
conditions. Overall, all these evidences –carbonates equilibrium, carboxylase 
activity of RuBisCO, favoured photosynthesis, phosphorous solubility, pH changes 
dependent on light in mixo- and autotrophy– point to the hypothesis that 
Synechocystis sp. PCC6803, when contained in a closed environment such as a 
batch culture, are favoured to grow in an alkaline medium and tend to transform 
their growth media to reach alkaline values. 

We have also considered an alternative explanation for the external pH 
increase: ammonia may be excreted into the medium by pH-stressed 
Synechocystis sp. PCC6803 cells (Huang et al., 2002a). However, in the present 
work, no ammonia was detected in the high pH medium (data not shown), 
indicating that if there was any trace of ammonia, it would be consumed by the 
cells within a short time (Sakamoto et al., 1999), undoing its effect over pH 
changes.  
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6.4 Conclusions. 

A multifactorial set of experiments, with over 3000 individual measurements, 
was conducted to highlight the effect of the main variables relevant for 
Synechocystis sp. PCC6803 growth and to establish the optimum conditions for its 
use as a model chassis for biotechnological applications. Irradiance, glucose 
presence, and temperature were found to be the major governing factors. In our 
experiments the influence of nitrate was too small to be detected within our 
statistical significance threshold and growth was meaningfully larger at a light 
intensity of 20 µE m-2 s-1 than for 40 µE m-2 s-1, where, for our cuvette’s volume 
and geometry, damaging effects appeared.  

In autotrophic growth, there is a significant effect and interaction of pH and 
temperature. In HEPES buffered cultures (pH between 7.5 and 9), maximum 
growth is observed around 30°C, while CHES or CAPS buffered (pH between 9 and 
11) and non-buffered cultures show a very marked peak in growth at 33°C. 
Maximum growth of 1.8 day-1 was obtained in the latter conditions, being 2.5 - 3 
times larger than growth in lower pH media.  

In mixotrophic conditions maximum growth is around 1 day-1 and growth is 
much more insensitive to pH and temperature. Opposite to autotrophy, 
mixotrophic growth is smaller in high pH media compared to lower pH media. 

As a future work, it is of interest to consider bridging our metabolic models 
that describe the metabolite landscape in detail to these factors that affect cell 
growth at the batch level. Amount of light and nitrate are already included, but 
factors like pH and temperature should be considered and their molecular effects 
taken into consideration. 

 

  



 

138 
 
 
 
 
 

6.5 Methods. 

Organisms and standard growth conditions  

The unicellular non-N2-fixing cyanobacterium Synechocystis sp. PCC6803 
(obtained from the Pasteur Culture Collection, Paris, France) was maintained in 
BG11 medium (Stanier et al., 1971) at 25°C, and 16 h light (20 µE.m-2.s-1) / 8 h dark 
cycles.  

Growth experiments 

Inoculums of 200 µL from the maintenance culture grown under standard 
conditions (transferred 24h before to fresh BG11 medium) with an OD730 ≈ 1.0, 
were added to sterile 4.5 mL cuvettes containing 1800 µL of medium with given 
concentrations of glucose, nitrate and pH values. Each experiment was performed 
in triplicate and under aseptic conditions. The cuvettes were closed with sterilized 
ParafilmTM, and placed in acrylic racks specially designed for this experiment 
(Figure 6.1). This constitutes a high throughput system, equivalent to batch 
cultures with the ParafilmTM cover allowing gas exchanges. The racks were placed 
in a chamber with constant temperature and irradiance (20 or 40 µE m-2 s-1 with 
Osram L18W/765 cool white daylight bulbs). For pH control, several buffers 
(HEPES, CHES and CAPS) were used, according to their pKa, with a concentration 
of 10mM (or 10, 20, 30, 50 and 100 mM for HEPES, see Figure 6.14). Growth in 
normal BG11 media without controlled pH was also tested. Optical density at 730 
nm was recorded daily.  

Table 1 shows the initial experimental matrix with all the conditions to be 
tested. Not all the combinations of this matrix were tested: as the work flow 
moved along and new results were obtained, some combinations were 
abandoned and more relevant ones were introduced, notably other temperatures 
(33 and 35°C), and pHs (9, 10, 10.5 and 11). 
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Figure 6.14 - Growth of Synechocystis sp. PCC6803 with different HEPES buffer 
concentrations (10, 20, 30, 50 and 100 mM), pH 7.5, and C-control without buffer. 
Cells were grown autotrophically in BG11 at 20 µE m-2 s-1 and 30°C under static 
conditions. 

 

Evaluation and statistical analysis of the specific growth and other culture-
characteristic parameters 

To enable the quantitative analysis of the growth characteristics of the 
different cultures in the various tested conditions, each culture growth sample 
measurement is expressed as an array of Optical Density (OD) vs. time logs, 
{𝑡𝑖 − 𝑥𝑖}(𝑖 = 0, … 𝑖𝑚𝑎𝑥), where 𝑡𝑖 is time, in units of days running from day 0 to 
𝑡𝑖𝑚𝑎𝑥  and 𝑥𝑖 is the corresponding measured Optical Density record. For each bin, 
𝑖, a specific growth parameter, representing the exponent of the (assumed) 
exponential growth within the given time interval is calculated as: 

𝜇𝑖 =
log�𝑥𝑖+1 𝑥𝑖� �
𝑡𝑖+1 − 𝑡𝑖

 

Note that, if the time interval is the same between all sample records, the 
mean specific growth of the culture during the test period, µ� = 〈µ𝑖〉, is simply 

given by µ� =
log�

𝑥𝑖𝑚𝑎𝑥 𝑥0� �

𝑡𝑖𝑚𝑎𝑥−𝑡0
. It should be observed that this mean exponential 

growth parameter, µ�, may depend rather arbitrarily on test duration, particularly 
if in some particular conditions stationary growth is reached sooner than in 
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others. Instead, maximum specific growth, defined as the maximum value of 
specific growths, 

𝜇𝑚𝑎𝑥 = Max{𝜇𝑖}|𝑖=0,…𝑖𝑚𝑎𝑥  

allows for better comparison between the growth potential of the different 
cultures regardless of the duration of tests. In addition we can obtain the time 
𝑡𝑚𝑎𝑥 at which maximum specific growth is reached and the corresponding OD 
record, 𝑥𝑚𝑎𝑥. 

The usefulness of these parameters can be appreciated if we compare the 
experimentally found values with theoretical estimates based on the different 
types of known growth kinetics which are found to describe the growth of 
microorganisms of many species (Bailey and Ollis, 1986). For instance, one of the 
simplest forms of batch growth model is given by the logistic curve, in which 
population evolution is sigmoidal shaped and given by:  

𝑥log(𝑡;𝑐) =
𝑝𝐸𝑘𝑡

1 − 𝛽𝑝(1 − 𝐸𝑘𝑡)
 

𝑥log(𝑡;𝑐) being the culture density at time 𝑡 and 𝑐 = (𝑝,𝛽,𝑘) a culture-
characteristic set of parameters. This type of kinetics assumes the presence of 
some inhibiting factor with concentration ∝ 𝑥2. Exponential growth starts at 
𝑡 = 0 at a maximum specific growth rate of value 𝑘. The stationary phase is 

reached at a cell density of 𝑥 = 1
𝛽� . The relationship between specific growth 

and cell density is given by the simple expression: 

𝜇log(𝑥) = 𝑘(1 − 𝛽𝑥) 

A more general form of batch growth kinetics, in which a lag phase or delay to 
reach maximum specific growth may appear is given by the kinetics proposed by 
Konak (1975), in which the relation between cell density and specific growth is 
given by:  

𝜇𝑒𝑥𝑡 = 𝑐𝑎+𝑏
𝑘 �𝑘𝑐�

𝑎
�1 − 𝑥

𝑐�
𝑏

𝑥
 

In Figures 6.15 and 6.16 the resulting 𝜇(𝑥) curves are shown for a logistic and 
generalized type of kinetics. Both graph axes are normalized with respect to 
maximum growth and largest cell density respectively. The shape and position of 
maximum growth may vary considerably depending of the value of the (𝑎, 𝑏, 𝑐,𝑘) 
chosen in the case of generalized kinetics.  
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 For each of the samples it is eventually possible to find, by means of nonlinear 
regression, a best fit between the experimental dataset and a given logistic-type 
or generalized-type growth kinetic function. It will be found that a reasonable fit is 
not always possible indicating that either large experimental uncertainty is 
present or that the proposed kinetics are not a good representation of the 
experimental situation.  

From the three replicas of any of the experimental samples with a given level 
of control factors, 𝑠 –in our case: light, nitrate, glucose and pH– it was possible to 
calculate confidence intervals for the sample growth parameters, such as 𝜇𝑚𝑎𝑥(𝑠) 
corrected by means of the Student t-distribution. The usual confidence level of 
95% was selected. Furthermore, a univariate Analysis of Variance (ANOVA) to 
examine the differences between groups of means was used to determine to 
which extent each of the control factors affects the observed variability in growth. 

 

 

Figure 6.15 - Theoretical specific growth kinetic curves for a logistic type (full curve) 
and generalized type of kinetics (dot-dashed curve). The shape and position of 
maximum growth of generalized kinetics may vary considerably as a function of the 
selected (𝑎, 𝑏, 𝑐, 𝑘) parameters, following work by Konak (1975). The data shown 
here correspond to: a = 1.4, b = 4 and c = 2. 

Finally, the time variation of specific growth can itself be represented (Figures 
6.8 and 6.13) and compared to well-known theoretical growth kinetics, as those 
presented in Figure 6.15, in order to derive more qualitative conclusions about 
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changes in growth due to the different cultivation conditions. In Figure 6.15, the 
horizontal axis represents cell concentration relative to maximum cell 
concentration (at the end of batch growth) and in the vertical axis growth relative 
to maximum growth is depicted. In the case of generalized kinetics (dot-dashed 
curve), the shape and position of maximum growth may vary considerably as a 
function of the selected (𝑎, 𝑏, 𝑐,𝑘) parameters, following work by Konak (1975). 
As it can be seen from Figure 6.16, similar types of temporal behaviour can 
undercover very different growth logistics, and initial amount of cells governs the 
shape of the temporal curve, which does not happens on Figure 6.15-kind of 
graphs. As we were interested in cell growth (how the culture drains substrates 
and produces biomass), effects like initial amount of initial inoculum (that are 
extremely hard to standardize) had to be circumvented in this analysis. Those are 
the reasons behind the decision of using graphs like Figure 6.15 in order to depict 
Figures 6.8 and 6.13. 

 

 

Figure 6.16 - Theoretical temporal specific growth kinetic curves for a logistic type 
(full curve) and generalized type of kinetics (dot-dashed curve). Temporal 
visualization of the graph in Figure 6.15, following work by Konak (1975). We 
assumed an initial relative cell concentration (inoculum) of 0.05. 
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7 
Reporter features upon 

light-regime 
perturbations 

 
Where PhD applicant is able to connect the dots among different levels of biological 
entities, and realizes that complexity sometimes has to be isolated and abstracted, in 
order to retrieve knowledge from it. 
 
 
Parts of the contents of this chapter are based on parts of the following journal articles: 

• Montagud et al. Flux coupling and transcriptional regulation within the metabolic 
network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnology 
Journal 2011, 6:330-342. 

• Montagud et al. Reconstruction and analysis of genome-scale metabolic model of a 
photosynthetic bacterium. BMC Systems Biology 2010, 4:156.  

The most merciful thing in the world, I think, is the 
inability of the human mind to correlate all its contents. 

HP Lovecraft, The Call of Cthulhu, in Weird Tales, Wildside 
Press, February 1928 
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7.1 Introduction. 

After the turn of the millennium, great expectations were placed upon high-
throughput data production with the advent of modern analytical techniques. 
Advances in medicine (Hood et al., 2004; Segal et al., 2005), molecular biology 
(Grünenfelder and Winzeler, 2002) and systems biology (Ideker et al., 2002) paved 
the way to new promises and challenges of modern biology. One of the major 
challenges resides on how to analyse and extract knowledge from the vast 
amounts of omics data being generated. Another major challenge is the ability to 
integrate these data together and retrieve new knowledge from the bundle. 

Apart from the flux simulations, another important problem in the field of 
metabolic systems biology that can be addressed by using reconstructed genome-
scale models is the integration of the different genome-wide bio-molecular 
abundance datasets, i.e. omics datasets, such as transcriptome and metabolome. 
Methods have been proposed to help revealing cellular transcriptional regulatory 
programs by using transcriptomic data, which is the most common and, presently, 
the only truly genome-wide type of quantitative omics. Most of them use gene-
set enrichment methods reported in literature, analysing gene expression data in 
a biologically constrained way (Boyle et al., 2004; Doniger et al., 2003; Draghici et 
al., 2003; Maere et al., 2005; Subramanian et al., 2005). 

Usually, transcriptome analysis assumes an all-to-all interaction among studied 
genes, which causes a huge dimensional search space, generating false positives 
and failing to enlighten underlying principles that may explain the observed 
behaviour. The dimensionality of the data analysis problem can be considerably 
reduced if biological information (e.g. physical or functional interactions between 
bio-molecules) is used in order to constrain the solution space (i.e. the number of 
possible regulatory hypotheses explaining the observed omics data), hence 
enhancing the possibility of uncovering the biological dimensions of the data 
(Ideker et al., 2002; Oliveira et al., 2008; Patil and Nielsen, 2005). 

An example of algorithms for carrying out such an integrative analysis through 
the use of genome-scale metabolic networks is Reporter Features (Oliveira et al., 
2008; Patil and Nielsen, 2005). Reporter Features algorithm allows integration of 
omics data with bio-molecular interaction networks, thereby allowing 
identification of cellular regulatory focal points (i.e. reporter features), for 
instance reporter metabolites or reporter couplings as regulatory hubs in the 
metabolic network. Cells respond to perturbations by changing the expression 
pattern of several genes involved in the specific part of the metabolism in which a 
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perturbation is introduced. Thus, the identification of these hubs in the metabolic 
network would outstand as potential design target of a biotechnological strategy, 
as their potential as major regulatory players would hint at their importance in 
the flux control and distribution.  

Transcriptomic studies have been done in Synechocystis sp. PCC6803 since 
Suzuki et al. studied cold shock response in 2001 (Suzuki et al., 2001). These 
studies have been targeted to a wide range of goals: acclimation to high light 
(Hihara et al., 2001), salt and hyperosmotic stress (Kanesaki et al., 2002), 
irradiation with UV-B and white light (Huang et al., 2002b), light-to-dark 
transitions (Gill et al., 2002), knock out libraries of histidine kinases (Yamaguchi et 
al., 2002), building dynamic models of transcriptional behaviour (Schmitt and 
Stephanopoulos, 2003), redox-responsive genes (Hihara et al., 2003), iron 
deficiency and reconstitution (Singh et al., 2003), inorganic carbon limitation and 
the inactivation of ndhR (Wang et al., 2004), response to red and far-red light 
(Hübschmann et al., 2005), heat shock response (Suzuki et al., 2006), growth-
phase differential gene expression (Foster et al., 2007), response to a pH 10 
environment (Summerfield and Sherman, 2008), sulphur starvation (Zhang et al., 
2008) and effects of light quality (Singh et al., 2009). 

Following the scope of studying the characteristics of Synechocystis sp. 
PCC6803 as an industrially relevant production platform, in this chapter we have 
explored system-wide variations upon changes in light regime. Transcriptome 
data of these light shifts were acquired from a work first authored by Gill and 
done in 2002 at Stephanopoulos laboratory (Gill et al., 2002). 

 

7.2 iSyn669 and iSyn811 as data integration scaffolds. 

Reporter Features software was used to integrate transcriptional information 
over the reconstructed Synechocystis sp. PCC6803 network allowing us to infer 
regulatory principles underlying metabolic flux changes following shifts in growth 
mode. In particular, we analysed the data from a work (Gill et al., 2002) that 
reports the transcriptional changes caused in Synechocystis sp. PCC6803 by shifts 
from darkness to illumination conditions and back. As it can be understood from 
the rationale beneath the metabolic capabilities of this cyanobacterium discussed 
in previous chapters, the presence or absence of light drives big changes in the 
flux distribution through the network. We have focused our study on the 
relationship between the transcription of Synechocystis sp. PCC6803 genes and 
the reactions of the metabolic network. Associations between genes and 
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reactions (and genes and flus couplings) were identified, listing all the genes that 
performed or were involved in a specific reaction or coupling. With this 
information and the metabolic model and coupling analysis, Reporter Features 
analysis was carried out. In brief, the analysis helped to identify metabolites and 
couplings around which the transcriptional changes are significantly concentrated. 
These metabolites, termed reporter metabolites, represent key regulatory nodes 
in the network, as well as reporter couplings represent key regulatory nodes in the 
coupling landscape of the metabolism. 

Gill et al. (2002) designed the experiment so that Synechocystis was grown to 
mid-exponential phase (A730 = 0.6 to 0.8). Then, the lights were extinguished and 
RNA samples were taken after 24 hours in the dark (full dark). Illumination was 
then turned back on for 100 minutes (transient light), followed immediately by an 
additional 100 minutes in the dark (transient dark).  

 

Table 7.1 - KEGG orthology groups for the metabolic genes altered with the light 
shift. 

 
All time points Dark to Light Light to Dark 

Number 
of genes 

% 
Number 
of genes 

% 
Number 
of genes 

% 

Energy Metabolism 128 60.38 128 51.82 127 61.65 

Amino Acid Metabolism 25 11.79 31 12.55 24 11.65 

Carbohydrate Metabolism 24 11.32 28 11.33 23 11.16 

Metabolism of Cofactors 
and Vitamins 

13 6.13 26 10.53 12 5.83 

Nucleotide Metabolism 12 5.66 23 9.32 12 5.83 

Lipid Metabolism 7 3.3 5 2.02 6 2.91 

Membrane Transport 3 1.42 4 1.63 2 0.97 

Biosynthesis of Secondary 
Metabolites 

0 0 1 0.4 0 0 

Biosynthesis of Polyketides 
and Nonribosomal 
Peptides 

0 0 1 0.4 0 0 

Total 212 100 247 100 206 100 
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In this chapter, we were interested in two aspects of this study: to identify 
metabolites and couplings around which regulation is centred during the light 
regime transitions; and to find the metabolic genes that were collectively 
significantly co-regulated across these transitions (Patil and Nielsen, 2005). The 
analysis was divided in three parts: an analysis of the data arrays from the whole 
experimental profile (“all time points”), an analysis of the shift from darkness to a 
light environment (“dark to light”) and from light back to dark (“light to dark”). For 
a study of the overall genome and its light regulation, refer to Gill et al. (2002). In 
this chapter, as the relationship between the metabolism and this regulation was 
investigated, genes with no direct relationship to a metabolic reaction were not 
considered. Distributions of the genes across KEGG Orthologies related to the 
metabolism altered with the light shift are depicted in Table 7.1. 

• All time points 

When all seven arrays were used, reporter metabolites were found to be quite 
scattered across the metabolism spanning several metabolic pathways, and thus 
offering a global view of the transcriptional response in the metabolic network 
(see Figure 7.1 and Table 7.2a). Presence of some amino acids (L-tyrosine, L-
isoleucine), nucleic acids and its precursors (GTP, dihydroorotate), carbon 
metabolism metabolites (D-ribulose-5-phosphate, succinyl-CoA), lipids precursors 
(myo-inositol, D-myo-inositol 3-monophosphate), cofactors (thioredoxin, p-
aminobenzoate) and photosynthesis metabolites (plastocyanin) pictures a 
scenario of global regulation throughout the different metabolic pathways. 

By using the metabolic sub-network search algorithm, we found 212 genes 
that have their expression changed across the arrays and that have a relationship 
with the metabolites of iSyn669 network. Furthermore, 50 genes were identified 
that are strongly co-regulated all along the profile of the experiment (Additional 
File 7.1, section a). This set of genes is characterized in two groups. The first set 
consists of the genes from photosynthesis (93.85%) and oxidative phosphorylation 
(6.15%). The second set is representative of a variety of genes from different 
pathways such as amino acid metabolism (39%), carbohydrate metabolism (22%), 
nucleotide metabolism (13%), nitrogen metabolism (13%) and metabolism of 
cofactors (9%) that globally regulates the entire metabolic network (see Table 7.1 
for further details). 
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Figure 7.1 - Reporter metabolites under light/dark regime. A) Reporter metabolites 
for all time points set of arrays. B) Light/dark-shift profiles and localization of the 
genome arrays for the work from Gill et al. (2002). 

It can be expected that an experimental design like the one we have based our 
work on, which combines a shift from dark to light with a shift back to darkness, 
will encompass an important part of the regulatory changes the cell is undergoing 
in its natural habitat. In a glucose-deficient environment, the presence or absence 
of light is the main condition around which the Synechocystis metabolism 
gravitates (Navarro et al., 2009). Indeed, one of the co-regulated sets consists of 
the genes coding for the proteins that work on, and around, the thylakoid 
membrane, let it be photosynthesis or oxidative phosphorylation genes. 
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Table 7.2 - Reporter metabolites for the light shift experiment. Reporter 
metabolites for each set of arrays analysed with Reporter Features software. Count 
means number of neighbours 

A)  B)  

Metabolite Count Metabolite Count 

All time points Dark to Light 

L-tyrosine 4 N-carbamoyl-L-aspartate  3 

N-carbamoyl-L-
aspartate 

3 dihydroorotate  3 

dTDP 4 5-phosphoribosyl 1-pirophosphate 9 

L-isoleucine 3 L-valine  3 

D-ribulose-5-phosphate 4 5-phospho-ribosyl-glycineamide  3 

D-myo-inositol (3)-
monophosphate 

2 O-phospho-L-homoserine  2 

myo-inositol 2 peptidylproline (omega = 180)  4 

L-valine 3 peptidylproline (omega = 0)  4 

succinyl-CoA  3 indole-3-glycerol-phosphate  2 

adenosine  2 5-aminoimidazole ribonucleotide  3 

GTP  13 tetrahydrofolate cofactors 8 

thioredoxin 11 GTP  13 

thioredoxin disulphide 11 L-glutamate gamma-semialdehyde  2 

p-aminobenzoate  2 inosine-5'-phosphate  5 

acetylphosphate  2 pantetheine 4'-phosphate  2 

glycine 7 
UDP-N-acetylmuramoyl-L-alanyl-
D-glutamate  

2 

succinate 7 phytoene  2 

dihydroorotate 3 thioredoxin  11 

PC 12 thioredoxin disulphide  11 
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Table 7.2  - Reporter metabolites for the light shift experiment. (continued) 

C)  

Metabolite Count 

Light to Dark 

5-phosphoribosyl-N-formylglycineamidine  3 

diphosphate  76 

a 1,4-alpha-D-glucan_n 2 

a 1,4-alpha-D-glucan_n1 2 

UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-
diaminoheptanedioate  

2 

pyridoxine-5'-phosphate  2 

(E,E)-farnesyl diphosphate  3 

GMP  6 

phosphoribosylformiminoAICAR-phosphate  2 

L-aspartyl-4-phosphate  2 

pantothenate  2 

undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-
glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine  

2 

MurAc(oyl-L-Ala-D-gamma-Glu-L-Lys-D-Ala-D-Ala)-
diphospho-undecaprenol  

2 

undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-
glutamyl-L-lysyl-D-alanyl-D-alanine  

2 

L-aspartate-semialdehyde  2 

5-phospho-ribosyl-glycineamide  3 

5'-phosphoribosyl-N-formylglycineamide  4 

sulphur 2 

glycine  7 
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• Dark to light 

Next, we considered the arrays that represent the shift from darkness to light, 
the first three arrays (from “24 hours of darkness” array to “60 minutes of light” 
array). Reporter metabolites were found to be largely within the nucleotide and 
amino acid metabolism (Table 7.2b). Some cofactors were also identified as 
regulation hubs like tetrahydrofolate, thioredoxin and adenosylcobinamide, which 
can be seen in Figure 7.2a. 

Sub-network search yielded set of 247 genes that have their expression 
changed across the first three arrays and that are related with iSyn669 reactions. 
Furthermore, 84 genes were identified that are strongly co-regulated across the 
three arrays (Additional File 7.1, section b). This set of genes cover photosynthesis 
(25%), oxidative phosphorylation (24%), amino acid metabolism (11%), 
carbohydrate metabolism (11%), nucleotide metabolism (10%) and metabolism of 
cofactors (10%). 

This set of data arrays are indeed a good example of a cell’s metabolic 
machinery starting up. After a 24 hour period in darkness where cell density did 
not change (see Figure 1 in Gill et al. (2002)), light enters the system and the cell 
starts to synthesize new bio-molecules, mostly nucleotides so it can copy its 
genetic material and amino acids to build up proteins.  

• Light to dark 

Finally, we considered the arrays that represent the shift from light to dark, 
data from “90 minutes of light” array to “60 minutes of dark” array. Similar to the 
previous case study, reporter metabolites were found to be focused on the 
nucleotide and amino acid metabolism (Table 7.2c). Additionally, the presence of 
metabolite a 1,4-alpha-D-glucan_n and its cognate a 1,4-alpha-D-glucan_n1 also 
stands out as they are involved in carbon reserves catabolism and anabolism, that 
can be seen in Figure 7.2b. 

With the help of the sub-network search, 133 genes were identified as being 
significantly co-regulated across those three arrays (Additional File 7.1, section c). 
This set comprises of the genes from photosynthesis (34%), oxidative 
phosphorylation (26%), amino acid metabolism (12%), carbohydrate metabolism 
(12%), nucleotide metabolism (7.5%) and metabolism of cofactors (4.5%). 
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Figure 7.2 - Reporter metabolites under light/dark regime divided by shifts. A) 
Reporter metabolites for dark to light set of arrays. B) Reporter metabolites for light 
to dark set of arrays. 

This last set of data array is a scenario where metabolism is being shut down, 
because of darkness and lack of carbohydrate sources. Without light, 
photosynthesis is blocked and carbon fixation is nearly obliterated. Cells strive to 
build up carbon reserves (hence the presence of a 1,4-alpha-D-glucan_n as a 
reporter metabolite) and oxidative phosphorylation is the main energy pathway 
that remains present. Regulation is centred on the energy metabolism shift (60% 
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of the total co-regulated sub-network), withholding amino acids and nucleotide 
precursors and keeping the cofactors available in a low-profile metabolism. 

 

7.3 Reporter couplings study. 

We also applied Reporter Features algorithm to the coupling network in order 
to identify regulatory hubs –reporter flux coupling pairs and reporter flux coupling 
groups. As before, we address the task of identification of flux coupling reaction 
pairs or groups that are differentially regulated during light shifts: from 24 hours 
of darkness to 100 minutes of light to 100 minutes of darkness (see Figure 7.1b). 
Genome-wide transcription data was taken from the study by Gill et al. (2002).  

 

Reporter coupling pairs. 

A coupling characterises functional relationship between the two reactions, 
viz. directional, full or partial coupling (see Chapter 5). Each coupling pair was 
independently studied across the transcription data arrays of a light-shift 
experiment discovering regulatory hubs –reporter coupling pairs (Additional file 
7.2). 

• All time points 

Using all seven transcription arrays as input, we covered two light shifts: 
turning on the photosynthesis and metabolic machinery and shutting it down. We 
looked for couplings with significant co-regulation among all seven arrays. Most 
statistically significant pairs were the ones covering the connection between 
pathways from the central carbon metabolism (purine metabolism, coenzyme A 
biosynthesis) or biological building blocks (fatty acid biosynthesis, porphyrin and 
chlorophyll metabolism, biosynthesis of steroids) to amino acid pathways 
(glutamate, threonine). 

• Dark to light 

In this analysis, we focused on the shift from darkness to the growth in the 
presence of light. RuBisCO (reaction 4.1.1.39 in the model) stands as the most 
influential regulatory hub in this set and most significant pairs bear this vital 
reaction. Additionally, the core carbon metabolism (Calvin cycle, TCA cycle) is 
significantly paired to building block synthesis pathways (carotenoid biosynthesis, 
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porphyrin and chlorophyll metabolism, fatty acid biosynthesis) as well as to amino 
acid biosynthesis (histidine, aspartate). Photosynthesis reactions are scarcely 
present in seven pairs, which are not the most significant. 

• Light to dark 

Finally, we analysed the shift from an illuminated condition to darkness. Most 
statistically significant pairs cover pathways from the central carbon metabolism 
(sucrose metabolism, glycolysis, pentose phosphate pathway) links to biosynthesis 
pathways (biosynthesis of steroids, purine metabolism, porphyrin and chlorophyll 
metabolism, fatty acid biosynthesis) and to amino acids (aspartate, isoleucine). 
Interestingly, photosynthesis reactions are predominant in this set (93 out of 586), 
even though they are not present in the most significant pairs. Additionally, 
carboxylative reaction from RuBisCO is not significant. 

 

Reporter coupling groups. 

Groups of coupled reactions were compiled by connecting reactions coupled to 
each other. This way, we were able to identify higher order regulatory hubs –
reporter coupling groups for the light shift dataset (Additional file 7.3). 

• All time points 

We looked for couplings groups with significant co-regulation among all the 
seven arrays, which covered both light shifts. Glutamate directionally coupled 
metabolism (dir2), purine fully coupled biosynthesis (ful4) and pyrimidine fully 
coupled set (ful16) were identified as reporter coupling groups (their knitting over 
the iSyn811 coupling network can be seen in Figure 7.3).  

• Dark to light 

We found three reporter coupling groups that were significant during the start-
up of metabolism following the availability of light. Reporter couplings were 
glutamate directionally coupled metabolism (dir2) and two fully coupled sets: 
pyrimidine (ful16) and NAD(P) metabolism (ful3). 
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Figure 7.3 - Reporter flux coupling network for autotrophic growth condition. 
Pyrimidine fully coupled set (ful16) in light purple, blue colour represents the 
photosynthesis and oxidative phosphorylation cluster of dir1 coupling group. These 
groups are reporter couplings in all the studied conditions: all time points and in the 
light shifts from dark to light and light to dark. Purine fully coupled biosynthesis (ful4) 
in green colour highlights regulation in all time points and during the shift from light 
to dark. Glutamate directionally coupled metabolism (dir2) in red is identified to be a 
regulatory hub on all time points. Fully coupled set of NAD(P)H turnover (ful3), 
depicted in yellow, is a regulatory centre in dark to light environmental shift. 

 

• Light to dark 

Two fully coupled groups were revealed as reporter coupling groups: 
pyrimidine (ful16) and purine biosynthesis (ful4).  

Finally, as dir1 coupling group conveys 388 reactions (32.7% of the total) we 
have used clustering methods from Bader and Hogue (2003), downloadable from 
http://clusterviz.sourceforge.net, to identify significantly co-regulated subsets. 
The cluster made up of all directionally coupled reactions from the photosynthesis 
and the oxidative phosphorylation from dir1 set was discovered as such in all 
three data sets, even though the 388-mer dir1 set, as a whole, is not. 
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7.4 Conclusions. 

We also show that metabolic models can be used as a scaffold to integrate 
system-wide omics data. As a case study, we identified key reporter metabolites 
and reporter coupling pairs and groups around which regulation during light shifts 
is organized, as well as gene sub-networks that were co-regulated during 
environmental variability in light. 

As reporter metabolites, we have identified several metabolites that play a role 
as regulatory hubs when metabolism is being turned on (“dark to light”) and shut 
down (“light to dark”). Similarly, we have identified the regulatory potential (and 
its principal actors) of this organism in terms of metabolism control (“all time 
points”). 

We have also integrated the transcriptome analysis on top of the coupling 
analysis of Chapter 5. The first reactions of pyrimidine biosynthesis and the 
photosynthesis and oxidative phosphorylation were identified as reporter 
couplings, regulatory hubs around which transcriptional changes are organized. 

If researchers aim to design and build mutants with improved production of a 
given industrially relevant metabolite, focus should be laid upon the regulatory 
hubs that drive the production of this metabolite and to the energetic metabolic 
pathways that fuel up the cell. Else, mutants can be undermined by a lack of 
precursors or biomass potential. 

This chapter is a nice proof of concept on how different layers of biological 
information can be interwoven together and knowledge useful for 
biotechnological uses can be retrieved from it. From our results, it seems that the 
hypothesis that cellular response to a perturbation can be modularized and 
characterized by using network topology information is not contrasted and, thus, 
algorithms such as Reporter Features can be applied to a great extent to biological 
networks. 

 

7.5 Methods. 

Transcriptome data analysis 

Reporter Features algorithm (Oliveira et al., 2008; Patil and Nielsen, 2005) was 
used to integrate transcriptomic data in the metabolic reconstruction and in the 
flux coupling networks. This algorithm works with three kinds of information:  
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(i) p-values for genes, resulting from, for example, Student’s t-test run on 
transcriptomic data,  

(ii) interaction file, where genes/reactions are connected to the 
corresponding features, in this case the corresponding substrates and 
products as well as the sets of coupled reactions, and  

(iii) association file, where genes are linked to the corresponding reactions, 
either by coding for the enzyme or by regulating the gene that codes 
for the enzyme.  

In brief, Reporter algorithm converts the p-value for a given node (𝑝𝑔𝑒𝑛𝑒𝑖) to a 
z-score by using the inverse normal cumulative distribution function (cdf-1). 

𝑧𝑔𝑒𝑛𝑒𝑖 = cdf−1(1− 𝑝𝑔𝑒𝑛𝑒𝑖) 

After scoring each non-feature node in this fashion, we need to calculate the 
score of each feature j, 𝑧𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗. We used the scoring method based on 

distribution of the means, which is a test for the null hypothesis “genes adjacent 
to feature j display their normalized average response by chance”. In particular, 
the score of each feature j is defined as the average of the scores of its neighbour 
Nj nodes (genes), i.e.: 

𝑧𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗 =
1
𝑁𝑗
� 𝑧𝑔𝑒𝑛𝑒𝑘

𝑁𝑗

𝑘=1

 

To evaluate the significance of each 𝑧𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗, this value should be corrected 

for the background distribution of z-scores in the data, by subtracting the mean 
(𝑚𝑁) and dividing by the standard deviation (𝑠𝑁) of random aggregates of size N. 

𝑧𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

�𝑧𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗 − 𝑚𝑁�
𝑠𝑁

 

Transcriptomic data was retrieved from a contribution that studied clusters of 
genes differentially expressed with and without light (Gill et al., 2002). In this 
work, Synechocystis sp.PCC6803 was grown under 24 h of darkness, followed by 
100 min of light and 100 min of darkness. Seven genome-wide transcriptional 
analyses were performed over the length of the experiment, see Figure 7.1b and 
corresponding reference (Gill et al., 2002). 
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8 
Conclusions and closing 

remarks 
 

Where PhD applicant looks back at all the work done, draws a set of conclusions and 
suggests some improvements in his work and the other’s that are not meant to be 
considered ex cathedra, but humble proposals. 
 
 
 
 
 
 
 
 
 
Parts of the contents of this chapter are based on the following journal article: 

• Montagud et al. Synechocystis sp. PCC6803 metabolic models study for the 
enhanced production of biofuels. Manuscript in preparation.  

"Forty-two!" yelled Loonquawl. "Is that all you've got to 
show for seven and a half million years' work?" 
"I checked it very thoroughly," said the computer, "and 
that quite definitely is the answer. I think the problem, to 
be quite honest with you, is that you've never actually 
known what the question is." 
"But it was the Great Question! The Ultimate Question of 
Life, the Universe and Everything!" howled Loonquawl. 
"Yes," said Deep Thought with the air of one who suffers 
fools gladly, "but what actually is it? […] once you do 
know what the question actually is, you'll know what the 
answer means." 

Douglas Adams, The Hitchhiker's Guide to the Galaxy, Del 
Rey Publisher, 1995 
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8.1 Conclusions of the dissertation. 

This thesis focused on the construction, uses and applications of constraint-
based metabolic models of cyanobacteria oriented towards the construction of a 
photon-fuelled production platform of socioeconomic importance. The scope of 
this work is, thus, to build bridges between different scientific areas like 
biotechnology, systems biology, metabolic engineering, synthetic biology, energy 
engineering, and cyanobacterial biology. Our final goal is a biotechnological one, 
as we are trying to assess how to tame biology from an industrial perspective. 
However it seems foolish to pretend to tinker some system of which one 
understands little. That’s the reason behind the efforts throughout this thesis 
focused on acquiring knowledge from a system with a small research community 
(in comparison to other model organisms), and with high-throughput information 
from a handful of experiments. 

Additionally, biotechnological advances in metabolism are mainly based upon 
mutant generation. These mutants, let them be knock outs, knock ins, knock 
downs, etc., have a holistic effect on different parts of the metabolism. 
Researchers are not blind on this fact, and their habit of ignoring this has more to 
do with the lack of tools to cope with this complexity and uncertainty of data than 
with their willingness to overlook these systemic effects. Thus, it is of critical 
importance to pave the way to a situation where holistic analyses are possible and 
quantitative studies are conceivable. Simplifications, like identifying proteins to 
nuts and bolts, abstractions, like clustering gene expression around reporter 
metabolites, use tools from foreign areas, like Bayesian probability in 
transcriptomics; all of those are valid and useful if they allow us to get closer to a 
world where quantitative, all-inclusive approaches are possible and let us infer 
more efficient ways to use biology to our needs. 

When first entering this systems biology/biotechnology field and interacting 
with colleagues and partners, I drew a rough comparison to geographical 
orientation skills: biologists drawing the map where the research underwent and 
engineers having the compass pointing to the goal of the project. I still think that 
this comparison stands due to the logic behind scientific fields: biology is a science 
to answer how and why questions, while engineering is technique field to know 
what for something could be used. Biotechnology combines both, as you cannot 
get oriented without a map and a compass. Hence, Chapter 2 focused on the 
construction of this map, on top of which further developments will be based 
upon: the set of pathways and routes that enable researchers to be aware of what 
are the routes that nature has taken to allow some reactants to become products. 
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We used updated data from different sources to gather the information 
necessary to have the set of reactions described in Synechocystis sp. PCC6803. 
Alas, we concluded in this chapter that this was an iterative process with the rest 
of the works of the present thesis as, due to uncertainty of data and on-going 
research there is no such thing as a completed genome-scale metabolic model. 
Furthermore, we laid the founding stone of an automated and high throughput 
process of genome-scale metabolic model reconstructions done in my group, 
mainly by PhD student Reyes and Dr Gamermann. 

The knowledge of these pathways lead us to dig one level down, to the flux 
level, for this in Chapter 3 we used a common algorithm used in the field termed 
flux balance analysis (FBA) (Stephanopoulos et al., 1998). This allowed us to have 
a computer-based model of Synechocystis sp. PCC6803 that behaved as close as 
data could do to a real life bacterium. Here, the verb behaves is an elegant way 
to define transfer function: a function that, given an input, retrieves an output in a 
linear time-invariant system. In our case, inputs and outputs are mass: substrates 
and cell biomass; thus, our transfer function is one that involves energy flow. Our 
model represents the possibility of growth, as it generates biomass or allows 
energy fluxes, in the environmental conditions where the bacterium could 
potentially grow: photoautotrophy, photoheterotrophy, mixotrophy, and dark 
heterotrophy. Not only it grows, but also its flux landscape is similar to the one 
seen experimentally. 

From the knowledge we had gathered in pathway presence and flux 
estimations, it seemed feasible to study the simulation of probable mutants and 
estimate the effects of mutations in growth and in the production of industrially-
relevant metabolites. Therefore, in Chapter 4 we focused in evaluating different 
mutants and seeing their effect in terms of growth and production of ethanol, 
succinate, and hydrogen. We identified different sets of mutants that could evolve 
optimized titters of these metabolites. This study, and the potential of 
Synechocystis sp. PCC6803 to grow photoautotrophically, allowed us to present 
this organism as a good photon-fuelled production platform candidate. 
Furthermore, using lethality studies we also spotted that this organism has more 
lethal genes (genes whose absence causes metabolism to be non-functional) than 
other model organisms such as Escherichia coli and Saccharomyces cerevisiae. 
Nonetheless, as we defend in Chapter 4 these results have to be handled with 
care as the amount of experiments and evidences in these two organisms are 
orders of magnitude larger than the ones regarding our cyanobacterium. 
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Additionally to the flux and knock outs studies, we felt that it was necessary to 
analyse the relationships among reaction functionalities and the potentialities of 
Synechocystis sp. PCC6803. In Chapter 5 we addressed this issue with the flux 
coupling analysis (FCA) algorithm (Burgard et al., 2004) that studies the coupling 
capacity of the reaction network. Interestingly, we accomplished to make sense 
out of the huge connectivity degree that Synechocystis sp. PCC6803 metabolic 
network possesses. We found that catabolic reactions are connected to a reduced 
set of reactions that generate the biological building blocks and energetic 
metabolites; anabolic reactions, in turn, stem from this reduced set. This drove us 
to think about the bow tie metabolic organization theorized several years ago 
(Csete and Doyle, 2004). This network configuration makes it difficult to modify 
core reactions away from the organism wild type behaviour without diminishing 
its potential (like mutating its NADPH hydrogenases), but allows tinkering of 
exterior pathways without drastically affecting cell growth (like adding cellulose 
breakdown enzymes that connect to glycolysis). Additionally, we focused on the 
production of biofuels, hydrogen and ethanol, and found out that energy 
production pathways are intimately connected to hydrogen in such a way that 
obliges researchers to think of alternatives others than just knock an heterologous 
hydrogenase in, as these core reactions may be bottlenecks for boosting the H2 
production in this organism. Ethanol, instead, seems simpler, as its production is 
coupled with pyruvate usage, its substrate, and ATP production, like most of the 
pathways. Modifications on these reactions could be very interesting in order to 
have an enhanced production of ethanol in Synechocystis sp. PCC6803. 

Most of the work in this thesis was framed in an FP6 European project called 
BioModularH2 (BioModularH2, 2005). My group collaborated in this project along 
with five other research groups of diverse backgrounds and abilities. In this three-
year long project among other collaborations, one project appeared between 
Paula Tamagnini group at IBMC in Porto and my group in Valencia regarding 
growth data processing and analysis. One of the fruits of this collaboration, 
among others like Pinto et al. (2011), has been the work of Chapter 6. As we could 
not find a complete medium composition study, we decided to go ahead and 
perform one by ourselves. We concluded that out of the considered factors that 
affect growth (carbon source, nitrogen, temperature, pH, and light) the governing 
factors are light irradiance, carbon source and temperature. Interestingly, we 
found that in autotrophic growth, there is a significant effect and interaction of 
pH and temperature, and Synechocystis sp. PCC6803 has better growth under 
alkaline conditions. 
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Finally, we worked in a part of systems biology that I find very interesting and 
that, in my opinion, can facilitate researchers considering holistic studies as I 
discussed above. This part is the interaction and integration of different levels of 
information. In Chapter 7 we present the use of Reporter Features algorithm 
(Oliveira et al., 2008; Patil and Nielsen, 2005) with different biological data 
(transcriptomic, network connectivity and flux coupling data) employing genome-
scale metabolic reconstruction iSyn669 (Montagud et al., 2010) and iSyn811 
(Montagud et al., 2011) as data scaffolds. We successfully identified reporter 
metabolites in a light-shift experiment from Gill et al. (2002): metabolites that 
play a role as regulatory hubs when metabolism is being turned on (“dark to light” 
data array) and shut down (“light to dark” data array). Similarly, we have 
identified the regulatory potential (and its principal actors) of this organism in 
terms of metabolism control (“all time points” data array). These reporter 
metabolites were not a few highly-connected metabolites that governed the 
whole metabolism; instead, they are a handful of metabolites, each of one 
connecting a different part of the metabolism. In a sense, we can draw the 
conclusion that metabolism does not regulate its flux shifts through a few major 
players, but through a set of medium-sized players. Additionally, we used flux 
coupling data to identify reporter couplings, around which transcriptional changes 
are organized: energetic reactions, like photosynthesis and oxidative 
phosphorylation, were identified as such. This is connected to the aforementioned 
coupling analysis, where almost all reactions were connected to ATP synthase and 
other energy pathways: potential of cell production is intimately related to 
energy acquisition and handling. 

 

8.2 Synechocystis sp. PCC6803 as a production platform. 

We have demonstrated the feasibility of building a reliable and complete 
metabolic model at the genome-scale level that includes all reactions annotated 
in the genome and, thus, known to be present in the organism. In order to start 
this work, only annotation files are needed. Identification and description of genes 
and, therefore, of cellular activities are done through similarities studies among 
already annotated genomes. High-fidelity sequencing and better identification is a 
request if we want to have a perfect metabolic model. These techniques have 
greatly evolved since 1995 (when Synechocystis sp. PCC6803 genome was first 
sequenced) or 2008 (when I started this work), but we are confident that in the 
future these initial steps will be streamlined and error-safe, at least to some 
extent. 
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Synechocystis sp. PCC6803 metabolic model can be used to study flux 
capabilities and potentials, as well as to study possible mutants to have an 
enhanced production of a given metabolite. In this sense, we have demonstrated 
the use of flux balance analysis to estimate metabolic behaviour. One of the 
bottlenecks of these simulations is the need to know several biological constraints 
of substrate drain and by-products generation. Nonetheless, the amount of 
information generated with this workflow, that only needs the network 
configuration and these constraint-based flux simulations, is order of magnitude 
higher than the information needed as input.  

As for mutant studies, we have spotted a set of knock out mutants with 
increased production of succinate, ethanol and hydrogen. This set of mutants 
points to design strategies that range from the more classical, like shutting down 
flux diverging routes from objective metabolite, like the triple knock out proposal 
for improved production of ethanol, to the more synthetic biology ones like, for 
an improved succinate production, designing a new pyruvate kinase protein 
specific for ATP cofactor. 

Furthermore, we identified theoretical maxima of production for succinate, 
ethanol and hydrogen. These values are far from what is currently produced in 
literature. For succinate, we have estimated 0.5695 mmol gDW

-1 h-1 with a growth 
rate of 0.0714 mmol gDW

-1 h-1 to 0.195 mmol gDW
-1 h-1 measured in a recombinant 

Escherichia coli with a cyanobacterial carbonic anhydrase (Wang et al., 2009). For 
hydrogen, estimated specific growth rate 0.0448 h-1 with corresponding maximum 
H2 production rate 0.085 mmol gDW

-1 h-1 can be compared to typical 3.149 10-4 
mmol gDW

-1 h-1 measured (Baebprasert et al., 2011). As for ethanol, even though 
Synechocystis sp. PCC6803 genome bears the genes to produce it, there is a 
negligible production of this metabolite in wild type strains (P. Wright, personal 
communication). As for genetically engineered strains, Joule Unlimited 
(www.jouleunlimited.com) has reported in the patent literature to secrete 
ethanol at a rate of 1 mg L-1 h-1 (Devroe et al., 2010), and academic literature 
report typical levels of 0.2 mg L-1 day-1 (Deng and Coleman, 1999). For a nice 
review on cyanobacteria production of interesting metabolites, please refer to 
Ducat et al. (2011). 

Flux landscapes studies made us wonder about the capabilities of this network. 
We performed flux coupling analysis in order to uncover non-straight forward 
functional links among fluxes. Flux coupling analysis tries to uncover part of the 
effects that hinder mutant generation, allowing researchers to explain mutant 
phenotypes that were not considered because no prior knowledge was known or 



 
 
 
 

Conclusions and closing remarks 

165 
 
 
 
 
 

because connectivity was not straight-forward. We found out that in terms of 
feasibility, it seemed easier to tinker flux couplings so to have an increased 
ethanol production than an increased hydrogen production. Hydrogen is 
interwoven together with photosynthesis and oxidative phosphorylation, making 
it difficult to design strategies that increase hydrogen, but don’t affect growth 
capabilities much.  

Additionally, we have seen that metabolism regulation is organized around 
hubs that outstand as reporter metabolites. These hubs can be very informative 
when studying a mutant with a selected enhanced production. In our analysis, 
considering a complete light-regime shift, reporter metabolites were identified as 
cofactors, amino and nucleic acid precursors, central carbon metabolism, lipids 
precursors and photosynthesis metabolites. Photosynthesis and oxidative 
phosphorylation were identified as reporter couplings. Reactions that should be 
taken into account when thinking of altering Synechocystis sp. PCC6803 
metabolism. 

Researchers were seduced by the idea of using this cyanobacterium, due to its 
capability of producing metabolites autonomously from carbon dioxide and 
photons, thus photoautotrophically. In this growth mode, photosynthesis 
provides electrons and oxygen from water, using photons as energy donors, 
pumping protons that can be used to generate ATP. Oxygen can be converted 
back to water by oxidative phosphorylation, mainly draining NADH and generating 
proton potential that can also be used to generate ATP. Hydrogen feeds from 
NADPH that, in turn, feeds from these electrons. Additionally, hydrogen is 
inhibited by oxygen. The more photosynthesis, the more electron flow and the 
more hydrogen-inhibiting oxygen are produced. Hence, photosynthesis, oxidative 
phosphorylation and hydrogen production are metabolic pathways that we have 
to engineer system-wide if we want to be successful.  

Researchers have usually followed a two-steps strategy where biomass was 
generated in the first one, and hydrogen produced transiently in the second one. 
Melis et al. (2000), working with Chlamydomonas reinhardtii, reduced 
photosynthetic capability in order to have prolonged hydrogen production, 
showing that this mutant had matching titters of photosynthesis and oxidative 
phosphorylation, and allowing to the latter the consumption of the oxygen the 
former produced. 

In the course of my thesis research, several strategies have been drafted for 
future, probable, increased hydrogen evolving projects. Most of them are related 
with the coordination of oxidative phosphorylation and photosynthesis levels. If 
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Melis et al. work tried to tinker photosynthesis, we have focused in tinkering 
oxidative phosphorylation. Through a set of mutants, we would like to increase 
the levels of oxidative phosphorylation so they could match photosynthetic levels. 
Examples of these would be inclusion of terminal oxidases that drain oxygen and 
tinkering of ATPase P/O ratio, through faulty ATPases in order to change proton 
gradient to ATP generation ratio. Alas, computer-based work has pointed at the 
fact that there would be little room for free electrons for hydrogen evolution. 
Thus, a mixotrophic strategy is being considered, which would increase hydrogen 
titters, but would ruin the efforts of having an autonomous carbon- and photon-
based production platform. In addition, experiments to false these hypotheses are 
being conducted at present time. 

Finally, if we are to live in a hydrogen economy several years from now, there 
are a series of milestones that need to be accomplished. In this direction, the US 
National Research Council commissioned in 2004 a study to identify these efforts. 
This Committee on Alternatives and Strategies for Future Hydrogen Production 
and Use (Committee on Alternatives, 2004) considered that, first of all, the 
hydrogen system must be cost-competitive, it must be safe and appealing to the 
consumer, and it would preferably offer advantages from the perspectives of 
energy security and CO2 emissions. Specifically for the transportation sector, 
dramatic progress in the development of fuel cells, storage devices, and 
distribution systems is especially critical. 

The Committee on Alternatives and Strategies for Future Hydrogen Production 
and Use concluded that, in order to have a hydrogen-fuelled transportation as a 
beachhead of a clean hydrogen economy, the four most fundamental 
technological and economic challenges are these: 

- To develop and introduce cost-effective, durable, safe, and 
environmentally desirable fuel cell systems and hydrogen storage 
systems. 

- To develop the infrastructure to provide hydrogen for the light-duty-
vehicle user 

- To reduce sharply the costs of hydrogen production from renewable 
energy sources, over a time frame of decades 

- To capture and store (“sequester”) the carbon dioxide by-product of 
hydrogen production from coal 
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In present thesis we have assessed the suitability of Synechocystis sp. PCC6803 
as a production platform and completed the first steps of that design, completing 
a metabolic model that integrates different levels of biological information, which 
is useful to study production potentialities of industrially-relevant metabolites. 
Nonetheless, this would only improve hydrogen production from renewable 
energy sources and, up to some point, solve the carbon dioxide capture generated 
by other energy strategies –like coal plants. But there are many other fields where 
R&D efforts are needed in order to be able to live in a clean hydrogen economy. 
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Afterword 

At the break of the day, the refugees’ fleet 
spotted the shore of what would become our 
new home, our new hope –Nueva Tanelorn. 
We were called to deck, and there we 
admired the view: Roark, Eora, Dao Long, 
Hennit, Aldor, Kromar, Darcyl, and myself, 
among others. This was it, at the end, a new 
beginning. 

J. Bruegel, A new hope, Heroes' Feast 
Publisher 
 

 
 

(Left) XKCD, Overestimulated 
(http://xkcd.com/602) 
 

 
 

Jack comes upon a penguin. The penguin 
looks at him, cocks his head to signal Jack 
forward. 
Penguin: Slide. 
The penguin jumps onto a patch of ice and 
slides away. 

Fight Club, screenplay by Jim Uhls, novel by 
Chuck Palahniuk, 1999 

 
 

Ja està, ací acaba esta feina. I per a ser algú que 
no disfruta amb els comiats, ho estic allargant força. 
Així i tot, permeteu-me afegir unes darreres 
paraules a este text. I és que tot este treball, totes 
estes hores de picar pedra i córrer amunt la 
muntanya no hagueren pogut ésser possibles sense, 
no ja una persona, sinó un grup de persones, una 
generació. 

En tota família mitjanament humil hi ha una 
generació que fa lo impossible perquè els seus fills 
apleguen a cotes acadèmiques que ells no podien 
albirar. En la meva família, eixa generació fou la dels 
meus avis. Curiós, o no tant, fou la saviesa que dóna 
la reflexió el que espurnejà que les meves àvies 
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facilitaren el pas dels meus pares a poder estudiar una carrera. Elles foren les que 
veieren que el futur no estava en la terra, en desllomar-se més que el veí, sinó en 
conèixer més que el veí. Elles envejaven el coneixement i, reconeguent-ho, 
insistiren en obrir una porta on altres veien murs. Persones profundament 
catòliques, en el sentit místic del catolicisme, no tant en l’eclesiàstic, no 
m’haguera estranyat que em digueren algo similar a “el reialme terrenal serà el de 
la ment”. No m’ho digueren ni m’ho podran dir, ambdues passaren a l’altra banda 
de l’espill temps ençà, una quan jo passava del món de l’institut al món de la 
universitat, l’altra quan abandonava el món de la universitat i m’endinsava en 
aquesta tesis. Els seus consorts, els meus avis, tampoc pogueren veure este treball 
acabat, ambdós estan junt a elles. Em recorde a sovint de tots quatre. Igual que 
em recorde sovint de mon pare. 

Òbviament, el que una generació òbriga la porta a la següent no fa que la 
següent la traspasse. Així, foren els continuats esforços dels meus pares els que 
els permeteren acabar una formació acadèmica alhora que no abandonaren, no 
podien, els quefers dels meus avis. Era el que calia fer, punt. Hi hagueren moltes 
discussions en eixes cases a l’època: de vegades comprometent temps, altres 
comprometent diners. He d’admetre que gràcies, també, a que els meus pares 
aguantaren la pluja a la intempèrie puc jo, ara, gaudir d’esta calor netament 
burgesa. 

El record dels esforços d’una generació i de la lluita contracorrent de l’altra fan 
que quan tinc la temptació de deixar-me anar en eixa còmoda calor, s’òbriga una 
finestra de vent fred de realisme que impedeix adormir-me. Amb tot, gràcies per 
estar ahí, ja siga de cos present o amb records. Gràcies, a uns, per obrir la porta i 
gràcies, a altres, per traspassar-la. 

Gràcies per permetre’m, per acció o omissió, començar, continuar i acabar 
“allò que jo vullguera fer”. Al cap i a la fi, la llibertat no és altra cosa que elegir, i 
elegir implica responsabilitat i confiança en triar l’opció correcta. 

 

I sempre ens quedarà poder mirar a allò fet i exclamar, com Fede Montagud 
aquell estiu de 1993, en guanyar el seu segon Campionat de Galotxa "Trofeu El 
Corte Inglés": Som els més pintxos de València!  

Arnau Montagud Aquino 
Montolivet, València,  

Dia de Sant Josep de l’any 2012 
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Appendices 

Additional file 1.1 - iSyn669 reactions to gene connections 

Excel file with the list of iSyn669 reactions and its cognate list of genes. 

Additional file 1.2 - iSyn669 genome-scale metabolic model in OptGene format 

Text file with the stoichiometric model, in OptGene (Patil et al., 2005) format, 
with all the constraints needed for its simulation with FBA algorithm. 

Additional file 1.3 - iSyn811 reactions to gene connections 

Excel file with the list of iSyn811 reactions and its cognate list of genes. 

Additional file 1.4 - iSyn811 genome-scale metabolic model in OptGene format 

Text file with the stoichiometric model, in OptGene (Patil et al., 2005) format, 
with all the constraints needed for its simulation with FBA algorithm. 

Additional file 2.1 - iSyn669 metabolic fluxes simulated under four conditions 

Excel file with all the reactions simulations and resulting flux ranges from the 
model simulated under four growth conditions: autotrophy, dark o pure 
heterotrophy, photoheterotrophy and mixotrophy. 

Additional file 2.2 - iSyn811 metabolic fluxes simulated under four conditions 

Excel file with all the reactions simulations and resulting flux ranges from the 
model simulated under four growth conditions: autotrophy, dark o pure 
heterotrophy, photoheterotrophy and mixotrophy. 

Additional file 4.1 - FBA and MOMA simulation values for biomass growth in 
Synechocystis sp. PCC6803, Escherichia coli and Saccharomyces cerevisiae 
genome-scale metabolic models 

Excel file with the growth values under MOMA simulation for Synechocystis sp. 
PCC6803, Escherichia coli and Saccharomyces cerevisiae. Data for Synechocystis 
is original from present work, data for Escherichia coli has been obtained from 
metabolic model from reference 18 and data for Saccharomyces cerevisiae is 
from reference 30. 
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Additional file 4.2 - XLS file with values of single, double and triple mutants for 
succinate, ethanol and hydrogen. 

Excel file with growth values and design objective titters of single, double and 
triple mutants for enhanced producing strains. 

Additional file 5.1 - XLS file with description of coupled reactions in all four 
growth modes.  

Each Excel sheet can be easily converted to a SIF file to view network in Cytoscape 
(http://www.cytoscape.org). Finally, an Excel sheet with the reactions 
differently coupled across different growth conditions is provided. 

Additional file 7.1 - iSyn669 groups of correlated genes in the three sets of 
arrays of light shift experiments.  

Word file with the list of iSyn669 correlated genes in "All time points", "Dark to 
light" and "Light to dark" analyses. 

Additional file 7.2 - XLS file with reporter coupling pairs analysis results under all 
time points, dark to light and light to dark conditions. 

Additional file 7.3 - XLS file with coupling groups that have been identified as 
reporter couplings groups, under all time points, dark to light and light to 
dark conditions. 
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