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Multipurpose self-configuration of programmable
photonic circuits
Daniel Pérez-López 1,2✉, Aitor López 1, Prometheus DasMahapatra1,2 & José Capmany 1,2

Programmable integrated photonic circuits have been called upon to lead a new revolution in

information systems by teaming up with high speed digital electronics and in this way, adding

unique complementary features supported by their ability to provide bandwidth-

unconstrained analog signal processing. Relying on a common hardware implemented by

two-dimensional integrated photonic waveguide meshes, they can provide multiple func-

tionalities by suitable programming of their control signals. Scalability, which is essential for

increasing functional complexity and integration density, is currently limited by the need to

precisely control and configure several hundreds of variables and simultaneously manage

multiple configuration actions. Here we propose and experimentally demonstrate two dif-

ferent approaches towards management automation in programmable integrated photonic

circuits. These enable the simultaneous handling of circuit self-characterization, auto-routing,

self-configuration and optimization. By combining computational optimization and photonics,

this work takes an important step towards the realization of high-density and complex

integrated programmable photonics.
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Integrated photonics is evolving from discrete components to
complete application-specific photonic integrated circuits
(ASPICs) with ever increasing complexity1–3. Although

ASPICs have been successfully used to demonstrate many
applications, only in a few fields like transceivers and data centers,
the fabrication volumes are high enough to compensate for the
nonrecurring overhead costs4,5. Current time-to-market and
time-for-development of photonic integrated circuit (PIC)-based
systems is limited by post-fabrication custom processes and by
large development periods that range from 12 to 24 months per
design-fab-packaging-test iteration6. As in electronics, incorpor-
ating programmability and reconfigurability into PICs at an
increasing pace will enable cost-effective and mass producible,
almost-instant development times, negligible up-front non-
recurring engineering costs and upgradable components aided by
software programming7–9.

Developing large-scale programmable integrated photonic
(PIP) circuits is catalysing considerable research efforts as they
are expected to find applications in a myriad of fields, where the
flexibility brought by reconfigurability is a unique asset. PIP cir-
cuits enable broadband analog processing, which is of particular
interest in two scenarios with the considerable impact expected in
the short/midterm. The first includes applications where analog
processing is required per se, like artificial intelligence, deep
learning, and quantum information systems. The second includes
applications, such as 5/6 G telecommunications, switching, data
center interconnections, hardware acceleration, and sensors,
where photonic analog processing can team up with high-speed
digital electronic systems to overcome expected limitations aris-
ing from the demise of Moore’s law.

The processing power of programmable photonic waveguide
meshes scales up dramatically with the number of Tunable Basic
Units (TBUs) integrating phase actuators in interferometric cells. As
shown in Fig. 1a, current state-of-the-art ranges from a few tens to a
few hundreds of TBUs per chip10–18. However, medium/large-scale
complexity PIPs will require many hundreds or even thousands of
TBUs, and feasibility will only be possible if soft operations
controlling the minimal use of physical resources, optimum
circuit placement and configuration, dynamic adaptationm and

self-healing are incorporated. This demands the ability to handle,
monitor, and control hundreds or thousands of different variables.
Computational optimization methods address the management and
control of complex systems19–21. Tailoring and adapting these to
PIPs can overcome many of their scalability limits. Furthermore,
they provide information for compensating nonideal behavior of
the components thereby relaxing the need for ideal operation
conditions22.

Here, we develop two multipurpose methods for the self-
configuration and optimization of large-scale fault-tolerant PIPs.
The first requires data gathered from a periodic, automated pre-
characterization routine to configure optical interconnections,
delay lines, and optical circuits. The second is based on compu-
tational optimization routines that obtain iteratively, without
prior pre-characterization, the optimum driving configurations to
achieve a targeted functionality. We provide both statistical
simulations and experimental verifications to demonstrate, for the
first time to the best of our knowledge, the achievement of the
targeted circuit configurations, the mitigation of fabrication yield
distributed parasitic errors (nonuniform loss and optical cross-
talk), and of the dynamic crosstalk arising from thermal and
electrical effects through self-configuration. Successful parallel
configuration of independent multitasking operations is also
demonstrated. Finally, we discuss the impact of the work and
comment on the future of this research.

Results
Circuit programming based on global algorithms and presets.
To illustrate the proposed multipurpose self-configuration
algorithms, we consider the core of a field programmable pho-
tonic gate array (FPPGA)23, as an example of programmable
circuit. The FPPGA main architecture shown in Fig. 1b includes
the core, several high-performance blocks (HPBs) and optical
input/output ports. This configuration enables the synthesis and
programming of PICs. The optical core shown in Fig. 1c, is
implemented by means of a waveguide mesh. The specific case
shown in Fig. 1c is a longitudinally parallel, flat general-purpose
hexagonal waveguide mesh22, although other configurations can
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be considered16,24. Figure 1b illustrates a given operational sce-
nario where two circuits (in red and green) are configured in
the FPPGA.

Control and configuration protocols of the FPPGA have not
been demonstrated to date. They can be potentially classified into
different types, depending on the scope, the control strategy, and
the hardware requirements in terms of number of optical
readouts and their position in the circuit. In this work, all the
reported methods employ the closed loop control system
illustrated in Fig. 1d. It includes an electrical IC to read a signal
proportional to the optical power at every external optical port in
the circuit (Np), an electronic processor to run the algorithms and
a driving circuitry to configure the phases at every TBU, described
by the vector v. For most algorithms, we define an operation as
the completion of a cycle involving the configuration of v, and the
extraction of the full scattering matrix of the aforementioned
circuit. In most of examples, only a portion of the scattering
matrix is required. (For additional details, see “Methods” and
Supplementary Note 1).

The set of algorithms developed in this section require a prior
knowledge of data, regarding the mesh architecture and full bias
calibration information of every TBU behavior. The information
involving the architecture itself, includes the interconnection
scheme, and the physical features that define the TBUs, such as
their basic unit length (BUL) and basic unit delay25. The
information regarding the full control of every TBU includes the
computation of the nonideal passive offsets of the phase of each
TBU, the calibration curve (tuning response) of each phase
shifter, estimated insertion loss, power consumption26,27, and the
tuning crosstalk matrix that characterizes the undesired coupled
effects of neighboring phase actuators. These requirements can be
obtained by means of the periodic application of self-
characterization routines based on iterative maximization and
minimization methods28, and regression-based approximations
(see implementation and detailed analysis in Supplementary
Note 2).

Auto-routing and pathfinding algorithms are software routines
capable of finding optimum optical paths or interconnections
between any two connections of a FPPGA, with respect to a set of
pre-defined figures of merit and the data gathered from the self-
characterization stage. They can also be applied to define circuits
or interconnections between programmed components and
external HPBs, as shown in Fig. 1b. The circuit architecture is
mapped into a graph (from graph theory), where optical nodes
between programmable unit cells define the graph’s vertex and
their connections define the graph’s edges. It is then possible to
apply graph-based optimization algorithms to configure the
targeted circuit. Each edge or interconnection is loaded with the
associated key limiting factors or features (fi) gathered during the
characterization stage in the form of a weighted sum called
transmission distance (TD), as described in Eq. (1), and the
accumulated penalties are then considered by the optimizer. To
perform the auto-routing task, a shortest path tree algorithm with
restrictions can be employed26,27. More information can be found
in Supplementary Note 3.

TDxy ¼ c1 ´ f1 þ c2 ´ f2 þ c3 ´ f3 þ ¼ ð1Þ

The auto-routing algorithm can be combined with the self-
characterization routines described in Supplementary Note 2 to
dynamically configure the FPPGA core. Following the scheme
described in Fig. 1d, our measurement setup consists of a
multichannel electronic driver array subsystem based on a table-
top multichannel current source along with an Optical Spectrum
Analyzer as an optical monitor, with custom routines in Python
being run on a standard personal computer, thus completing the

entire feedback loop along with a processing unit. We employed
the setup in a 7-hexagonal waveguide mesh with 30 TBUs with
the circuit being reported in ref. 17.

To conduct the experiment, as shown in Fig. 2a, we first
employed the self-characterization cycle to calibrate the responses
of every phase actuator and TBU, and their power consumptions.
Then, we used this information as input for the auto-routing
algorithm to set up seven different circuit implementations,
referred in Fig. 2b as configs. 1–7: a 10-TBU optical ring
resonator (ORR), a 4-TBU imbalanced MZI, a simultaneous
combination of a 6-TBU ORR working in parallel with a 2-TBU
imbalanced MZI, a 6-TBU ORR, a second-order coupled
resonator optical waveguide with cavity length of 6-TBU, a
simultaneous combination of two delay line channels of 6 and 5
TBUs, and a 12-TBU ORR. Translating each circuit configuration
to an array v, including the required electrical current value for
each phase actuator in the arrangement and loading each at a
time to the processor allows us to demonstrate the first dynamic
reconfiguration of a multipurpose waveguide mesh arrangement.
Figure 2b illustrates how the waveguide mesh arrangement
functionality evolves over time. The precise spectral performance
can be found in the lower insets. The tuning steps are limited to
jumps of 5 mA to prevent undesired overshoots, to protect the
circuit and to better illustrate the dynamic response between
configurations. Each step can be done in <1 s, limited by the
hardware of the control system employed and its USB connec-
tions, as well as the Serial Peripheral Interface.

Circuit programming based on computational optimization.
Algorithms requiring a previous knowledge and characterization
routines can be employed, as shown above to control and pro-
gram FPPGAs, and waveguide meshes. However, the periodic
execution of self-characterization routines can be time and
resource intensive when scaling FPPGA cores to a large-scale
number of programmable units. Information gathering require-
ments for smart control techniques, addressing nonuniform loss
distributions over the circuit, dynamic tuning crosstalk between
actuators and optical crosstalk due to imperfect design and fab-
rication can render these methods inefficient. Ideally, program-
ming, supervision, and control should be achieved without the
need for prior knowledge and characterization.

Here, we propose, apply, and demonstrate a general scheme of
computational optimization methods to program the FPPGA
core, as shown in Fig. 1b. We illustrate it with two configuration
examples, an all-cross TBU interconnection configuration and the
automatic definition of optical filters (a third example dealing
with a 1 × 8 beamsplitter can be found in Supplementary Note 5).
In every case, we consider the control scheme architecture in
Fig. 1d. However, as opposed to the previous approach, this
method does not require prior information (pre-characteriza-
tion). This time, we assume that the FPPGA core is a black box
that returns the scattering matrix datasheet as a function of the
chip´s passive and dynamic conditions, and the electrical driving.
Then, the optical readout system extracts a portion of the
scattering matrix and closes the feedback loop of the optimization
system. This portion of the extracted matrix is employed to
compute the cost function that is minimized when the targeted
application is achieved. Each computational optimization algo-
rithm employs different strategies to decide the new driving
configuration to get closer to the targeted final operation through
the minimization of a customized cost function. Thus, the
definition of a cost function specific for each application is a non-
straightforward task and different cost functions can be employed
to define the same application, thereby achieving different
convergence rates and compromising the success of the
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algorithm. In our results, we show both the sensitivity to different
cost functions definitions, to their specific hyperparameters and
the statistical behavior of the proposed methods.

Optimization methods can be classified according to different
criteria: global and local search algorithms depending on their
suitability to find the global maximum or their ability to converge
rapidly to their closest minimum point; derivative and

nonderivative methods depending on whether the computation
of the gradient is employed for each iteration or not; deterministic
or stochastic methods depending on the inclusion of random
variables during the procedure; and individual or population
approaches, depending on the number of search points employed
during each iteration. In order to test the application of
optimization methods for the control of large-scale programmable
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PICs, we employ first a performance estimator based on an
induction method29. This allows us, in further sections, to
introduce nonideal effects and to perform a progressive analysis.
In addition, some of the results are experimentally verified with a
real waveguide mesh PIC in the final section. See “Methods”, and
Supplementary Note 1 and 4 for more details.

Self-configuration of all-cross function aims to configure every
phase actuator so that all TBUs in the waveguide mesh are in
cross-state. This function is particularly interesting for both
calibration and characterization, as well as for setting an optimized
initial point for some of the optimization methods described in
this work and enhance their convergence. The cost function is just
an example of a broad range of applications involving arbitrary
routing of the optical signals between the optical ports.

In this example, illustrated in Fig. 3, the optical channels are
described by the following port pairs: 12–23, 14–21, 10–1, 8–3,
13–6, 15–4, 17–2, 19–24, and 11–16, 9–18, 7–20, 5–22. Note that
the last set of four pairs of ports is redundant and could be
deleted from the cost function, as they do not incorporate
additional TBUs. The new cost function is described as a
weighted sum as in Eq. (1), with the following coefficient and
feature definition. (See Supplementary Note 6 for a full parameter
description and definitions):

CFallcross1 ¼
c1 ¼ �1;

f1 ¼ 1
N

Pchs:
1

log Hchs:j jð Þð Þ;

8<
: ð2Þ

where N is the number of optical channels incorporated in the
optimization process and |Hchs.|, the maximum absolute value of

the intensity of the electrical field measured for each optical
channel listed before. To perform a qualitative analysis of the
achieved performance, we monitor and define the output feature
1 as the average power transmission response in the targeted
optical channels defining the all-cross operation. It is expressed in
logarithmic units.

We performed the self-configuration process based on an
evolutionary genetic algorithm (GA), a particle swarm optimiza-
tion (PSO), and gradient descent with momentum. For each case,
we performed a grid search with all the hyperparameters involved
in the optimization to demonstrate their impact on the efficiency
of the configuration process (see “Methods” and Supplementary
Note 6). The sensitivity to the hyperparameters selection that
configure the algorithms is mitigated through the use of
adaptative values allowing the scheduling of the exploration and
exploitation capabilities of the self-configuration task. It results in
a robust statistical behavior, once we are close to the optimal set
of hyperparameters that configure the algorithm. As shown in
Fig. 3, we repeated 100 times the self-configuration routine and
obtained an average error better than 3-dB in the 95% and 76.66%
of cases for the GA and the PSO, respectively, in <3000 and 4000
operations. The PSO hyperparameters configuration included an
adaptative inertia from 0.9 to 0.35, 108 particles, cognitive 0.7,
and social 1.8. The GA employed a population of 144 particles,
where the 20% mating and a 50% muting. A decay is scheduled
for the muting weight. Finally, we performed a gradient descent
with momentum approach, revealing that in the best case, it is
possible to complete the task in 750 operations with a learning
rate of 50 and a momentum coefficient of 0.5. A similar
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Fig. 3 Numerical results for the self-configuring of an all-cross function in a 36 TB hexagonal waveguide mesh. Note that the process involves using
computational optimization methods and no prior structure testing or calibration is employed. a Labeled schematic of the waveguide mesh arrangement
under test with both TBU (black) and port (red) labels. b Black box system with the targeted performance, where the system performs an optical routing
between channels defined by the port pairs 12–23, 14–21, 10–1, 8–3, 13–6, 15–4, 17–2, 19–24, and 11–16, 9–18, 7–20, 5–22. Note: they represent direct
connections without crossings or splitting. All-cross function statistical results for fixed hyperparameter selection with c–f genetic algorithm and g–j
particle swarm optimization for CFall-cross1. From left to right: c, g spectral response versus wavelength normalized to the basic unit delay (BUD)25,
d, h evolution of the average (solid), maximum and minimum (dotted), and standard deviation (shaded) cost function, and e, i output feature(OF) and
f, j histogram of the last operation (OF1: average of normalized output channels power of the beamsplitters, the datasheet is composed of 100 independent
experiments with different arbitrary waveguide mesh initial conditions.
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application example, the 1 × 8 optical beamsplitter is covered in
the Supplementary Note 6.

Self-configuration of optical filters function enables program-
ming the waveguide mesh arrangement to suppress a given
spectral band while maintaining the minimum losses in the
passband. Self-configuration automatizes this process and
involves the selection between thousands of parameters, dealing
with the mitigation of nonideal effects like optical crosstalk,
tuning crosstalk, providing power consumption and reducing the
hardware resources (TBUs) to perform the targeted function, and
the optical losses. For the definition of the cost function, it is
possible to consider many features, such as the insertion loss of
the passband, the extinction ratio of the filter, the roll off, the
optical power at the nontargeted ports, etc. In addition, one can
define the targeted spectral mask of the filter and define a cost
function feature considering the error between the obtained trace
and the mask at each iteration. In this example, we show the self-
reconfiguration capability employing only the mean square error
in the spectral mask, although multiple objectives could be added
to the cost function:

CFO:Filter1 ¼
c1 ¼ 1;

f1 ¼ 1
Nλ

P�
λ

Mλ � 20 log10 S4;1 λð Þ�� ��� �� �2
;

8<
: ð3Þ

where Nλ is the number of wavelength points, Mλ is the value of
the spectral mask at each wavelength point, and S4,1 is the value of
the scattering matrix at the optical channel defined by ports 4 and
1 at a given wavelength. Note that this operation is equivalent to
the average of the distance between the mask and the measured
trace. See Fig. 3 for the location of the ports. To demonstrate the
performance of the self-configuration method, we defined a set of
different spectral maks (see Fig. 4).

To compare between methods and cost functions, we analyzed
also the evolution of two output features that account for the
insertion loss in the passband (OF1) and the extinction ratio of
the filter (OF2). We tested three approaches based on GA, PSO,
and gradient descent with momentum. For each approach, we
tested the sensitivity of the hyperparameters configuring the
algorithms employing, for all cases, a grid search for the
hyperparameters of a mask describing a 2-BUL interferometric
free spectral range (FSR), illustrated in Fig. 4a–d. The GA–PSO
approaches provide good hyperparameter combinations for
convergence, whereas the gradient descent approach offered less
and sometimes nonexistent convergence success. For the GA and
PSO, the use of adaptative rates (mainly for mutation and inertia,
respectively) provides better results in terms of convergence to an
optimum configuration and shows less sensitivity to their
selection. (See Supplementary Note 7 for extended results). In
particular, we illustrate the behavior of a PSO based self-
configuration maintaining a fix set of hyperparameters (adapta-
tive linear inertia: 0.9–0.35 in 1000 iterations, cognitive: 0.7,
social: 1.8). The figure plots different spectral masks, the average
spectral response, standard deviation, and approximated 95%
confidence interval, assuming gaussian distributions after 4000
operations. Results demonstrate that the self-configuring routine
tunes the phase actuators to achieve the targeted mask
successfully, thus creating the required interferometric patterns
in the waveguide mesh arrangement. A broad range of filters with
FSRs comprising of different TBU numbers have been considered
in the trials. Also, a wide range of passband and stopband
bandwidths, and extinction ratios are tested. We observed that
some of the structures require a larger-scale mesh arrangement to
provide the targeted higher-order filter masks, although the
obtained results are by themselves remarkable (see Fig. 4e–x).

Self-configuration managing nonideal components: self-
configuration in the presence of dynamic tuning crosstalk
increases the complexity of the task due to the undesired thermal
coupling between the phase actuators. To test the behavior of the
proposed methods, we performed two statistical tests, with and
without the presence of thermal crosstalk. In the latter, we loaded
the performance model29 with a severe crosstalk matrix, where
the crosstalk coefficients are obtained from a uniform distribution
from 0 to 5% (see “Methods”). As shown in Fig. 4y–bb, the self-
configuration routine considers the dynamic tuning crosstalk
effect during the optimization procedure, thus obtaining the
targeted spectral shape. We ran a second example with a different
spectral mask and crosstalk from a uniform distribution up to
10%. Results are plotted in Fig. 4cc–ff. These scenarios are by far,
more challenging than the ones experienced by a real system,
where the crosstalk ranges from 2 to 3% and is decreasing as a
function of the distance17,30,31. These results open the path for
employing waveguide mesh arrangements with much higher
integration density, reducing the distance between components22.
See Supplementary Note 7, for extended results.

Self-configuration also enables fault-tolerant and self-healing
circuits. While fabrication and component yields can completely
discard a whole die in application-specific PICs, waveguide mesh
arrangements offer potential fault-tolerant and self-healing
capabilities. This advantage comes from the repetition, inter-
connection and cooperation of simple components in the mesh
that enable the use of alternative circuit paths, when some parts of
the circuit are damaged. To illustrate a demonstration example,
we configured a filter specified by the spectral mask, appearing in
Fig. 4gg–jj, where we decreased the performance of TBUs with a
high probability of use (A6, B6, and C6, see Fig. 3a) by imposing
30 dB insertion loss to each one. After running the statistical test,
the self-configuration process is able to provide an alternative
layout in the available mesh space and maintain, most notably,
the demanded response (for extended results, see Supplementary
Note 7).

A final experiment, illustrated in Fig. 4kk–nn, demonstrated
the ability of the self-configuration algorithm to program
simultaneously two circuits. It employed two spectral masks with
different characteristics and considered ports 1–4 (blue) and ports
23–21 (red). This result opens the path for the automated
configuration of multitasking operations in multipurpose
programmable PICs.

Experimental demonstration of self-configuration methods.
Finally, as illustrated in Fig. 5, we programmed several inter-
ferometric circuits experimentally in the 30-TBU waveguide mesh
using PSO algorithm, following the same methodology and cost
function as in the simulated examples. The spectral masks were
obtained using previously obtained current presets. We limited
the number of variables to be optimized to 13, as it was the
number of current sources available for the experiment. In <416
operations, the algorithm returns the targeted spectral mask with
average MSE errors of 0.542, 0.702, and 4.139 for configs. 1, 2,
and 3, respectively. For additional details of the experimental
setup, see Supplementary Note 8. For additional configurations,
details of the architecture, optimization methods, and extended
results, see Supplementary Note 9.

Discussion
Most reported state-of-the-art reconfigurable photonic circuits
are configured manually or in a semiautomated manner by means
of open-loop control, utilizing look-up tables that includes the
pre-characterization of each tuning element and inter-element
crosstalk17,32–36. Although a significant number of proof-of-
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concepts and standalone components have been demonstrated,
this approach does not scale efficiently with the number of tuning
elements in complex large-scale circuits, including hundreds or
thousands of components and actuators. These circuits demand
both a dedicated control system and a software layer to automate
their configurations for two reasons. First, the complexity of the
targeted operations and nonideal components would lead to
configurations that cannot be predicted in terms of pre-

characterized data or human experience. Secondly, agile pro-
grammable systems require a fast and reliable feedback
mechanism to exploit their reconfiguration capabilities.

The former is only one of the many challenges to address in
developing large-scale programmable photonic circuits. Limita-
tions connected to fabrication defects, design deviations, passive
parasitic effects, power consumption, thermal crosstalk, and
robustness of phase shifters must be considered, in conjunction
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with others connected to reconfiguration speed and enhanced
convergence of automated functions. Due to space restrictions, we
specifically cover these in Supplementary Note 10. In addition, a
significant challenge resides in the efficient management of con-
trol circuit complexity, the interfacing of a large number of
electronic signals and the associated large number of variables
and equations to be solved. Although different in application,
recent published chips with similar requirements integrate a great
number of optical power monitors and phase shifters. For
example, two recent demonstrations integrate 900 optical power
monitors and 448 phase shifters37 and 1024 phase shifters38,
respectively, in footprints <300 mm2.

Equally important is the correct management of the complexity
of optimization algorithms and circuit programming. Proposals
have been reported to program PICs targeting specific applica-
tions. Examples of this include the configuration of multiport
interferometers based on the individual control of tunable cou-
plers and switches12,39,40, automated path scheduling and
assessment of a complex wavelength-and-space-switch circuit41,
automated bank filters42–46, reconfigurable all-pass filters47 and

beamforming networks48. Large-scale and very large-scale PICs
will find it difficult to rely on local feedback loops for controlling
each tunable unit due to the excessive overhead caused by
monitors and electronic access tracks.

The methods reported in this paper open a new direction toward
an automated and reliable programming of complex multipurpose
PICs. The best of two worlds can be exploited combining customized
routines requiring data from automated pre-characterization routines
and configuration strategies based on computational optimization
methods. The first set provides a fast configuration response but does
not solve tuning-based crosstalk problem, which is exacerbated in
large-scale high-density circuits. In addition, the self-characterization
routine needs to be applied periodically in order to compensate
environmental variations. The second set combines creation of
configuration-specific cost function definitions and optimization
routines to self-configure complex circuits. Although we have
provided a first demonstration of self-configuration functionality,
results can be improved in terms of convergence speed. Further
research is required to identify solutions incorporating more
advanced optimization routines, cost function tailoring, and

Fig. 4 Examples of statistical results for the self-configuration performance evolution of optical filter programming. The process employs different
spectral masks using particle swarm optimization algorithm with fixed hyperparameter selection—inertia lineal from 0.9 to 0.35 in 1000 operations—and
cognitive: 0.7, and social 1.8 and 108 particles—employing the cost function defined in Eq. (3), CFO.Filter1 and ports 1–4 represented in Fig. 3. a–x For each
four-plot image group, we evaluate from left to right: (1) self-configuration of different spectral masks (squares) without tuning crosstalk and with
nonuniform loss, representing the spectral response (solid) with wavelength normalized to unit cell delay, (2) the evolution of the average (solid), maximum
and minimum (dotted), and standard deviation (shaded) cost function, and (3) output feature (OF) values. OF1: insertion loss of the passband (dB), OF2:
extinction ratio (dB). Each datasheet is composed of 30 independent experiments with different waveguide mesh initial conditions. Note that each example
request different periodicity and shapes, y–bb self-configuration of different spectral masks (squares) and evolution of the performance with nonuniform unit
cell loss and tuning cross talk up to 5%, cc–ff self-configuration of different spectral masks (squares) and evolution of the performance with nonuniform unit
cell loss and tuning cross talk up to 10%, gg–jj self-configuration of different spectral masks (squares) and evolution of the performance with nonuniform
unit cell loss and “damaged” unit cells A6, B6, and C6 (see Fig. 3 for reference), kk–nn self-configuration of two spectral masks simultaneously employing
ports 1–4 (blue) and ports 23–21 (red). Spectral resonses (solid) versus wavelength is always normalized to the basic unit delay (BUD).
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Fig. 5 Experimental realizations of several interferometric circuits in a waveguide mesh using particle swarm optimization algorithm. a Labeled
schematic of the electrically driven units for a targeted 2-Tunable Basic Unit (TBU) imbalanced Mach–Zehnder interferometer (MZI) and evolution of the
spectral traces employing 101 points for a set of selected operations. b Labeled schematic of the electrically driven units, for a targeted 6-TBU optical ring
resonator (ORR) response and evolution of the spectral traces employing 301 points for a set of selected operations. c Labeled schematic of the electrically
driven units, for a targeted 10-TBU ORR and evolution of the spectral traces employing 501 points for a set of selected operations. The average MSE
obtained for each of these configurations after the end of the process were of 0.542, 0.702, and 4.139, with ER of around 25 dB for the 2-TBU MZI and the
6-TBU ORR, and 20 dB for the 10-TBU ORR. The overall number of operations in each experiment was of 1612 for a and b, and 1840 for c.
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combination and scheduling of exploratory and local search
methods, and machine-learning techniques21. Finally, the inclusion
of multi-objective figure of merit opens the door to programming
protocols embracing targeted performance, as well as additional
features, such as power consumption and savings in the use-of-
components. These can be optimized with multi-objective opti-
mizers49. Regarding the configuration speed, an operation cycle is
mainly limited by the time required to measure the desired portion
of the scattering matrix. If this time is ~100ms for 21 elements of
the scattering matrix, a full reconfiguration process of 3000
operations would last ~5min. These metrics can be improved
enhancing the convergence and by combining both proposed
configuration approaches to reduce the number of variables during
the optimization process. Further details in this are in Supple-
mentary Note 10. In this respect, the self-healing, fault-tolerant
attributes of the reported work are expected to impact the meth-
odology leading to the design and interaction with high integration
density flexible and versatile multipurpose programmable PICs.

All in all, advances in photonic integration technologies,
encapsulation, and novel designs and architectures pave the way
for the development of a new class of multipurpose program-
mable PICs. Including hundreds or thousands phase actuators
over a massively coupled arrangement of waveguides, these cir-
cuits potentially provide a flexible hardware framework to per-
form multiple and versatile applications. However, the absence of
effective control and programming strategies limited the scal-
ability of current demonstrations. In this work, we presented a
control architecture and a set of control strategies to perform
fault-tolerant self-configuration of the circuit to perform a tar-
geted task. These algorithms are divided by configuration meth-
ods requiring pre-characterization routines, also presented, and
advanced optimization methods that not only avoid this
requirement but also overcome the presence of nonideal com-
ponents with nonhomogeneous loss distribution, power con-
sumptions, phase offsets, optical crosstalk, and tuning crosstalk.
We proposed and developed the use of self-configuration routines
based on stochastic population-based methods, such as GAs PSO
for three applications, an all-cross router, a beamsplitter, and an
optical filter configured for a wide variety of spectral masks. By
combining computational optimization and photonics, this work
makes important step toward a new paradigm in photonic inte-
gration: programmable photonics.

Methods
Architecture, variable space, and cost function definitions. The self-
configuration algorithms proposed in this paper rely on the application and cus-
tomization of optimization routines employed in a wide range of application fields.
Optimization deals with the task of finding the optimal values for the variables of a
system to maximize or minimize its output. An ideal optimizer should avoid
stacking in local optima and explore efficiently the variable’s space to find the
global optimum point, as well as converge efficiently when this is found.

In most of the applications and algorithms demonstrated in this paper, the
system to be optimized is the general-purpose PIC. We consider the PIC as a black
box whose response is given by the full scattering matrix of the circuit. The
scattering matrix contains the spectral response of every optical port combination.
Although a real system contains amplitude and phase response, we employ the
overall amplitude response in our current methods. The overall system is modified
through the application of a set of electrical signals that modify the optical
properties locally in the circuit. This set of variables is defined by the vector v.
When dealing with a real system, this vector can represent the electrical signal
feeding each phase actuator or photonic actuator in general, whereas we employ
phase shifts for the performance estimator that includes a model of the nonideal
performance of every component29.

In this work, we apply both stochastic and derivative optimization techniques.
In all cases, the optical system response is given by the settings applied to each
phase actuator (v), the initial hardware conditions such as nonuniform loss
distributions per TBU in the system, as well as the passive conditions (Cp). These
nonideal effects coming from fabrication deviations of the waveguide geometry and
environmental conditions modify the system performance, are considered to be
unknown and random, and are selected from a normal distribution of mean 0.15

dB and std of 0.05 dB, and from a normal distribution between 0 and 2л,
respectively, unless otherwise specified. For each wavelength, we obtain the
scattering matrix of the circuit that represents the optical response for every input
and output port combination as So,i.
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With the scattering matrix information, or a portion of it, we compute the cost
function that is dependent of the application to be optimized. A process of cost
function engineering requires the search of a function that is minimized when the
targeted application is achieved. Once the cost function is computed, the
optimization algorithm computes the next vector of variables for the driving
system. Thus, the optimizers deal with finding the optimum values for the
individual phase actuators in the circuit to minimize a cost function and get the
desired response of the optical processor, even in the presence of nonideal
conditions. The full cycle of driving, and monitoring is defined as an operation
along this paper. The self-configuration algorithms proposed require the
computation of a certain number of operations per iteration, so we rescale to
number of operations to compare their performance (for additional details see
Supplementary Note 1).

Understanding, simulating, and modeling thermal crosstalk: when tuning one
phase actuator, for example a thermo-optic actuator, the physical effect causing the
tuning in the desired waveguide can spread to the neighboring waveguides
producing an undesired tuning effect. In the worst cases, even at distances >10 mm
the tuning crosstalk effect can be appreciated17,50. The tuning crosstalk can be
modeled by a constant that reflects the percentage of phase shift occurred in the
nontargeted waveguide compared to the one experienced by the targeted
waveguide. Simulations and experimental works result in a crosstalk coefficient
between 1 and 3% at several hundreds of micrometers30,31. If extended to a system
with multiple phase shifters, this effect can be modeled by a system of equations
relating the effective phase shifts with the phase shifts set by the algorithm or the
user.

Δϕeffective ¼

1 CT12 � � � � � � CT1N

CT21 1 CT2N

CT31 1 ..
.

..

. . .
.

CT1N�1

CTN1 CTN2 � � � � � � 1

0
BBBBBBBB@

1
CCCCCCCCA

Δϕ1
Δϕ2

..

.

ΔϕN

0
BBBBBBB@

1
CCCCCCCA
: ð5Þ

Computational optimization methods. Genetic algorithm, also known as evolu-
tionary algorithms, resemble natural selection and reproduction processes gov-
erned by rules that assure the survival of the fittest individuals in large populations.
Individuals (points) are associated with identity genes that define a fitness measure
(objective function value). A set of individuals form a population, which adapts and
mutates following probabilistic rules that utilize the fitness function. In this case,
our individuals are defined by v. For each generation, we select a percentage of the
population that achieves the lowest cost function for matting between them and
apply a mutation value that will decrease exponentially over each generation. In
general, is classified as a global-search algorithm.

Particle swarm algorithm is a population-based algorithm that maintains at each
iteration a swarm of particles (set of points) with a velocity vector associated with
each particle. At each iteration, it generates a new set of particles from the previous
swarm combining random and inherited parameters (inertia, cognition, and
social). It is typically classified as a global-search algorithm.

Both of them are nonderivative methods. For additional details and derivative
methods included, see Supplementary Note 4.

Data availability
All data are available from the corresponding author upon reasonable request.

Code availability
All codes are available from the corresponding author upon reasonable request.
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