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Abstract: Achieving sustainability is currently one of the main objectives, so a consensus between
different environmental, social, and economic aspects is necessary. The construction sector is one
of the main sectors responsible for environmental impacts worldwide. This paper proposes the life
cycle assessment (LCA) and comparison of four bridge deck alternatives for different span lengths to
determine which ones are the most sustainable solutions. The ReCiPe method is used to conduct the
life cycle analysis, by means of which the impact value is obtained for every alternative and span
length. The Ecoinvent 3.3 database has been used. The life cycle has been divided into four phases:
manufacturing, construction, use and maintenance, and end of life. The associated uncertainties are
considered, and the results are shown in both midpoint and endpoint approaches. The results of our
research show that for span lengths less than 17 m, the best alternative is the prestressed concrete
solid slab. For span lengths between 17 and 25 m, since the box-girder solution is not used, then the
prestressed concrete lightened slab is the best alternative. For span lengths between 25 and 40 m, the
best solution depends on the percentage of recycled structural steel. If this percentage is greater than
90%, then the best alternative is the composite box-girder bridge deck. However, if the percentage is
lower, the cleanest alternative is the prestressed concrete box-girder deck. Therefore, the results show
the importance of recycling and reusing structural steel in bridge deck designs.

Keywords: life cycle assessment; sustainability; structures; ReCiPe; environment; bridges

1. Introduction

Over the last few years, awareness of the consequences of the consumption of raw
materials and the emissions of various processes has risen. Society has realized that if
we continue with the uncontrolled consumption of resources, our current actions will
compromise the future of the planet. For this reason, the sustainable development concept
appeared, a term that was introduced in 1987 by the Brundtland Commission, defining
it as “development that meets the needs of the present without compromising the ability of future
generations to meet their own needs” [1]. Since then, a significant effort has been invested to
achieve cleaner production processes for known materials and the development of new
materials with the same characteristics but fewer contaminants.

Construction is one of the most carbon-intensive industries [2,3], and in terms of CO2
emissions, its cement requirements alone produce 5% of the total emissions [4]. Further-
more, construction contributes to environmental pollution [5]. This negative contribution
is mainly produced by cement and concrete production [4,6]. The impact of these activities
is produced by their energy consumption, and in the construction sector, concrete is one
of the most important materials used in buildings. Due to this circumstance, concrete
consumption, and therefore the associated pollution, will increase over the next years [7].
Because of this, human activities must be optimized in terms of material consumption and
emissions to ensure more sustainable processes that will not compromise the environment
as much.
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Due to the importance of achieving this objective, many researchers have been study-
ing current construction processes in order to improve and optimize their sustainability.
Researchers have studied the emissions produced by concrete projects [8–10] or construc-
tion procedures [11–13]. Other studies have focused on the optimization of concrete
structures such as prestressed bridges [14,15] and earth-retaining walls [16–19]. Other
researchers have studied CO2 fixation by carbonation processes and their influence on the
emissions [20,21] and the concrete recycling ratio [22–24].

However, to study the environmental impact, life cycle analysis (LCA) is performed.
This is a powerful and versatile method capable of evaluating any type of construction
or process [25] or the materials used therein [26–28], from concrete and earth retaining
walls [29,30] to optimal bridge decks [31], house structures [32], and facades [33,34]. How-
ever, some reviews state that there is a lack of LCA in steel–concrete composite bridges [35].

The aim of this study is to carry out analyses of the life cycle of four bridges: pre-
stressed concrete solid slab (PCSS), prestressed concrete lightened slab (PCLS), prestressed
concrete box-girder (PCBG), and steel–concrete composite box-girder (CBG). The aim is to
determine which of them, depending on the span length, has the lowest environmental
impact [22,23,36]. Additionally, a sensitivity analysis is carried out to evaluate the impact
of the life cycle of a composite bridge depending on its steel recycling ratio in order to
study the feasibility of this structural type compared to concrete alternatives. This allows
us to provide a broader approach and to make a comparison of the amount of recycled
steel that has been used in the manufacturing processes. Steel manufacturing comprises
two main production methods: basic oxygen furnace (BOF) and electric arc furnace (EAF).
In both processes, iron is combined with steel scrap, which is the product that is obtained
by the steel recycling process. In EAF production, the percentage of steel scrap (recycled
steel) used is between 90 and 100%, while in the BOF production process, the percentage
of steel scrap (recycled steel) is reduced to 10–30% [37]. The rates of BOF and EAF and,
in consequence, the rate of recycled steel used for steelmaking depend largely on the
technological development of countries. Therefore, this makes this study useful not only
for countries with a high technological development in the steelmaking process but also
for other countries where steel contains a smaller amount of recycled raw material.

2. Materials and Methods

The life cycle analysis (LCA) method consists of obtaining the environmental impact
of an activity, evaluating the potential contribution of the processes that make up that
product. These processes together encompass all the activities required to complete the
main product. The procedures begin by obtaining the raw material and end with the
waste management. The LCA of the bridge decks has been carried out according to ISO
14040:2006 [38]. It comprises four phases to obtain the assessment: definition of goal
and scope, inventory analysis, impact assessment, and interpretation of the results. The
life cycle impact assessment (LCIA) that has been chosen for this research is the ReCiPe
2008 method [39]. The database used to obtain the environmental impact information is
Ecoinvent v3.3.

2.1. Goal and Scope Definition

The main goal of this research is to compare, from the environmental point of view,
four different bridge deck types. The structural system selected is a continuous beam, and
the analyses have been carried out on six span lengths: 15, 20, 25, 30, 35, and 40 m. The
purpose of this research is to compare different deck types with different span lengths to
evaluate the differences between them, and the LCA method makes it possible to obtain a
quantitative assessment of the different solutions proposed. Pang et al. [40] affirm that there
are three main reasons for performing an LCA analysis on bridges: comparison of different
alternatives, comparison of different bridge component alternatives, and comparison
of new material with conventional material. To compare different bridge alternatives,
these have to be similar in terms of load capacities, deck dimensions, and span if all the
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alternatives are in the same geographical area. If they are not, then it is necessary to take
into account other conditions such as the geotechnical information of the ground, the
seismicity of the building location, and the corrosion capacity of the environment, among
others. In this study, the same location has been considered for all the alternatives.

2.1.1. Bridge Deck Type Selection

Bridges are very important infrastructures that allow society to avoid obstacles and
enable users to close the gap between two points. Furthermore, these structures have a
direct impact on society in terms of their economic, social, and environmental role. For
beam bridges, the most important part is the deck, because it has to resist the stresses
produced by the traffic loads. The deck type depends on different conditionings: functional,
constructive, economic, and environmental, among others. In this paper, four deck types
have been compared: prestressed concrete solid slab (PCSS), prestressed concrete lightened
slab (PCLS), prestressed concrete box-girder (PCBG), and composite box-girder (CBG).
Figure 1 presents a sketch of each of the alternatives.

PCSS PCLS

PCBG

CBG

Figure 1. Bridge deck cross sections.

The use of these decks depends on the span length. On the one hand, continuous slab
depth decks are used for lengths between 5 and 50 m, but the usual range of application is
from 15 to 35 m. However, the box-girder bridges have lengths between 25 and 125 m, and
the most used range is 35–80 m. In box-girder bridges, two main materials are used to form
the resistant section of the bridge: concrete, which can be reinforced or prestressed, and steel.
The choice of material may depend on various factors, including the environment to which
the structure is exposed, the road alignment, and geotechnical constraints, among others.

Slab bridges are usually used for shorter distances, because for greater lengths, the
amounts of concrete, passive reinforcing steel (PRS), and active reinforcing steel (ARS)
increase to a large extent, which translates into a higher cost, which is even more acute in
PCSS. On the other hand, box-girder bridges can be used for greater lengths due to the ease
of increasing their bridge deck depth, taking advantage of the mechanical arm increase and
making the most of the mechanical characteristics of the materials. This study focuses on
the comparison of these four bridge deck types with span lengths from 15 to 40 m, assessing
them from the environmental point of view. This selection of alternatives comprises two
slab and two box-girder decks, providing a wide range of choice and an estimation of the
environmental cost of the structures for structural engineers and designers, depending on
the dimensions of the structure.
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2.1.2. Phases of the Analysis

Four stages are defined to assess the bridge’s life cycle. To carry out the complete
analysis of the structure, the processes that encompass all the activities should be consid-
ered, starting with the design, going through the manufacturing and the construction of
the structure, and finally, the demolition and collection of the used materials. To consider
all these activities, the life cycle of the structure is divided into four phases: manufacturing,
construction, use and maintenance, and end of life, depending on the moment at which
every activity is carried out. In this paper we have focused on PCSS, PCLS, PCBG, and CBG
deck types, but it could be used for all bridge deck types by making minor modifications.

Manufacturing

The manufacturing stage includes all activities needed to produce the materials that
will be used for the resistant section, since the raw materials are extracted to be ready for
use in the construction phase. The most widely used materials in bridge structures are
concrete and steel. Databases usually refer to products that allow for the modeling of these
materials, but it is possible to create a new product with real manufacturing processes and
distances or in the case of concrete, with different dosages. The general processes to obtain
one cubic meter of concrete and one kilogram of steel are shown in Figure 2.

The concrete matrix is created from different components that allow the quantity of
each product that forms the concrete matrix to be controlled. Furthermore, it permits the
control of the distance that every raw material is transported to the concrete manufacturing
factory, allowing the study to be more specific, depending on the location where the
concrete is created. Once all the materials of the concrete matrix are brought together, to
simulate the concrete mixing, another process is created, including the concrete matrix
along with the energy, the mixing factory, or other activities that are needed to create one
cubic meter of the final concrete product.

To produce a cubic meter of concrete, the mass of the final product and the wastes
produced in the process must be considered. Marceau et al. [41] concluded that for the
production of one cubic meter of concrete, the solid waste is 24.5 kg and the wastewater
is 0.0348 m3, the solid waste being small amounts of concrete. The real amount of each
material that forms the concrete matrix can be calculated in Equations (1)–(5) [31].

Total solid = Cement + Gravel + Sand (1)

Primary cement = Cement +
(

Cement
Totalsolid

)
·Waste concrete (2)

Primary gravel = Gravel +
(

Gravel
Totalsolid

)
·Waste concrete (3)

Primary sand = Sand +

(
Sand

Totalsolid

)
·Waste concrete (4)

Primary water = Water + Wastewater (5)

Steel manufacturing comprises two main production methods: basic oxygen furnace
(BOF) and electric arc furnace (EAF). In both processes, iron is combined with steel scrap,
which is the product that is obtained by the steel recycling process. In EAF production, the
percentage of steel scrap (recycled steel) used is between 90 and 100%, while in the BOF
production process, the percentage of steel scrap (recycled steel) is reduced to 10–30% [37].
The use of steel scrap has a direct relation with the environmental impact, and for this
reason, the EAF and BOF have very different impacts. The ratio of steel scrap used for
BOF and EAF production is known, so by controlling the EAF and BOF ratio to produce
a kilogram of steel, the quantity of recycled steel for each steel product can be controlled
in the manufacturing processes. The BOF and EAF waste production is considered in the
product manufacturing part of the database.
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Figure 2. Concrete and steel manufacturing processes.

The steel recycling ratio is especially important for steel and steel–concrete composite
bridges. Because of the great amounts of steel used in their construction, slight variations in
the steel recycling ratio produce great differences in the environmental impact of the bridge,
as it is produced in general with a great amount of steel. From this point of view, it is
important to distinguish between structural and rebar steel, as the USA steel recycling ratio
for rebar steel is 71%, while the structural steel recycling ratio is 98% [42]. The difference
between the recycling ratios of these two types of steel is occasioned by the difficulty of
separating rebar steel from the concrete, because of which the recycling ratio for rebar steel
is lower. Furthermore, the separation between the EAF and BOF steel production processes
allows the specific steel recycling ratio of the study area to be introduced [29].

Construction

The construction phase includes all the activities that are necessary to build the bridge,
considering the machinery, depending on the chosen construction method and the location
of the structure. The construction method must be defined at this stage. At this stage, the
formwork, scaffolding, vibrators, and concrete pouring must be considered. In addition, for
steel and steel–concrete composite bridges, the processes of welding the different parts that
have not been considered in the manufacturing phase must be introduced. The construction
method is introduced in the LCA model through the diesel consumption of the machinery
obtained from the manufacturer’s data, the literature, or other databases.

Use and Maintenance

The use and maintenance stage contains all the activities that will be needed through-
out the life of the structure. These activities can be classified into three different categories:
maintenance activities, CO2 fixation, and traffic detour. To carry out the different mainte-
nance activities, the partial or total closure of the bridge may be necessary. If closure of
the bridge is necessary, it implies that the vehicles will need to take an alternative route to
reach their destination. This increase of the distance is translated into an increment of the
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environmental impact. The traffic detour impact is affected by different factors such as the
location of the structure, the ratio of heavy vehicles, and the detour distance.

Authors have two different options to handle the maintenance stage. On the one
hand, researchers assess the maintenance operations through a literature review to consider
these operations [22,23,43]. On the other hand, different possible scenarios have been
considered to analyze which one has the lowest environmental impact [40]. If the closure
of the bridge is necessary for the maintenance activities, and their duration is defined, then
this activity will be considered by introducing the processes that simulate those activities.
These processes depend on the material used in the design of the bridge. The maintenance
of steel bridges depends on the type of steel; if the steel is resistant to corrosion, this
operation will be irrelevant, but if the steel needs to be treated for corrosion, this treatment
will be repeated along the bridge life. For concrete bridges, these operations include the
demolition of the external layer and their replacement with a reparation mortar. All these
operations are considered by introducing the materials necessary for the repair, the diesel
consumption of the machinery, and the emissions produced by the traffic detour if it occurs.

On the other hand, studies have concluded that concrete can fix CO2 through car-
bonation [8,20,44]. Carbonation is one of the principal damage mechanisms of reinforced
concrete bridges, and it is determined by three main factors [21]: the w/b ratio, the con-
centration of CO2 in the surrounding air, the specific climate conditions, and the depth
of embedded steel. Carbonation damages the concrete structure, but if we focus on
the environmental impact, carbonation reduces the structure’s environmental impact.
Lagerblad et al. [45] studied the CO2 fixed by carbonation during the life-cycle based on
Fick’s first law. Equation 6 allows the fixed CO2 to be calculated, in which k is the car-
bonation coefficient, t is the service life, A is the exposed area of concrete, r is the ratio of
CaO that is going to become carbonated, C is the content of cement in one cubic meter of
concrete, k is the content of clinker in the cement, L is the content of CaO in the clinker,
and ε is the molecular weight ratio of CO2/CaO. This equation is simplified grouping the
constants. Lagerblad et al. [45] consider that r takes the value of 0.75 and L of 0.65 and
assume that ε takes the value of 0.7857. Clearing out the equation with these constants, the
expression changes to (7). García-Segura et al. [21] state that concrete structures can fix
CO2 along their service life.

CO2 f ixed (kg) =
k
(

mm√
year

)
·
√

t(year)

1000
· A(m2) · r · C

(
kg
m3

)
· k(%) · L(%) · ε (6)

CO2 f ixed (kg) = 0.383 ·
k
(

mm√
year

)
·
√

t(year)

1000
· A(m2) · C

(
kg
m3

)
· k(%) (7)

End of Life

The end of life stage includes all the activities related to the dismantling of the structure,
i.e., with the processes that occur when the life of the structure has ended. The principal
processes involved in that stage of the bridge life are the machinery used to carry out
the demolition of the structure and the transport and the treatment of the generated
waste products. Consequently, it is necessary to define the distances between the building
location and the landfill or the waste treatment plants. There are three main possibilities
for the waste materials: to reuse them, to recycle them, or to dispose of them in a landfill,
depending on their characteristics. In this case study, and generally in bridges, the most
commonly used materials are concrete and steel, and depending on the needs of the society
of the region studied, there will be several possibilities for the waste treatment.

The steel recycling ratio has been studied by many researchers. Hammervold et al.
[43] considered a 100% steel recycling ratio, while other authors such as Du et al. [23] and
Hettinguer et al. [24] considered a lower value. Penadés-Plà et al. [46] considered the
Spanish average steel recycling ratio of 71%. Other authors use the average value of larger
areas of study. As you can see above, the steel recycling ratio depends on the location of
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the construction, and it is possible to refine the assessment of the steel used in the LCA
model by controlling the ratio.

The concrete case is different from steel, because it can be recycled and reused with
ease, especially in bridges. The Spanish concrete regulations recommend using at most 20%
of concrete recycled coarse aggregates to produce new concrete [47]. Different concrete
recycling ratios are considered [22–24]. As described before, the carbonation processes
of concrete are carried out. If all the concrete is crushed [21], the surface available to
perform the carbonation processes increases; therefore, the carbonation of the all concrete
volume can be produced. Lagerblad [45] states the coefficient for concrete carbonation
depending on concrete’s strength. In this study, two types of concrete have been used, with
30 and 40 MPa strengths. The carbonation coefficient (k) is 1.5 mm/year0.5, 4 mm/year0.5,
6 mm/year0.5, 0.75 mm/year0.5, and 1 mm/year0.5, depending on whether the concrete is
exposed, sheltered, indoors, wet, or buried, for 30 MPa concrete strength, and 1 mm/year0.5,
2.5 mm/year0.5, 3.5 mm/year0.5, 0.5 mm/year0.5, and 0.75 mm/year0.5 for 40 MPa concrete
strength. The crushed concrete aggregate is assumed to have a 10 mm diameter.

2.1.3. Functional Unit

The study has been realized considering a square meter as the functional unit to
enable the comparison of the different bridges. It is necessary to carry out a comparison
between bridges to consider other factors such as the geotechnical parameters of the soil,
seismic conditions, or contour restraints. If the location of the studied bridges is different,
then the impact can differ depending on the processes used in the manufacturing of the
materials. Another possibility is to consider the linear meter as the functional unit, as
Penadés-Plà et al. [46] did. To compare the linear meter with the square meter, the values
of the parameters must be divided by the deck width.

2.2. Inventory Analysis

The inventory analysis consists of the data collection of all the materials and energy
consumption that are needed to develop all the processes involved in the bridge life cycle;
in this case, all the values are referred to a square meter of bridge. These processes produce
an output in terms of emissions to the environment, and the consideration of the output of
every process together gives the environmental impact associated with the product that is
being assessed.

Software

The model has been developed with the OpenLCA software from GreenDelta. This
is an open source program that allows LCA applications to be performed, especially for
the scientific community [48]. Furthermore, this software allows the introduction of the
uncertainty attached to the processes previously imported from a database.

The database used to import the processes was Ecoinvent [49] in its version 3.3.
This database was selected for this study because of its scientific reliability and constant
updating [50].

2.3. Uncertainty

Uncertainty appears in LCA analyses due to the differences between the processes
that are implemented in the database and the real ones [51]. These differences are caused
by different factors, but the most important are the geographical location [52] and the
time period over which the data were collected. For instance, it is not the same producing
a kilogram of steel in Germany or in Spain, because the technology of the production
process or the distances between the quarry and the facilities differ, and the manufacturing
processes of steel in Spain in 2000 or in 2017 cannot be considered the same. These variations
of location and time will introduce uncertainty in the processes.

To accommodate this uncertainty, the pedigree matrix [53] has been used. This method
allows uncertainty factors to be introduced by means of five indicators: reliability, complete-
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ness, temporal correlation, geographical correlation, and further technological correlation.
In addition, a basic uncertainty factor will be considered depending on the nature of the
processes [49].

2.4. Bridge Deck Design

In Table 1, the quantity of materials per square meter has been provided. The amounts
of materials for the PCSS and PCLS bridge decks have been obtained from the study by
Yepes et al. [54]. The materials used to define the PCBG and CBG deck alternatives have
been obtained from the instruction “Obras de paso de nueva construcción” of the Spanish
Ministry of Public Works [55].

Table 1. Amount of materials per square meter of deck.

Unit 15 20 25 30 35 40

PCSS
Concrete HP-40 m³ 0.473 0.561 0.649 0.738 0.826 0.914
Reinforcement Steel kg 51.728 61.380 71.033 80.686 90.339 99.992
Prestressed Reinforcement Steel kg 9.223 17.133 25.043 32.953 40.863 48.773
Formwork m² 1.500 1.500 1.500 1.500 1.500 1.500
PCLS
Concrete HP-40 m³ 0.509 0.557 0.605 0.654 0.702 0.750
Reinforcement Steel kg 52.165 57.109 62.052 66.996 71.939 76.883
Prestressed Reinforcement Steel kg 5.069 10.914 16.759 22.604 28.449 34.294
Formwork m² 1.700 1.700 1.700 1.700 1.700 1.700
PCBG
Concrete HP-40 m³ 0.441 0.461 0.482 0.503 0.523 0.544
Reinforcement Steel kg 28.790 32.601 36.632 40.884 45.356 50.048
Prestressed Reinforcement Steel kg 3.042 4.917 6.792 8.667 10.542 12.417
Formwork m² 1.900 1.900 1.900 1.900 1.900 1.900
CBG
Concrete HA-30 m³ 0.220 0.230 0.240 0.250 0.261 0.272
Reinforcement Steel kg 20.976 22.250 23.603 25.037 26.559 28.173
Structural Steel kg 59.400 63.700 68.175 81.000 80.600 88.375
Shear Connector Steel kg 0.310 0.346 0.381 0.423 0.437 0.494
Formwork m² 1.000 1.000 1.000 1.000 1.000 1.000

Table 2 shows the dosage of 30 and 40 MPa strength concrete used for this study. The
PCSS, PCLS, and PCBG decks have been designed with HP-40 prestressed concrete, while
for the CBG bridge deck, HA-30 reinforced concrete has been considered. The biggest
difference in the use of materials is that in the CBG alternative, a steel–concrete composite
structure, the structural steel beam that supports the slab, is added.

Table 2. Concrete dosage considered for bridge decks.

Concrete

Material Unit HA-30 HP-40

Gravel kg 1110.00 829.00
Sand kg 730.00 1102.00
Cement kg 300.00 320.00
Water kg 201.00 160.00
Superplasticizer kg 0.27 5.00

2.4.1. Life Cycle Model Description

The life cycle model comprises four stages, the processes considered for the modeling
of the decks have been obtained mainly from the Ecoinvent database, and those that were
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not included there have been generated, such as some types of machinery that have been
modeled by their diesel consumption considering their operation times.

Manufacturing

In the production phase, all the processes to produce materials have been included. In
addition, the transport of the materials to the construction site has been considered, where
the distances between the facilities and the building location are 30 km for concrete and
150 km for both the structural and rebar steels. Two types of concrete have been introduced
depending on the deck type. Concrete of 30 MPa strength has been introduced directly
from the Ecoinvent database, while the 40 MPa strength concrete process has been created
as shown in Figure 2.

Steel production has been considered, creating two different steel production processes
to consider the differences between the steel recycling ratio of the rebar and the structural
steels. Ecoinvent’s BOF process considers 19% of steel scrap (recycled steel), while the EAF
process considers 100% of steel scrap. If the steel scrap amount is known, it is possible to
control the total steel recycling ratio for the rebar and the structural steels. For the former, a
71% steel recycling ratio has been considered, while for the structural steel, many different
recycling ratios have been determined to study their different impacts. Those ratios are
71% (CBG_71), 90% (CBG_90), and 98% (CBG_98). This varying of the steel recycling ratios
has been considered in order to reflect differences between countries reusing materials,
because in developing countries, policies that consider reuse are lower [56].

Furthermore, the CBG bridge deck needs to take into account the welding of the
steel sheets in the manufacturing process, so this has been introduced in the CBG model
considering the Ecoinvent database process.

Construction

Construction was considered to be in situ. The activities considered in this stage are
those related with concrete pouring and vibrating, the assembly of the different steel parts
of the CBG, and the handling of the active reinforcement steel. A concreting with no special
concrete curing requirements has been considered. The machinery is modeled introducing
the diesel consumption data, which have been obtained from the Bedec database [57]. The
diesel consumption is 123.42 MJ of energy per cubic meter of concrete and 10.2 MJ per kg
of active reinforcement steel. The CO2 emissions are 32.24 kg and 2.62 kg, respectively.

Use and Maintenance

For the use and maintenance phase, it has been considered that traffic detours are
not necessary to carry out the maintenance operations and that only the concrete needs to
be maintained because the steel that has been considered is a weathering steel that does
not need maintenance. The machinery for the maintenance was estimated considering
two different periods of maintenance. The machinery consumption contemplated in this
phase of the life cycle is 584.28 MJ, and the CO2 emissions are 46.58 kg of CO2 per square
meter repaired.

End of Life

At this stage, the activities related to the demolition and transport to landfill have been
introduced in the LCA model. On the one hand, for the concrete elements, the machinery
needed for their demolition has been considered. In addition, to be able to consider that
all the concrete is carbonated, the crushing process has been included. On the other hand,
only the transportation to the landfill has been reflected in the model because the recycling
process of the steel has already been taken into account in the manufacturing process. For
the CBG bridge deck alternative, steel sheet cutting with a flame cutting process has been
considered.
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2.5. Impact Assessment

The impact assessment consists of converting the impact of the processes considered
to model the life cycle with an indicator that allows researchers, scientists, or readers to
interpret them more easily. These indicators differ depending on the life cycle impact
assessment (LCIA) method selected. The results of each process are shown as a list of
emissions and consumed resources, and the LCIA methods distribute the emissions and
consumed resources in a shorter list of indicators.

The LCIA method chosen is the ReCiPe method. There are two main impact assess-
ment approaches, the midpoint and the endpoint, and the LCIA method transforms the
emissions and the resource consumptions into an indicator, depending on the approach.
For example, CML is an LCIA method that gives a midpoint approach, a list of indicators
that shows a complete environmental profile that is difficult to interpret [58]. On the other
hand, the eco-indicator LCIA method gives an endpoint approach. This approach takes
the midpoint approach indicators and concentrates them in three damage categories: re-
sources measured in dollars, human health measured in disability-adjusted life years, and
ecosystem impact measured in species·year. This endpoint approach allows researchers to
analyze the impact of the activity more easily. The ReCiPe LCIA method provides both the
endpoint and the midpoint approaches and has therefore been chosen for the LCIA.

The ReCiPe midpoint approach provides a list of 18 environmental indicators. These
indicators are useful if the study carried out is focused on one specific impact, such as the
global warming potential or the metal depletion. The categories supplied by this method
are: agricultural land occupation (ALO), global warming potential (GWP), fossil depletion
(FD), freshwater ecotoxicity (FEPT), freshwater eutrophication (FEP), human toxicity (HTP),
ionizing radiation (IRP), marine ecotoxicity (MEPT), marine eutrophication (MEP), metal
depletion (MD), natural land transformation (NLT), ozone depletion (OD), particulate
matter formation (PMF), photochemical oxidant formation (POFP), terrestrial acidification
(TAP), terrestrial ecotoxicity (TEPT), urban land occupation (ULO), and water depletion
(WD). In this study, the recycling and further use of the materials has been considered
and therefore the hierarchist (H) version is chosen [59]. To assess the total impact, the
normalization of the endpoint impact is needed in order to add the three categories. The
normalization set used in this research is the Europe ReCiPe H/A person/year.

2.6. Interpretation

The interpretation phase is the last stage of the LCA, in which the impact results of
the analyzed activity are evaluated and compared with other activities or studies. The
interpretation depends on the objective of the study. The study can be focused on the
contribution of each life cycle phase to the final impact, on the impact of every material
compared with the others, or on the comparison between the emissions or the resource
consumption between alternatives, among others. In this study, the comparison between
the different bridge deck alternatives is carried out.

3. Life Cycle Assessment

In this research, the uncertainty has been considered using a Monte Carlo simulation
with 1000 iterations to obtain the probabilistic uncertainty values of the LCA results. In the
comparison graphs, only the mean values are shown to make them easier to interpret. The
life cycle flowchart for bridge decks is summarized in Figure 3.
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Figure 3. Life cycle of the bridge decks.

3.1. Midpoint Approach

The midpoint impact categories, as stated before, provide more reliable results due to
the wide range of indicators provided. The data obtained allows the study to be focused on
particular impacts, such as the global warming potential, evaluating the CO2 emissions of
the activity. The full results of a 35 m span length bridge are provided in Table 3, including
the coefficients of variation of all indicators. A global warming potential (GWP) study
has been done to compare the emissions of each alternative, as shown in Figure 4. The
difference between the slab decks and the box-girder can be clearly distinguished. For span
lengths in which the box-girder decks are built, these are the best alternatives from the
GWP point of view. The PCLS emits lower quantities of CO2 than the PCSS for span lengths
of less than 17 m. In larger span length ranges, we can state that the CBG bridges are better
than the PCBG, even though we consider a 71% steel recycling ratio for the structural steel
(CBG_71). If we focus on the contribution of every life cycle stage to the GWP indicator, it
is observed that in the end of life phase, all the alternatives have a negative impact on the
GWP, due to the CO2 fixation caused by the carbonation of concrete.

Figure 5 shows that the concrete alternatives (PCSS, PCLS, and PCBG) have a greater
negative impact in the end of life phase, because the high amounts of concrete that they
contain allow a great CO2 fixation by the carbonation processes. The PCBG alternative has
a greater impact on the GWP during the use and maintenance phase because it has a larger
surface to repair.



Materials 2021, 14, 4218 12 of 22

Table 3. Midpoint approach impacts of 35 m long bridges. Mean and coefficient of variation (cv).

PCSS PCLS PCBG CBG_98

Acronym Unit Mean cv (%) Mean cv (%) Mean cv (%) Mean cv (%)

ALO m2*a 31.35 59.31% 31.67 63.27% 29.09 71.18% 22.583 55.17%
GWP kg CO2 eq 636.76 45.72% 556.19 44.00% 392.14 40.28% 322.776 35.37%
FD kg oil eq 148.79 26.09% 129.51 24.25% 95.97 20.58% 83.494 26.26%
FEPT kg 1,4-DB eq 7.53 41.45% 6.01 40.54% 3.76 39.15% 6.285 43.37%
FEP kg P eq 0.16 40.84% 0.13 39.08% 0.08 37.43% 0.100 37.76%
HTP kg 1,4-DB eq 276.00 44.56% 218.63 44.03% 135.98 42.66% 253.954 47.37%
IRP kg U235 eq 56.39 44.71% 49.34 44.12% 35.33 40.17% 25.067 31.96%
MEPT kg 1,4-DB eq 7.41 40.88% 5.92 39.98% 3.71 38.60% 6.140 43.13%
MEP kg N eq 0.14 23.59% 0.13 21.70% 0.10 17.53% 0.079 24.98%
MD kg Fe eq 98.26 50.78% 78.60 47.04% 46.66 44.54% 42.531 35.66%
NLT m2 0.13 25.82% 0.12 24.29% 0.09 20.45% 0.094 39.37%
ODP kg CFC-11 eq 0.00 19.32% 0.00 17.68% 0.00 14.55% 0.000 21.31%
PMFP kg PM10 eq 1.74 27.47% 1.51 24.64% 1.10 20.31% 0.948 26.43%
POFP kg NMVOC 3.63 19.95% 3.29 17.87% 2.63 14.03% 1.761 18.52%
TAP kg SO2 eq 2.90 26.53% 2.57 24.56% 1.95 20.35% 1.504 24.73%
TETP kg 1,4-DB eq 0.08 33.95% 0.07 33.60% 0.04 32.70% 0.122 48.71%
ULO m2*a 7.18 34.96% 6.10 34.11% 4.19 33.32% 4.070 32.24%
WD m3 1540.31 45.90% 1294.58 45.72% 851.61 44.25% 852.564 38.79%
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Figure 4. Development of GWP according to the span length.

A comparison between all the alternatives for every midpoint approach impact is
presented in Figure 6 for a 35 m span length bridge, providing their impact relative to
the biggest one. The alternative that has the most impact in all the categories is the PCSS,
excluding the TEP where the highest impact alternative is the CBG_98. In MD, the CBG_71
reaches the impact of the PCLS alternative because of the large amount of steel that is
needed for this bridge deck section. However, the CBG_91 alternative, from which a high
impact was expected, does not produce such a high one because of the steel recycling,
which allows for the generation of a new product with the same characteristics using
low amounts of raw material. These steel recycling processes, excluding the raw material
reduction, produce a greater impact on the HTP indicator.
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Figure 5. Contribution of deck alternatives to life cycle stages for 35 m span length.
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Figure 6. Midpoint impacts for 35 m span length.

Furthermore, the contribution of every life cycle stage on every indicator is illustrated
in Figures 7–10. In all the alternatives, the life cycle phase that has the highest impact in
most categories is manufacturing, but there are many exceptions. For the ALO indicator, the
phase with the greatest impact is the construction for all the alternatives. The contribution
of the use and maintenance stage has a greater impact in the MEP, NLT, ODP, PMFP, POFP,
and TAP indicators, especially in the PCBG bridge deck alternative, due to having the
highest surface exposed to the environmental conditions, which requires more maintenance.
In Figures 7–10, the results of the midpoint approach for PCSS, PCLS, PCBG, and CBG_98
are shown.
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Figure 7. Impact categories for 35 m span length PCSS solution.
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Figure 8. Impact categories for 35 m span length PCLS solution.
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Figure 9. Impact categories for 35 m span length PCBG solution.
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Figure 10. Impact categories for 35 m span length CBG_98 solution.

3.2. Endpoint Approach

To obtain the assessment results in a way that is easier to interpret to compare between
different categories, the endpoint approach is provided. The three categories can be
significant for choosing the best alternative depending on the situation. If the study area is
close to a protected area, then the environmental impact of the structure will be the most
important one for the study. If it is built close to a population center, the human health
impact will be the most significant, and if the location lacks resources, then the resources
category will be the most important one. In this study, a normalization set has been applied
to these three impact category results to obtain a global impact. This is useful when there
is no preference between the environmental criteria, and equal importance is considered
for all the criteria. In this way, a total impact score for the bridge deck alternatives was
obtained. The normalization and weighting set adopted was the Europe ReCiPe H/A
person/year.

A comparison between the PCSS, PCLS, PCBG, and CBG bridge deck solutions was
done. For the CBG alternative, three structural steel recycling ratios were considered,
71% (CBG_71), 90% (CBG_90), and 98% (CBG_98), to analyze the differences between the
composite box-girder bridge decks and the concrete alternatives.

First, the ecosystems impact is provided in Figure 11 in species.year. The best solution
is the PCBG, the PCSS is competitive for span lengths shorter than 18 meters, and for longer
ones, the PCLS is even better than the CBG alternative. If the steel recycling ratio of the
structural steel is 98%, then the PCLS is better until 30 m, but if we reduce that ratio, then
the PCLS is the best solution until 35 m. These results are because the PCSS needs great
amounts of steel when the span length increases. If we compare the PCLS and the CBG,
the high increment of materials for the PCLS is compensated by the high environmental
cost of the steel production when the recycling ratio of this process is lower.
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Figure 11. Development of the ecosystems impact with regard to span length.

The damage caused to human health is measured in disability-adjusted life years, and
it is shown in Figure 12. PCSS is a competitive alternative up to 17 m, then the PCLS is the
best alternative from that span length up to 25 m. The PCBG alternative is competitive
with CBG when the structural steel recycling ratio is 71%. If the recycling ratio is greater,
then the CBG alternative is the best solution.
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Figure 12. Development of the human health impact with regard to span length.

The damage caused by the resources, measured in dollars, is shown in Figure 13. The
PCSS remains the best solution for span lengths shorter than 17 m, and from there up to
25 m, the best solutions are the box-girders. From the resources point of view, the best
solution is the CBG if the structural steel recycling ratio is 90%; if it is not, then the PCBG is
a competitive solution compared with the CBG.



Materials 2021, 14, 4218 17 of 22

15 20 25 30 35 40
Span length (m)

15

20

25

30

35

R
es

ou
rc

es
 Im

pa
ct

 ($
)

PCSS PCLS PCBG CBG_71 CBG_90 CBG_98

Figure 13. Development of the resources impact with regard to span length.

Normalization has been done to compare the total impact results. These results are
provided in Figure 14 measured in points. The best solutions are usually the CBG with
structural steel recycling ratios higher than 90% in the ranges where they are usually built.
If the ratio is lower, then the PCBG is the best solution. The PCSS and PCLS solutions are
much worse in terms of the environmental impact due to the great increase of materials as
the span length increases. These alternatives must be used for lengths less than 25 m from
the environmental point of view, and, tuning even more, the PCSS alternative is the most
sustainable one for span lengths below 17 m.

A comparison between the contributions of the life cycle stages considered in this
study is shown in Figure 15 for the three main environmental categories. For all categories,
the manufacturing process is the most important one and the construction the least. It is
observed that in the end of life stage, the concrete carbonation of the crushed concrete gives
a negative value, which becomes even lower for the CBG_98 alternative, due to the smaller
amounts of concrete used for this bridge deck section. The use and maintenance stage is
more important for the PCBG alternative. The contribution of the construction phase is
almost null for the composite alternative in all categories.

Finally, a comparison between the impacts of every material on the total impact is
provided in Figure 16. Steel and concrete are the most important materials in terms of the
environmental impact. In the PCBG, the diesel consumption also becomes important. It is
observed that the contribution of steel takes a value of 50.44% for the composite alternative.
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Figure 14. Development of the total impact with regard to span length.
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Figure 15. Importance of the LCA stages according to the endpoint impact categories.

Concrete

22.9%Steel
42.7%

Diesel

26.9%

Transport
5.6%

Other1.9%

PCSS

Concrete

24.0%Steel

38.6%

Diesel

30.9%

Transport
5.4%

Other1.2%

PCLS

Concrete

24.5%

Steel

29.6%

Diesel

39.2%

Transport
5.0%

Other1.7%

PCBG

Concrete

21.6%
Steel

50.4%

Diesel

21.2%

Transport
5.3%

Other1.5%

CBG_98

Figure 16. Importance of materials to total impact.

4. Conclusions

One of the most important sectors that influences climate change is construction. For
this reason, environmental assessments are required to analyze the impact of construction
and to select options that do not affect the future of the planet. In this study, an LCA has
been done for four different bridge deck sections, with an endpoint and midpoint approach.
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A comparison between the impacts of the alternatives has been carried out. For span
lengths less than 25 m, the box-girder solutions have not generally been used, but they
are the best alternatives in terms of the environmental impact for these lengths. The PCSS
and PCLS alternatives are competitive from 15 to 25 m, and between 15 and 17 m, the best
solution is the PCSS. The difference between these slab bridge deck alternatives is caused
by the increment of materials for the PCSS alternative, mainly steel.

The steel recycling ratio is determinant in comparing steel and composite bridge decks.
The structural recycling ratio is usually greater than the rebar one, and this difference is
reflected in the impact values. If we consider the same steel recycling ratio for structural
and rebar steel, the box-girder concrete alternatives are better than the composite ones.
If we consider a 98% steel recycling ratio, this being the value in the USA, then the best
alternative is the CBG.

The consideration of CO2 fixation by carbonation processes has an important impact
on the evaluation and comparison of the alternatives, because the composite structures use a
smaller amount of concrete, which is reflected as lower CO2 emissions in the environmental
impact assessment. For concrete structures, the carbonation processes, even though they
are negative for the steel reinforcements, make concrete solutions more competitive than
the steel structures.

The most important LCA phase for all the alternatives is the manufacturing, and for
the concrete alternatives (PCSS, PCLS, and PCBG), the use and maintenance phase has
a great impact due to the greater surface of concrete that has to be maintained. In this
study, the steel does not require maintenance because it is a weathering steel. In further
studies, the steel maintenance can be considered. The concrete maintenance activities
are an important factor in the impact; if the durability of the material increases, then this
maintenance will be reduced.

Every graph and result shown in this paper will help engineers, designers, and
constructors to select cleaner alternatives, and if they consider their own countries’ material
production processes, they can choose the best environmental solution. For countries where
there is less steel recycling, concrete structures will be the best solution, but in countries
with cleaner steel production processes, composite and steel solutions will be the best ones
from the environmental point of view.
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Abbreviations
The following abbreviations are used in this manuscript:

LCA Life Cycle Assessment
LCIA LIfe Cycle Inventory Assessment
PCSS Prestressed Concrete Solid Slab
PCLS Prestressed Concrete Lightened Slab
PCBG Prestressed Concrete Box Girder
CBG Composite Box Girder
PRS Passive Reinforcing Steel
ARS Active Reinforcing Steel
BOF Basic Oxygen Furnace
EAF Electric Arc Furnace
ALO Agricultural Land Occupation
GWP Global Warming Potential
FD Fossil Depletion
FEPT Freshwater Ecotoxicity
FEP Freshwater Eutrophication
HTP Human Toxicity
IRP Ionizing Radiation
MEPT Marine Ecotoxicity
MEP Marine Eutrophication
MD Metal Depletion
NLT Natural Land Transformation
OD Ozone Depletion
PMF Particule Matter Formation
POFP Photochemical Oxidant Formation
TAP Terrestrial Acidification
TEPT Terrestrial Ecotoxicity
ULO Urban Land Occupation
WD Water Depletion
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