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Abstract  

Although the effects of sperm microbiota and sperm quality have been described 

previously, recent studies provide evidence that female genital modifications triggered by 

seminal components could be of significant importance to identify some disturbances 

associated with fertility. So, sperm microbiota could play a key role in sperm quality, 

contributing to fertilisation. To understand how sperm microbiota diversity is influenced 

by the host genetics, the symbiotic bacteria in four inbred lines raised in the same animal 

facility and their effects on sperm quality and fertility were analysed. Forty healthy rabbits 

from four selected Spanish commercial lines were used in this research (three based on 

litter performance, designated A, V and LP, and one selected for daily body weight gain, 

called R). Significant variations in the seminal concentration, morphology and some 

motion parameters were found among inbred lines, but sperm motility and viability were 

similar among inbred lines. After mating, inbred lines selected for litter size had the same 

fertility rate, significantly higher than inbred line selected for body weight (82±3.3%, 

79±3.5% and 89±4.5% versus 61±3.7%, for the A, V and LP vs R lines, respectively, 

p<0.05). Bacteria belonging to Proteobacteria, Firmicutes, Fusobacteria and 

Bacteroidetes were identified in sperm microbiota. At genus level, the bacterial 

community composition in the sperm microbiota was influenced by host genetics. A total 

of 35, 16, 34, and 51 genera were accurately detected in the A, V, LP, and R lines, 

respectively. Moreover, Enhydrobacter, Ferruginibacter, Myroides Paracoccus, 

Rheinheimera, Tepidiphilus, Tetradesmus obliquus and Thauera genera were present 

only in the inbred lines selected for litter size. Moreover, the discriminant analysis 

revealed Lysinibacillus and Flavobacterium genera as potential biomarkers for fertility. 

Thus, these two genera may play a key role in fertility. Our results demonstrated the 
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existence of a rabbit inbred line-specific variation in bacterial occurrence in sperm 

microbiota. Moreover, fertility differentials among inbred lines that were not predicted 

by routine semen analysis could be partly explained by the symbiotic state of the semen 

microbiota. 

Keywords: Microbiota; 16S rRNA; semen; fertility; inbred line 

 

1. INTRODUCTION  

Several studies have described that microbiota, the microorganisms present in any tissue 

in an animal organism, are involved in homeostasis and health [1–3], including those of 

the male and female genital tracts [4]. The negative effect of bacteria on spermatozoa 

physiology, viability, motility and fertility are thus well known [5–7]. Nevertheless, the 

presence of bacteria in semen is also found in fertile individuals with normal sperm 

parameters [8,9]. Based on these findings, recent research has postulated that the presence 

of a specific bacterial milieu might be necessary for normal sperm function [4,10,11]. In 

this sense, several authors hypothesised that a symbiotic and dysbiotic state of the sperm 

microbiota could be related to sperm quality [7,12]. Besides, changes in female genital 

molecular profiles triggered by seminal elements is an emerging field in the advancement 

of fertility science [13,14]. 

Even though hosts co-evolved with the microbiota, current knowledge on microbiota and 

their interactions with the host is still in its infancy [15]. However, in several animal 

species the role of host genetics in the gut microbiota composition has been demonstrated 

[16–20], but the effects of host genetics remain unclear [21]. Nevertheless, it is well 

known that host genetics influence sperm quality, fertility and prolificacy [22–24]. 
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Similarly, studies based on seminal plasma proteins have described host genetic effects 

on compositions [25–27]. The importance of the microbiome in host status has prompted 

the development of new methodologies focused on control of the host microbiome, either 

by decreased the number of harmful taxa or reinstating beneficial taxa and their functions 

[28]. The extent to which host genetics can modulate the sperm microbial composition 

remains unknown. Therefore, we hypothesised that host genetics could affect the 

symbiotic sperm microbiota of different rabbit inbred lines selected for different traits. A 

large cohort including four lines within the same animal facility was formed with the aim 

of detecting significant associations between genetics and sperm microbiota composition 

and its effects on sperm quality.  

 

2. MATERIALS AND METHODS 

 

2.1. Ethics 

All experiments involving animals complied with Directive 2010/63/EU EEC and 

institutional guidelines of the Universitat Politècnica de València Ethical Committee. All 

animals were bred and euthanised in an approved animal facility (approval number 

ES462500001091). Experimental protocols were conducted under the supervision of the 

animal welfare committee in charge of this animal facility (research code: 

2018/VSC/PEA/0116). 

2.2. Animals 

The experiment was conducted from October 2018 to February 2019, with animals from 

four selected Spanish commercial lines (three based on litter performance, designated A, 

V and LP, and one selected on daily body weight gain, called R) reared at the Universitat 
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Politècnica de València. The foundation process of line A began in 1976 by sampling 

New Zealand White rabbits, reared by farmers near Valencia (Eastern Spain). After three 

generations without selection, the synthetic breed has since 1980 been selected using a 

family index based on litter size at weaning [29]. Line V was founded in 1980, by mating 

crossbred animals that were the progeny of four specialised breeds based on litter 

performance. Since then, this line has been selected to increase litter size at weaning [29]. 

Foundation of the LP line was started in 2003 by selecting females from commercial 

farms that showed extremely long productive lives and prolificacy near or above the 

average of the Spanish commercial rabbit population. This line has been selected since 

its foundation to increase litter size at weaning [30]. In V and LP, animals are selected 

based on the best linear unbiased predictions (BLUP) obtained with a repeatability animal 

model. Line R comes from the fusion of two inbred lines selected on daily body weight 

gain, one founded in 1976 with Californian rabbits reared by Valencian farmers and 

another founded in 1981 with rabbits belonging to specialised lines selected on daily body 

weight gain [31]. The method of selection has always been by individual selection on 

post-weaning daily gain. The last generations of selection considered in the present study 

were 50th, 44th and 11th and 36th generations for lines A, V, LP and R, respectively [32–

34]. All inbred lines had been kept closed since their foundation. Maternal lines (A, V, 

LP) are medium-sized animals, while paternal line (R) are large-sized animals. The 

average body weight for males used in our study was 3916±405 g and 5426±493 g for 

maternal lines and paternal line, respectively (data expressed as mean ± standard 

deviation). 
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All animals were housed at the Universitat Politécnica de Valencia animal facilities in 

flat deck indoor cages (75×50×30 cm), with free access to water and commercial pelleted 

diets (minimum of 15 g of crude protein per kg of dry matter (DM), 15 g of crude fibre 

per kg of DM, and 10.2 MJ of digestible energy (DE) per kg of DM). The photoperiod 

was set to provide 16 h of light and 8 h of dark, and the room temperature was regulated 

to keep temperatures between 14°C and 28°C. The hygiene and sanitary measures used 

correspond to those usual in a commercial rabbit farm, the cages were previously 

disinfected with pressurized steam and once the males were housed, flame torch to burn 

of the hair was used weekly and feed and water equipment were cleaned and disinfected 

monthly. All animals are periodically checked by the vet. 

 

2.2. Male reproductive performance: sperm traits and fertility rate 

Forty healthy rabbit bucks (10 by genetic group) were used for semen collection. Semen 

samples were collected weekly for 10 weeks, and pooled by group. Collections were 

performed on the same day of the weeks. A total of 40 pools (10 for each host genetic 

group) were analysed. Quality sperm parameters (concentration, sperm abnormality, 

acrosome integrity and sperm motility) were performed using the methodology described 

by Viudes-De-Castro et al.  [35] to assess the sperm quality. Briefly, three 20 μL aliquots 

of each pool were taken. The first sample was evaluated for individual sperm motility and 

motion parameters using the Integrated Semen Analysis System version 1.0.17 (ISAS; 

Projectes i Serveis R+D). For each sample, four microscopic fields were analysed, and a 

minimum of 200 sperm evaluated. The following sperm activity variables were assessed: 

sperm motility (%), progressive motility (%), curvilinear velocity (VCL, μm/s), straight-

line velocity (VSL, μm/s), average path velocity (VAP, μm/s), linearity coefficient (LIN; 

calculated as (VSL/VCL) × 100), straightness coefficient (STR), wobble coefficient 
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(WOB; VSL/VAP × 100), the amplitude of lateral head displacement (ALH, μm) and beat 

cross frequency (BCF, Hz). The second sample was assessed for the percentage of live 

spermatozoa (viability, VIA) using the LIVE/DEAD sperm viability kit (Molecular 

ProbesTM), which basically consists of two DNA-binding fluorescent dye: a membrane-

permeant dye, SYBR-14, and a conventional dead-cell dye, propidium iodide. The third 

sample was fixed with glutaraldehyde solution and observed by phase-contrast at ×400 

magnification to calculate the concentration, in a Thoma-Zeiss counting cell chamber, 

and evaluate both the percentages of intact apical ridge and abnormal sperm (based on 

morphological abnormalities of head, neck, mid-piece and tail) [36].  

 
 
Management of animals in the different genotypes was the same, using natural mating; 

bucks and does began reproduction from 17 to 18 weeks of age [37].  The experiments 

were performed following the second delivery to ensure sexual maturity in all animals 

(all animals aged between 8 and 15 months old). One ejaculate by the male was collected 

(on Monday) three days before mating two times to assig female the same day (Friday). 

Only lactating and not lactating multiparous females were considered (3 to 6 deliveries). 

Females were mated 11 days after kindling. On day 12 post-mating, each doe was tested 

for pregnancy by abdominal palpation, and non-pregnant does were mated back. The 

same female was mating twice as a maximum along this study. In order to minimise the 

increase of inbreeding, mating between close relatives was avoided, so that mates could 

not have common grandparents. In addition, the contribution of bucks to the next 

generation was equalised; thus, as previously stated, males were selected within sire 

families [32]. To avoided the individual variations between males, all males contributed 

with a minimum of 10 matings. The number of does that gave birth by the number of 

mating was recorded (fertility rate).  
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2.3. RNA extraction, qPCR validation, library prep, sequencing 

An aliquot of the two first pooled samples for each host genetic group was centrifuged at 

7400 g for 10 min at 4ºC, and the supernatant was obtained and stored at -80ºC until 

analysis. A total of 8 pools (2 for each host genetic group) were analysed. Total DNA 

was extracted using the NucliSens easyMag automated system (bioMérieux, Marcy 

l'Etoile, France) according to the manufacturer's instructions. We used microbial genomic 

DNA (5 ng/μl in 10 mM Tris pH 8.5) to initiate the protocol. The V3-V4 region of the 

bacterial 16S rRNA gene sequences was amplified using the primer pair 341F-805R [38], 

containing the gene‐specific sequences and Illumina adapter overhang nucleotide 

sequences. Primer sequences were forward primer: 

(5’TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCA

G3’; reverse primer: 

5’GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCT

AATCC3’). After 16S rDNA gene amplification, the multiplexing step was performed 

using the Nextera XT Index Kit (FC-131-1096). We ran 1 μl of the PCR product on a 

Bioanalyzer DNA 1000 chip to verify the size; the expected size on a Bioanalyzer trace 

is ~550 bp. After size verification, the libraries were sequenced using a 2x300 pb paired-

end run (MiSeq Reagent kit v3 (MS-102-3001)) on a MiSeq Sequencer, following the 

manufacturer’s instructions (Illumina, Inc., San Diego, CA, USA).  

2.4. Sequence analyses  

Demultiplexed paired FASTQ sequence were imported into the QIIME2 v2018.11 for 

analysis. Quality control was carried out using the DADA2 pipeline incorporated into 

QIIME2 [39]. The DADA2 program filtered out phiX reads removed chimeric sequences 
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and assigned reads into Amplicon Sequence Variants (ASVs). Taxonomic annotation was 

obtained using the SILVA v132 database [40] 

2.5. Statistical analyses 

Sperm traits data were analysed with a repeated-measures general linear model with both 

host genetic group and week as repeated measures for each replicate. Data were expressed 

in the least-square means ± standard error of means. A chi-square test was used to test 

differences in fertility rate at birth between groups and female reproductive status (non-

lactating and lactating). The level of significance was set at p <0.05. Statistical analyses 

were performed using the SPSS 21.0 software package (SPSS Inc., Chicago, Illinois, 

USA, 2002). 

 

Sequencing statistical analyses were done using QIIME2 and R Statistical Software 

Version 1.1.383. To determine significance in alpha diversity, non-parametric Kruskal–

Wallis tests to complete pairwise comparisons between host genetics (A, V, R y LP) were 

performed. Non-parametric Kruskal-Wallis comparisons were performed using Faith’s 

Phylogenetic Diversity to determine if there were statistical differences in species 

richness in the host genetic. Box-and-whisker plots for species richness and evenness 

were generated using QIIME2. A Venn diagram was drawn up to show the shared and 

unique OTUs among groups, based on the occurrence of OTUs in a sample group 

regardless of their relative abundance [41]. Shared taxa present in all four groups (100% 

core threshold) were defined as the core microbiome. Analysis of the composition of 

microbiomes (ANCOM) test was run to determine if they change significantly between 

genetic traits (litter performance and daily body weight gain) [42]. Statistical analyses for 

beta diversity were completed by calculating Bray-Curtis distance using QIIME2. 
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Principle Coordinate Analysis (PCoA) plots were generated for the inbreeding line 

sample from Bray-Curtis distances using QIIME2.  

 

3. RESULTS 

 

A cohort of 40 livestock rabbit males belonging to four different inbred lines (A, V, LP 

and R) was analysed. No health and reproductive problems were found in the females 

used in this study. In fact, the selection process was not altered during and after the 

sampling period in any inbred line. 

 

3.1. Sperm quality and fertility 

Semen characteristics are shown in Table 1. The host genetic group had no effect on the 

total motility and VCL, or on viability of the spermatozoa. However, males from V and 

LP lines showed a higher concentration and an abnormal sperm rate, while males from A 

line showed a lower intact apical ridge rate (p < 0.05). Additionally, the host genetic 

group affected motion parameters (Table 1). Males from the LP line showed a higher 

VSL and WOB (p < 0.05), while males from the V and R lines showed a higher ALH 

(p < 0.05). Males from the R line showed a lower STR (p < 0.05). 

We assessed male offspring fertility as the relation of pregnant does, and mating does by 

a male. A total of 494 matings were recorded (Table 2). The host genetic group from R 

line exhibit significantly impaired fertility (Table 2, p <0.05).  

 

3.2. 16S rRNA sequence output overview 



 

 11 

A total of 8 samples, 2 per host genetic group, were used for downstream bioinformatics 

analysis. The MiSeq sequencing yielded a total of 702,606 raw sequences with an average 

read length of 434.9±49.90 pb. The average number of reads per sample was 87,825 with 

the minimum number of reads per sample being 66,282 and the maximum number of 

reads per sample being 114,640. A total of 93,355 ASVs were generated. A total of 9,180 

chimeric sequences were removed from the dataset with a total of 84,175 sequences left 

for ASVs table generation and database alignment. After filtering a total of 1,384 unique 

sequences were left for taxonomic assignment. The datasets generated and analysed are 

available at NCBI’s BioProject PRJEB37988. 

3.3. Diversity  

Alpha diversity was assessed through species evenness and species richness measures. 

Rarefaction analysis indicated that the number of OTUs per sample reached a maximum, 

indicating that the sequencing effort captured the diversity of the majority of the samples 

(Fig. 1). There were no significant differences in species evenness for host genetics (A, 

V, R and LP, p = 0.08). However, statistically significant differences were seen in species 

richness in relation to genetic origin (p = 0.05 and p = 0.04 for Shannon index and 

observed OTUs, respectively. Fig. 2).  

The results of the PERMANOVA test using Bray-Curtis dissimilarity showed no 

significant differences in beta diversity of sperm samples regarding hosting genetics (p = 

0.016). Results of the PERMANOVA indicated that there were significant differences in 

the microbial community composition in relation to genetic origin (p = 0.044).  There is 

a separation of points in the PCoA plot between the host genetics, displaying that there 

are differences in the microbial community composition (Fig. 3B), indicating that the 
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dominant bacterial species in litter size selected lines were more similar in comparison 

with R line. 

3.4. Abundant genera  

To better understand how the microbial community composition changes between host 

genetics, we examined which organisms were present at different taxonomic levels and 

their relative abundance levels. For instance, we identified 25 phyla, with Proteobacteria 

(44.8%), Firmicutes (37.3%), Fusobacteria (22.1%), Bacteroidetes (10.3%) and 

Actinobacteria (8.1%) being the most abundant across all samples (expressed as an 

average percentage overall bacterial reads). To examine the existence of an identifiable 

common core microbiome [43], we defined a core as the group of members shared among 

the microbial community and represented the core by overlapping areas in the circles in 

a Venn diagram, at 97% identity. A total of 242 genera of bacteria were detected in all 

groups. Among them, 122, 84, 109 and 128 genera were detected in the A, V, LP, and R 

lines, respectively (Fig. 3A). Thirty-three genera were shared by all inbred lines. 

Interestingly, several genera were specifically found in each line. A total of 35, 16, 34, 

and 51 genera were detected in the A, V, LP, and R lines, respectively (Fig. 3A). 

Moreover, 8 genera were specific bacteria in the lines selected by litter size. The 

Enhydrobacter, Ferruginibacter, Myroides Paracoccus, Rheinheimera, Tepidiphilus, 

Tetradesmus obliquus and Thauera genera were shared across A, V and LP lines, 

respectively. The relative abundances were 0.46, 0.37, 0.29, 0.29, 0.50, 0.57, 0.27 and 

0.47%, respectively. An ANCOM analysis was performed to identify change between 

genetic traits. We identified 2 bacteria genera (Lysinibacillus and Flavobacterium) that 

were significantly abundant in daily body weight gain for the selected line (R line, Fig. 

4). 
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4. DISCUSSION 

 

The aim of this study was to evaluate for the first time whether there were reproducible 

differences in the sperm microbiota across several inbred commercial rabbit lines 

population located at the same genetic nucleus and kept under similar conditions. 

Although the effects of sperm microbiota and sperm quality have been described 

previously [7,10–12], the present study provides the first description of the influence of 

host genetics on the composition and abundance of sperm microbiota. Despite the small 

sample size, we found a linkage between inbred line and sperm microbiota diversity, and 

we should not forget that all animals were bred within the same animal facility in a closed 

nucleus system which notably reduces the potential impacts of undetected bias among 

host genetics. Moreover, we explored the microbial content of the sperm using fertile 

bucks.  Till now, and given the limited number of studies, it is still unclear whether the 

presence of specific bacterial communities has the potential to influence sperm function 

[7].  

 

 

The sperm microbiomes of inbred rabbit lines evaluated here were dominated by 

sequences representative of the phyla Proteobacteria, Firmicutes and Fusobacteria. 

These phyla commonly accounted for more than 78% of the total microbial populations 

detected. These findings were similar to those reported in other studies [7,12]. The core 

sperm microbiome was represented by 242 genera, including Fusobacterium, Delftia and 

Parvimonas dominant genus [7]. The results at the genus level showed that the bacterial 
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community composition in the sperm microbiota was influenced by the inbred line, owing 

to their different genetic origin. Thus, it was surprising that the relative abundances were 

13.4%, 7.9%, 7.5% and 22.0% in the A, V, LP and R line, respectively. However, the 

criteria used to select the founder animals of the inbred lines and for the selection criteria 

applied afterwards throughout the generations of selection could be primarily responsible 

for abundance and specific bacteria in the sperm microbiota [32]. However, no 

corroborating reports on the effect of genetic origin in the sperm microbiota have been 

published to date.  

 

The relevance of the genetic line to explain the variation in fertility is well documented 

[22–24]. In this regard, several studies described notable differences, including a decline 

in reproductive success [44,45] and a higher disease incidence [32] in R line in 

comparison with lines selected by litter size. In our study, significant variations in the 

seminal concentration, morphology and motion parameters were found among all host 

genetics. However, we also found that similar motility and viability rates were recorded, 

indicating that independently of their host genetics, males produced sufficient sperm of 

sufficient quality to maximise the probability of impregnating the female. Hence, similar 

fertility rates among the A, V and LP lines were observed. Therefore, the slight changes 

observed in the seminal traits could be considered biologically irrelevant. However, again 

the reproductive performance of the R line resulted in a noticeable decrease in fertility, 

consistent with previous results [44,45]. There is extensive evidence that the correlation 

between conventional semen parameters and fecundation is complicated [46,47]. In this 

context, we found that all host genetics possessed high-quality semen, based on practices 

commonly used in the insemination centre [36]. However, routine semen analysis does 

not measure the fertilising potential of spermatozoa and the complex changes that occur 
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in the female reproductive tract before fertilisation [48]. Based on our findings, we 

hypothesise that female genital modifications triggered by seminal components could be 

of significant importance to identify some disturbances associated with fertility. How 

sperm microbiota might alter the maternal environment is now well documented [49]. 

Even though the current evidence is clear that sperm microbiota is not required to achieve 

pregnancy, several studies have demonstrated that the events induced by sperm 

microbiota at insemination may ‘program’ the maternal environment and/or immune 

system to accommodate the semi-allogeneic conceptus and optimise pregnancy outcomes 

[14,49]. Specifically, semen elicits an immediate inflammatory response in the female 

genitalia [14,49–51]. In fact, in mice it has been demonstrated that a lack of sperm 

microbiota exposure at conception alters the phenotype in subsequent offspring [52]. In 

this regard, our results provide insight into the nature of the sperm microbiota and suggest 

that surveying the symbiotic sperm microbiota might be useful for improving fertility 

management.  

 

In this study, the PCoA results showed that sperm microbiota bacterial communities in 

A, V and LP were more similar, indicating that the dominant bacterial species in litter 

size selected lines were more similar in comparison with R line. The results at the genus 

level indicated that 8 genera including Enhydrobacter, Ferruginibacter, Myroides, 

Paracoccus, Rheinheimera, Tepidiphilus, Tetradesmus obliquus and Thauera were 

specific bacteria in the lines selected by litter size. Besides, several genera were explicitly 

found in each line. Specifically, a total of 48 genera were particular bacteria in the R line 

(supplementary material), demonstrating that specific accumulation of these genera 

would occur by genetic susceptibility. Note that all animals had been kept at the same 

closed genetic nucleus since its foundation and cared for under similar conditions, 
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which minimised potential bias in the results. Taken together, our results demonstrate the 

existence of a host genetics-microbiome interaction in sperm microbiota. So, we propose 

that symbiotic sperm microbiota could be taken into consideration by the artificial 

insemination industry. For instance, in mice, it has been demonstrated that an increase in 

the colonisation of Bacteroides and Prevotella disrupted spermatogenesis and sperm 

motility [53]. In this study, the relative abundance of Bacteroides and Prevotella on R 

line was significantly higher than in litter size selected lines (2.71% and 1.78% vs 1.68 

and 0.31% in overall species for R vs litter size selected lines, respectively). Thus, these 

two genera may play a key role in fertility, or it could suggest that the differential 

phenotypic characteristics already described in this line, both for females and males at 

the endocrine level and for the proteome and enzymatic activity of the seminal plasma, 

have repercussion on the microbiota, making it a potential biomarker of reproductive 

disorders. In addition, the statistical analysis of sperm microbiota composition identified 

Lysinibacillus and Flavobacterium as predictive biomarkers. We found a positive 

correlation in the R line in comparison with litter size selected lines. Meanwhile, earlier 

studies have identified Flavobacterium in sperm microbiota in human [54,55], porcine 

[56] and bovine [57]. Lysinibacillus has not previously been identified in sperm 

microbiota, but this bacillus has been found in the female urogenital microbiota in several 

species [58–60]. This could be relevant in relation to the demonstrated associations 

between sperm microbiota and fertility. 

 

5. CONCLUSION 

As the first metagenomic survey of sperm microbiota using next-generation sequencing 

in rabbit, our results demonstrated the existence of a host genetics-microbiome interaction 
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in sperm microbiota. In addition, fertility differentials among inbred lines that were not 

predicted by routine semen analysis could be explained in part by the symbiotic and 

dysbiotic state of the sperm microbiota. Our data provide an excellent starting point for 

further sperm microbiota research investigating changes associated with reduced fertility, 

conservation and the use of probiotics in order to develop new semen extenders.  
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Figure 1. Rarefaction curve. Species collection curves determined from sequence 
analysis. Each inbred line represents one pooled sample obtained from 10 males in one 
week.  A, V and LP are a synthetic breed selected from a family index based on litter size 
at weaning. R line is a synthetic breed selected on daily body weight gain. 

 

Figure 2. Alpha Diversity Box-and-whisker plots of diversity within inbred lines. A, V 
and LP are a synthetic breed selected from a family index based on litter size at weaning. 
R line is a synthetic breed selected on daily body weight gain. The inbred lines of the box 
show the 25th, 50th, and 75th percentiles, the whiskers extend to the highest or lowest value 
within 1.5 times the interquartile range. A. estimated number of OTUs calculated by the 
Chao1 index. B. estimated alpha diversity calculated by the Shannon index. Significant 
differences found (p < 0.05).  

 

Figure 3. A. Venn diagram showing unique and shared taxa between samples among the 
inbred lines. A, V and LP are a synthetic breed selected from a family index based on 
litter size at weaning. R line is a synthetic breed selected on daily body weight gain. 
Selection criteria was based on presence or absence regardless of abundance. Not drawn 
to scale. Value in brackets represent the genera found in each inbred line. B. Principle 
Coordinate Analysis 3D plot of beta diversity analysis of inbred lines using Bray-Curtis 
distance. 
 

Figure 4. Volcano plot of differentially expressed OTUs between inbred lines selected 
by litter performance and selected on daily body weight gain at genus levels. ANCOM 
analysis was performed to analyse a statistical significance (p < 0.05). Statistically 
significant OTUs are represented by blue dots. 

 



 

Table 1. Effect of host genetics on sperm quality parameters in four Spanish commercial rabbit inbred lines. 

SPERM QUALITY TRAITS INBRED LINES 
A V LP R 

SELECTION CRITERIA 

 

Litter performance Daily body weight gain 
General characteristics     

Sperm concentration 

(106/ml) 

153.7±18.51b 308.5±18.51a 252.0±18.51a 125.0±18.51b 
Sperm motility     

Percent motility (%) 81.1±2.06 89.7±2.06 88.5±2.06 83.5±2.06 
VCL (µM/S) 94.6±3.60 90.4±3.60 94.1±3.60 99.4±3.60 
VSL (µM/S) 40.8± 2.00b 41.2±2.00b 49.4±2.00a 35.8±2.00b 
VAP (µM/S) 60.6±2.49a 59.7±2.49b 69.7±2.49a 59.3±2.49b 
LIN (%) 43.8±2.3ab 45.8±2.3ab 52.5±2.3a 39.0±2.3b 
STR (%) 67.8±1.90a 68.9±1.90a 70.9±1.90a 60.3±1.90b 
WOB (%) 64.4±1.76b 66.1±1.76b 74.1±1.76a 63.9±1.76b 
ALH (µM) 2.8±0.10a 2.5±0.10b 2.5±0.10b 2.7±0.10a 
BCF (HZ) 12.2±0.22a 11.2±0.22b 10.0±0.22c 9.9±0.22c 

Integrity of the plasma membrane 

membrane 

    
Viability (%) 92.4±2.41 93.1±2.41 85.4±2.41 87.9±2.41 

Morphology     
Abnormal sperm (%) 12.0±1.76b 17.8±1.76a 17.9±1.76a 11.1±1.76b 
Intact apical ridge (%) 91.4±0.98b 96.6±0.98a 97.6±0.98a 95.9±0.98a 

Total pooled samples* 10 10 10 10 

A, V and LP are a synthetic breed selected from a family index based on litter size at weaning. R line is a synthetic breed selected on daily body 
weight gain.  VCL: curvilinear velocity, VSL: straight-line velocity, VAP: average path velocity, LIN: linearity index, STR: straightness, WOB: wobble, 
ALH: amplitude of lateral head displacement, BCF: beat cross frequency. * Each pool was constituted from 10 males. Data are expressed as least 
square means ± standard error of means. a,b,c Values within a row with different superscripts differ (p < 0.05)  



Table 2. Influence of genetics on fertility in four Spanish commercial rabbit inbred lines. 

 

 

 

 

*Multiparous females at different parity order (3-6). The same female was mating twice as a maximum along this study. All 
males contributed fertility data with at least ten matings. a,b Values within a row with different superscripts differ (p < 0.05). n: 
number of data.   

 

 

Inbreed lines Females* 
(n) 

Fertility rate (%) 
Matings 

(n) Total Matings 
(n) Non lactating females Matings 

(n) Lactating females 

A 62 136 82.4a 28 92.6a 108 79.6a 
V 58 134 79.1a 33 93.9a 101 74.3a 
LP 52 117 89.7a 32 96.9a 85 87.1a 
R 68 107 60.7b 54 71.4b 53 50.9b 










