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Abstract
It is well known that a σ -algebra � of subsets of a set � verifies both Nikodým property
and property (G) for the Banach space ba(�) of bounded finitely additive measures defined
in �. A classic result of Valdivia stating that if a σ -algebra � is covered by an increasing
sequence (�n : n ∈ N) of subsets, there is p ∈ N such that �p is a Nikodým set for ba(�)

was complemented in Ferrando et al. (2020) proving that there exists p ∈ N such that �p is
both a Nikodým and a Grothendieck set for ba(�). Valdivia result was the first step to get
that if (�σ : σ ∈ N

<∞) is a web in � there exists a chain (σn : n ∈ N) in N
<∞ such that

each �σn , n ∈ N, is a Nikodým set for ba(�). In this paper, we develop several properties in
Banach spaces that enables us to complement the preceding web result extending the main
result in Ferrando et al. (2020) proving that for each web (�σ : σ ∈ N

<∞) in a σ -algebra �

there exists a chain (σn : n ∈ N) in N
<∞ such that each �σn , n ∈ N, is both a Nikodým and

a Grothendieck set for ba(�). As an application we extend some results of classic Banach
space theory.

Keywords Algebras and σ -algebras of sets · Bounded finitely additive measures ·
Grothendieck · Nikodým and Rainwater sets · Pointwise and weak sequential
convergence · Web properties
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E-46022 Valencia, Spain
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S. López-Alfonso, M. López-Pellicer

1 Introduction

Let A be an algebra of subsets of a nonempty set �, χA be the characteristic function of the
set A ∈ A and let �∞

0 (A) = span{χA : A ∈ A} denote the linear space of all K-valued A-
simple functions, K being the scalar field of real or complex numbers. For each f ∈ �∞

0 (A)

there are pairwise disjoint sets A1, . . . , Am ∈ A and nonzero a1, . . . , am ∈ K, with ai �= aj

if i �= j , such that f = ∑m
i=1ai χAi

, with f = χ∅ if f = 0. We shall assume �∞
0 (A) is

equipped with the norm ‖f ‖ = sup{|f (ω)| : ω ∈ �}. The completion of the normed space(
�∞

0 (A), ‖ · ‖) is the Banach space �∞(A) of all bounded A-measurable functions.
The dual of �∞

0 (A) is the Banach space ba(A) of bounded finitely-additive measures on
A, which we shall assume equipped with the dual norm of ‖ · ‖, named variation norm and
defined by

|μ| = sup
n∑

i=1

|μ(Ei)|,

where the supremum is taken over all finite pairwise disjoint members of A. We shall also
consider the Banach space ba(A)∗ equipped with the bidual norm, also denoted by ‖ · ‖.

Since the Banach space �∞(A) is linearly isometric to a subspace of ba(A)∗ then each
characteristic function χA ∈ �∞

0 (A), with A ∈ A, can be considered as a bounded linear
functional on ba(A) defined by 〈χA,μ〉 = μ(A) and {χA : A ∈ A} ⊆ Sba(A)∗ , where
Sba(A)∗ stands for the unit sphere of ba(A)∗.

Let N<∞ be the family of all finite sequences of natural numbers and the empty sequence
∅. We denote by σ � n the concatenation of a σ ∈ N

<∞ followed by a natural number n.
A sequence (σn : n ∈ N) in N

<∞ is a chain if for each n ∈ N there exists mn+1 such that
σn+1 = σn � mn+1. A sequence (Aσ : σ ∈ N

<∞) of subsets of A is a web in A if A = A∅
and for each σ ∈ N

<∞ the sequence (Aσ�n : n ∈ N) is an increasing covering of Aσ .
The following definitions were introduced by Schachermayer [20], Valdivia [25], López-

Alfonso, Mas and Moll [13], Kakol and López-Pellicer [12] and Ferrando, López-Alfonso
and López-Pellicer [7].

Definition 1 A subfamily 	 of an algebra of sets A is called a Nikodým set for ba(A) if
each 	-pointwise bounded subset {μα : α ∈ �} of ba(A) is bounded in ba(A), i.e.,

sup
α∈�

|μα(A)| < ∞ for each A ∈ 	 ⇒ sup
α∈�

|μα| < ∞.

Definition 2 A subfamily 	 of an algebra of sets A is called a strong Nikodým set for
ba(A) if for each increasing covering (	n : n ∈ N) of 	 there exists n0 ∈ N for which 	n0

is a Nikodým set for ba(A).

Definition 3 A subfamily 	 of an algebra of sets A is called a web Nikodým set for ba(A)

if for each web (	σ : σ ∈ N
<∞) in 	 there exists a chain (σn : n ∈ N) in N

<∞ such that
each 	σn , n ∈ N, is a Nikodým set for ba(A).

An algebra of sets A is said to have the Nikodým property, the strong Nikodým property
or the web Nikodým property if the family A is a Nikodým set, a strong Nikodým set or a
web Nikodým set for ba(A), respectively.

It is well known that every countable algebra lacks Nikodým property and that the clas-
sical Nikodým–Grothendieck boundedness theorem states that each σ -algebra of sets �
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has the Nikodým property. In [24, Theorem 1], using methods of barrelled spaces, Valdivia
showed each σ -algebra of sets � has the strong Nikodým property. This result was later
strengthened by López-Pellicer [15] by showing that each σ -algebra of sets � even has
the web Nikodým property. The book [9] collects together these results as well as previous
research on Nikodým sets and Nikoddým’s property until 1995. In [22] is considered the
Nikodým property in the Sacks model.

An algebra A is said to have property (G) if �∞(A) is a Grothendieck space, i.e., if
each weak* convergent sequence in ba(A) is weak convergent, i.e., for each sequence
(μn)n in ba(A) such that limn μn(f ) = μ(f ), for each f ∈ �∞(A), we have that
limn ϕ(μn) = ϕ(μ), for each ϕ ∈ ba(A)∗. The classical property that every σ -algebra
has property (G) is also due to Grothendieck. In [20, Propositions 3.2 and 3.3] it is proved
that the algebra J of Jordan subsets of the real interval [0, 1] has Nikodým property but
fails property (G). The Nikodým part of this result was recently strengthened in [14, Theo-
rem 1] stating that the algebra of Jordan measurable subsets of the n-dimensional cube has
the web Nikodým property. We shall use in Lemma 2 the characterization of property (G)

given in Theorem 1. Let us recall that a sequence {μn}∞n=1 in ba(A) is uniformly exhaus-
tive on A if for each sequence {Ai : i ∈ N} of pairwise disjoint elements of A it holds that
limk→∞ supn∈N |μn(Ak)| = 0.

Theorem 1 ([20, 2.3. Definition]) An algebra of sets A has property (G) if and only if
every bounded sequence (μn)

∞
n=1 in ba(A) which converges pointwise on A is uniformly

exhaustive.

An algebra A is said to have property (V HS) if every sequence (μn)
∞
n=1 in ba(A) which

converges pointwise on A is uniformly exhaustive. It should be mentioned that A has prop-
erty (V HS) if and only if it has both Nikodým’s property and property (G), where the proof
of the non-trivial implication can be found in [2] (see also [10, Theorem 4.2]).

The following definitions are motivated by property (G), by the method used in defini-
tions of the strong and web Nikodým sets and by some natural properties we are going to
obtain in Corollary 3 and later in Theorem 3.

Definition 4 A subfamily 	 of an algebra of sets A will be called a Grothendieck set for
ba(A) if each sequence (μ)∞nn=1 in ba(A) which is pointwise convergent on 	 is weak
convergent in ba(A), i.e., if there is μ ∈ ba(A) such that μn(A) → μ(A) for every A ∈ 	

then ϕ(μn) → ϕ(μ), for each ϕ ∈ ba(A)∗.

Clearly if 	 is a Grothendieck set for ba(A) then A is a Grothendieck set for ba(A) and
this obviously implies that the algebra A has property (G). The converse statements fail in
general, as follows from [23] where under CH Talagrand gives an algebra of sets A with
the property (G) for which there exists a sequence (μ)∞n=1 in ba(A) such that μn(A) → 0
for all A ∈ A, but ‖μn‖ → ∞, hence the algebra A lacks the Nikodým property. Moreover
A is not a Grothendieck set for ba(A). Otherwise, we would have ϕ(μn) → 0, for each
ϕ ∈ ba(A)∗, a contradiction with ‖μn‖ → ∞.

Definition 5 A subfamily 	 of an algebra of sets A is called a strong Grothendieck set for
ba(A) if for each increasing covering (	n : n ∈ N) of 	 there exists n0 ∈ N for which 	n0

is a Grothendieck set for ba(A).
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Definition 6 A subfamily 	 of an algebra of sets A is called a web Grothendieck set for
ba(A) if for each web (	σ : σ ∈ N

<∞) in 	 there exists a chain (σn : n ∈ N) in N
<∞

such that each 	σn , n ∈ N, is a Grothendieck set for ba(A).

2 Uniform Bounded Deciding Sets (ubd Sets)

The next definition appear in [5] and it has been used, for instance, in [16–18], among
others.

Definition 7 (Fernández, Hui, and Shpiro, 1989) A subset C of a normed space E is an
uniform bounded deciding set (ubd set, in brief) for E∗ if each subset M of E∗ which is
pointwise bounded on C is norm bounded, i.e.,

sup
f ∈M

|f (x)| < ∞, ∀x ∈ C =⇒ sup
f ∈M

‖f ‖ = sup
f ∈M,x∈BE(0,1)

|f (x)| < ∞.

As we may suppose that 0 /∈ C, we assume that 0 /∈ C. Then the obvious equivalence

C is ubd ⇔ {‖x‖−1x : x ∈ C\{0}} is ubd

enables us to consider that each ubd set for E∗ is a subset of the unit sphere SE of E. The
Banach–Steinhaus theorem says that for a Banach space (E, ‖ · ‖) the closed unit ball BE

and the unit sphere SE are ubd sets for E∗.
Fonf proved in [11] that the set of exposed points of the unit sphere of a reflexive Banach

space E is an ubd set for E∗, hence the set of extreme points of SE is an ubd set for E∗.
The situation for non reflexive Banach spaces is quite different, because it is easy to prove
that the sets of extreme points of Sl∞ or SL∞[0,1] are ubd sets for (l∞)∗ or L∞[0, 1]∗, while
it is unknown if there exists proper subsets of the unit spheres Sc0 or Sl1 that are ubd sets
for (c0)

∗ or (l1)
∗ = l∞, respectively.

It is unknown whether the set C of inner functions in the Hardy space on the unit circle
H∞ is an ubd set for its dual. This problem was stated in [5, Introduction] and it seems to
be a very deep problem.

If 	 is a subfamily of an algebra of sets A then 	 is a Nikodým set for ba(A) if and only
if {χA : A ∈ 	} is a ubd set for ba(A), since it has been noted that each A ∈ A defines a
bounded linear functional χA on ba(A) determined by 〈χA, μ〉 = μ(A). This observation
implies that Nikodým sets may be considered as particular cases of ubd sets and it motivates
the following definitions that are natural extensions of strong and web Nikodým sets.

Definition 8 A subset C of a normed space E is a strong ubd set for E∗ if for each
increasing covering (Cn : n ∈ N) of C there exists n0 ∈ N for which Cn0 is an ubd set

for E∗.

Definition 9 A subset C of a normed space E is a web ubd set for E∗ if for each web
(Cσ : σ ∈ N

<∞) in C there exists a chain (σn : n ∈ N) in N
<∞ such that each Cσn , n ∈ N,

is an ubd set for E∗.

Let A be an algebra of sets. The next direct lemma summarize the natural relations
between classes of Nikodým sets and ubd sets for ba(A).
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Lemma 1 A subfamily 	 of A is a (strong, web) Nikodým set for ba(A) if and only if the
subset {χA : A ∈ 	} of �∞

0 (A) is a (strong, web) ubd set for ba(A).

Two characterizations of ubd sets are given in Propositions 1 and 2.

Proposition 1 Let C be a subset of a normed space E. C is an ubd set for E∗ if and only if
span{C} = E and C is an ubd set for (span{C})∗.

Proof If span{C} �= E then for each n there exists fn ∈ E∗ with ‖fn‖ = n and fn(C) =
{0}. So, C would not be an ubd set for E∗. If C is not ubd set for (span{C})∗ then C is not
ubd set for E∗. The converse follows from the observation that if span{C} = E then the
duals (span{C})∗ and E∗ are linearly norm isometric.

To get a functional description of ubd sets let us remind that the absolute polar C◦ of a
subset C of a normed space E is

C◦ = {x∗ ∈ E∗ : |x∗(x)| ≤ 1, x ∈ C},
and the bipolar of C is C◦◦ = {x ∈ E : |x(x∗)| ≤ 1, x∗ ∈ C◦}. The bipolar C◦◦ of C is the
closed absolutely convex cover of C.

Definition 10 A subset C of a normed space (E, ‖ · ‖) is norming if the Minkowski func-
tional of its bipolar C◦◦ is a norm in E equivalent to the original norm ‖ · ‖. The set C is
strong norming if each increasing covering (Cm)m of C contains a norming set Cn.

Therefore C is norming if there exists 0 < r < R such that B(0, r) ⊂ C◦◦ ⊂ B(0, R),
with B(0, R) = {x ∈ E : ‖x‖ ≤ R}. If E �= {0} then C◦◦ = {x : x ∈ C\{0}}◦◦ and the
double inclusion

B(0, r) ⊂ {x : x ∈ C\{0}}◦◦ ⊂ B(0, R)

implies that R−1{x : x ∈ C\{0}}◦◦ ⊂ {‖x‖−1x : x ∈ C\{0}}◦◦, where it is obvious that
{‖x‖−1x : x ∈ C\{0}}◦◦ is a subset of B(0, 1). From these inclusions we get

B(0, rR−1) ⊂ {‖x‖−1x : x ∈ C\{0}}◦◦ ⊂ B(0, 1),

that states that {‖x‖−1x : x ∈ C\{0}} is a norming subset of the unit sphere SE .
From the equivalences C◦◦ ⊂ B(0, R) ⇔ C ⊂ B(0, R) and

B(0, r) ⊂ C◦◦ ⊂ B(0, R) ⇐⇒ B(0, R−1) ⊂ C◦ ⊂ B(0, r−1)

with B(0, R−1) = {x∗ ∈ E∗ : ‖x∗‖ ≤ R−1} and B(0, r−1) = {x∗ ∈ E∗ : ‖x∗‖ ≤ r−1}, it
follows that C is a norming subset of (E, ‖ ·‖) if and only if one of the following conditions
holds: 1. C◦◦ is a norming subset of (E, ‖ · ‖). 2. C◦◦ is a bounded zero neighborhood of
(E, ‖ · ‖). 3. C and C◦ are bounded subsets of (E, ‖ · ‖) and (E∗, ‖ · ‖), respectively. 4. C◦
is a norming subset of (E∗, ‖ · ‖).

If a subset M of (E∗, ‖ · ‖) is uniformly bounded in a norming subset of (E, ‖ · ‖) then
M is a bounded subset of (E∗, ‖ · ‖).

Proposition 2 (Nygaard 2001) Let C be a bounded subset of a normed space (E, ‖ · ‖).
Then C is an ubd set for E∗ if and only if C is strong norming.
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Proof Let C be a subset of E that it is strong norming and let M be a C-pointwise bounded
subset of (E∗, ‖ · ‖). The relation

C =
⋃

m∈N
{x ∈ C : |f (x)| ≤ m, f ∈ M}

implies that there exists Cn := {x ∈ C : |f (x)| ≤ n, f ∈ M} which is a norming subset
of (E, ‖ · ‖). As M is uniformly bounded on Cn we deduce that M is a bounded subset of
(E∗, ‖ · ‖), hence C is an ubd set for E∗.

If the bounded subset C is not strong norming then C is the increasing union of non-
norming sets Cn, n ∈ N, hence there exists fn ∈ C◦

n , with ‖fn‖ = n. Since the unbounded
sequence (fn)n is C-pointwise bounded, we get that C is not an ubd set for E∗.

Following with the last part of the preceding proof, if the bounded non strong norming set
C is a subset of B(0, R) and C is the increasing union of non-norming sets Cn, n ∈ N, then
‖fn‖ = n implies that |fn(x)| ≤ R if x ∈ n−1C. In particular, |fn(x)| ≤ R if x ∈ i−1Ci ,
for i > n. The relation fn ∈ C◦

n implies that |fn(x)| ≤ 1, if x ∈ Cn, and then we deduce
that |fn(x)| ≤ 1 if x ∈ i−1Ci , for i ≤ n. Therefore the bounded set A = ∪{i−1Ci : i ∈ N}
is not norming for E∗, because from |fn(x)| ≤ 1 +R, if x ∈ A, we deduce that A◦ contains
the unbounded sequence ((1 + R)−1fn : n ∈ N). Additionally span{C} = span{A}. Next
corollary follows directly from this observation of Proposition 2.

Corollary 1 Let C be a bounded and non strong norming subset of the normed space
(E, ‖ · ‖). Then there exists a bounded and non-norming subset A such that span{C} =
span{A}.

3 A Hereditary Property of Rainwater Sets

Let X be a compact space, C(X) be the space of real or complex continuous functions
defined on X endowed with the supremum-norm and let (fn : n ∈ N) be a norm-bounded
sequence in C(X). From the Lebesgue dominated convergence theorem it follows that fn →
f weakly in C(X) if and only if fn(x) → f (x) for every x ∈ X, that is, 〈fn, μ〉 → 〈f, μ〉
for every μ ∈ C(X)∗ if and only if 〈fn, δv〉 → 〈f, δv〉, for each v ∈ K , where δv is the
element of SC(X)∗ defined by the evaluation in v (see [4, IV.6.4 Corollary]). This property
suggests the following definition.

Definition 11 A subset X of the dual closed unit ball BE∗ of a Banach space E is called a
Rainwater set for E if every bounded sequence (xn)

∞
n=1 of E that converges pointwise on

X, i.e., such that x∗xn → x∗x for each x∗ ∈ X, converges weakly in E, i.e., x∗xn → x∗x
for each x∗ ∈ E∗ (cf. [6]).

Then for a compact space X we have that the set {δv : v ∈ X} is a Rainwater set for
C(X).

Rainwater’s classic theorem [19] asserts that the set of extreme points of the closed dual
unit ball of a Banach space E is a Rainwater set for E. According to [21, Corollary 11],
each James boundary of E is a Rainwater set for E. As regards the Banach space C(X)

of real-valued continuous functions over a compact space X equipped with the supremum
norm, the Arens–Kelly theorem asserts that the set of the extreme points of the compact
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subset BC(X)∗ of C(X)∗ (weak∗) is {±δx : x ∈ X} (see [1]). Then we get again Rainwater’s
theorem for real C(X), stating that {δx : x ∈ X} is a Rainwater set for C(X).

Note that a sequence (xn)
∞
n=1 of E converges pointwise on a subset X of E∗ if and only

if it converges pointwise in span{X}, therefore the condition X ⊂ BE∗ may be avoided in
the definition of Rainwater set.

The fact that a normed space E lives isometrically in E∗∗ suggests the first part of the
following definition.

Definition 12 Let M be a subset of a normed space E. M is a Rainwater set for E∗ if
every bounded sequence (x∗

n : n ∈ N) of E∗ that converges pointwise on M , i.e., such
that xx∗

n → xx∗ for each x ∈ M , converges weakly in E∗, i.e., x∗∗x∗
n → x∗∗x∗ for each

x∗∗ ∈ E∗∗.
M is a strong [web] Rainwater set for E∗ if for each increasing covering (Mn : n ∈ N)

[web (Mσ : σ ∈ N
<∞)] of M there exists n0 ∈ N [a chain (σn : n ∈ N) in N

<∞] for which
Mn0 [each Mσn , n ∈ N], is a Rainwater set for E∗.

Proposition 3 Let M be a subset of the normed space E that it is both an ubd and a
Rainwater set for E∗. Then each sequence (x∗

n : n ∈ N) of E∗ that pointwise converges on
M converges weakly.

In particular, if M is a subfamily of an algebra of sets A such that M is a Nikodým set
for ba(A) and {χA : A ∈ M} is a Rainwater set for ba(A), then M is a Grothendieck set
for ba(A).

Proof As M is an ubd set for E∗ and (x∗
n : n ∈ N) pointwise converges on M then (x∗

n :
n ∈ N) is a bounded sequence. The proposition follows from the Rainwater condition.

Let (μn : n ∈ N) be a sequence in ba(A) such that μn(A) = 〈χA, μn〉 → μ(A) =
〈χA, μ〉, for every A ∈ M. Applying the general case with M = {χA : A ∈ M}, E =
�∞

0 (A), E∗ = ba(A) and x∗
n = μn, n ∈ N, we get that (μn : n ∈ N) converges weakly to

μ, hence M is a Grothendieck set for ba(A).

With the hypothesis of Proposition 3 the next theorem states that M and {χA : A ∈ M}
are strong Rainwater sets for E∗ and ba(A), respectively. Its argument is based in the proof
of [8, Theorem 8].

Theorem 2 Let M be a subset of a normed space E that it is both an ubd and a Rainwater
set for E∗. Then M is a strong Rainwater set for E∗.

In particular, if M is a subfamily of an algebra of sets A such that M is a Nikodým set
for ba(A) and {χA : A ∈ M} is a Rainwater set for ba(A) then {χA : A ∈ M} is a strong
Rainwater set for ba(A).

Proof We may suppose that M ⊂ BE . Let {Mn : n ∈ N} be an increasing covering of M

and let Ê be the completion of E.

First we claim that Ê = ∪n∈N n abxMn
Ê

and we prove this equality by contradiction. If

there exists x ∈ SÊ such that x /∈ n abxMn
Ê

, for all n ∈ N, then the separation theorem
provides x∗

n ∈ E∗ with |x∗
n(x)| = 1 and

sup

{

|x∗
n(y)| : y ∈ abxMn

Ê
}

≤ 1

n
.
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If y ∈ M there exists k ∈ N such that y ∈ Mn for every n ≥ k. Consequently

|x∗
n(y)| ≤ 1

n
for n ≥ k,

which shows that x∗
n(y) → 0, hence as M is an ubd set for E∗ the sequence (x∗

n : n ∈
N) is bounded in E∗. As M is a Rainwater for E∗ and the bounded sequence (x∗

n : n ∈
N) converges to 0 pointwise in M then x∗

n → 0 weakly in E∗. This is a contradiction,
since |x∗

n(x)| = 1 for every n ∈ N. The claim is proved and the relations M ⊂ BE and

Ê = ∪n∈N n abxMn
Ê

implies that there exists p ∈ N such that the unit closed ball BÊ of
Ê verifies that

M ⊂ BÊ ⊂ p abxMp
Ê
,

and it follows that abxMp
Ê

is a Rainwater set for E∗. In order to prove this theorem it
suffices to show that abxMp is also a Rainwater set for E∗, because then Mp shall be a
Rainwater set for E∗.

Let {y∗
n}∞n=1 be a bounded subset of E∗ such that y∗

n(x) → 0 for each x ∈ abxMp and

let ε > 0. For each z ∈ abxMp
Ê

there exists xε,z ∈ abxMp such that

|y∗
n(z − xε,z)| <

ε

2
for each n ∈ N. (1)

Since y∗
n(xε,z) → 0, it follows that there exists nε,z such that

|y∗
n(xε,z)| <

ε

2
for each n > nε,z. (2)

From (1) and (2) it follows that |y∗
n(z)| < ε if n > nε,z, hence the equality y∗

n(z) → 0, for

each z ∈ abxMp
Ê

, implies that μ(y∗
n) → 0, for each μ ∈ E∗∗, hence abxMp is a Rainwater

set for E∗.
The particular case follows from Lemma 1 and the result just proved with E = �∞

0 (A)

and M = {χA : A ∈ M}.

Corollary 2 Let M be a subset of a Banach space E that it is both a strong ubd and
a Rainwater set for E∗. Then for each increasing covering (Mn : n ∈ N) of M there
exists p ∈ N such that Mq , for each q ≥ p, is both an ubd and Rainwater set for E∗.
If additionally M is a web ubd set for E∗ then for each web (Mσ : σ ∈ N

<∞) in M

there exists a chain (σn : n ∈ N) in N
<∞ such that each Mσq , for q ∈ N, is both an ubd

and Rainwater set for E∗. Hence, for each sequence (x∗
n : n ∈ N) of E∗ the pointwise

convergence in one of these Mq , q ≥ p, or Mσq , q ∈ N, respectively, implies the weak
convergence of (x∗

n : n ∈ N).

Proof The strong ubd set M is by Theorem 2 a strong Rainwater set for E∗, hence if
(Mn : n ∈ N) is an increasing covering of M there exists p ∈ N such that Mq is both an
ubd and a Rainwater set for E∗ for each q ≥ p.

The second part follows by induction, taking care that if M is a web ubd set for E∗ and
(Mσ : σ ∈ N

<∞) is a web in M then there exists p1 such that for every q1 ≥ p1 the set
Mq1 is also web ubd for E∗. The final part follows from Proposition 3.

Corollary 3 Let M be a subfamily of an algebra of sets A such that M is both a strong
Nikodým and Grothendieck set for ba(A). Then for each increasing covering (Mn : n ∈ N)

of M there exists p ∈ N such that, for each q ≥ p, Mq is both a Nikodým set and a
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Grothendieck set for ba(A). If additionally M is a web Nikodým set for ba(A) then for
each web (Mσ : σ ∈ N

<∞) in M there exists a chain (σn : n ∈ N) in N
<∞ such that

Mσq , for each q ∈ N, is both a Nikodým and Grothendieck set for ba(A).
Hence if M is a subfamily of an algebra of sets A such that M is a strong Nikodým

(web Nikodým) set for ba(A) and {χM : M ∈ M} is Rainwater set for ba(A) thenM is a
strong Grothendieck (web Grothendieck) set for ba(A).

Proof Let M be both a strong Nikodým and Grothendieck set for ba(A). Then {χM : M ∈
M} is a Rainwater set for ba(A). Let (Mn : n ∈ N) be an increasing covering of M.
Applying Lemma 1 and Corollary 2 with E = �∞

0 (A) and M = {χA : A ∈ M} we get that
there exists p ∈ N such that, for each q ≥ p, the set {χA : A ∈ Mq} is both an ubd set
and a Rainwater set for ba(A). By Lemma 1 and the final statement of Proposition 3 we get
that Mq is both a Nikodým set and a Grothendieck set for ba(A). Hence, M is a strong
Grothendieck set for ba(A).

With obvious changes we get the corresponding proof for the web Nikodým case.

4 Application to BoundedMeasures and Open Problems

Next lemma is a particular case of [8, Theorem 6], that is based on [7, Proposition 14]. We
provide a brief proof for the sake of completeness.

Lemma 2 Let � be a σ -algebra of sets. Then � is a Grothendieck set for ba(�).

Proof Let (μn : n ∈ N) be a sequence in ba(�) such that μn(A) → μ(A) for each A ∈ A.
As � is a Nikodým set for ba(�) we have that the set M = {μn : n ∈ N} is a bounded subset
of ba(A). Since the σ -algebra � has property (G) then by Theorem 1, [3, Corollary 5.2]
and [4, 4.9.12 Theorem] we get that the bounded set M is a relatively weakly sequentially
compact and then, from μn(A) → μ(A) for each A ∈ A, we deduce that μ is the only
possible weakly adherent point of the sequence (μn : n ∈ N). Hence, μn → μ weakly and
we get that � is a Grothendieck set for ba(�).

In the next three results we improve the strong Grothendieck properties considered in
[8, Theorem 3, Corollary 10, and Proposition 12] to the corresponding web Grothendieck
properties.

Theorem 3 Each σ -algebra � of subsets of a set � is a web Grothendieck set for ba(�).
More precisely, if (�σ : σ ∈ N

<∞) is a web in � there exists a chain (σn : n ∈ N) in N
<∞

such that each �σn , n ∈ N, is both a Nikodým and a Grothendieck set for ba(�).

Proof It is well known that each σ -algebra � of subsets of a set � has web Nikodým prop-
erty (see [15] or [13]) and (G) property. Then Lemma 2 implies that � is a Grothendieck
set for ba(�). The conclusion follows from Corollary 3 with M = �.

Corollary 4 If (�σ : σ ∈ N
<∞) is a web in 2N, there exists a chain (σn : n ∈ N) in N

<∞
such that each �σn , n ∈ N, is both a Nikodým and a Grothendieck set for ba(2N) = �∗∞.
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Proof Apply Theorem 3 to the σ -algebra 2N.

Theorem 3 allows to extend various classic theorems of Banach space theory. As a
sample, we extend the classical Phillips lemma about convergence in ba(�).

Proposition 4 Let (�σ : σ ∈ N
<∞) be a web in a σ -algebra � of subsets of a set �.

There exists a chain (σn : n ∈ N) in N
<∞ such that each �σp , p ∈ N, verifies that if

(μ)∞nn=1 ⊆ ba(�) satisfies that limn→∞ μn(A) = 0 for every A ∈ �σp and (Ak : k ∈ N) is
a sequence of pairwise disjoint elements of �, then

lim
n→∞

∞∑

k=1

|μn(Ak)| = 0. (3)

Proof According to Theorem 3 there exists a chain (σn : n ∈ N) in N
<∞ such that each

�σp , p ∈ N, is Grothendieck set for ba(�). So, if limn→∞ μn(A) = 0 for every A ∈ �p ,
then μn → μ weakly in ba(�). In particular, μn(A) → μ(A) for every A ∈ �. Hence, (3)
holds by Phillip’s classic theorem.

We do not know the answer of the following two questions for an algebra A of subsets
of a set �:

Question 1 Let us suppose that A is a Grothendieck set for ba(A). Is A a strong
Grothendieck set for ba(A)?

Question 2 Does the Nikodým property of A imply that A has the strong Nikodým property
for ba(A)? This open question was proposed in 2013 by Valdivia in [25].
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