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Abstract: Electrohysterography (EHG) has emerged as an alternative technique to predict preterm la-
bor, which still remains a challenge for the scientific-technical community. Based on EHG parameters,
complex classification algorithms involving non-linear transformation of the input features, which
clinicians found difficult to interpret, were generally used to predict preterm labor. We proposed
to use genetic algorithm to identify the optimum feature subset to predict preterm labor using
simple classification algorithms. A total of 203 parameters from 326 multichannel EHG recordings
and obstetric data were used as input features. We designed and validated 3 base classifiers based
on k-nearest neighbors, linear discriminant analysis and logistic regression, achieving F1-score of
84.63 ± 2.76%, 89.34 ± 3.5% and 86.87 ± 4.53%, respectively, for incoming new data. The results reveal
that temporal, spectral and non-linear EHG parameters computed in different bandwidths from
multichannel recordings provide complementary information on preterm labor prediction. We also
developed an ensemble classifier that not only outperformed base classifiers but also reduced their
variability, achieving an F1-score of 92.04 ± 2.97%, which is comparable with those obtained using
complex classifiers. Our results suggest the feasibility of developing a preterm labor prediction
system with high generalization capacity using simple easy-to-interpret classification algorithms to
assist in transferring the EHG technique to clinical practice.

Keywords: preterm labor; electrohysterography; myoelectric activity; genetic algorithm; ensemble learning

1. Introduction

Premature delivery is defined as one that occurs before 37 weeks of gestation. Over 9–
12% of children are born prematurely every year, this being the leading cause of new-born
deaths and the second-leading cause of death after pneumonia in children under the age of
5 [1]. In the case of survivors, it is associated with 20% mental retardation, 50% cerebral
palsy and 33% eye injuries [2]. Preterm births are also associated with long-term morbidity
consequences such as learning disabilities, attention deficit disorder, emotional problems,
respiratory distress and intraventricular hemorrhage [1]. The costs derived from premature
pregnancy are significant for national healthcare systems. In the United States, the economic
cost in 2005 (combined medical, educational and lost productivity) associated with preterm
birth amounted to at least $26.2 billion [1]. The average first-year medical costs, including
both inpatient and outpatient care, were about 10 times greater for preterm ($32,325) than
for term infants ($3325) [1].

Obstetricians usually assess uterine dynamics by tocodynamometer and cervix sta-
tus using cervical length and bishop scores to determine the risk of preterm labor [3].
Biochemical markers such as fetal fibronectine and interleukin-6 have also been shown
to be useful to identify patients that are not at risk of preterm labor, thus obtaining a
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high negative predictive value [4,5]. However, all these techniques fail to detect women
who will deliver prematurely, with positive predictive values lower than 0.50. Electro-
hysterography (EHG), which consists of the recording of uterine myoelectrical activity
on the abdominal surface, has emerged as a powerful tool to predict preterm labor due
to its high sensitivity in identifying the real preterm labor patients [6]. In addition to
identifying uterine contractions, which is the only useful information that can be derived
from tocography, relevant information on the uterine electrophysiological state can also
be obtained from the EHG. Temporal, spectral and non-linear parameters are used to
characterize the electrophysiological changes throughout pregnancy [7]. In this context,
the EHG signal amplitude associated with the number of uterine cells involved in one
contraction has been shown to increase as pregnancy progresses. As labor approaches, a
shift of spectral content towards higher frequencies has also been reported, suggesting
increased cell excitability [6]. Different entropy measurements such as sample entropy
(SampEn), fuzzy entropy (FuzEn) and spectral entropy (SpEn) have shown that signal
predictability increases as labor approaches [8], although some controversial results have
been reported [7]. Likewise, signal complexity seems to decrease, which was shown by an-
alyzing the Lempel-Ziv evolution in function of time-to-delivery [9]. Poincaré plot-derived
parameters [10] have also been proposed to characterize the EHG signal, and it has been
observed that signal randomness decreases as labor approaches [6].

Many efforts have focused on developing prediction models for forecasting preterm
labor based on EHG features and achieved classifier accuracy of more than 95% [7]. Despite
the promising results of these prediction systems, they have had no significant impact
on clinical practice [11]. This is due to various factors. Firstly, most of these systems use
neural networks or support vector machine, multilayer perceptron, or similar algorithms,
which involved non-linear transformations of the input EHG features into high dimension
space, in which data from the target classes offer better linear separability [12]. This could
give rise to good prediction performance even when the input features apparently do not
contain information to differentiate the target classes. Obstetricians often consider this
type of classification algorithm as a black box or a mathematician’s gadget due to its being
difficult to interpret [13], and so find it difficult to trust the predictions of these complex
classifiers. By contrast, obstetricians are familiar with linear discriminant analysis (LDA),
logistic regression (LR) and k-nearest neighbors (KNN) [12], which are simple and easy
to interpret [13]. In addition, since the nonlinear transformation of the data is avoided,
the definition of input EHG features used to obtain the prediction model also contributes
to a better understanding of the uterine electrophysiological mechanism associated with
labor. It is therefore fundamental to develop preterm labor prediction systems using simple
and easily interpretable algorithms to improve the transferability of the EHG technique
to clinical practice by gaining obstetricians confidence in prediction model outcomes [14].
Secondly, due to using reduced sample sizes, many previous studies have used cross-
validation methods to design and validate the classifiers, without determining the real
generalization capacity for incoming data ‘never’ seen by the classifiers [7].

The aim of this work was therefore to develop easily interpreted prediction systems
based on EHG features for forecasting preterm labor in women at regular check-ups and to
determine its generalization capacity for incoming data ‘never’ seen by the classifiers, to fa-
cilitate the transfer of this technique to clinical practice. We also attempted to identify those
EHG features that presented relevant and complementary information on labor prediction.

2. Materials and Methods
2.1. Database

Two public EHG databases available in Physionet were used for the study: The
“Term-Preterm EHG Database” (TPEHG DB) [14] and the “The Term-Preterm EHG Dataset
with tocogram” (TPEHGT DS) [15]. Both databases were obtained by the Department of
Obstetrics and Gynecology at the Ljubljana University Medical Center. To agree with the
data available for each patient, only EHG recordings from both databases were used to
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predict preterm labor, i.e. the tocogram signals included in THEHGT DS were ignored.
They comprised a total of 326 EHG signals from 275 term labor (labor > 37 weeks) and
51 preterm labor were recorded during routine checkups of pregnant women between 22
and 37 weeks of gestation. The protocol used to obtain the EHG recordings consisted of
placing four disposable electrodes on the woman’s abdomen at an interelectrode distance
of 7 cm. Three bipolar channels (S1, S2 and S3) were obtained from the monopolar EHG
recordings, as shown in Figure 1. Each signal was digitized at 20 samples per second
per channel with a 16-bit resolution over a range of ±2.5 millivolts [14]. A demographic
description of both databases was provided in Table 1.

Table 1. Demographic description of the both databases (TPEHG DB and TPEHGT DS).

Group N Maternal
Age (Years) Parity Abortions Maternal

Weight (kg)
Wog *

(Weeks)
Birth

(Weeks)

Term 275 29.33 ± 4.34 0.40 ± 0.74 0.23 ± 0.61 68.55 ± 10.55 26.95 ± 4.19 39.21 ± 1.12
Preterm 51 29.08 ± 5.26 0.41 ± 0.64 0.26 ± 0.60 66.82 ± 11.24 27.59 ± 3.72 33.92 ± 2.21

* Gestational age at the moment of the recording (weeks).

Navel 

3.5 cm3.5 cm

3.5 cm

3.5 cm

E2 E1

E3 E4

S1 = E2 - E1
S2 = E2 - E3
S3 = E4 - E3

S1 = E2 - E1
S2 = E2 - E3
S3 = E4 - E3

S1 = E2 - E1
S2 = E2 - E3
S3 = E4 - E3

Figure 1. Recording protocol of EHG signals. Modified from [15].

2.2. EHG Signal Characterization

Physiologically, various types of uterine contractions such as Alvarez waves, Braxton
Hicks contractions, preterm contractions, and with less frequency the so-called “long
duration low-frequency band waves” [16] may be present in EHG recordings acquired from
pregnant woman in the third trimester of gestation not close to delivery. The amplitude
of the EHG bursts associated with these uterine contractions is expected to be very low,
giving rise to subtle changes from basal activity. It is therefore very difficult to accurately
identify the onset and offset of uterine contractions in these recordings and this could
generate some uncertainty in the results derived from them. Previous results have revealed
that whole window analysis can also be used for characterizing EHG signals [8,14,17] and
that it even outperforms EHG-burst analysis for predicting imminent labor in women with
threatened preterm labor [18]. Whole window analysis has the additional advantage of
not requiring the uterine contractions to be identified in the EHG recordings, and only
non-physiological segments should be excluded (such as artifacted segments and those
with respiratory interference), thus facilitating its implementation in real time. In this work
we therefore performed whole EHG window analysis to characterize the EHG signals
rather than EHG-burst analysis. Two experts identified physiological segments in the
EHG recordings by a double-blind process. The EHG characteristics of the recordings were
analyzed in 120 s windows with a 50% overlap, the window length being a tradeoff between
computational cost and preserving the representative segment of the recordings [18]. We
then computed the median value of all the analyzed windows in the recording to obtain a
single representative value of each EHG parameter per recording.
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A total of 66 temporal, spectral and non-linear parameters were worked out per
recording channel and session, see Table 2. Firstly, the EHG signal is known to contain
Fast Wave Low (FWL) and Fast Wave High (FWH) components, which are associated with
signal propagability and cell excitability, respectively, their energy being distributed in
0.2–0.34 Hz and 0.34–4 Hz, respectively [6]. Due to the relatively lower signal-to-noise
interference above 1 Hz [6,14], we considered both 0.34–4 Hz and 0.34–1 Hz to characterize
the FWH component. Therefore, we calculated the peak-to-peak amplitude (App) to
describe the signal amplitude of different EHG components in four bandwidths: whole
EHG bandwidth 0.1–4 Hz; FWH bandwidth 0.34–4 Hz; 0.2–0.34 Hz and 0.34–1 Hz, in which
the energy of the FWL and FWH components is mainly distributed respectively. Due to the
increasing formation of gap junctions as pregnancy progresses, signal amplitude, which
is associated with the number of uterine cells involved in one contraction, was shown to
increase as labor approaches [6].

As labor gets nearer, the EHG signal spectral content shifted to higher frequencies,
suggesting increased cell excitability [6]. Different spectral parameters have been proposed
to quantify the signal spectral content distribution: mean frequency (MeanF), dominant
frequency (DF) computed in the range 0.2–1 Hz and in 0.34–1 Hz, power spectrum deciles
(D1, . . . , D9), normalized energy (NormEn) (0.2–0.34 Hz, 0.34–0.6 Hz 0.6–1 Hz) [19], high-
to-low frequency energy ratio (H/L ratio) and spectral moment ratio (SpMR), as in [15].
We also included Teager energy, which contains information not only on signal amplitude,
but also on the frequency content [8]. Due to the increased cell excitability, different
spectral parameters are expected to increase as pregnancy progresses, however there is
no agreement in the literature about the spectral parameters that can best characterize the
EHG signal, and above all those that provide information to complement temporal and
non-linear parameters.

Due to the non-linear nature of the biological process dynamics, non-linear parameters
have been widely used to characterize EHG signals. A previous study showed that the
bandwidth in which the non-linear parameters are computed is a key factor in obtaining a
robust and physically interpretable indicator for characterizing EHG signals [14,17]. We
therefore computed several non-linear parameters in the same four bandwidths as App
to determine whether there was any redundant or complementary information between
non-linear parameters computed in different bandwidths and to other linear features.
SampEn, FuzEn and SpEn were used to measure time series regularity and predictability in
both the time and frequency domains [8,14]. A lower value of entropy metrics is associated
with more self-similarity in the regular and predictable time series. We also computed the
Lempel-Ziv index (binary (LZBin) and multistate n = 6 (LZMulti)), which evaluates time se-
ries complexity by measuring the ‘diversity’ of the patterns embedded in a time series [8,18].
Time reversibility (TimeRev) estimates the similarity in forward (natural) and reverse time
and can be considered as a measurement of the degree of signal nonlinearity [8]. Uterine
myoelectric activity has also been shown to possess fractal properties and is another way
of measuring signal self-similarity [20,21]. We also computed Katz’s fractal dimension
(KFD) [22] since it is less sensitive to noise than Higuchi’s method [23]. It was defined as
the ratio between the curve length, which corresponds the sum of the Euclidean distances
between successive points of the time series, and the maximum distance between the first
point and any sample of the time series [22].

Since the ‘present’ EHG signal amplitude may significantly influence the ‘following’
values, we represented the Poincaré plot of consecutive EHG signal amplitudes (EHG[n]
vs. EHG[n−1]) to estimate the short (SD1) and long-term (SD2) variation of the dispersion
along the minor and major axes of the ellipse, respectively [10]. We then obtained the
SDRR, defined as square root of the variance of the whole time series

√
(SD12 + SD22)/2

and SD1/SD2 ratio, which measures signal randomness. This latter has been shown to
decrease significantly in women with threatened preterm labor who delivered in less than
7 days, in comparison to those who delivered in more than 7 days [8]. Table 2 summarizes
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the EHG parameters and obstetric data used to design the preterm labor prediction model
(3 channels · 66 EHG parameters per channel + 5 obstetric data = 203 features).

Table 2. Input features for predicting preterm labor that including both temporal,spectral and
non-Linear EHG parameters and obstetric data.

EHG Temporal
Parameters

EHG Spectral
Parameters

EHG Non-Linear
Parameters

Obstetric data

SampEn
FuzEn

MeanF SpEn Maternal age
DF LZBin Parity

App NormEn LZMulti (n = 6) Abortions
H/L Ratio SD1 Weight

[D1, . . . , D9] SD2 Week of
gestation

(Wog)

SpMR SDRR
Teager Energy SD1/SD2

TimeRev
KFD

2.3. Classifier Design and Evaluation

Since the preterm birth rate is about 12% in women who have regular check-ups, this
means that the two target classes are highly imbalanced. It is well known that the conven-
tional classification algorithms are often biased towards the majority class for imbalanced
data, obtaining a higher misclassification rate for the minority class instances [24]. In this
case, low sensitivity can be expected for true preterm labor. In this work, we used the
synthetic minority oversampling technique (SMOTE, k = 5) [24], which has been widely
used to mitigate imbalanced class problems, to obtain balanced preterm labor and term
labor data [7].

We then used the conventional holdout method (30 partitions) to design and validate
the classifiers. For each partition we randomly split the whole balanced database into
3 datasets with the same proportion between the classes: training (1/3), validation (1/3)
and testing (1/3) for designing, validating and testing the classifier, respectively.

As mentioned above, a total of 203 EHG features derived from the 3-channels EHG
recording and obstetric data was used to design the prediction system. Since they may
contain mutual and redundant information or noise, which could lead to loss of prediction
performance, it is fundamental to reduce the dimension of the data. The relevance of the
features for predicting preterm labor can be evaluated either individually (unidimensional
approaches) or multidimensionally. Unidimensional approaches are simple and fast and
therefore appealing. Nevertheless, if we only consider a unidimensional approach, the
outcomes suggest eliminating those with non-significant statistical differences. The indi-
vidual discrimination power must not be the only consideration since possible correlations
and dependencies between the features are not considered. Many authors [12,25–28] claim
that the redundant information shared between the characteristics leads to discarding
some of them with a feature selection algorithm. The same occurs with noisy features
that add an artifact to the classification. Although complementarity between features is
critical to achieve good performance, multidimensional search techniques such as mutual
information estimation may be helpful to evaluate possible correlations and dependencies
between features. Nevertheless, estimating the mutual information (especially through
probability density function estimations) between high-dimensional variables is a hard task
in practice due to the limited number of available data points for real-world problems [29].
In this work, we measured the capability of each individual feature to identify a premature
delivery with a statistical test. The Wilcoxon Rank-Sum Test was performed to compare
the features’ ability to distinguish term and preterm deliveries from EHG recordings in
routine check-ups. This is a non-parametric statistical hypothesis test used to compare
two related samples to assess whether their population mean ranks differ (α < 0.05) [30].
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Lower p-values mean higher discriminatory capacity between target classes for the in-
dividual feature. We performed multidimensional analysis by using a wrapper method
for feature selection which has been widely used in the literature [25,27,31] and has been
proven to provide better results than filter methods based on the intrinsic information
embedded in the features: the genetic algorithm [31]. The initial feature set was assessed by
a genetic algorithm to fit with logistic regression (LR), linear discriminant analysis (LDA)
and k-nearest neighbour (KNN) classifiers. If a feature was selected by one or several
classifiers, it meant that it complemented others in predicting preterm delivery. The genetic
algorithm is a random search strategy based on procedures of natural evolution and is
widely used for selecting the optimal feature subset to design computer-aided systems for
pattern recognition in different biomedical applications [32,33]. In this work, population
size (N) and genome length were fixed to the number of model features, N = 203 [26]. The
crossover function implemented was the arithmetic crossover with a probability of 0.8.
Typically, it was assumed between 0.6 and 1, increasing the randomness of the children
generation the lower the value it takes [34]. We used mutation uniform for the mutation
function, with a probability of 0.01, since the convergence to a lower minimum is better
with low values (<0.1) [31,34]. The tournament function with a size of 2 and an elite count
of 2 was used to select the next generation population [26]. The termination condition of
the genetic algorithm was defined as a differential tolerance of 10−6 for the fitness function
between 150 consecutive generation’s best fitness value.

Figure 2 summarizes the procedure carried out to fit the model and obtain the op-
timized feature subset. Firstly, an initial population was randomly established, then the
balanced data set was masked with the chromosomes, obtaining the different feature
subsets. The mask (selected features), which corresponded to an i-chromosome, was set to
the balanced data set obtaining the i-subset, with 1 ≤ i ≤ N. Subsequently, for each feature
subset, the training dataset was used to fit the prediction model for each partition. The
average F1-score over 30 partitions in validation subsets was then worked out to assess the
model’s performance. When all the chromosomes in the the population were evaluated, a
new one was created, crossing over and mutating the last population and keeping the chro-
mosomes that outperformed the fitness function (see Equation (1)). It became an iterative
procedure until the termination condition was reached, giving rise to the optimized feature
subset which corresponded to the best chromosome that optimized the fitness function.
Finally, we determined the model’s generalization capacity for the testing dataset which
could be considered as the incoming new data ‘never’ seen by the model.

Fitness function = max{F1-score · (NFeat−NCFeat)} (1)

where F1-score is the average F1-score of validation dataset for 30 partitions, NFeat is
the number of features of the initial set and NCFeat is the number of features of the
current subset.

For the classification methods, we compared different methods (LDA, LR and KNN)
that can easily be interpreted by obstetricians. Due to the fact that the optimization cost
function of the genetic algorithm is the weighted classifier performance (1) [26], different
optimized EHG feature subsets may be obtained for each classification method.

To compare the different prediction model’s performance the following metrics were
used: accuracy, F1-score, sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV) and area under curve (AUC) [12]. The Friedman nonparametric test
was conducted to determine the statistical difference in different metrics [35]. The Nemenyi
post-hoc test [35] was then used for pair-wise evaluation of the classifiers, checking the
similarity of their performance.
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Figure 2. Genetic algorithm for selecting optimized feature subset to predict preterm labor based
on EHG. Considering: genetic algorithm (GA), classifier (CLF), training partition (Train), valida-
tion partition (Val), testing partition (Test), chromosome (Chrom), population size (N), obstetrics
features (OBST).

Since individual classifiers may present a high bias or variance, giving rise to weak
base models, to overcome these problems we also evaluated the utility of ensemble classifier
to achieve better performance. The three previously obtained base models based on LDA,
LR and KNN were used, with a commonly used majority voting strategy in the meta-level
to obtain a more robust meta-classifier preterm labor predictor. We also determined the
model’s generalization capacity for testing incoming data ‘unseen’ by the model for the
ensemble classifier. Base and ensemble classifiers performance variability were compared
by computing the coefficient of variation of the classifier metrics for both the validation
and testing dataset.

3. Results

Figure 3 shows the three optimized feature subsets for predicting preterm labor using
LDA, LR and KNN as classification methods. It also shows the outcomes of individual
correlations of the Wilcoxon Rank-Sum test for each individual feature to discriminate
between preterm and term labor classes. Firstly, we found that the EHG features computed
from the 3 channels contained complementary information: 22, 25 and 23 features computed
from S1, S2 and S3 respectively were included in at least one of the three optimized feature
subsets. Peak-to-peak amplitude computed in the 0.2–0.34 Hz bandwidth, where the main
energy of the FWL component is concentrated, seems to provide relevant information
for predicting preterm labor, having been included in the “best chromosomes” of the LR
and LDA classifiers. In general, there is important mutual information between different
spectral EHG parameters. In this regard, deciles D1–D3, D8 and D9 were not included in
the best chromosome of any of the three base classifiers. The DF in 0.1–1 Hz and 0.34–1 Hz,
NormEn in 0.1–0.34 Hz and 0.34–0.6 Hz, D5, D6 and SpMR seem to provide most relevant
information on cell excitability. As for the non-linear parameters, the information extracted
from different bandwidths was not necessarily redundant, but rather complementary. The
non-linear parameters, extracted from 0.34–4 Hz, where FWH components distributed
their energy, seem to contain the most relevant information for predicting preterm labor. In
contrast, the non-linear parameters computed from 0.2–0.34 Hz contain less complementary
information for differentiating preterm and term records. In this respect, the parameters
derived from the Poincare plot, SampEn and FuzEn, computed in this bandwidth were
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not included in any of the three base classifiers. In comparison to LZBin, LZMulti seems
to provide more complementary information to other EHG features and therefore more
present in the best chromosome of the different algorithms (see Figure 3). The entropy
metrics (SampEn, FuzEn and SpEn) contained redundant information, SpEn being the
most relevant one forming part of the optimum feature subset of several classifiers. Both
TimeRev and KFD also offered relevant and complementary information to other features.
As for the common features shared between the different prediction models, only decile
5, which is equivalent to median frequency, was common for the best chromosome of the
three base classifiers. It can be seen that a subset of 11 and 8 features was also shared
by LR and LDA, and by LR and KNN classifiers, respectively. As for obstetrics data,
only Wog was shown to be relevant for predicting preterm labor for both LDA and LR
classifiers. As for individual statistical test, a total of 43 features with statistically significant
differences were obtained. Analysing the results by features selected by classifiers, a total
of 29, 22 and 40 characteristics for LR, LDA and KNN were chosen respectively. Only
17 of these features that obtained a p-value < 0.05. 21 features were selected by at least
2 classifiers and 8 of these obtained a p-value lower than 0.05. Not all those features which
obtained a p-value < 0.05 (decile 1 to 3 or sample entropy) were included in the optimized
feature subset. Various features which provided individual statistical significance between
target classes were used in each optimized feature subset. Likewise, the optimized feature
subsets also included some features that did not obtain individual statistical significance
between target classes but provided complementary information to other relevant features,
for example peak to peak amplitude, Teager, SD ratio or time reversibility.
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Figure 3. Optimized feature subset (best chromosomes) achieved using genetic algorithm for each
base classifiers implemented with LR (orange), LDA (green), and KNN (blue). A single frame color
indicates that a feature is part of the classifier’s best chromosome identified with that color; two and
three frame colors indicate that the feature belongs to two and three classifiers’ best chromosome,
identified with the corresponding colours. *, ** and *** mean a p-value of the Wilcoxon Rank-Sum
test lower than 0.05, 0.005 and 0.0005, respectively, computed by each feature between preterm and
term labor classes.
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Table 3 shows the average performance for both base and ensemble classifiers for
training, validation and testing dataset and Figure 4 shows the results of the Nemenyi post-
hoc test of F1-score between different classifiers for both validation and testing datasets. In
general, the base classifiers performance for training dataset was better than the validation
dataset, as expected. The classifier metrics of the testing dataset was similar to or slightly
inferior than the validation dataset. Nevertheless, regardless of the classification method,
the average F1-score was over 85% and 80% for validation and testing dataset, respectively.
The LDA and LR classifiers showed similar performance and obtained no significant
difference. Both LDA and LR classifiers obtained better performance than KNN, although
a significant difference was only achieved for the LDA classifier. The ensemble classifier
obtained a significantly better performance than the different base ones, achieving an
average F1-score of around 92% for both the validation and testing datasets. The receiver
operating characteristic (ROC) curves of the different classifiers for validation and testing
partitions are shown in Figure 5.
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Figure 4. Nemenyi post-hoc test of F1-score between the different classifiers for both validation
(left) and testing (right) dataset. ∗means significant statistical difference (p-value ≤ 0.05) between
classifier performance.
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Figure 5. ROC curves of the different base and the ensemble classifiers using optimized feature
subset for both validation (left) and testing dataset (right).

As for classifier performance variability between partitions, training data usually
obtained a lower value than the validation and testing datasets with similar results. In
Figure 6 are depicted the different classifier metrics’ variability for both validation and
testing dataset are depicted. In general, base and ensemble classifiers presented low
performance variability (<10%). Accuracy, F1-score and AUC metrics usually achieved
the lowest variability, while sensitivity, specificity and PPV generally had the highest. It
can also be seen that the ensemble classifier can considerably reduce the different metrics’
variability, obtaining similar or lower values than that of the minimum variability achieved
by the base classifiers.
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Table 3. Average performance of 30 partitions for base classifiers (LDA, LR and KNN) and for the classifiers’ ensemble.

KNN LDA LR Ensemble

Accuracy (%)
Train 92.86 ± 2.41 96.01 ± 1.50 100 ± 0.00 99.62 ± 0.59

Validation 85.82 ± 3.82 90.03 ± 2.53 89.78 ± 3.29 92.61 ± 2.48
Test 82.92 ± 2.90 88.77 ± 3.89 87.42 ± 4.00 91.64 ± 3.20

F1-score (%)
Train 93.26 ± 2.20 96.14 ± 1.43 100.00 ± 0.00 99.63 ± 0.58

Validation 87.26 ± 3.21 90.61 ± 2.23 89.55 ± 3.49 92.97 ± 2.27
Test 84.63 ± 2.76 89.34 ± 3.50 86.87 ± 4.53 92.04 ± 2.97

Sensitivity (%)
Train 98.43 ± 1.86 98.99 ± 1.29 100.00 ± 0.00 99.87 ± 0.48

Validation 96.48 ± 2.88 95.79 ± 3.04 87.86 ± 5.07 97.36 ± 2.25
Test 94.21 ± 5.00 93.58 ± 3.63 84.03 ± 6.73 96.23 ± 3.17

Specificity (%)
Train 87.30 ± 4.05 93.02 ± 2.81 100.00 ± 0.00 99.37 ± 1.14

Validation 75.16 ± 7.40 84.28 ± 5.48 91.70 ± 4.22 87.86 ± 4.34
Test 71.64 ± 4.58 83.96 ± 6.59 90.82 ± 3.67 87.04 ± 5.47

PPV (%)
Train 88.67 ± 3.28 93.48 ± 2.49 100.00 ± 0.00 99.39 ± 1.11

Validation 79.83 ± 5.19 86.12 ± 3.95 91.51 ± 4.08 89.04±3.49
Test 76.95 ± 2.76 85.63 ± 5.02 90.2 ± 3.58 88.33 ± 4.44

NPV (%)
Train 98.25 ± 2.09 98.95 ± 1.33 100.00 ± 0.00 99.88 ± 0.47

Validation 95.64 ± 3.32 95.41 ± 3.18 88.50 ± 4.28 97.13 ± 2.40
Test 92.92 ± 5.42 92.99 ± 3.78 85.33 ± 5.28 95.94 ± 3.35

AUC (%)
Train 98.49 ± 0.83 99.30 ± 0.56 100.00 ± 0.00 100.00 ± 0.00

Validation 92.16 ± 2.37 94.72 ± 2.10 93.03 ± 2.74 98.63 ± 0.85
Test 90.20 ± 2.41 94.72 ± 2.54 91.44 ± 2.63 98.13 ± 1.26
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Figure 6. Base and ensemble classifiers performance variability for both validation (left) and testing (right) dataset. As for
base classifiers, minimum, average and maximum variability were computed.

4. Discussion

Our aim in this work was to develop a preterm labor prediction system based on
EHG using simple and easily interpretable classification algorithms in order to promote the
transfer of the EHG technique to clinical practice. In this context, the features’ quality, i.e.
their capability to provide useful and complementary information to others, it is critical to
achieve satisfactory classification performance. Although temporal, spectral and non-linear
EHG parameters have been shown to provide relevant information for predicting preterm
labor [7], the redundancy and complementarity of different EHG features were still unclear.
The classical dimension reduction methods, such as principal component analysis (PCA),
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does not guarantee the extraction of complementary information or noise reduction to
optimize classifier accuracy [36].

Unlike the filter methods for feature selection that reduce the number of features
using the intrinsic properties of the data, regardless of the learning algorithm to be
used, we proposed to use wrapper methods, which generally lead to better classifica-
tion performance [27] to determine the optimized feature subset. Of the different search
strategies, we preferred to use the random search strategy, which is a tradeoff between
classification performance and search complexity for moderate and/or large numbers
of features [27]. In this respect, both particle swarm optimization (PSO) and the genetic
algorithm could be used to optimize data information in feature space. Benalcazar et al.
proposed the use of PSO and the neural network to predict labor induction success [37].
Alamedine showed that PSO generally outperformed sequential forward selection and
Jeffrey divergence distance for predicting labor and pregnancy contractions when using
LDA, QDA and KNN as classification methods [25]. The genetic algorithm has also been
shown to obtain better performance than the filter method to predict pregnancy and labor
contractions using KNN [38], and also outperformed both forward and backward selection
for predicting central nervous system embryonal tumor outcomes, based on gene expres-
sion [27]. This is due to the ability of the genetic algorithm to escape local optima and
discover the global optimum in even a very rugged and complex fitness function [31]. In
practice, the genetic algorithm may not always lead to a theoretically perfect solution to a
problem, but always delivers at least a very good solution [31]. We here used the genetic
algorithm to perform feature selection as it had been shown to theoretically outperform
PSO in obtaining highest number of best minimum fitness and did so faster [39]. We
believe that in our context, using the PSO strategy would give rise to similar or slightly
worse results.

Using the genetic algorithm for feature selection, we proved the feasibility of devel-
oping a preterm labor prediction system with high generalization capacity using simple
and easy-to-interpret algorithms, achieving an F1-score of the individual base classifier of
over 80% for incoming data previously unseen by the model. Since these simple classifier’s
success depends mainly on the information embedded in the feature, we believe that this
will help to gain obstetricians confidence of preterm labor prediction model’s outcome,
bringing thus the EHG technique closer to clinical practice. The prediction model proposed
here has the inherent advantage over PCA that it does not require all the parameters to be
computed once the model is trained, and is therefore easier to implement on a portable
device due to its lower computational cost. In this respect, the time necessary to compute
the optimized feature subsets of each window was 19.03 seconds using just 1 core of an
Intel Core I7 8550U laptop, which can be considerably less than the maximum time limit
of 60 s (step size between analysis windows). In addition, the total time consumption
required for each base classifier implemented by LR, LDA and KNN to obtain its outcome
from the input features applying a majority voting strategy to generate the ensemble
classifier’s outcome was 0.094 s, indicating that the prediction outcome can be obtained
immediately after the recording. To characterize the EHG signal, the median value of the
temporal, spectral and non-linear parameters was worked out in windows of 120 s as the
representative value of the whole recording. Previous studies have shown that the 10-90th
percentiles of individual EHG parameters can better discriminate between preterm and
term records [17]. The prediction model’s performance when using these percentiles of
EHG features (results not shown for the sake of brevity) was similar to that obtained in this
work with no significant differences.

We also reported for the first time three EHG feature subsets (best chromosomes) that
contain the maximum complementary information, thus optimizing the prediction model’s
performance. Our results revealed the redundancy between different spectral parameters
and also the complementarity between temporal, spectral and non-linear parameters.
This result is understandable, since these represent the different phenomena involved in
uterine contraction efficiency: intensity, excitability and non-linear dynamic character [6].
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As for non-linear parameters, Fele-Žorž et al. showed that SampEn computed in FWH
bandwidth can discriminate preterm and term records [14]. Lemancewicz et al. found that
Lempel–Ziv and approximate entropy computed at 0.24–4 Hz was significantly higher
for women with threatened preterm labor who delivered in less than seven days than
in those who delivered in more than seven days [9]. On the other hand, Lempel-Ziv
computed at FWH bandwidth in women with threatened preterm labor decreased as labor
approached [18]. Mas-Cabo et al. compared different non-linear parameters computed
from the whole bandwidth (0.1–4 Hz) and fast wave high bandwidth (0.34–4 Hz) and
concluded that the signal bandwidth in which non-linear parameters are computed may be
a key factor in obtaining a robust and physically interpretable indicator for characterizing
EHG signals [18]. In this work, we found that the non-linear parameters computed in
different bandwidths provided complementary information. In addition, SampEn, FuzEn
and Lempel-Ziv which represent the signal predictability and complexity in time domain,
contained redundant information between each other. SpEn, which measures the flatness of
the spectrum, seemed to provide additional information on the signal. Of the obstetric data,
only gestational age was found to be relevant for predicting preterm labor, possibly due to
the values of EHG features being intrinsically modified as gestational age increases [14].
However, maternal age, parity and abortions were irrelevant for the algorithm, although
these latter have been associated with preterm labor risk factors [40]. We believe that other
obstetric data, such as fetal fibronectin and cervical length may provide complementary
information to EHG and improve preterm labor prediction performance.

The results revealed the complementarity of EHG features extracted from different
channels, highlighting the utility of multichannel recording for preterm labor prediction.
Firstly, a similar number of features from the three channels were included in the optimized
feature subsets (Best chromosomes). Using the same method (Genetic algorithm + LDA,
LR or KNN classifier), we also attempted to develop a preterm labor prediction system
using the information extracted from individual channels and computing a mean efficiency
index, which has been shown to be a more robust indicator of uterine electrical activity effi-
ciency from multichannel recordings [41]. We found that the model performance based on
individual channels was much inferior (<70%) to that obtained for multichannel recording,
suggesting that multichannel recording may provide a more reliable electrophysiological
state of the whole uterus [41]. Unlike the prediction system based on a neural network
developed in a previous work, we obtained a better performance using all the EHG fea-
tures extracted from the three individual channels (S1+S2+S3) than the mean efficiency
index [41]. We believe this discrepancy may be associated with the greater degree of free-
dom in combining information from a multichannel recording and the genetic algorithm’s
capacity to optimize the information in feature space. Our results for base classifiers also
outperformed those obtained by Fergus, who used PCA to reduce the data dimension of
EHG features extracted from channel 3 in the 0.34–1 Hz bandwidth. An AUC of 66%, 86%
and 84% was obtained from this latter to validate the dataset using LDA, LR and KNN
classifiers, respectively [42]. Our results are also comparable with those obtained using a
neural network [7] and PCA for data dimension reduction (AUC = 88.2%). In other words,
the information optimization in the feature space eliminated the need to use complex classi-
fication methods. In comparison with other studies in the literature [43,44], our prediction
model’s performance may be slightly lower, which could be due to the different method
used to validate it. In this respect, the use of cross-validation and hold-out validation
without preserving a testing dataset previously unseen by the model may overestimate the
model performance [12].

We also evaluated the performance improvement in a ensemble classifier over base
classifiers in predicting preterm labor. Ensemble methods combining the output of individ-
ual weak classifiers have successfully produced accurate predictions for many complex
classification tasks [12]. The success of these methods is attributed to their ability to consol-
idate accurate predictions and correct errors across many diverse base classifiers [45,46].
Successful ensemble methods make a balance between the ensemble’s diversity and accu-
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racy [47]. In this work we showed that a simple ensemble classifier aggregation whose
meta-level only consisted of a majority voting strategy can further improve classification
performance, obtain higher average metrics and reduce the different metric variabilities
between partitions. In this respect, the use of other meta-learning algorithms may further
improve classification performance. Again, it is preferred to use simple and easy-to-
interpret algorithms to develop the meta-classifier. Future work will compare different
meta-learning algorithms in terms of improved classification performance and to further
validate the utility of these methods for predicting imminent labor and/or preterm labor
in women with threatened preterm labor undergoing tocolytic treatment. Regardless of the
improvement in performance achieved by using ensemble classifiers, obstetricians may
find it significantly more difficult to interpret these algorithms, and this should be taken
into account when transferring the EHG technique to clinical practice.

In spite of its promising results, the present study is not exempt from limitations.
Firstly, the size of the samples of women who took regular check-ups and delivered at term
or prematurely was highly imbalanced. We used the commonly-used SMOTE oversampling
technique to minimize this problem [24]. Specific imbalanced data learning algorithms,
such as weighted classifiers or boosting ensemble learning, could help to achieve more
reliable preterm labor prediction systems. Secondly, due to the limited sample size, a larger
database is still needed to further validate the performance of preterm labor prediction
systems before transferring them to clinical practice. Despite these limitations, we believe
that this work constitutes a significant step towards putting the EHG technique into
clinical practice.

5. Conclusions

By optimizing feature subspace with genetic algorithms, we showed the feasibility of
developing a preterm labor prediction system with a high generalization capacity using
simple and easy-to-interpret algorithms such as LDA, LR and KNN, obtaining an average
F1-score of 89.34 ± 3.5%, 86.87 ± 4.53% and 84.63 ± 2.76%, respectively, for the testing
dataset. We found that temporal, spectral and non-linear EHG parameters computed in
different bandwidths provide complementary information for predicting preterm labor. In
addition, we further proved that the information extracted from multichannel recordings
was also complementary among channels. A simple aggregation ensemble classifier can
obtain more reliable preterm labor prediction systems than individual weak base classifiers,
achieving higher average metrics and lower variability between partitions. The average
F1-score of the ensemble classifier was about 92.04 ± 2.97% for an incoming new dataset
previously unseen by the model, which was significantly higher than that of commonly
used obstetric techniques.

The optimized feature subset requires a few further features to be computed, which,
together with use of easily interpreted classifier algorithms, would contribute to implement-
ing preterm labor prediction systems in real-time and improve clinical staff’s acceptance of
the EHG technique, thus promoting its transferability to clinical practice.
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