Document downloaded from:

http://hdl.handle.net/10251/176410

This paper must be cited as:

Ferrando, JC.; López Alfonso, S. (2021). On weakly compact sets in C(X). Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(2):1-8. https://doi.org/10.1007/s13398-020-00987-0

The final publication is available at https://doi.org/10.1007/s13398-020-00987-0

Copyright Springer-Verlag

Additional Information

RACSAM manuscript No.

(will be inserted by the editor)

On weakly compact sets in C(X)

J. C. Ferrando · S. López-Alfonso

Received: date / Accepted: date

Abstract A subset A of a locally convex space E is called (relatively) sequentially complete if every Cauchy sequence $\{x_n\}_{n=1}^{\infty}$ in E contained in A converges to a point $x \in A$ (a point $x \in E$). As an oval velichko proved that if X is countably compact, every functionally bounded set in $C_p(X)$ is relatively compact, and Baturov showed that if X is a Lindelöf Σ -space, each countably compact (so functionally bounded) set in $C_p(X)$ is a monolithic compact. We show that if X is a Lindelöf Σ -space, every functionally bounded (relatively) sequentially complete set in $C_p(X)$ or in $C_w(X)$, i.e., in $C_k(X)$ equipped with the weak topology, is (relatively) Gul'ko compact. We get some consequences.

Keywords Lindelöf Σ -space · realcompact space · μ -space · sequentially complete set

Mathematics Subject Classification (2000) 54C35 · 54C05 · 46A50

1 Preliminaries

In what follows, unless otherwise stated, X will be a Tychonoff space and $C_p(X)$ or $C_k(X)$ denote the linear space C(X) of real-valued continuous functions on X equipped with the pointwise τ_p or the compact-open topology τ_k , respectively. We represent by δ_X the evaluation map $\delta_X : C(X) \to \mathbb{R}$ at $X \in X$, defined by X = f(X). If X = f(X) stands for the topological dual of X = f(X) and X = f(X) denotes the linear space X = f(X) endowed with the weak

J. C. Ferrando Centro de Investigación Operativa. Universidad Miguel Hernández, E-03202 Elche, Spain E-mail: jc.ferrando@umh.es

S. López-Alfonso

Depto. Construcciones Arquitectónicas. Universitat Politècnica de València,

E-46022 València, Spain E-mail: salloal@csa.upv.es

Acknowledgement. This work was supported for the first named author by the Grant PGC2018-094431-B-I00 of Ministry of Science, Innovation and Universities of Spain.

topology $\sigma(L(X), C(X))$, the map $\delta: X \to L_p(X)$ defined by $\delta(x) = \delta_x$ is a homeomorphism from X into a closed subspace of $L_p(X)$, the latter being a closed linear subspace of $C_p(C_p(X))$ (see [1, Chapter 0]). The image $\delta(X)$ of X by δ is referred to as the *canonical* copy of X in $L_p(X)$, or in $C_p(C_p(X))$. In the sequel vX will stand for the Hewitt realcompactification of X and βX for the Stone-Čech compactification of X. A Tychonoff space X is said to be *realcompact* if vX = X and *pseudocompact* if $vX = \beta X$. If $f \in C(X)$ we denote by f^{υ} the continuous extension of f to υX . A topological space X is called Fréchet-Urysohn if for any set Y in X and each $y \in \overline{Y}$ there is a sequence $\{y_n\}_{n=1}^{\infty}$ in Y such that $y_n \to y$ in X, and angelic if each relatively countably compact set A in X is relatively compact and if $x \in \overline{A}$ there is a sequence in A that converges to x. A set A in a topological space X is called functionally bounded in X if f(A) is bounded in \mathbb{R} for each $f \in C(X)$. A topological space X is a μ -space if each functionally bounded set in X is relatively compact. A set A in a locally convex space E is called bounded (in E) if u(A) is bounded for each $u \in E'$, where E' stands for the topological dual of E. So, a set A is bounded in $C_p(X)$ if u(A) bounded for each $u \in L(X)$, and a subset Y of X is functionally bounded in X if and only if $\delta(Y)$ is bounded in $L_p(X)$. A locally convex space E is semi-reflexive if each bounded set in E is relatively weakly compact.

Recall that a completely regular space X is called a P-space if every G_{δ} -set in X is open, and a $Lindel\"{o}f$ Σ -space if there is a (set-valued) map $T: \Sigma \to \mathcal{K}(X)$ from a subspace Σ of $\mathbb{N}^{\mathbb{N}}$ into the family $\mathcal{K}(X)$ of compact sets of X with $\bigcup \{T(\alpha): \alpha \in \Sigma\} = X$ such that if $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence in Σ with $\alpha_n \to \alpha$ and $x_n \in T(\alpha_n)$ for every $n \in \mathbb{N}$, the sequence $\{x_n\}_{n=1}^{\infty}$ has a cluster point $x \in T(\alpha)$. If $\Sigma = \mathbb{N}^{\mathbb{N}}$ we say that X is K-analytic. Each K-analytic space is a Lindel\"{o}f.

The subject of this paper is C_p and C_k -theory, two very active fields of research nowadays (see for instance [2] and [14]).

2 Functionally bounded sequentially complete sets in $C_p(X)$

Let E be a (Hausdorff) locally convex space. Recalling the notion of (relative) sequential completeness introduced in [11], we say that a set A in E is (relatively) sequentially complete if every Cauchy sequence $\{x_n\}_{n=1}^{\infty}$ in E contained in E converges in E to a point E (a point E contained in E converges in E to a point E (a point E contained in E converges in E to a point E (a point E contained in E converges in E to a point E (a point E converges in E converges in E to a point E (a point E converges in E converges in E converges in E converges in E is sequentially complete. So, a sequentially complete set in E need not be bounded. If E is Fréchet-Urysohn and E sequentially complete, then E is closed. As is well-known E is sequentially closed in E (see [17, Theorem 1]). So, if E is sequentially complete in E and either E or E is Fréchet-Urysohn, then E is respectively compact or realcompact. Main use of (relatively) sequentially complete sets in E in E contains an extension of a result of Velichko [1, 1.2.1 Theorem].

Theorem 1 ([11, Theorem 3.1]). *The following are equivalent.*

- 1. X is a P-space.
- 2. $C_p(X)$ is a countable union of relatively sequentially complete sets.

Corollary 1 ([11, Corollary 3.2]). *If* $C_p(X)$ *is a countable union of bounded relatively sequentially complete sets, then X is finite.*

Every (relatively) countably compact set in a locally convex space E is both functionally bounded in E and (relatively) sequentially complete. Not every functionally bounded sequentially complete set in a $C_p(X)$ space is countably compact. For example, since $\beta\mathbb{N}$ is homeomorphic to a compact set in $C_p(C_p(\beta\mathbb{N}))$, the discrete space \mathbb{N} of positive integers is homeomorphic to a functionally bounded and sequentially complete set in $C_p(C_p(\beta\mathbb{N}))$ which is relatively countably compact but not countably compact. If X is separable, countably compact, or a $k_{\mathbb{R}}$ -space then $C_p(X)$ is a μ -space by Valdivia's [13, 2.3 Theorem], Asanov-Velichko's [1, 3.4.1 Theorem] or [1, 3.4.13 Theorem], respectively (see also [9, Theorems 32, 34]). So, in all these cases each functionally bounded set in $C_p(X)$ is relatively compact. Also, if X has countable \mathbb{R} -tightness in the sense of [1, Page 59] the space $C_p(X)$ is realcompact (see [1, 2.4.17 Corollary] or [9, Theorem 27]), hence a μ -space. However, the next theorem holds.

Theorem 2. If X is a Lindelöf Σ -space, each functionally bounded (relatively) sequentially complete set in $C_p(X)$ is (relatively) compact.

Proof. We consider the relatively sequentially complete setting, the other case is similar. By hypothesis there are a subset Σ of $\mathbb{N}^{\mathbb{N}}$ and a map T from Σ into the family $\mathscr{K}(X)$ of compact sets of X such that $\{T(\alpha): \alpha \in \Sigma\}$ covers X and if $\alpha_n \to \alpha$ in Σ and $x_n \in T(\alpha_n)$ for all $n \in \mathbb{N}$ then $\{x_n\}_{n=1}^{\infty}$ has a cluster point $x \in T(\alpha)$. Let H be a functionally bounded relatively sequentially complete set in $C_p(X)$, whose closure $\overline{H}^{vC_p(X)}$ in $vC_p(X)$ we shall represent by K. As H is functionally bounded in $C_p(X)$, clearly K is a compact subset of $vC_p(X)$, [13, 4.7 Proposition]. Note that each $\delta_x \in L(X)$ with $x \in X$ is a $\sigma(C(X), L(X))$ -continuous linear form on C(X). Denote by δ_x^{v} the (unique) continuous extension of δ_x to the Hewitt realcompactification $vC_p(X)$ of $C_p(X)$ and define

$$S_{\alpha} = \{ \delta_{x}^{\upsilon} |_{K} : x \in T(\alpha) \} \subseteq C(K)$$

for each $\alpha \in \Sigma$. We claim that S_{α} is a compact subset of $C_{p}(K)$.

Let us show in first place that S_{α} is countably compact. If $\left\{\delta_{x_n}^{\mathfrak{v}}\big|_K: n\in\mathbb{N}\right\}$ is a sequence in S_{α} there are $x\in T(\alpha)$ and a subnet $\{y_d: d\in D\}$ of $\{x_n\}_{n=1}^{\infty}$ such that $y_d\to x$ in $T(\alpha)$ under the relative topology of X, so that $f(y_d)\to f(x)$ or rather $\langle\delta_{y_d},f\rangle\to\langle\delta_x,f\rangle$ for all $f\in C(X)$. Hence, for each $u\in vC_p(X)$ there is $f_u\in C(X)$ with $\delta_{x_n}^{\mathfrak{v}}(u)=\delta_{x_n}(f_u)$ for every $n\in\mathbb{N}$ (see [16, Lemma 9.1]). So, using that $\langle\delta_{y_d},f\rangle\to\langle\delta_x,f\rangle$ for every $f\in C(X)$, it follows that $\delta_{y_d}^{\mathfrak{v}}(u)\to\delta_x^{\mathfrak{v}}(u)$ for all $u\in vC_p(X)$. In particular

$$\delta_{y_d}^{v}|_{K}(u) \to \delta_{x}^{v}|_{K}(u)$$

for every $u \in K$, which means that $\delta^{v}_{y_d}|_{K} \to \delta^{v}_{x}|_{K}$ on S_{α} under the relative topology of $C_p(K)$. This shows that S_{α} is a countably compact subspace of $C_p(K)$. But, given that K is compact, $C_p(K)$ is angelic by virtue of the classic Grothendieck theorem [25, Section 1, Theorem 3]. So we conclude that S_{α} is compact.

Set $M := \bigcup \{S_{\alpha} : \alpha \in \Sigma\} \subseteq C(K)$. We claim that M is a Lindelöf Σ -subspace of $C_p(K)$. Define the mapping $S : \Sigma \to \mathcal{K}(C_p(K))$ by the rule $S(\alpha) = S_{\alpha}$. If $\alpha_n \to \alpha$ in Σ and $h_n \in S(\alpha_n)$ for each $n \in \mathbb{N}$, then $h_n = \delta_{z_n}^{\upsilon}|_{K}$ for some $z_n \in T(\alpha_n)$ and $n \in \mathbb{N}$. Let $z \in T(\alpha)$ be a cluster point of the sequence $\{z_n\}_{n=1}^{\infty}$ in X, so that δ_z is a cluster point of the sequence $\{\delta_{z_n}\}_{n=1}^{\infty}$ in $C_p(C_p(X))$. Setting $h := \delta_z^{\upsilon}|_{K} \in S(\alpha)$, it can be shown as before that h is a cluster point of $\{h_n\}_{n=1}^{\infty}$ in $C_p(K)$ belonging to $S(\alpha)$. So, M is a Lindelöf Σ -subspace of $C_p(K)$, as stated.

Next we claim that M separates the points of K. Otherwise there are $u \neq v$ in K such that h(u) = h(v) for every $h \in M$. This means that $\delta_x^v(u) = \delta_x^v(v)$ for every $x \in X$. If $\{f_d : d \in D\}$ and $\{g_d : d \in D\}$ are nets in H with $f_d \to u$ and $g_d \to v$ in K, then

$$(f_d - g_d)(x) \rightarrow \delta_x^{\upsilon}(u) - \delta_x^{\upsilon}(v) = 0$$

so that $f_d - g_d \to 0$ in $C_p(X)$. Hence $f_d - g_d \to 0$ in $vC_p(X)$, which yields u - v = 0.

Since K is compact and M a Lindelöf Σ -subspace of $C_p(K)$ that separates the points of K, [22, Theorem 3.4] (see also [9, Theorem 91]) ensures that $C_p(K)$ is a Lindelöf Σ -space. Hence K is a Gul'ko compact subset of $vC_p(X)$, so a Fréchet-Urysohn space (see for instance [8, Lemma 2]).

Finally we claim that $K \subseteq C(X)$. Indeed, if $u \in K$ then $u \in \overline{H}^{vC_p(X)}$, where the closure is in $vC_p(X)$. Thus, there is a sequence $\{f_n\}_{n=1}^{\infty}$ in H such that $f_n \to u$ in $vC_p(X)$. Since $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in the locally convex space $C_p(X)$ and H is relatively sequentially complete in $C_p(X)$, it follows that $u \in C(X)$. Therefore H is relatively compact in $C_p(X)$ and we are done.

According to Theorem 2, each $C_p(X)$ space over a Lindelöf Σ -space X has the property that every functionally bounded relatively sequentially complete set in $C_p(X)$ is relatively compact. Although obviously every locally convex μ -space $C_p(X)$ enjoys such property, the converse statement does not hold, as the following example shows.

Example 1. If X is a Lindelöf Σ -space space then $C_p(X)$, though angelic, need not be a μ -space. Let Z be the Reznichenko compact space mentioned in [1, Example 7.14]. This is a Talagrand compact space with a nonisolated point p such that $Z = \beta Y$ with $Y = Z \setminus \{p\}$. Hence Y is a pseudocompact not realcompact space, so that $Z = \nu Y$. So, $C_p(Y)$ is a continuous image of $C_p(Z)$. This shows that $C_p(Y)$ is K-analytic, which implies that $C_p(X)$ is angelic if $X := C_p(Y)$. Observe that Y is (homeomorphic to) a closed functionally bounded set in $C_p(X)$ which is not compact. Consequently $C_p(X)$, though angelic, is not a μ -space. Of course, Y is not sequentially complete in $C_p(X)$. Otherwise it would be compact by virtue of Theorem 2. Since p is non isolated in Z, one has $p \in \overline{Y}^Z$. So, bearing in mind that Z is a Fréchet-Urysohn space, there is a sequence $\{x_n\}_{n=1}^{\infty}$ in Y that converges to p in $Z = \nu Y$. This proves that Y is not countably compact, so neither a normal space. Therefore $C_p(X)$ is not a normal space either, as mentioned in [9], Example 62].

Let us say that a subset Y of a topological space X is (relatively) sequentially closed in vX if conditions $\{x_n\}_{n=1}^{\infty} \subseteq Y$ and $x_n \to x$ in vX imply that $x \in Y$ (resp. that $x \in X$). If we look at the proof of the previous theorem, the hypothesis that H is (relatively) sequentially complete in $C_p(X)$ is only used at the bottom, and it could be replaced by the (formally less restrictive) condition that H is relatively sequentially closed in $vC_p(X)$. So, the following theorem holds.

Theorem 3. If X is a Lindelöf Σ -space, each set in $C_p(X)$ which is both (relatively) sequentially closed and relatively compact in $vC_p(X)$ is (relatively) compact in $C_p(X)$.

Proof. This is a straightforward consequence of the proof of the previous theorem and the fact that a subset Y of a Hausdorff topological space X is functionally bounded if and only if Y is relatively compact in vX (see [13, 4.7 Proposition]).

Next example shows that in the Theorem 2 the condition of being functionally bounded cannot be replaced by the formally weaker condition of being (pointwise) bounded.

Example 2. If X is a compact space (even metrizable), a bounded sequentially complete set in $C_p(X)$ need not be compact. Let X be the dual unit ball of ℓ_1 equipped with the weak* topology. The mapping $T:\ell_1(\text{weak})\to C_p(X)$ defined by $T\xi=\xi|_X$ is a linear homeomorphism from $\ell_1(\text{weak})$ onto its image in $C_p(X)$. If B_{ℓ_1} denotes the closed unit ball of ℓ_1 , then $T(B_{\ell_1})$ is a bounded and sequentially complete in $C_p(X)$ which is not compact, otherwise B_{ℓ_1} would be compact in $\ell_1(\text{weak})$.

If $X=D(\mathfrak{m})$ is the discrete space of cardinality \mathfrak{m} , every (functionally or not) bounded set in $C_p(X)=\mathbb{R}^{\mathfrak{m}}$ is relatively compact. However, if $\mathfrak{m}>\aleph_0$ then X is not Lindelöf. So, the condition of X being a Lindelöf Σ -space in the statement of Theorem 2 is sufficient but not necessary. If $\mathfrak{m}=\aleph_1$ then \mathbb{R}^{\aleph_1} is not angelic since $[0,1]^{\aleph_1}$ is not Fréchet-Urysohn. This shows that the property exhibited in the statement of Theorem 2 is not a consequence of the angelicity of $C_p(X)$. Let us mention in passing that each non realcompact P-space X is a μ -space which is not realcompact (for concrete X see [15, Problem 9L]). So, if X is as stated, $C_p(X)$ is Fréchet-Urysohn (hence a $k_{\mathbb{R}}$ -space) and hence $C_p(C_p(X))$ is a μ -space [1, 3.4.13 Theorem]. Clearly $C_p(C_p(X))$ is not realcompact, since X is homeomorphic to a closed set of $C_p(C_p(X))$. This can be taken even further.

Example 3. If X is a compact space then $C_p(X)$, although an angelic μ -space, need not be realcompact. Since $\omega_1 + 1$ is compact, $C_p(\omega_1 + 1)$ is a μ -space by Grothedieck's theorem [25, Section 1, Theorem 3]. One can easily check that the \mathbb{R} -tightness of $\omega_1 + 1$ is uncountable, hence $C_p(\omega_1 + 1)$ is not realcompact.

If X is a P-space then $C_p(X)$ is sequentially complete (see [11, Theorem 1.1]), so every closed (arbitrary) subset A of $C_p(X)$ is (relatively) sequentially complete. Obviously, if X is a countable P-space (hence discrete and Lindelöf) and A is a bounded set in $C_p(X)$, then A is relatively compact. But if X is a non-discrete P-space, the topological subspace $C_p(X,[0,1])$ is countably compact but not compact [24, Problems 396, 397]. Hence, in this case $C_p(X)$ contains a closed functionally bounded sequentially complete set which is not compact. Even if X is an (uncountable) Lindelöf P-space, a closed functionally bounded set A in $C_p(X)$ need not be compact, as the following example shows.

Example 4. If X is a Lindelöf P-space, a functionally bounded sequentially complete set in $C_p(X)$ need not be compact. Let us denote by E the linear subspace of \mathbb{R}^{\aleph_1} consisting of those functions with countable support and let X be the Lindelöfication of the set $\omega_1 = [0, \omega_1)$ equipped with the discrete topology. This means that we add a point, say ω_1 , to $[0, \omega_1)$, so that $X = [0, \omega_1) \cup \{\omega_1\} = [0, \omega_1]$ as sets, and declare ω_1 as the unique non isolated point of X, with the neighborhoods of ω_1 being the subsets V of X such that $\omega_1 \in V$ and $X \setminus V$ is countable. It can be easily checked that X is a Lindelöf P-space. By [1, 4.2.15] Example the space E is homeomorphic to the closed one-codimensional linear subspace $\{f \in C(X) : f(\omega_1) = 0\}$ of $C_p(X)$. Let $A = [0,1]^{\aleph_1}$. This is a compact set in \mathbb{R}^{\aleph_1} . Then $B = A \cap E$ is a counbably compact subset of E with the relative topology. Hence it is (homeomorphic to) a functionally bounded sequentially complete subset of $C_p(X)$. But E is not compact, since E is dense in E and does not coincide with E. Of course E is not a E-space.

Corollary 2 (Baturov, [3]). *If* X *is a Lindelöf* Σ -space, then every countably compact set in $C_p(X)$ is a monolithic compact set.

Proof. As mentioned above, each countably compact set A in $C_p(X)$ is functionally bounded and sequentially complete. So, Theorem 2 applies to show that A is compact. Since each compact set in $C_p(X)$ is Gul'ko's, then A is monolithic.

Baturov's original theorem can also be found in [1, 3.6.1 Theorem]. For a more general version of this theorem see [18, Theorem 2.4], where it is shown that if the *Lindelöf number* $\ell(Y)$ of a topological subspace Y of $C_p(X)$ is greater or equal than the *number of K-determination*, also called the $\ell\Sigma$ -number $\ell\Sigma(X)$, of the Tychonoff space X (see [6]), then $\ell(Y) = e(Y)$ where e(Y) denotes the *extent* of Y. For a Lindelöf Σ -space X one has $\ell\Sigma(X) = \Re_0 \le \ell(Y)$.

Corollary 3 (Orihuela, [19, Theorem 3]). *If X is a Lindelöf* Σ -space, then the space $C_p(X)$ is angelic.

Proof. If A is a (relatively) countably compact set in $C_p(X)$, Theorem 2 shows that A is (relatively) compact. Since every compact set in $C_p(X)$ is Fréchet-Urysohn [8, Lemma 2], if A is relatively compact in $C_p(X)$ and $f \in \overline{A}$, there is a sequence $\{f_n\}_{n=1}^{\infty}$ contained in A such that $f_n \to f$ in $C_p(X)$. Therefore $C_p(X)$ is angelic.

Orihuela's angelicity theorem can also be found in [16, Theorem 4.5]. The original statement of the theorem is slightly more general than the one given here, but it can be seen to be equivalent to the previous corollary (see [8, Theorem 1]). Besides of the aforementioned \mathbb{R}^{\aleph_1} , there are many non-angelic $C_p(X)$ spaces which are μ -spaces. Indeed, if X is a compact set which is not Fréchet-Urysohn, the space $C_p(C_p(X))$ is non-angelic but realcompact [9, Theorem 96]. On the other hand, we have also mentioned before that $C_p(\omega_1+1)$, which is angelic by Theorem 3, is not realcompact, although it is a μ -space. We shall exhibit below (in the Example 1) an angelic $C_p(X)$ space over a Lindelöf Σ -space X which is not a μ -space.

Corollary 4. Let X be a pseudocompact space such X is sequentially closed in vX. If $C_p(X)$ is a Lindelöf Σ -space, then X is compact.

Proof. We claim that the canonical copy $\delta(X)$ of X in $L_p(X)$ is sequentially complete in $L_p(X)$, so in $C_p(C_p(X))$, since $L_p(X)$ is closed in $C_p(C_p(X))$. Indeed, if $\{x_n\}_{n=1}^\infty$ is a sequence in X such that $\{\delta_{x_n}: n \in \mathbb{N}\}$ is a Cauchy sequence in $L_p(X)$ contained in $\delta(X)$, then $\{\langle f, \delta_{n_n} \rangle\}_{n=1}^\infty$, i. e., $\{f(x_n)\}_{n=1}^\infty$, is a Cauchy sequence in \mathbb{R} for every $f \in C(X)$. So, according to [15, 15.13 Theorem], there is $y \in vX$ such that $x_n \to y$ in vX. Since we are assuming that X is sequentially closed in vX, it follows that $y \in X$, so that $\delta_{n_n} \to \delta_y \in \delta(X)$ in $L_p(X)$. This shows that $\delta(X)$ is a sequentially complete set in $L_p(X)$, as stated. So $\delta(X)$ is a functionally bounded (because it is pseudocompact) and sequentially complete set in $C_p(C_p(X))$. Since $C_p(X)$ is a Lindelöf Σ -space, Theorem 2 applies to show that $\delta(X)$ is compact. So that X is a compact set.

Corollary 5. If X is a Lindelöf Σ -space, the following statements are equivalent.

- 1. $C_p(X)$ is the union of countable many functionally bounded relatively sequentially complete sets.
- 2. $C_p(X)$ is σ -compact.
- 3. X finite.

Proof. This follows from Theorem 2 and Velichko's theorem [1, 1.2.1 Theorem].

It is worthwhile mentioning that, according to [23], if $C_p(X)$ is covered by countably many functionally bounded sets, then X is pseudocompact and every countable subset of X is closed and C^* -embedded in X (see also [24, Problem 399] or [12, Theorem 2.6]).

Corollary 6. If there exists a metrizable locally convex topology τ on C(X) such that $\tau_p \le \tau \le \tau_k$ then each functionally bounded (relatively) sequentially complete set in $C_p(X)$ is (relatively) compact.

Proof. This is because if such metrizable topology there exists, then X is σ -compact [10, Theorem 3.1 (i)], hence K-analytic. So, Theorem 2 applies.

3 Functionally bounded sequentially complete sets in $C_w(X)$

We denote by $C_w(X)$ the space $C_k(X)$ equipped with the weak topology of $C_k(X)$. If $C_k(X)$ is quasi-complete [4, 1.7.2 Definition], in particular if X is a $k_{\mathbb{R}}$ -space, then $C_w(X)$ is a μ -space by virtue of [26, Theorem 3] (see also [9, Theorem 31]). So that, in this case, every functionally bounded set in $C_w(X)$ is relatively weakly compact. On the other hand, if A is a bounded set in $C_k(X)$ such that A is sequentially complete in $C_p(X)$ then A is weakly sequentially complete in $C_k(X)$. For if $\{f_n\}_{n=1}^{\infty}$ is a weakly Cauchy sequence in $C_k(X)$ contained in A, then $\{f_n\}_{n=1}^{\infty}$ converges in $C_p(X)$ to some $f \in A$. So, according to the version of the Lebesgue dominated convergence theorem for measures of compact support, the sequence $\{f_n\}_{n=1}^{\infty}$ converges to f in the weak topology of $C_k(X)$, which shows that A is weakly sequentially complete [13, 4.3 Corollary 2]. When X is a Lindelöf Σ -space, the following analogous to Theorem 2 holds. Our proof is based on [8, Theorem 7].

Theorem 4. If X is a Lindelöf Σ -space, each functionally bounded (relatively) sequentially complete set in $C_w(X)$ is (relatively) weakly compact.

Proof. Assume that there are a subset Σ of $\mathbb{N}^{\mathbb{N}}$ and a map T from Σ into $\mathscr{K}(X)$ such that $\{T(\alpha): \alpha \in \Sigma\}$ covers X and if $\alpha_n \to \alpha$ in Σ and $x_n \in T(\alpha_n)$ for all $n \in \mathbb{N}$ then $\{x_n\}_{n=1}^{\infty}$ has a cluster point $x \in T(\alpha)$. Let F denote the completion of $(C(X), \rho(C(X), L(X)))$, where $\rho(C(X), L(X))$ stands for the topology on C(X) of uniform convergence on the compact sets of $L_p(X)$. Since X is a Lindelöf space, hence realcompact, the space $C_k(X)$ is barrelled by the Nachbin-Shirota theorem. Hence the compact-open topology τ_k of C(X) coincides with the strong topology $\beta(C(X), E)$, where E denotes the topological dual of $C_k(X)$. This implies that $\tau_k = \rho(C(X), L(X)) = \mu(F, E)$.

Let H be a functionally bounded relatively sequentially complete set in $C_w(X)$, whose closure under the weak topology $\sigma(F,E)$ we shall represent by K. Since H is clearly functionally bounded in $(F,\sigma(F,E))$ and $(F,\mu(F,E))$ is complete, Valdivia's theorem [26, Theorem 3] ensures that K is $\sigma(F,E)$ -compact. Let $\widehat{\delta}_x$ be the $\sigma(F,L(X))$ -continuous linear extension of δ_x to F and put $S_\alpha = \{\widehat{\delta}_x|_K \colon x \in T(\alpha)\}$ for $\alpha \in \Sigma$. If $\{\widehat{\delta}_{x_d}|_K \colon d \in D\}$ is a net in S_α there are $x \in T(\alpha)$ and a subnet $\{y_h\}_{h \in E}$ such that $y_h \to x$ in $T(\alpha)$, so that $\delta_{y_h} \to \delta_x$ under $\sigma(L(X), C(X))$. Since $\sigma(L(X), C(X))$ and $\sigma(L(X), F)$ coincide on $Q_\alpha := \{\delta_x \colon x \in T(\alpha)\}$ (see [21, Chapter VI, Corollary 3]), we have $\widehat{\delta}_{y_h} \to \widehat{\delta}_x$ in S_α under $\sigma(L(X), F)$, which implies that $(\widehat{\delta}_{y_h}|_{K,g}) \to (\widehat{\delta}_x|_{K,g})$ for every $g \in K$. So, S_α is compact in $C_p(K)$. Set $M := \bigcup \{S_\alpha \colon \alpha \in \Sigma\}$ and define $S \colon \Sigma \to \mathscr{K}(C_p(K))$ by $S(\alpha) = S_\alpha$. If $\alpha_n \to \alpha$ in Σ and $y_n \in T(\alpha_n)$ for each $n \in \mathbb{N}$, let $y \in T(\alpha)$ be a cluster point in X of the sequence $\{y_n\}_{n=1}^\infty$. Since $\bigcup_{n=1}^\infty Q_{\alpha_n}$ is relatively countably compact in $L_p(X)$ and $L_p(X)$ is a Lindelöf space by [1, 0.5.14 Corollary], $\bigcup_{n=1}^\infty Q_{\alpha_n}$ is relatively compact in $L_p(X)$. Thus

 $\sigma(L(X),C(X))$ and $\sigma(L(X),F)$ coincide on $\bigcup_{n=1}^{\infty}Q_{\alpha_n}$ and $\widehat{\delta}_y$ is a $\sigma(L(X),F)$ -cluster point of $\{\widehat{\delta}_{y_n}\}_{n=1}^{\infty}$, which implies that $\widehat{\delta}_y|_K$ is a cluster point of $\{\widehat{\delta}_{x_n}|_K\}_{n=1}^{\infty}$ in $C_p(K)$. This shows that M is a Lindelöf Σ -subspace of $C_p(K)$. As $\langle L(X),F\rangle$ is a dual pair, M separates the points of K. So, $C_p(K)$ is a Lindelöf Σ -space and K is Fréchet-Urysohn. Consequently, if $u \in K$ there is a sequence $\{f_n\}_{n=1}^{\infty}$ in H such that $f_n \to u$ under $\sigma(F,E)$, which implies that $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $C_w(X)$. Since H is relatively sequentially complete in $C_w(X)$, it follows that $f_n \to g$ in $C_w(X)$. Therefore $f = g \in C(X)$, which shows that $K \subseteq C(X)$. Thus K is a weakly relatively compact set in $C_k(X)$.

As in the $C_p(X)$ case, we cannot replace in Theorem 4 the functionally boundedness requirement by the boundedness condition (in the locally convex sense). If X is a nonscattered compact, by the Pełczyński-Semadeni theorem [20] or [7, Theorem 3.1.1], the space $C_w(X)$ contains an isomorphic copy of ℓ_1 (weak). So, despite X is a Lindelöf Σ -space, $C_w(X)$ contains a bounded sequentially complete set which is not compact.

References

- Arkhangel'skiĭ, A. V., Topological Function Spaces, Math. Appl. 78, Kluwer Academic Publishers, Dordrecht, Boston, London (1992)
- Banakh, T., Kakol, J. and Śliwa, W., Josefson-Nissenzweig property for C_p-spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113, 3015–3030 (2019)
- 3. Baturov, D. P., Subspaces of function spaces, Vestnik Moskov. Univ. Ser. I, Mat. Mech. 4, 66–69 (1987)
- 4. Bogachev, V. I. and Smolyanov, O. G., *Topological Vector Spaces and Their Applications*, Springer, Heidelberg, New York, Dordrecht, London (2017)
- 5. Buzyakova, R. Z., In search of Lindelöf C_p 's, Comment. Math. Univ. Carolinae 45, 145–151 (2004)
- Cascales, B., Muñoz, M. and Orihuela, J., The number of K-determination of topological spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 106, 341–357 (2012)
- Cembranos, P. and Mendoza, J., Banach Spaces of Vector-Valued Functions, Lecture Notes in Math. 1676, Springer, Berlin, Heidelberg (1997)
- 8. Ferrando, J. C., On a Theorem of D. P. Baturov, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 111, 499–505 (2017)
- Ferrando, J. C., Descriptive topology for analysts, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114, Paper No. 107, 34 pp. (2020)
- Ferrando, J. C., Gabriyelyan, S. and Kakol, J., Metrizable-like locally convex topologies on C(X). Topology Appl. 230, 105–113 (2017)
- Ferrando, J. C., Kakol, J. and Saxon, S. A., Characterizing P-spaces in terms of C(X), J. Convex. Anal. 22, 905–915 (2015)
- 12. Ferrando, J. C. and López-Pellicer, M., Covering properties of $C_p(X)$ and $C_k(X)$, Filomat, to appear.
- 13. Floret, K., Weakly Compact Sets, Lecture Notes in Math. 801, Springer-Verlag, Berlin, Heidelberg (1980)
- 14. Gabriyelyan, S., Ascoli's theorem for pseudocompact spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114, Paper No. 174, 10 pp. (2020)
- 15. Gillman, L., Jerison, M., Rings of Continuous Functions, Van Nostrand, Princeton, (1960).
- Kąkol, J., Kubis, J. and López-Pellicer, M., Descriptive Topology in Selected Topics of Functional Analysis, Springer, Heidelberg, New York, Dordrecht, London (2011)
- 17. King, D. M. and Morris, S. A., *The Stone-Čech compactification and weakly Fréchet spaces*, Bull. Austral. Math. Soc. **42**, 340–352 (1990)
- 18. Muñoz, M., A note on the theorem of Baturov, Bull. Austral. Math. Soc. 76, 219-225 (2007)
- Orihuela, J., Pointwise compactness in spaces of continuous functions, J. London Math. Soc. 36, 143–152 (1987)
- 20. Pełczyński, A. and Semadeni, Z., Spaces of continuous functions (III) (Spaces $C(\Omega)$ for Ω without perfect sets), Studia Math. 18, 211–222 (1959)
- Robertson, A. P. and Robertson, W., Topological Vector Spaces, Cambridge University Press, Cambridge (1973)
- 22. Talagrand, M., Espaces de Banach faiblement K-analytiques, Annals of Math. 110, 407–438 (1979).
- 23. Tkachuk, V. V., The space $C_p(X)$: decomposition into a countable union of bounded subspaces and completeness properties, Topology Appl. 22, 241–253 (1986)

- 24. Tkachuk, V. V., A C_p-Theory Problem Book. Topological and Function Spaces. Springer, Heidelberg, New York, Dordrecht, London (2011)
- Todorcevic, S., *Topics in Topology*, Springer, Berlin, Heidelberg, 1997.
 Valdivia, M., *Some new results on weak compactness*, J. Funct. Anal. 24, 1–10 (1977)