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by field emission scanning electron microscopy (FESEM) and Fourier transform infrared

Keywords: spectroscopy (FTIR) analysis. The thermal analysis determined a cooperative effect
Gum rosin between the microspheres and the mask fibre to increase the maximum degradation
Coating rate temperature and the onset degradation temperature. To follow the effect of the
Polypropylene GR microspheres coating over the hydrophobicity of the surgical face mask, FESEM and
Electrospraying wettability analyses were conducted before and after 3, 6, and 9 h of wearing time.
?g\ilg‘ﬁ In the FESEM image, it was seen that the microsphere was homogeneously distributed

over the nonwoven fibre and its presence increases the roughness of the fibres due to
the bulge of microspheres. The wettability measurements suggest that the microspheres
coating helps to keep the original hydrophobicity of the outer layer of the surgical face
mask even after 6 h of wearing time. Indeed, after 9 h of wearing time, the water contact
angle (WCA) of the GR coated face mask is higher than the WCA of the surgical face mask
without the coating at 3 h of wearing time. Therefore, the gun rosin microspheres coating
improved the hydrophobicity of the surgical face mask which may allow improved

protection and/or extended lifetime of use.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Coronavirus (CoV) is a large virus family composed of viruses that cause illness from the common cold to more
severe diseases such as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-
CoV) (Abdi, 2020). SARS-CoV-2 is the causative agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19) as
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it was determined by the World Health Organization (WHO), that within 12 months has infected more than 128 million
individuals and caused more than 2 million deaths worldwide (Organisation, 2021).

Currently, there are no curative options available, and the WHO warns the efficacy of the vaccines depends on several
factors and that they are not 100% effective (World Health Organization, 2020a,b). Therefore, among other measures,
the massive use of mask in public places is highly recommended, and in some countries is mandatory to prevent the
aerosol droplets spread of SARS-Cov-2 (Jefferson et al., 2009; Leung et al., 2020). There are different kinds of face masks
available at the market guaranteeing different grades of protection mainly divided into surgical masks, respirators (FFP2
and FFP3 type by European standards or N95 and N99 by U.S. standards, respectively), and a basic cloth mask with
two or more layers (Armentano et al.,, 2021; Krishnaswamy, 2020). Among all face masks, surgical face masks are the
most widely used for common people, while they are also highly used by healthcare professionals. Surgical face masks
have typically three polymeric layers mainly based on polypropylene (PP) as PP microfibres (Czigany and Ronkay, 2020).
Nevertheless, the protective effect of the face masks can only be maintained when the surface of the mask is hydrophobic
and dry (Li et al,, 2006a). In fact, an increase in the mask surface moisture reduces the effectiveness in the protection
of the mask and could become a culture medium for bacteria, which will allow bacterial contamination through the
mask (Li et al., 2006b; Parlin et al., 2020). Thus, the possibility to extend the shelf life of face mask by increasing the
surface hydrophobicity results very interesting, not only to increase the face mask effectiveness and reduce the chance
to became a culture medium, but also to reduce the high amount of face masks used which represent a high amount
of plastic waste which are currently directly discarded without any revalorization. The hydrophobicity of a surface is
regulated by two factors, the surface roughness and the surface energy. Usually, a material with low surface energy poses
a hydrophobic behaviour. The surface energy is determined by the chemical composition of the material (Gao et al., 2017).
Therefore, modifying the surface roughness is possible to fabricate an hydrophobic surface (Kavitha Sri et al., 2020). To
modify the surface roughness a variety of techniques can be used, for instance: chemical etching, plasma etching, solution
immersion, electrodeposition, template deposition, spray coating, etc. (Kavitha Sri et al., 2020; Su et al., 2016). Several
studies have proposed a solution to the hydrophobicity problem of the face masks, either by the addition of hydrophobic
coatings with graphene (Zhong et al., 2020) or silica (Ray et al., 2020) or employing the incorporation of hydrophobic
layers or membranes (El-Atab et al., 2020). Additionally, coatings of silver nanoparticles have been studied to provide
an antimicrobial effect (Li et al., 2006a). However, the used methods require multistep manipulation, special equipment
and post-treatment of the materials. Therefore, it is desirable to study a simple but versatile method to enhance the
microstructure of a surface such as electrospraying or electrospinning, which are electrohydrodynamic process.

The electrohydrodynamic process are an easy and currently scalable technique that allow the deposition of many
substances on various types of surfaces such as plastics, metals, woven, and non-woven materials (Fabra et al., 2016;
Khan et al., 2017; Lasprilla-Botero et al., 2018). It is one of the most effective methods when low amounts of material
are required to be deposited. It is a simple and flexible method and does not require additional treatments (i.e.:
thermal treatments) to the final product. One disadvantages of the electrohydrodynamic process use to be its low
productivity (usually with a processing throughput of a few millilitres per hour per single emitter). Nevertheless,
nowadays electrohydrodynamic process is used at industrial scale level for the production of commercial products and
recognized as cost-effective for materials commercial production (Arrieta et al., 2020), including face masks. Additionally,
different shapes of microparticles can be obtained by electrospraying or electospinning techniques, which provides
allotropic advantages (Alehosseini et al., 2018; Anu Bhushani and Anandharamakrishnan, 2014) and can easily modify
the surface properties of the treated materials (Arrieta et al., 2019; Kavitha Sri et al., 2020). Moreover, the obtained
particles fibre or spheres range between 5 m to 0.05 wm, which is enough to create necessary roughness for attaining
the non-wetting surface property (Kavitha Sri et al., 2020; Pavon et al., 2021).

As mentioned before, the other mechanism used to change the hydrophobicity of a surface is the use of a material
with low surface energy and thus hydrophobic properties as a coating. Gum rosin is a natural hydrophobic compound
that has intrinsic acidity and rigidity (Mahendra, 2019; Sharma and Singh, 2018; Yao and Tang, 2013). Gum rosin is the
non-volatile fraction of pine resin and is mainly composed of abietic- and pimaric-type resin acids with hydrophobic
hydrophenanthrene rings (Termentzi et al., 2011; Yadav et al,, 2016). In blends with biodegradable plastics, gum rosin
has shown its ability to increase the hydrophobicity of the final material (Pavon et al., 2020b,a). Additionally, the intrinsic
hydrophobicity of gum rosin can be improved when it is produced in micro-and nano-sizes by a simple electrohydrody-
namic process (Baek et al., 2011; Pavon et al., 2021). Gum rosin is biodegradable and biocompatible material (Satturwar
et al., 2003). Moreover, coniferous gum rosin has been proven to have antimicrobial activity (Termentzi et al., 2011)
against a wide range of microbes in the European Pharmacopoeia (EP) challenge test, including gram-positive (S. aureus,
MRSA, B. subtilis) and gram-negative bacteria (E. coli, P. aeruginosa) as well as against yeasts, like C. albicans (Sipponen and
Laitinen, 2011). Unmodified gum rosin does not produce adverse health effects or irritation of the respiratory tract after
inhalation (as classified using animal models) (Santa Cruz Biotechnology Inc., 2009). It should be taken into account that
gum rosin is classified as a skin sensitizer within the European Union (EC) (Karlberg, 2000). Due to the fact that it may
cause skins sensitization if main abietadienes acids of rosin are oxidized (Karlberg, 2000; Karlberg et al., 1995) people
with known contact allergy to rosin should avoid its contact (Sipponen and Laitinen, 2011).

The present work aims to enhance the surgical face mask hydrophobicity by a simple and scalable method taking
advantages of two know mechanisms to increase surface hydrophobicuty, (1) the increase of the surface roughness and (2)
the use of an intrinsic hydrophobic material. For this purpose, gum rosin was selected as hydrophobic material and it was
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Fig. 1. Schematical representation of the electrospraying process and image of the outer layer of surgical mask with the microspheres coating.

incorporated by means of a simple electrostatic spraying process to obtain GR microspheres. Thus, GR was electrosprayed
over the outer surface of a PP-based surgical face mask. Then, the mask has been characterized through thermal analyses
and Fourier transform infrared spectroscopy confirming the deposition of GR into the face mask. Additionally, the
microstructure and wettability of the mask have been analysed for 3, 6, and 9 h of wearing time demonstrating how
the addition of GR microspheres improve the surface hydrophobicity of the surgical mask during wearing time extending
their service life.

2. Materials and methods
2.1. Materials

Gum rosin (GR) commercial-grade was supplied Sigma-Aldrich (Mostoles, Spain) and was used for electrospray the
outer layer of a surgical face mask. GR is characterized by a softening point of 76 °C, an acid number of 167, and a value
of 4+ on the Gardner scale. Chloroform (CF) was used as a solvent and it was supplied by Panreac (Barcelona, Spain) with
a density > 1.48 g/cm? at 20 °C and 99.8% purity. The mask used in the study was a commercial three-layer surgical face
mask approved by the UNE 0064 standard.

2.2. Gum rosin electrospraying deposition onto surgical face mask

A 45 w|v gum rosin solution was prepared using chloroform as solvent. Chloroform was selected as solvent since it has
been considered as an effective solvent for electrodynamic process due to its high evaporation rate (boiling point 60 °C)
that allows effective solvent evaporation during processing (Arrieta et al., 2019). The electrospraying of gum rosin solution
using chloroform as solvent- was optimized in a previous work (Pavon et al,, 2021). In brief, the solution was kept under
constant stirring at room temperature for 24 h. The solution was fed into a Higher Pressure Programmable Single Syringe
Pump NE-1010 (Shropshire, United Kingdom). The pump was connected to a metallic needle with an internal diameter
of 0.4 mm through polytetrafluoroethylene (PTFE) tubes. the needle tip was connected to a high voltage 0-30 kV power
supply Genvolt 7xx30 series (Shropshire, United Kingdom). The electrospraying process was carried out in the outer layer
of the surgical face masks as it is the layer in charge to repel water (Tcharkhtchi et al., 2021). To deposit the coating of
gum rosin microspheres over a surgical face mask, the mask was set over the collector plate of the electrospraying system
with its outer layer facing up. The working distance between tip to the substrate was of 15 cm. The microspheres were
electrosprayed for 4 h with an applied voltage of 10 kV (positive and negative voltages = 5 kV and —5 kV, respectively)
with a flow rate of 5 pL/min. The final aspect of the surgical mask after the electrospraying process is depicted in Fig. 1.

After the electrospraying process, the surgical face masks were vacuum dried in a desiccator for 1 week to remove
any residual solvent. The wearing test were performed by three volunteers from our laboratory. Each volunteer wears
a surgical face mask with (M-eGR) and without (M) gum rosin microspheres during 3, 6, and 9 h. In total 18 face mask
were evaluated. During this time the volunteers were performing the daily activities of the work laboratory for instance:
preparation and characterization of materials, manipulations of materials, analysis of results, writing of informs, etc. After
these wearing times, the outer layer of the mask was characterized to get information on the behaviour of the face masks
due to the addition of gum rosin microspheres coating.
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2.3. Surgical face mask characterization

2.3.1. Thermal characterization

Differential scanning calorimetry (DSC) was conducted in a DSC 821 de Mettler-Toledo Inc. (Schwerzenbach, Switzer-
land). The thermal cycle consists of a first scan from 25 °C to 220 °C, followed by a cooling cycle from 220 °C to 25 °C,
and a second heating scan from 25 °C to 400 °C. The heating and cooling rate in all cycles were 10 °C/min and the tests
were performed in a nitrogen atmosphere with a flow rate of 30 mL/min. The second heating curve is reported.

Thermogravimetric analysis (TGA) was conducted in a TGA PT1000 from Linseis (Selb, Germany). Samples were heated
from 30 to 700 °C at a heating rate of 10 °C/min in a nitrogen atmosphere with a flow rate of 30 mL/min. The onset
(Ts%) and endset (Tqgpy) degradation temperature were determined at 5% and 90% of its initial mass loss, respectively.
Additionally, the maximum degradation rate temperature (Tn.x) was determined at the minimum (peak) of the first
derivative of the TGA curve (DTG)

2.3.2. Attenuated total reflectance-Fourier transform infrared spectroscopy characterization

Attenuated total reflectance-Fourier transform infrared spectroscopy (FTIR-ATR) was performed in a Perkin Elmer
Spectrum BX (FTIR system) coupled with an ATR Pike MIRacle ™ (Beaconsfield, United Kingdom). The analyses were
performed in the range of 4000-700 cm~! with a resolution of 16 cm~! and 20 scans.

2.3.3. Morphological characterization

The morphology of the outer layer of the face mask was studied by optical transmission microscopy in a Nikon Eclipse
LV100 optical microscope under transmitted light. A size distribution of the gap between the fibres was elaborated in the
outer layer of the face masks using the software Image] in the microscopic images.

2.4. Microstructure and wettability of the electrosprayed masks respect the wearing time

The effect of the GR microspheres coating over the microstructure and hydrophobicity of the face mask was analysed
at 0, 3, 6, and 9 h of use by Field emission scanning electron microscopy (FESEM) to see the changes in the microstructure
as well as by wettability measurements to measure the water contact angle of the face mask surface.

The FESEM analysis was performed using a Zeiss Ultra 55 microscope, operating at 1 kV. Before the analysis, the samples
were mounted on aluminium stubs using double-sided adhesive tape and coated with a gold-palladium alloy layer for
improved conduction with a Sputter Mod Coater Emitech SC7620, Quorum Technologies (East Sussex, UK).

The surface wettability of the outer layer of the surgical face mask was determined by water contact angle (WCA) by
the sessile drop method. Water contact angle was measured using an optical goniometer EasyDrop-FM140 from Kruss
Equipments (Hamburg, Germany) at room temperature (25 °C). Six water droplets (*1.5uL) were randomly deposited
on the sample surface with a precision syringe and the average value of eight measurements for each droplet were used
to create one data point. The significant differences in water contact angle were statistically assessed at 95% confidence
level according to Tukey'’s test using a one-way analysis of variance (ANOVA) using OriginPro2015 software.

3. Results and discussion
3.1. Surgical face mask characterization

The DSC thermal curves of a surgical face mask with and without gum rosin (GR) microspheres, along with the thermal
curve of neat gum rosin are plotted in Fig. 2. It is seen that the outer layer of the surgical face mask is fabricated with a
single polymer, which appears to be polypropylene due to its glass transition temperature (Tg) and its melting temperature
(Twm) (Calhoun, 2016; Grebowicz et al., 1984).

Furthermore, the coating of gum rosin microspheres caused no significant changes in the DSC curve of the surgical face
mask, which could be attributed to: (i) the small amount of GR present in the coating among with the low sensibility of the
DSC analyses and (ii) the amorphous nature of GR (Gaillard et al., 2011), which is confirmed by the absence of the melting
peak in its respective DSC curve. However, it is observed that the GR microspheres coating protects the microfibres of
the mask from thermal degradation. In the surgical face mask, the thermal degradation starts at 360 °C. Nevertheless, the
degradation is not detected in the mask with the microspheres coating due to the GR microspheres coating.

The thermal stability of surgical face mask with and without gum rosin microspheres was confirmed by thermogravi-
metric analysis. The results are presented in terms of thermogravimetric curves in Fig. 3a and through its first derivative
which are plotted in Fig. 3b. Regarding the surgical face mask, the typical complete weight loss in a single degradation step
of PP is observed (Samper et al., 2018). Moreover, it is observed that the onset degradation temperature (Tsy) is located
at 283 °C, the endset degradation temperature (Tgoy) is found at 402 °C and the maximum rate degradation temperature
(Tmax) is placed at 389 °C. Meanwhile, neat GR presents lower temperatures than the M sample, since Tsy is 228 °C and
Tmaxz is 314 °C. However, Tggy of gum rosin is 150 °C higher than the M sample, which explains the improvement in
the thermal degradation of the surgical face mask observed in the DSC curve due to the GR microspheres coating. Tsy
of M-eGR (242 °C) confirms the deposition of GR microspheres in the outer layer, as the decomposition temperature is
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Fig. 2. (a) DSC curves of the outer layer of surgical mask with and without gum rosin microspheres coating and neat gum rosin.

closer to that of GR. Nonetheless, a successful deposition of GR microspheres in the outer layer of the surgical face mask
is confirmed due to the increase in both Tggy and Tpaxy (421 °C and 405 °C respectively) which suggest a synergistic
interaction between GR microspheres and polypropylene microfibres.

FTIR spectra of the outer layer of surgical mask with and without gum rosin microspheres coating and neat gum rosin
are depicted in Fig. 4. The M spectrum is the typical spectra of polypropylene, confirming that this polymer is the sole
component of the outer layer. The band corresponding to C-C stretching are located at 808, 973, and 996 cm~!, the C-H
rocking and wagging bands are found at 840 and 1162 cm™~! respectively. At 840, 996, and 1162 cm™! the rocking modes
of CH3 are observed, in 1373 and 1456 cm~! the symmetrical bending of CH; is seen as high-intensity bands in the spectra.
The peaks at 2870 cm~! and 2950 cm™" at the high intensity and strong band indicate the stretching and asymmetrical
stretching of the CH; group, while, the band at 2918 cm™' correspond to the asymmetrical stretching of the CH, group
(Fang et al., 2012). The obtained GR spectrum is the common spectra of gum rosin (Aldas et al., 2020), the high-intensity
peak at 2944 cm~! and the small peak at 2872 cm~! indicate the strong stretching vibration modes of the CH; and CH,
groups in hydrocarbon structures with three rings typical of diterpenes (Favvas et al., 2015). The band of C=0 bonding is
seen at 1694 cm™' (Cabaret et al., 2018; Correa et al., 2018). The characteristic band to identify gum rosin is located at
2652 and 2536 cm™! as a broad double structured band with peaks at. This band corresponds to the overtone stretching of
the carboxyl group (Favvas et al., 2015). Moreover, in the fingerprint section between 1500 and 600 cm™~!, the absorption
bands found between 1200 cm~! and 800 cm~! are characteristic of diterpenic resins (Azémard et al., 2014).

The M-eGR spectrum confirms the deposition of gum rosin microspheres over the surgical face mask surface. It presents
features of gum rosin spectra as the C=0 bonding, the characteristic bands of GR, and the fingerprint region. However, from
3500 to 3000 cm~! the spectrum is more similar to polypropylene. This zone is related to the environmental moisture
absorption, which indicates that the gum rosin microspheres are less prone to absorb moisture from the environmental
humidity (Favvas et al., 2015).

3.2. Morphological characterization

In Fig. 5 the optical transmission microscopic images, among their respective sizes distribution of the gap between
the fibres, of the outer layer of surgical face mask with and without GR microspheres coating is shown. In the surgical
face mask without GR microspheres coating (Fig. 5a), it is seen that the non-woven PP microfibres form a mesh highly
crisscross with high free space that allow airflow. The gap between the fibres’ range between 25 and 75 pwm. In the surgical
face mask with GR microspheres coating (Fig. 5b). It is seen that the changes in the morphology of the face mask due to
the addition of gum rosin microspheres are negligible. Besides the gap between the fibres’ range stays the same. Therefore,
it seems that the coating of gum rosin microspheres did not compromise the breathability of the surgical face masks (Ray
et al., 2020), at least from an structural point of view and in good accordance with the perception of volunteers, who did
not notice any breathability difference between both face masks.
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Fig. 3. (a) TGA and (b) DTG curves of the outer layer of surgical mask with and without gum rosin microspheres coating, and neat gum rosin.

3.3. Microstructure and wettability of the electrosprayed masks respect the wearing time

The FESEM images of test samples of surgical face masks are shown in Fig. 6. The neat surface of a surgical face mask
(Fig. 6a) shows that the polypropylene microfibres are randomly placed and that the structure forms a non-woven mesh.
No significant changes were detected by FESEM in the microstructure of the neat face mask due to the time of use of
the mask (Fig. 6a, Fig. 6¢, Fig. 6e, and Fig. 6g). On the other hand, Fig. 6b (0 h of wearing time) shows that microspheres
were successfully deposited over the surface of the surgical face mask. It is observed that the gum rosin microspheres
have highly adhered to the non-woven fibres that make up the mask and that its presence increases the roughness of the
fibres due to the bulge of microspheres. Besides, a homogeneous microsphere distribution upon the non-woven fibres can
be seen. After 3 wearing hours (Fig. 6d), the microspheres are still well adhered to the fibres with no significant changes
in the microstructure. However, after 6 wearing hours (Fig. 6f), even when the density of microspheres is still high, the
microspheres begin to detach from mask fibres, letting some part of the fibre uncovered. Finally, after 9 h of wearing
time (Fig. 6h), it is seen that most of the microspheres have been removed from the mask. Nevertheless, it should be
highlighted that the surface is not completely free from microspheres and the microstructure respect the mask without
the coating is still different (Fig. 6g).
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Fig. 5. Optical transmission microscopy images corresponding to the outer layer of surgical face mask (20X) (a) without and (b) with gum rosin
microspheres and their respective sizes distribution of the gap between the fibres.

A comparison of the water contact angle (WCA) evolution with wearing time between the surgical face mask with
and without gum rosin microspheres coating along with the sessile drop image is presented in Fig. 7. It is observed that
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Face mask

Fig. 6. Microstructure of surgical face mask without gum rosin microspheres coating at (a) 0 h, (c) 3 h, (e) 6 h and (g) 9 h of use, and microstructure
of surgical face mask with gum rosin microspheres coating at (b) 0 h, (d) 3 h, (f) 6 h and (h) 9 h of wearing.
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Fig. 7. Evolution of surgical face mask surface water contact angle (WCA) with and without gum rosin microspheres coating as a function of wearing
time. -9 Different letters show statistically significant differences between formulations (p < 0.05).

the surface of surgical face mask with and without the microspheres coating is hydrophobic (WCA > 65°) for all the
studied times (Hambleton et al., 2009; Vogler, 1998). Before wearing the mask (time = 0 h), it is seen that there are no
statistical differences between the WCA of the free surface of the surgical face mask and the WCA of the surface coated
with gum rosin microspheres, with a mean WCA value of 131 & 3°. In the face mask sample (M), the WCA is reduced
with the wearing time of the mask, and the differences with the 0 h are statistically significant confirming the well-known
reduction efficiency of face masks during wearing. In gum rosin coated face mask (M-eGR), no significant differences with
the mask before wearing (at time 0 h) were detected in the WCA until 6 wearing hours. This result is in good agreement
with the FESEM images, which show that the beginning of the detachment of gum rosin microspheres takes place from
hour 6. At 9 wearing hours, a significant decrease in the WCA of M-eGR was observed (127 + 2°). However, even with this
decrease, the WCA of M-eGR is higher than the WCA of M sample after 3 wearing hours. The increase in hydrophobicity
in the M-eGR mask can be a consequence of a combined effect of both the hydrophobicity nature of GR (Pavon et al.,
2020a) and the increased roughness produced by the bulge of GR microspheres on the surface of the fibres (Liang et al.,
2018).

The WCA analyses reveal that the GR microspheres coating did not affect the initial WCA of the surgical face mask.
However, the PP fibres of face mask during the contact with water show higher structural changes with higher times (9
h), as it was showed in optical microscopic images (Fig. 6g), in which the surface become more hydrophilic as the contact
angle decrease. Meanwhile, in the case of coated face mask the microspheres have adhered to the polypropylene fibres
obstructing the interaction between water and PP-fibres and, thus, they improved the hydrophobic behaviour during the
face mask-wearing time by delaying the direct contact of PP non-woven fibres with water, which helps to maintain the
protective effect of the surgical face mask for a longer time (Li et al., 2006a). Moreover, the intrinsic gum rosin tackifying
effect could help to block the entrance of droplets from the outside and delay the contact of droplets with the face mask,
while the antimicrobial effect could help to prevent contamination in the mask surface.

It is worth mentioning that this study is the basis for future studies where the microspheres can be used as carriers
of active compounds to provide specific characteristics to the coated materials. As well, gum rosin microspheres can help
to prevent the entry of viruses and bacteria and reduce the risk of spread which will allow the control of COVID-19 and
other diseases.

4. Conclusions

The polypropylene outer layer of surgical face masks was successfully coated with gum rosin microspheres through
the electrospraying technique. The correct deposition of the microspheres over the face mask was confirmed by thermal
analyses and Fourier transform infrared spectroscopy (FTIR). The differential scanning calorimetry (DSC) analysis showed
that the addition of GR microspheres coating did not affect the glass transition temperature of PP. The FTIR analysis showed
that the layer of GR microspheres was present in the face mask outer layer. It was determined that GR microspheres
coating has a synergistic effect with the polypropylene fibres, which increase the maximum degradation rate temperature
of the face mask as was demonstrated by TGA. The FESEM images revealed that the GR microspheres have well adhered
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to the polypropylene nonwoven fibres until 6 wearing hours, and the wettability analyses showed that until this time, the
WCA did not decrease with the wearing time of the mask. These results show that gum rosin microspheres successfully
maintain the hydrophobicity behaviour of face masks during 6 h preventing external moisture from entering the mask
material better than an uncoated face mask. As well, the addition of a GR microspheres coating could help to extend the
wearing time of surgical face masks and, thus, extending their service life. It should be highlighted that extending the
service life of surgical masks will not only improve the face masks’ efficiency but also will reduce their negative impact
on the environment as less amount of them will be consumed.

The authors warn that the reported method to enhance the hydrophobicity of surgical face mask is in an experimental
stage and more analyses are needed until this method is deemed safe by the correct governing bodies. Nevertheless, it
should be highlighted that it can be a starting point to increase the service life of face masks by a simple and scalable
method already available at industrial level.
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