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p-REGULARITY AND WEIGHTS FOR OPERATORS BETWEEN
LP-SPACES

E. A. SANCHEZ PEREZ AND P. TRADACETE

ABSTRACT. We explore the connection between p-regular operators on Banach
function spaces and weighted p-estimates. In particular, our results focus
on the following problem. Given finite measure spaces p and v, let T be
an operator defined from a Banach function space X (v) and taking values
on LP(vdp) for v in certain family of weights V' C L!(u)+: we analyze the
existence of a bounded family of weights W C L!(v)4 such that for every
v € V thereis w € W in such a way that T': LP (wdv) — LP(vdp) is continuous
uniformly on V. A condition for the existence of such a family is given in terms
of p-regularity of the integration map associated to a certain vector measure
induced by the operator T'.

1. INTRODUCTION

The study of boundedness of relevant operators defined between weighted LP-
spaces is a classical problem in harmonic analysis. Following the founding paper by
M. A. Arifio and B. Muckenhoupt [I], in recent years, a lot of attention has been
devoted to understanding the precise relation between weighted p-estimates and the
Hardy-Littlewood maximal operator [2] 4], or Calderén-Zygmund operators [13} [14].
On the other hand, weighted norm inequalities for linear operators are connected
with a plethora of problems related to abstract constructions on summability on
Banach function spaces. Although there are a lot of classical developments and a
lot of research which has been done since its publication, the monograph [12] by J.
Garcia Cuerva and J. L. Rubio de Francia can be considered as a milestone in this
classical topic.

Actually, partly motivated by [12, Chapter VI, Theorem 6.7], in this paper we
investigate the problem of existence of a bounded “conjugate” family of weights W
for a given set of weights V' with respect to a given linear operator 7', in the following
sense: gwen v € V, there exists w € W in such a way that T is well defined
and continuous (with uniform norm) as an operator T : LP(wdv) — LP(vdu).
We provide conditions for the existence of such a conjugate family in terms of p-
regularity of a certain operator associated to T' (see Section . Moreover, in the
case that the existence of such a family is not possible, we also analyze some average
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domination that may be a successful substitute in some cases. This latter fact is
analyzed by means of lattice p-summing operators.

Let us recall that for a Banach space F and a Banach lattice Y, an operator
T :E =Y is lattice p-summing if there is a constant C' > 0 such that for every
{zitis, C E,

<¢ s (Slmar)
Y

n 1
p

(5 m=r)

i=1 e €Bpx \ ;21

Lattice p-summing operators provide an analogue of the well-known class of p-
summing operators which is better suited to the order and lattice properties of the
spaces involved. This class of operators was introduced for the case p = 1 by L.
P. Yanowskii and later studied by J. Szulga, N. J. Nielsen, N. Danet and B. P.
Pomares for the general case during the eighties (see [5l 201 23] 24], 28] 29| 30]).

Recall also that given quasi-Banach lattices E, F, and 0 < p < oo, a linear
operator T': F — F is said to be p-regular if there is a constant K > 0 such that
for every {z;}I"y C E

() <l (Ser)')

This family of operators, which can be thought of as a generalization of the no-
tion of regular operator —i.e. those which can be written as a difference of two
positive operators—, was first considered in [3] in connection with the interpolation
theory of Banach lattices (and also implicitly in [19]). In particular, these opera-
tors are related to the so-called Marcinkiewicz-Zygmund inequalities [7] and other
interpolation properties (see [25] [27] for recent developments about this).

The structure of the paper is as follows. First, in Section [2| we analyze some
basic properties of lattice p-summing operators and p-regular operators between
Banach lattices, introducing the necessary notions and terminology, and showing
the main separation argument. In Section [3] we study the factorization properties
of p-regular operators and as an application we provide a proof of classical results
of W. B. Johnson, L. Jones [I5] and L. Weis [31] which allow us to consider certain
operators on Banach function spaces as operators on weighted LP spaces. The
corresponding results for lattice p-summing operators are collected in Section
Finally, Section [b| is devoted to the study of existence of conjugate families of
weights. The techniques in this last section exploit both p-regular and lattice p-
summing operators together with vector measure technology.

For unexplained terms and notions concerning Banach lattices, Banach spaces
and operator theory we refer the reader to the monographs [10] [17, 21].

2. PRELIMINARIES

Let (2,2, i) be a finite measure space. Let L°(u) be the space of all measurable
real functions on 2, identifying functions that are equal p-a.e. We say that a
Banach function space over u is a Banach space X (1) € L%(u) that contains all
simple functions, and whenever |f| < |g] and ¢ € X(u), then f € X(u) with
Ifllxwy < llgllxqu- For the aim of simplicity, we sometimes write X instead
of X (u) if the measure does not play a relevant role or is clear in the context.
Recall X (u) is order continuous if for every sequence (fn,)n, € X (1), fn 4 0 implies
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| fnllx(uy — 0. In this case, the Kéthe dual

X(n) ={g€Ln): fg € L' (1) whenever f € X(u)},
equipped with the norm

9l x(uy == sup /fgdu,
11l x () <1
coincides with the (topological) dual space X (u)*.
A Banach function space X (u) is p-convex for p > 1 if there is K > 0 such that
for every finite set of functions fi, ..., fr € X(u),

ISy 1< (S

The infimum of all such constants is called the p-convexity constant and is denoted
by M) (X (11)). Let us recall that expressions of the form (37, | f; |p)1/p can be de-
fined on abstract Banach lattices (that are not necessarily Banach function spaces)
by means of Krivine’s functional calculus (cf. [I7, Theorem 1.d.1]).

For 0 < p < o0, the p-th power of X (u) is defined as the linear space

X(w)p) = {f € L) = ISP € X ()}

If X (1) is p-convex (with p-convexity constant M) (X (1)) equal to 1), then X (1))
is a Banach function space over p with norm given by

1 lx gy = NP5 .

It follows that X (u)p,) is order continuous if and only if so is X (), and in this
case simple functions are dense in both spaces (see [2I, Ch.2] and [I7] for this and
further details on Banach function spaces). Moreover, a functional =" € (X (u)[p))*
acts on |z|P € X (u)p) (where z € X (u)) as

<ﬂmm=/wmww

The operator counterpart of the definition of p-th power of a Banach function
space is given by the so called p-th power factorable operators. Namely, given a
Banach space F, an operator T : X(u) — E is p-th power factorable if for every

feX(w),

IT(Hls < K IF7I%
(see [21] Ch.5] for the main properties of this class of operators).
Let us also recall some preliminaries on vector measures: Given a o-algebra of

subsets of some set {2 and a Banach space E, a function m : ¥ — F is a (countably
additive) vector measure if

oo

m( U Ay) = Zm(An)

=1

in the norm topology of E for all sequences {4, }, of pairwise disjoint sets of X.
For each z* in the dual space E*, the expression

(m,2")(A) == (m(A),z%), AeX,
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defines a scalar measure. A set A € ¥ is m-null if m(B) = 0 for every B € ¥ with
B C A. Two (scalar or vector) measures are said to be equivalent if they have the
same null sets.

A Rybakov measure of m is a scalar measure of the form (m, x*) for some z* € E*
that is equivalent to m. It is well-known that every vector measure has a Rybakov
measure (see [II, Ch.IX]).

The space of integrable functions with respect to the vector measure m, which
we denote L!(m), is the space of all measurable (scalar valued) functions f that
are integrable with respect to each scalar measure (m, z*) for +* € E* and for each
A € X there exists [, fdm € E with

</Afdm’x*> - /Afd<m’$*>, for % € X*.

The space L!(m) is an order continuous Banach function space over any Rybakov
measure with the norm

£lzsny = _sup [ 151 dlm.a")
z*EBp*
and the m—a.e. order. The spaces LP(m) for 1 < p < oo are defined in the obvious
way; in terms of p-th powers, we have that LP(m) = (Ll(m))[l/p], or equivalently,
LP(m), = L'(m). We point out that the spaces LP(m) are always p-convex with
M(p)(Lp(m)) =1.
As usual, we write I,, : L'(m) — E for the integration map

) :/fdm, for fGLl(m).

An operator T : E — F between Banach spaces E and F' is called p-summing if
there is a constant K such that for every finite set x1,...,z, € F,

(é HT(xl)Hp> 1/p <K ] sup * (zj; |<$1,$*>|p) l/p.

*€Bp

We refer the reader to the monograph [10], for background on ideals of operators
between Banach spaces (in particular, on p-summing and p-dominated operators).

Let us fix in what follows the context of the present paper. We use systemati-
cally the two classes of operators cited in the Introduction. The following section
describes the separation result concerning this inequality to be used several times
through all the paper.

2.1. Weighted norm inequalities and domination for p-regular type op-
erators. Consider an operator T from a Banach space F to a Banach lattice Y.
Given 1 < p < o0, let % + L = 1. Consider the following two inequalities:

P
o T is lattice p-summing if and only if for each finite set z1,...,z, € E,
i 1/p
) [(Xirwr) | <c s sz
i=1 al)EB ’

The lattice p-summing norm of 7' is the least possible constant C' > 0
appearing in this inequality and is denoted by A, (T).
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e If F is also a Banach lattice, T is p-regular if and only if for each finite set
T1y...,Tn € B,

@) (i) <] ()™

The p-regular norm of T is the least possible C' > 0 appearing in this
inequality and is denoted by p,(T').

Note that for z1,...,z, in a Banach lattice we always have
i 1/p
sup a;x;|| < ‘ sup Zazzz = ‘ (Z |Iz|p)
(ai)eB 1135 (ai)€B, 51

In particular, every lattice p-summing operator is p-regular with p,(T) < A, (T).
However, it is easy to check that the identity on L, is p-regular but not lattice
p-summing. In fact, every positive operator between Banach lattices, or even a
difference of positive operators, is p-regular for every p > 1.

Note that the above inequalities can be written in terms of an expression involv-
ing the norm of an element in the dual of a certain Banach space. This observation,
together with a standard separation argument yields the following:

Proposition 2.1. Let X, Y be p-convex Banach function spaces with p-convexity
constant 1. An operator T : X — Y is p-reqular if and only if there exists C > 0
such that for every y* € By, )~ there is z* € B(x )+ with

(T @7, y")| < CP(lzf?, 27), 2 e X.

Moreover, the smallest constant C > 0 appearing in this inequality coincides with
pp(T).

Proof. Suppose T : X — Y is p-regular. Note that since we are assuming X and
Y to have p-convexity constants both equal to 1, it follows that both X[, and Y[,
are Banach lattices.

Fix y* € B(y;,)-. Let us consider the family of affine functions given as follows:
for z1,...,x2, € X, let

n

n
faro iy (&%) = Z<|T(l‘i)| Y pz |li|P, 7)), z* € B(x,)*-
=1

i=1

Clearly, these functions belong to C'(B Xp))* w*) and it is easy to check they satisfy
the conditions of Ky-Fan’s Lemma [I0, Lemma 9.10]. For this, just note that given
Z1,...,Ty € X there is always z* € B(X[p])* such that

S =[St = (1)
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Hence, for x1,...,x, € X, such an z* yields

vy (@) = 3 AT@P0") =TV 3 (il ")

= Zn:<|T(acl)| ’y*>—Pp(T)pH<zn:|x,»|P)l/p »
: H(Z|T sr)” | ety H(il%l”}l/pupﬁo.

i=1
Therefore, by Ky-Fan’s Lemma there exists z* € By Xip)* such that for every
T1,...,T, € X, we have

fxl,...,xn;y* (Z*) S 0.
In particular, for every x € X we have

T @7,y = pp(T) (|2, 2%) = fazy=(27) <0,

as claimed.
The converse implication is straightforward. (I

Since lattice p-summing operators are p-regular, the inequality of Proposition
also holds for this class. However, in a similar fashion one can show the following
characterization:

Proposition 2.2. Let E be a Banach space and Y a p-conver Banach function
space (with p-convexity constant 1). An operator T : E — Y is lattice p-summing
if and only if there exists C' > 0 such that for every y* € By~ there is a reqular
probability measure n € M(Bg~) such that

T @7,y < CP /B (@, )P dn, € E.

Moreover, the smallest constant C' > 0 appearing in this inequality coincides with
Ap(T).

Proof. The proof follows the same lines as that of Proposition using, for a
non-zero functional y’ € Y}, and (x;)f, C E, the family of functions given by

Gornnia (1) :=(Z<|T<xz . / Z 22, P dn,

i=1
for n € M(Bg~) = (C(Bg»,w%))*. -

Remark 2.3. The separation arguments mentioned above can be also used when
the w*-compact sets are not necessarily the unit ball of a dual space. In order to see
this, just note that the Hahn-Banach Theorem separation argument works when
the functions under consideration belong to a certain C'(K)-space for some compact
Hausdorff space K. We use this version in the next section, where general families
of weights are considered. This will allow us to deal with families of positively
norming sets for Banach lattices, that have been studied and applied in a similar
context in [26] S.5].
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3. p-REGULAR OPERATORS BETWEEN p-CONVEX BANACH LATTICES

A direct application of the arguments given in the previous section gives the
following characterization for p-regular operators between p-convex Banach function
spaces. A version of this result can be found in Proposition 4.1 of [8]. It provides
an example of the fundamental tool to be used in Section [5.2

Proposition 3.1. Consider an operator T : X (u1) — Y (p2), where X(u1) and
Y (u2) are p-convex order continuous Banach function spaces over (1,u1) and
(Qs, 12), respectively. The following assertions are equivalent:
(i) T is p-regular.
(ii) There is C' > 0 such that for each 0 < y* € B(y(u,),,)+ there is 0 < 2" €
B(x (1)) such that for every x € X (1),

(/Qz |T'(z) " y* d,uz)l/p <C (/Q P 2 dM)l/p,

1

(iif) For each 0 < y* € B(y (uy),,)~ there exists 0 < z* € B(x(uy),,)~ and T such
that the following diagram commutes

X(p1) Y (p2).
v - v
LP(2*dpr) > LP(y"dpsz)

Proof. Note this can be seen as a particular case of the classical Maurey-Rosenthal
Theorem; the reader can find a detailed proof in many places, for example in
Theorem 3.1 of [9]. The equivalence (i) < (ii) follows from Proposition[2.1] replacing
the functional y* € B(Y(/tz)[p])* by its modulus if necessary, and noting that the
duality pairing in (X (u1)p))* (respectively, in (Y (u2)p))*) corresponds to

(P, z*) = /Q ePrtdy, e X(m), 2t € (X(u)y)"
1

(vespectively, ([y[P,y*) = [, [y|Py*dus for y € Y (u2), y* € (Y (p2)))*)-
For the equivalence with (iii), just note that the formal inclusion i : X (1) —
LP(z*dpy) is bounded. Indeed, for f € X(u;) we have

b o 1/p » . 1/p
11l ey = ( /Q 172 dpn) < (P ol ek nn-) < 1 -
1

Similarly, i : Y (u2) — LP(y*dus) is also bounded. Now, the operator T is the
unique continuous extension of T with respect to the corresponding LP-norms. [

Note that, as in Proposition the smallest possible constant C' > 0 appearing
in (ii) coincides with p,(T).

For endomorphisms on a p-convex Banach lattice, the previous result can be
pushed forward to get a single weight as follows:

Theorem 3.2. Let 1 < p < co. Suppose X is a p-convex Banach function space
over some finite measure space (2,3, p). If T : X — X is p-reqular, then there
exists a strictly positive functional g € B(x,, )+ such that T': LP(gdu) — LP(gdp)

is bounded with |T|| < 2p,(T).
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Proof. Let go = xq. Normalizing by a constant, if necessary, we can assume gg €
B(X[p])*. Since T': X — X is p-regular and X is p-convex, by Proposition there
exists g1 € B(X[pl)i such that for every f € X

AFW%WS%@VAUWMM

Inductively, using Proposition we can construct a sequence (g;)ien C B X))t
such that for f € X and ¢ € N we have

Awwawg%@ﬂémmﬂw.

Now, let g = >,y 27%g;. This series is convergent in the norm of X[;] and we
clearly have g € B( X)) Therefore, for f € X we have

/Q TfPgdu =" 27" /Q T fPgidp < pp(T)pz:Ti/Q [f1Pgirrdp < 2,0p(T)”/Q |fPgdyp.

i€N ieN
Taking into account that simple functions belong to X and these are dense in
L?(gdu), the conclusion follows. O

As an application of this we can provide alternative proofs of some classical
results given in [I5] and [31]:

Corollary 3.3. Let 1 <p < oo and T : LP(u) — LP(u) be any bounded operator.

There is a strictly positive function g € L' () such that T : L2 (gdp) — L?(gdp) is
bounded.

Proof. Suppose first p > 2. In this case, LP(u) is 2-convex and T : LP(p) — LP(u)
is 2-regular (by [I7 Theorem 1.f.14]). Hence, the conclusion follows from Theorem
Finally, if p < 2, then we apply the previous argument to 7% : Lp,(u) — L7 (1)
(with & + > =1). O

Corollary 3.4. Suppose X is a Banach function space over some finite measure
space (O, X, ). If T : X — X is reqular (that is, a difference of positive operators),
then there exists a strictly positive function g € L*(u) such that for every 1 < p <
0o, T : LP(gdu) — LP(gdp) is bounded.

Proof. We apply Theorem [3.2]for p = 1. Note that X is 1-convex and if T' is regular,
then it is in particular 1-regular. Hence, there is a strictly positive functional
g € X* C L' () such that

T: L'(gdp) — L' (gdp)
is bounded. The same argument applied to T* yields that for some ¢’ € X, the
operator .
T*: L'(g'du) — L' (¢'dp)
is also bounded, or equivalently,
T: L (gdp) — L>(gdp)
is bounded. By a standard interpolation argument, it follows that
T: LP(gdp) — LP(gdp)

is bounded for every 1 < p < oo, as claimed. [
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4. LATTICE p-SUMMING OPERATORS

The class of lattice p-summing operators, i.e. those satisfying inequality , was
introduced and analyzed in [20].

Proposition [2.2] in the case that Y is a p-convex Banach function lattice, yields
that T': E — Y is lattice p-summing if and only if for every y" € (Y},))* there is a
regular probability measure n € M(Bg~) such that

(r@Py)<cr [ fwa)Pans). wek.

B~

As a direct consequence we have the following factorization theorem (in the case

that Y is a p-convex space). Some related results, without assuming p-convexity

on E, can be found in [5 [20]. Moreover, for the case of Y being p-concave, a more

general class of operators has been characterized in [22, Theorem 2.5] along similar
lines.

Proposition 4.1. Consider an operator T : E — Y (u), where E is a Banach
space and Y (1) is a p-convex order continuous Banach function space over u. The
following assertions are equivalent.
(i) T is lattice p-summing.
(ii) There is C' > 0 such that for each 0 < y* € By~ = By there is a Borel
probability measure on Bg« such that for every x1,...,x, € E,

([r@prya)” <o [ iwaipae)”

B

iii) For each 0 < y* € By .y there is a Borel probability measure on Bg« such
(Yip)

that the operator i o T : E — LP(y*du) factors through a subspace S of

LP(n) as
T A *
E————Y(u) ———— LP(y"dp),
. 77
v , e
C(Bg.) ' -5

and the p-summing norm is uniformly bounded for all 0 < y* € By,

Proof. Let us explain first a technical relation between the Kéthe dual (Y (u)p,))" of
the p-th power of a p-convex Banach function space Y (1) and the space of pointwise
multiplication operators M (Y (u), LP(u)) that will be used in the proof below and
also in some other proofs of the present paper. If Y (1) is such a function space, we
have that
Y (1)) = MY (1), LP (1)) )

isometrically. Direct computations give the proof; the reader can find more infor-
mation about this in [2I, Chapter 2].

The equivalence (i) < (ii) is given in Proposition [2.2] For (ii) = (iii), just take
into account that for each y* € B(y[p])/, we have that the property in (ii) means that
i 0T is well-defined and p-summing with norm that is uniform for every element
in B(y,,). Consequently, by Pietsch’s factorization Theorem (cf. [10, 2.13]), we
get the factorization in (iii). Finally, if (iii) holds we directly get (ii) for a constant
C > 0 as a consequence of the factorizations and the uniform bound for the p-
summing norms. [
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Let us remark that, given a Banach space E and a probability regular Borel
measure 7 on a compact Hausdorff space K, the formal inclusion i : C(K) — LP(n)
is not only the canonical p-summing operator, but also the prototype of lattice
p—summing map. This is because in an LP-space, we have

v » 1/p 1/p
H( |x1|p> ‘ Le(n) (; Hxi”“(n)) = sup (Z’ ro ¥ ) '

z*€B
The following is a direct consequence of the definitions. Let 1 < p and let
1/p + 1/p" = 1. Recall that an operator T : E — F between Banach spaces is
p-dominated if there is a constant K such that every finite sets zi1,...,x, € E,
Yi, ... yn € F*,

zn:|<T(xi)7y7>| sup (Z’ . >1/p aup (Z\ ) |p>1/p

*EBE

By Kwapient’s Factorization Theorem (cf. [6] 19.3]), an operator T is p-dominated
if it can be factored as T = R o S where S is p-summing and R* is p’-summing
(with & + 5 =1).

Remark 4.2. Let X, Y be Banach lattice and let E, F' be Banach spaces. Let
Sy : E — X be lattice p-summing, 7T : X — Y p-regular, and Ry : Y — F' is such
that RS : F* — Y™ is lattice p/-summing.

Then T : E — F defined as T'= Ry o Ty 0 Sy is p-dominated.

Proof. Using [I7, Proposition 1.d.2.(iii)], it follows that

S T0a) = (e S, Ryl
< ((Xmesr)” (i|R3<yz‘>p’)””/>
< pp<To>H(Zl|so<xi>|p) ISy
(S gy (o)’
with C = p,(To)Ap(S0) Ay (RE). The conclusion follows. 0

However, Remark [£:2] can be improved in order to give a characterization of a
certain class of p-dominated operators. Next result gives an equivalent statement
to Kwapien’s Factorization Theorem for p-dominated operators (see [6, 19.3]), in a
Banach lattice context, for a special class of p-factorable operators (see [0 18.6]).
The main difference with Kwapieni’s result is that the factorization here is given
through LP-spaces, and not only through a subspace of an LP-space.

Corollary 4.3. Let T : E — F be an operator between Banach spaces E and F,
and 1 < p < oco. The following assertions are equivalent.

(i) There exist a p-convex order continuous Banach function space X (u) and
a p-concave Banach function space Y (v) with order continuous dual such
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that T factors as T = Ry o1y o Sy,

E— T .Fp
A
So Ro
\ To
X(n) >Y(v)

where Sy is lattice p-summing, Ty is p-regular and R} is lattice p’-summing.
(ii) There is a factorization for T as

E—X - F
A
Sl Rl
\ T
LP () > LP(v)

where Sy is p-summing and R} is p’-summing.
Thus, if the equivalent statements (i) and (i) hold, then T is both p-dominated
and p-factorable.

Proof. (i) = (ii) A standard application of the Maurey-Rosenthal Theorem provides
a factorization of Ty as Mp1/» oTO o Jwgl/p7 where M}/, is a multiplication operator
My 2 X(p) — LP(u) and My @ Y'(v) — LP(v), that is h € (X(u)p)) and
g€ (Y'(v)p) (see [9) Theorem 3.1]). Proposition gives that the compositions
S1 = My1/p080 and Ry* = M1/, 0 R are p-summing and p/-summing, respectively,
and so we get (ii).

The converse is straightforward, since every operator among LP-spaces is p-
regular, and every operator into an LP-space is p-summing if and only if it is lattice
p-summing. (I

5. CONJUGATE WEIGHTS FOR OPERATORS ON FAMILIES OF WEIGHTED
LP-SPACES

Fix a finite measure p. Suppose that we have an operator T' that is well defined
from an ideal of L°(u) to LP(vdu), for v belonging to a given family of weights
V C L'(u)y. As we said in the Introduction, we are interested in solving the
following question: Is there another family of weights W satisfying that for every
v € V there is w € W such that T : LP(wdy) — LP(vdu) is well-defined and
continuous with a uniform bound for v € V¢

According to the classes of operators we considered in the previous sections, we
provide two solutions. The first one gives an average estimate for such a dom-
ination, that provides a factorization through a subspace of an LP space. The
second one gives an exact solution to the problem, together with a description of
the corresponding conjugate class of weights.

In order to do this, we need some tools based on vector measures. The following
definition can be found in [26], S.5].

Definition 5.1. Let (2,3, ) be a finite measure space. Given a norm bounded
subset V' C L'(u), we define the (finitely additive) vector measure my : ¥ —

>2(V),
(3) my (A) = (/A’Udu)vev €r®(V), Acy.
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It was shown in [26] Lemma 5.1] that if V' is a relatively weakly compact set of
L'(pn); —equivalently, uniformly integrable—, then my defined above is a count-
ably additive vector measure.

Consider the space LP(my ) of p-integrable functions with respect to my. By
the definition of the vector measure my , we clearly have that

Hf”LP(mv) = Slel‘I/) Hf”LP(vdu)a f € Lp(mV)'

Therefore, the formal inclusions
LP(my) < LP(vdp),

are bounded for every v € V' with norm not greater than 1.
For each weight v € V| let ef € £1(V) denote the corresponding element of the
unit vector basis, and let ¢, = e’ o I,,,,, € L*(my)*. That is,

0u(f) = / fvdu, for f € L'(my).
Q
It follows that
ool = [ fodn={ [ samy.ci) < Ul el = 172
Q Q

The keystone of our approach in this section is to consider the space L?(my ) as
the natural order continuous p-convex Banach function space which works globally
as the range for an operator T that is well-defined when taking values in each
LP(vdu) space, for v € V.

5.1. Average domination for a given class of weights. Throughout the rest
of the paper let 1 < p < oo be fixed. Suppose that T : X (u1) — Y (u2) is a lattice
p-summing operator, where X (u1), Y (uz2) are order continuous Banach function
lattices over (€21, p1) and (g, ua) respectively. Assume moreover that Y (us) is p-
convex. Using duality for the spaces X (u1) and Y (u2), Proposition yields that
for every y' € B(y(u,),,)~ there is a regular probability measure n € M(Bx ,,)-)
such that

, 1/p , P L\ 1/P
([ r@ryaw)” <xna ([ | [ e aw| @) " e x),
Q2 Bx(up*r 7

This can be rewritten in the following terms: for every 0 < ¢’ € B(y(#Q)[p])* there
is a regular Borel probability measure n such that the following diagram commutes:

X (1) ———— Y (u2)
I 7
Y Y
S s Ly dps)

where S is the subspace of LP(Bx(,,)-,7) consisting of all functions of the form
fo(2') = le xz' dv, for € X (7). We summarize this in the following

Corollary 5.2. Let X(u1), Y(u2) be order continuous Banach function lattices
such that Y (uz2) is p-convex, and a bounded operator T : X(u1) — Y (uz). For
any norm bounded set of weights V. C (Y (u2)pp))’, the following statements are
equivalent.

(i) The operator T is lattice p-summing.



p-REGULAR OPERATORS AND WEIGHTS 13

(ii) For each v € V, the operators T : X(u1) — LP(vdus) factor through the
subspace S defined above, considered as a subspace of LP(Bx ,,),n) for a
certain reqular probability measure 1.

Let us face the original problem now. For a finite measure us and a set of weights
V that is a relatively weakly compact set in L!(us2),, consider the vector measure
my given by and the corresponding space LP(my ).

Corollary 5.3. Let X(uy1) be a Banach function space. Let V C L'(uz)y be rela-
tively weakly compact. Let T be a linear operator mapping X (p1) to (N, ey LP (vduz),
such that T : X(u1) — LP(vdus) is bounded for every v € V. The following state-
ments are equivalent.
(i) The operator T : X (u1) — LP(my) is lattice p-summing.
(ii) There is a constant C > 0 such that for every v € V there is a regular
probability measure 1 € M(Bx ,,)+) satisfying

1/p P 1/p
(/ |T(x)|pvdu2) <C (/ / za dm’ dn(x’)) . € X(p).
Qs Bx(up* 7

(iii) For each v € V, the operator T : X (u1) — LP(vdus) factors through the
subspace S = {(x,) : x € X(u)} C LP(n) for a certain regular probability
measure 1 over Bx ().

5.2. Existence of a conjugate set for a given family of weights. In this
section we improve the domination given in the previous one under the assumption
of p-convexity of the domain space.

Let V C L'(u1)+ be arelatively weakly compact set of weights. We are interested
in showing the existence of W, a conjugate family of weights for V', with respect to
a given operator T': S(v) — [, ¢y LP(vdpu), were S(v) is the space of v-a.e. equal
simple functions. Essentially, we have two different situations that should be taken
into account:

(A) The operator T is defined in a Banach function space X (v) and we require
that X (v) C LP(wdv) uniformly for w € W. In this case, we show that
under the adequate requirements, we can find such a set W C (X (v)[g)"

(B) When there is no a priori assumption on [,y LP(wdv) being included
into some Banach function space, it is shown that in fact one can always
find an explicit Banach function space Y () such that W C By (..

Let us start with the formal definition of a conjugate family of weights W of a
given class of weights V' with respect to a given operator T': X (v) — (1, ¢y LP(vdpu).

Definition 5.4. Given measure spaces (Q1, u11), (2, t2), a set V. C L' (uz2)4 and

an operator T': X (p1) — [,ey LP(vdus2) such that

Sup |7 x (1) Lp (vdpa) < OO,
veV

we say that W C L'(u1)4 is a conjugate family of weights for V (with respect to
T) if for every v € V there is w € W such that
(1) the formal identity 4, : X (1) < LP(wdpu) is continuous,
(2) T : LP(wduy) — LP(vdus) is continuous,
with
su

P |liw] < oo, and  sup | 7| e (wdp, )= Le (vdps) < OO,
wew veV
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where w in the last supremum is determined in terms of v.

For the case when T is just defined on the set of simple functions over (€4, 111)
and no boundedness is assumed, then W C L (p1) is required to satisfy only (2) in
the above definition.

Example 5.5. Consider a probability space (2,3, i), a disjoint partition (A;);en
of Q (i.e. A4;(NA; =0fori+#jand J,.nAi = Q) and let T : L>(u) — L?(u) be
the operator given by

i€EN

T(f) = Z (/A fdM>XAi~

Take any set V' C B, . Since ||f|l11¢0) < Il 22(u) for f € L2 (p), for v € V we

have
I ([ st = (S ([ ra)” [ i)

= i ieN i
1/2
< sup‘/ fduKZ/ vdu)
ieN 'JA; ieN A;
< fllz2 -

Therefore, W = {xq} is a conjugate set of weights for V' with respect to T

The existence of a conjugate family of weights for a given class of weights, in the
sense we have written above, does not always hold, even when the family V reduces
to a single weight. In general, given an operator from a Banach function space
X(p) to an LP-space, it may happen that there is no conjugate weight allowing
an extension of T' through a weighted LP-space. Let us show an example of this
situation.

Example 5.6. Consider a non-atomic probability measure p and take 1 < p <
q<2.Let T: L%u) — LP(u) be the isomorphic embedding given by [I7, Corollary
2.£.5]. Clearly, this operator does not preserve any lattice structure; actually, we
will later show that it cannot be p-regular.

Suppose that there is a p-integrable function g such that we can extend the
operator T in such a way that it is defined and continuous from L?(gdu) to LP(u).
In particular, we have L9(u) C LP(gdu), so there is a constant Cy; > 0 such for
every f € LY(u) we have

(W ([ 1sroa) ™ < [ 1sman) "

On the other hand, since T is an isomorphic embedding, there is K7 > 0 such
that

) wol [1ovan) " < ([ rpan) .

Moreover, by the continuity of the extension there is Cs such that for f € L(u),

©) ([rean)” < cof [ irom)”
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1/q
Therefore, putting together , and @ it follows that (fQ |f\qd,u> can be

1/p
estimated both from above and below by (fﬂ |f|pgdu> up to certain constants

independent of f € L%(u).
In particular, this implies that for every n € N if we take (A?)™_, a partition of
Q2 such that pu(A?) =1/n for all i =1,...,n, then

1/p 1/p
1/q / IXAnlqdu " / |XA;‘|p9d#) = ( / gdu) :
Q AP

Thus, for every n € N

gdp = / gdp ~ n' P/,
Jyon=22,

which is a contradiction with g € L!(u) since 1 —p/q > 0.

The previous example is the reason why we are interested in giving conditions for
the existence of conjugate classes of weights. We show next how vector measures
provide a helpful tool to prove the existence of a conjugate set of weights W for a
uniformly integrable set of weights V.

Theorem 5.7. Let V be a relatively weakly compact set in L'(u)y, let m be a
countably additive vector measure m : Z — LP(my) and let v be a control measure
for m.
The following assertions are equivalent.
(i) The integration map I, : LP(m) — LP(my ) is p-regular.
(i) There exists W C B(r1(m)y which is a conjugate family of weights for V
with respect to I,y,.

Before the proof, let us note the following

Remark 5.8. It is easy to check that a finitely additive vector measure m : = —
LP(my) is countably additive if and only if for every sequence of disjoint sets
{4;}32, on E,

o
fim vev It 19” Ai)”“’(vdu) =0

Proof. (i) = (ii) Since m : 2 — LP(my) is a countably additive vector measure,
the integration map I, : L'(m) — LP(my) is continuous. Note that the formal
identity LP(m) < L'(m) is also continuous, and therefore I,,, : LP(m) — LP(my)
is bounded.

Now, since by hypothesis I, is p-regular, Proposition [2:2] yields that, for each

v € V, if we consider the (positive) functional ¢,(-) = [, -vdu € (Lp(mv)[p]) =
(Ll(mv)) , then there is h, € B(Lp(m)[p])/ = B(Ll(m))l such that
(7) o[ Im ()IP) < pp(Im)Pho(|F17), | € Lp(m).

Note that the duality pairing in the spaces L!(m) can be written in terms of
the integral with respect to a Rybakov measure |(m, ¢)| for m. Since by hypothesis
m < v, the same holds for the scalar measure |(m, ¢)| and by Radon-Nikodym’s
Theorem there is hy € L'(v) such that for every measurable set A we have

[(m, 8)](A) = /A hodv.
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Thus, (7) can be written as

([rrepvan)™ <puwn( [ 107 naom.60)" = oyt ([ 17 i)

for f € LP(m) and every v € V.
Therefore, the set W = B(Ll(m))/+ gives the conjugate set of weights. Note that

this can be written as W - hy if we want to consider it as a subset of L' () using
the Rybakov measure yielding the duality.

(ii) = (i) First note that by definition of my, the set of functionals {p, : v €
V} C B(Ll(mv))/ satisfies

1Fllze vy = sup eu(If[P)VP. f € LP(my).

Let W C B(Ll(m))/Jr be a conjugate family of weights for V with respect to I,,.
Therefore, for every g € LP(m) we have

1T () | L2 () = $UP @u ([T (9) )P < C sup w(|gl*)? < Cllgll e (m)-
veV weWw

Therefore, the operator I,, is continuous. Now, in order to check p-regularity,
take f1,...,fn € LP(m). Then, for every ¢ > 0, there is a weight v € V and an
associated weight w € W such that

1 G 21
=1

|3 v+
Q=

— ;/Q|Im(fi)|pvdu+e

< P w(lfilP) +e
i=1
< CPIQC Y21 oy + &
=1
Thus, I, is p-regular. (Il

Remark 5.9. Note that the p-regularity condition in (i) of Theorem holds
trivially when the measure m is positive (which is equivalent to I,,, being a positive
operator) or whenever p = 2 (due to Krivine’s version of Grothendieck’s Theorem
for operators between Banach lattices [I7, Theorem 1.f.14], [16]).

Remark 5.10. It should be noted that the conjugate set of weights W constructed
in the implication (i) = (ii) of Theorem is actually a relatively weakly com-
pact set in L!(v);. Indeed, note that L'(m) is an order continuous Banach lattice
[21], Chapter 3] containing L*°(v) for any control measure v. In particular, by [I8]
Theorem 2.4.2] the formal identity L>(v) < L!(m) is weakly compact. By Gant-
macher’s Theorem the adjoint L'(m)" < L'(v) is also weakly compact. Therefore,
W C Bri(my is a relatively weakly compact subset in L' (v).

Example 5.11. Take p > 1, a weakly compact set V C L[0, 1] and a kernel func-
tion K : [0,1]x[0,1] — R such that for every y € [0, 1], the function z — K(z,y) is
integrable with respect to Lebesgue measure dx. Suppose also that for every v € V
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and A € B([0, 1]), the function y — [, K(x,y)dz belongs to LP(vdy). Consider also
the vector measure my and the space of p-integrable functions LP(my ).

Under these requirements, we can define the set function mg : B([0,1]) —
LP(my ) given by

mic(A)(y) == /A K(z,y)dz, AcB([0,1]), y € [0,1].

In order to be a vector measure, countable additivity is required. If (4,) is a
sequence of disjoint measurable sets, we have that

[e's) 1 1

lim sup ||mg( U Am)|lLe (myy = lim sup (/ (/x K(x,y)dx)pv(y)dy> v _ 0
" ovev men " oweV 0 U Am

- m>n

Therefore, mg is a vector measure and the kernel operator —defined as the
integration map I,,— is continuous from L!(mg) to LP(my ). Consequently, it
can be considered as an operator from LP(mg) to LP(my ).

Fix a Rybakov measure pg = [(mx,h)|, where h € B(rr(m,))y, and consider
the duality in L!(mx) defined by integration with respect to ug. This measure is
clearly absolutely continuous with respect to Lebesgue measure dy, and so there is
a function hg = dpo/dy. As an application of Theorem there is a constant K
such that for every v € V' there is an element g € B(p1(;m,)) such that

( / ( / ) K (o) oyty) " < i ( WP ooty dy)

Therefore, the family W = B("’Ll(mk)), —the non-negative functions of the unit ball
of the dual space (L!(my))'—, is the desired conjugate set of weights for V' with

respect to the operator defined by the kernel K.

The vector measure approach given by Theorem can be extended for opera-
tors as follows. Recall that given an operator T': X (v) — E —where X (v) is order
continuous or just a space of simple functions—, we can always define a vector
measure mg by mr(A) :=T(xa), A € X.

Recall that such an operator is p-th power factorable if for every f € X(v),
I < KNI,

For a Banach lattice F', a subset N C B; is called positively norming if the
function sup,.cy(|z|, 2*) is equivalent to the norm of F. A basic characterization
of such sets is the following lemma, that can be found in [26, Lemma 2.1].

Lemma 5.12. Let X(u) be an order continuous Banach function space. For a
subset N of B}*, the following statements are equivalent:
(1) N is positively norming.
(2) The pointwise product S - N is norming, where S is the set of all functions
as XA — Xae, A €.
(3) The w*-closed convex hull of S+ N contains a ball.

Theorem 5.13. Let V be a relatively weakly compact set in L'(u)y. Let X (v) be
an order continuous Banach function space and consider an operator T : X (v) —
LP(vdp) such that sup,cy [T x(w)—Lr(way) < o0. The following assertions are
equivalent.
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(i) The operator T : X(v) — LP(my) is well-defined, p-th power factorable
and the associated extension T : LP(mp) — LP(my) is p-regular.

(i) There is a positively norming set of weights W C B(p1(mp)y S KB(x()y
conjugate to V with respect to T'.

Proof. (i) = (ii) If T is well-defined on LP(my ), by the definition of my we have
seen already that it is well-defined into each LP(vdy) with a uniform bound for
v e V. If T is also p-th power factorable, then we have that X () € LP(mr) and
the commutative diagram

f” (mv)

X(Z/)\

=

LN

LP(m)
Thus, there are constants C' > 0 and C’ > 0 such that

SE‘BHT(f)”LT’(Udp,) < CONfllzemey < C'Mfllx ), [ € X(n).

Now, considering the extended operator T : L (mq) — LP(my ), since both spaces
involved are order continuous and p-convex, Proposition [2.1| gives the domination
property that is needed: for each v € V there is w € B((Lp(mT))[q])/ = B(p1(mp))y =
W satistying

/ T(f)Podu < pp(T)P / fPuwdv,  f € LP(mz).

The density of simple functions in L!(v), gives the result.

(ii) = (i) We need to prove first that T is well-defined as an operator from
L?(mr) to LP(my). We know that it is well-defined in each component. Fix
v € V. Then there exists w € W and a constant K (independent of v and w) such
that

1T ee vapy < Kl fllzewav), £ € X (@)

Since this happens for every v € V, and taking into account that W C B(p1(m)),
we obtain for every f € X (v),

1T () Lemyy = sup [T(F)lLewawy < K sup || fllzewar) < KN Ffllzeinr-
veV weWw

Therefore the operator is well-defined.

Let us see now that T' is p-th power factorable. Since we have that X (v) C
L?(wdv) for every w € W and the set of weights is positively norming and norm
bounded in L'(mr)’, we have that X (v) C LP(mr). The inclusion is continuous
(the norms of the extended operators are uniformly bounded) so we have that T is
p-power factorable [2I, Theorem 5.11].

Finally, the p-regularity of the extension 7T : LP(my) — LP(my) follows from
Theorem O

Remark 5.14. As in Theorem [5.7] the p-regularity for the extension can be re-
moved from the statement of (ii) if T is for example positive or when p = 2.
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