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 Modelling loop length in weft-knitted fabrics with an interlock 

structure after the dyeing process with a stitch density, wales and 

courses per centimetre analysis  

One of the variables that we need to know in knitted fabrics in order to explain 

variations in dimensions in their different relaxation states, which might occur 

during the production process, is the yarn length that a loop forms, known as loop 

length. To experimentally calculate it, quite a lengthy process is required and the 

following need to be identified: direction of wales, direction that samples unreave 

in, counting the number of loops in the fabric length, separating and measuring 

yarn with specific measuring equipment, and repeating these 10 times, according 

to regulation UNE-EN 14970. Thus, depending on the structure type to be 

analysed, the whole process can take a relatively long time to do this calculation. 

This study proposes a calculation system that simplifies the process, for which 

the yarn length absorbed by an estimated interlock structure was modelled, as 

was loop length, without having to follow such a time-consuming process.  

Keywords: Knitted fabrics, loop length, Stitch density, wales per centimetre, 

courses per centimetre. 

Introduction 

The 100% cotton interlock structure has been widely used to produce winter garments 

thanks to its thermal and comfort properties. However, it also presents considerable 

dimensional instability, as all weft-knitted fabrics do. Since this drawback implies many 

problems for textile industries, attempts have long since been made to define the 

parameters needed to obtain dimensionally stable fabrics. In order to understand how 

the dimensional stability problem can be overcome, companies have to seek an efficient 

reproducible method to leave all knitted fabrics in an equivalent relaxation state to be 

able to compare them. This method would thus be a reference for all measurements and 

comparisons for fabrics with the above-defined characteristics. 



 

 

Searches made to dimensionally control cotton-knitted fabrics date back to the 

beginning of the 20th century when the first mathematical model was presented by 

Chamberlain (1926), which attempted to determine the loop configuration of knitted 

fabrics. 

K factors are the basis of the system employed to predict the performance of 

knitted fabrics, and constants are obtained using empirical data. The bigger the 

database, the more reliable the predictions.  

Since then, other research works have undertaken relevant studies which 

conceptualise, define and mathematically formulate the dimensional behaviour of 

knitted fabrics. 

According to Münden (1959), with Equations (1) to (3) it is possible to verify if 

K factors are related with courses, gauge and loop length. The relevance of Münden’s 

equations lies in the fact that the dimensions of plain-knitted fabrics, which are 

produced with discontinuous fibre yarns and continuous filament yarns, are defined by 

the length of yarns in the loop, provided that the fabric is always measured in the same 

relaxation state. 

 

𝑲𝑪 = 𝑺𝑳 𝒙 𝑪𝑷𝑪𝑴 (1) 

𝑲𝑾 = 𝑺𝑳 𝒙 𝑾𝑷𝑪𝑴 (2) 

𝑲𝒓 =
𝑲𝒄

𝑲𝒘
 (3) 

 

where: Kc and Kw are constants and represent the fabric dimension. 

            Kr: is the factor that gives the loop its format. 

  SL: is loop length. 

These equations have been applied to plain-knitted fabrics for many years. 



 

 

For plain-knitted fabrics, Doyle (1953) later found that knit density depended 

only on loop length, and was independent of yarn and knitted fabric variables. Münden 

(1959) suggested that a loop would take a natural form when freed from mechanical 

strains, and would be independent of yarn properties. 

Münden (1960) demonstrated that, if in a minimum energy status, the fabric 

dimensions of plain-knitted wool fabrics would depend only on loop length. Münden’s 

experimental studies indicate that Equations 1 to 3 can be applied in different 

relaxations states to give a distinct number of constants. 

To conclude, what Münden intended with these equations was that the 

dimensions of plain-knitted fabrics depended on loop length and no other variable had 

any influence, provided fabrics were measured in the same relaxation state.  

Nutting (1968) introduced another variable, yarn count, and proposed a minor 

amendment to the basic equation. 

Knapton (1968,1975) demonstrated not only that the dimensional stability in 

plain-knitted fabrics could be accomplished by mechanical means, relaxation techniques 

or chemical treatments, but also that the stable loop geometry was almost identical for 

both wool and cotton in plain-knitted fabrics. 

Another study (Ulson de Souza, Cabral Cherem & Guelli U.Souza (2010)) is 

based on the principle that each industry must determine its own K factors, which are 

calculated per processing line; e.g., the factor differs for a knitted fabric that has 

undergone either a continuous bleaching or an exhaustion bleaching process. So these 

factors differ as they provide distinct combinations of fabrics with several weights, 

shrinkages and widths. Conversely when cotton-knitted fabrics have the same structure 

and working, and also the same yarn count, and they are processed by the same dyeing 

and finishing process, they will have the same K factor. This study was conducted with 



 

 

five distinct processes. All the used fabrics came from a circular plain-knitting machine, 

but had been dyed and finished differently. A process was followed that included five 

domestic washing steps to see the change in dimensional stability that took place during 

each washing. The following conclusions were drawn: 

Loop length: a minor, but significant, variation was observed throughout the process for 

the five different processes 

The changes or variations in yarn were non-significant for the five different processes 

The geometry factor (Kr): for all four analysed structures, a dimensional change was 

confirmed in the knitted fabric owing to changes in the loop’s geometric forms.  

 

In their study, Ulson de Souza, Cabral Cherem and Guelli U. Souza (2010) developed a 

computational algorithm to help develop fabrics by obtaining fit parameters for the process. To 

this end, it was necessary to establish a K factor for each production process. 

Saravana and Sampath (2012) predicted the knitted fabric’s dimensional 

properties with a double cardigan structure by an “artificial neural network system”. In 

their study, these authors demonstrated the existing relationship that linked courses per 

centimetre, wales per centimetre and stitch density, and the inverse of loop length in a 

double cardigan fabric. 

Mobarock Hossain (2012) established some mathematical relations to predict the 

weight (GSM), width and ultimately shrinkage of a finished cotton knitted fabric.  

Eltahan, Sultan and Mito (2016) determined the loop length, tightness factor and 

porosity of a single jersey knitted fabric using mathematical equations. 

Sitotaw (2017, 2018) studied the dimensional characteristics of five knitted 

structures made from 100% cotton and 95% cotton/5% elastane blended yarns. He 

concluded that the loop length, wales per centimetre, courses per centimetre, stitch 

density, the tightness factor, the loop shape factor and the take-up rate of single jersey, 



 

 

1x1 rib, interlock, single pique, and two-thread fleece-knitted fabrics made from 100% 

cotton and cotton/elastane yarns were significantly influenced by the presence of an 

elastane yarn. The loop length of single jersey, 1x1rib and interlock knitted fabrics 

made from elastane yarns reduced, while the single pique and fleece increased. 

Similarly, other dimensional properties were significantly influenced by the yarn types 

used during knitting. 

  

Objectives 

Nearly all the studies we found referred to the loop length variable as one of the 

most important factors to intervene in the dimensional variation of knitted fabrics. The 

process followed to analyse this in accordance with regulation UNE-EN 14970 is 

somewhat bothersome as it is necessary to identify wales and the direction that samples 

unreave in, cut all along a course, count the number of loops along a given length, 

remove yarn from the fabric, place the measuring machine pincers by foreseeing loss of 

twist to measure its length, and repeat all these 10 times to then calculate its mean.  

Therefore, the main objective of this study was to predict the loop length of a 

knitted fabric with the interlock structure using other variables that are simpler to 

calculate, such as courses, wales or stitch density. This considerably speeds up the 

process to calculate the K factors that Münden proposed in his studies. 

Experimental 

Materials and Methods 

The present study was conducted on fabrics knitted with an interlock structure. Fabrics 

were produced under three knitting conditions: slackly knitted fabrics (SL1), tightly 

knitted fabrics (SL3) and intermediately knitted fabrics/neither slackly or tightly knitted 



 

 

fabrics (SL2).  The linear yarn count employed to produce these fabrics was 30 Ne of 

combed cotton. The machines employed to make these knitted fabrics are shown in 

table 1. 

Table 1. The circular machines used to produce fabrics knitted under conditions SL1, 

SL2, SL3. 

Model 

Diameter 

(inches) 

Gauge Needles 

No. 

feeders 

Mayer IHG II 12 E20 2x756 20 

Mayer IHG II 14 E20 2x876 36 

Jumberca DVK 16 E20 2x1008 32 

Mayer IHG II 17 E20 2x1056 32 

Jumberca DVK 18 E20 2x1128 36 

Mayer IHG II 20 E20 2x1260 40 

Jumberca DVK 22 E20 2x1380 44 

Jumberca DVK 24 E20 2x1512 48 

Mayer OV 3,2 QC 30 E20 2x1872 96 

 

On all the nine machines cited in Table 1, 45 pieces were produced, which 

corresponded to 15 pieces under the SL1 condition, 15 under the SL2 condition and 15 

under the SL3 condition, which totalled 405 pieces. We obtained knitted fabrics whose 

average loop length after the knitting process was 0.365 cm for SL1, 0.341 cm for SL2 

and 0.339 cm for SL3. Then all the samples were placed in a conditioning atmosphere 

to reach a constant weight. Next one sample each piece was cut to be analysed. This 

analysis consisted in determining the number of number of loops in the fabric length 

and the area unit (wales per centimetre, courses per centimetre and stitch density) 

according to Standard UNE-EN 14971, and also in determining loop length and laminar 

weight according to Standard UNE-EN 14970 and factors (Kc, Kw and kr), by applying 



 

 

Münden’s equations.  

The mean, standard deviation and 95% confidence interval of the results 

obtained in the analysis done with the samples, following the knitting process for each 

knitting condition (SL1, SL2, SL3), are provided in table 2. 

Table 2. The experimental results of the fabrics under conditions SL1, SL2 and SL3 after 

knitting. 

Sample  Variable 

DDR Relaxation state 

X̅ si CI 

SL1 

WPCM 23.61 0.64 [23.358;23.856] 

CPCM 11.95 0.60 [11.714;12.180] 

SD 281.90 13.71 [276.586;287.221] 

W 198.66 7.35 [185.803;201.507] 

SL 0.365 0.012 [0.3605;0.3700] 

TF 12.17 0.40 [12.010;12.323] 

Kc 4.36 0.19 [4.287;4.431] 

Kw 8.62 0.35 [8.484;8.758] 

Kr 0.51 0.03 [0.494;0.519] 

     

SL2 

WPCM 27.41 0.41 [27.197;27.637] 

CPCM 11.74 0.38 [11.540;11.939] 

SD 321.79 8.72 [317.139;326.430] 

W 216.39 4.38 [214.054;218.717] 

SL 0.341 0.009 [0.3361;0.3455] 

TF 13.03 0.34 [12.851;13.213] 

Kc 4.00 0.12 [3.936;4.063] 

Kw 9.34 0.31 [9.181;9.508] 

Kr 0.43 0.02 [0.419;0.438] 

     

SL3 WPCM 27.39 0.86 [27.030;27.750] 



 

 

CPCM 11.71 0.42 [11.530;11.887] 

SD 320.55 12.19 [315.403;325.699] 

W 214.16 8.36 [210.631;217.393] 

SL 0.339 0.010 [0.3353;0.3437] 

TF 13.08 0.38 [12.924;13.245] 

Kc 3.97 0.14 [3.912;4.034] 

Kw 9.30 0.44 [9.115;9.386] 

Kr 0.43 0.024 [0.4180;0.4381] 

WPCM: Wales/cm; CPCM: Courses/cm; SD: Stitch density/cm2; W: Weight (g/m2); SL: Loop 

length (cm); TF: Tightness factor; Kc, Kw, Kr: Munden’s factors; X̅:  Mean; si: Standard 

deviation; CI: 95% Confidence interval. 

 

Next batches underwent a machine exhaustion dyeing process. The dyeing conditions 

and the added products are respectively indicated in figure 1 and table 3. 

 

Figure 1. Dyeing curve to optimally bleach the processed fabrics 

 

Table 3. Products employed for optimum bleaching. 

Process Product 

A Tannex Noveco 



 

 

 

After completing hydroextraction and then drying the pieces, those to be analysed were 

identified, a sample of them was taken and they were left in a conditioning atmosphere. 

Two relaxation states for the fabrics under knitting conditions SL1, SL2 and SL3 

were distinguished after the dyeing process: 

• Dyed and dry relaxation (DDR). The dyed knitted fabric was left in a 

conditioning atmosphere until a constant weight was obtained. 

• Dyed and wash relaxation (DWR). The dyed and conditioned knitted fabric was 

left until a constant weight was obtained. Then a dimensional stability test was 

run with it according to regulation UNE EN ISO 6330, of September 2012, 

procedure 4N. 

The mean, standard deviation and 95% confidence interval of the results obtained in the 

analysis done of the samples after the dyeing process for each knitting condition (SL1, 

SL2, SL3), and in the DDR and DWR relaxation states, are shown in table 4. 

Table 4. Experimental results of the fabrics under knitting conditions SL1, SL2 and SL3 

after the dyeing process. 

Sample 

No. 
Variable 

Relaxation States  

DDR DWR 

X̅ si IC X̅ si IC 

B Procuest ND  

C Liquid Soda Lye 

D Hydrogen Peroxide 

E Ledeblanc  

F Dianix violet BTE  

G Formic acid  



 

 

SL1 

WPCM 24.57 0.73 [24.412;24.732] 26.19 0.97 [25.98;26.40] 

CPCM 14.17 0.47 [14.070;14.280] 13.43 0.45 [13.327;13.525] 

SD 348.23 13.85 [345.171;351.297] 351.77 19.48 [347.462;356.076] 

W 238.95 6.44 [237.527;240.375] 251.76 7.03 [250.203;253.313] 

SL 0.356 0.008 [0.3546;0.3583] 0.360 0.010 [0.354;0.358] 

TF 12.46 0.29 [12.394;12.524] 12.47 0.35 [12.391;12.544] 

Kc 5.05 0.15 [5.018;5.084] 4.78 0.16 [4.746;4.817] 

Kw 8.76 0.34 [8.683;8.835] 9.33 0.39 [9.244;9.416] 

Kr 0.58 0.03 [0.571;0.584] 0.51 0.02 [0.509;0.518] 

        

SL2 

WPCM 27.41 1.68 [27.15;27.68] 29.17 1.44 [28.944;29.399] 

CPCM 14.49 0.57 [14.40;14.57] 13.66 0.51 [13.580;13.741] 

SD 396.80 24.51 [392.920;400.680] 398.53 25.00 [394.57;402.48] 

W 251.25 8.73 [249.869;252.631] 262.38 11.39 [260.580;264.183] 

SL 0.331 0.008 [0.3300;0.3332] 0.331 0.012 [0.3293;0.3330] 

TF 13.40 0.33 [13.352;13.456] 13.42 0.46 [13.347;13.493] 

Kc 4.80 0.18 [4.769;4.826] 4.52 0.20 [4.490;4.554] 

Kw 9.08 0.57 [8.991;9.172] 9.65 0.40 [9.587;9.713] 

Kr 0.53 0.04 [0.524;0.538] 0.47 0.03 [0.465;0.474] 

        

SL3 

WPCM 26.89 1.11 [26.727;27.049] 29.30 0.99 [29.153;29.442] 

CPCM 14.77 0.68 [14.667;14.865] 14.17 0.50 [14.101;14.245] 

SD 397.13 25.81 [393.395;400.863] 415.34 22.29 [412.117;418.565] 

W 247.92 6.80 [246.931;248.898] 261.69 7.07 [260.668;262.713] 

SL 0.323 0.013 [0.3209;0.3247] 0.319 0.010 [0.3170;0.3201] 

TF 13.77 0.54 [13.694;13.850] 13.95 0.43 [13.885;14.008] 

Kc 4.76 0.15 [4.738;4.782] 4.51 0.15 [4.490;4.534] 

Kw 8.67 0.37 [8.619;8.726] 9.33 0.35 [9.279;9.380] 

Kr 0.55 0.03 [0.545;0.555] 0.48 0.02 [0.481;0.487] 



 

 

WPCM: Wales/cm; CPCM: Courses/cm; SD: Stitch density/cm2; W: Weight (g/m2); SL: Loop 

length (cm); TF: Tightness factor; Kc, Kw, Kr: Munden’s factors; X̅:  Mean; si: Standard 

deviation: CI: 95% Confidence interval 

Results and Discussion 

After completing the analysis of the knitted fabrics under conditions SL1, SL2 and SL3 

to obtain the variables DDR and DWR relaxation states, we intended to observe the 

existing relationship between these variables and to obtain models with which to predict 

loop length (SL). The models obtained by linear regression are shown in tables 5 and 6. 

Table 5. The models proposed by linear regression for each knitted fabric under knitting 

conditions SL1, SL2 and SL3.  

Sample 

No.  
DV IV 

Relaxation states 

DDR DWR 

Linear relation  R2 Linear relation R2 

SL1 

SL CPCM 

𝑆𝐿

=
1

0.197885 · 𝐶𝑃𝐶𝑀
 

99.913 

𝑆𝐿

=
1

0.209063 · 𝐶𝑃𝐶𝑀
 

99.887 

SL WPCM 

𝑆𝐿

=
1

0.114132 · 𝑊𝑃𝐶𝑀
 

99.842 

𝑆𝐿

=
1

0.107122 · 𝑊𝑃𝐶𝑀
 

99.828 

SL SD 

𝑆𝐿

=
1

0.00805089 · 𝑆𝐷
 

99.8591 

𝑆𝐿

=
1

0.00796533 · 𝑆𝐷
 

99.730 

       

SL2 

SL CPCM 

𝑆𝐿

=
1

0.208244 · 𝐶𝑃𝐶𝑀
 

99.862 

𝑆𝐿

=
1

0.221106 · 𝐶𝑃𝐶𝑀
 

99.806 

SL WPCM 

𝑆𝐿

=
1

0.109768 · 𝑊𝑃𝐶𝑀
 

99.907 

𝑆𝐿

=
1

0.103499 · 𝑊𝑃𝐶𝑀
 

99.835 

SL SD 

𝑆𝐿

=
1

0.00758624 · 𝑆𝐷
 

99.678 

𝑆𝐿

=
1

0.00756708 · 𝑆𝐷
 

99.748 

       

SL3 SL CPCM 

𝑆𝐿

=
1

0.209966 · 𝐶𝑃𝐶𝑀
 

99.897 

𝑆𝐿

=
1

0.221546 · 𝐶𝑃𝐶𝑀
 

99.886 



 

 

SL WPCM 

𝑆𝐿

=
1

0.115291 · 𝑊𝑃𝐶𝑀
 

99.827 

𝑆𝐿

=
1

0.107166 · 𝑊𝑃𝐶𝑀
 

99.862 

SL SD 𝑆𝐿 =
1

0.0077963 · 𝑆𝐷
 99.829 

𝑆𝐿

=
1

0.0075501 · 𝑆𝐷
 

99.791 

DV: Dependent variable; IV: Independent variable; WPCM: Wales/cm; CPCM: Courses/cm; 

SD: Stitch density/cm2; SL: Loop length (cm). 

Of the models proposed in Table 5, by knowing the independent variables courses/cm 

(CPCM), wales/cm (WPCM) and stitch density/cm2 (SD), it is possible to predict the 

loop length (SL) variable for each studied knitted fabric under knitting conditions (SL1, 

SL2, SL3). Almost all these models have an R2 that exceeds 99%, and variability is well 

accounted for by the linearity that exists with the independent variables CPCM, WPCM 

and SD. Figures 2-4 illustrate the linear regression models adjusted for the fabric knitted 

under knitting condition SL3, and a relation was found among the variables courses/cm, 

wales/cm, stitch density, and the inverse of the loop length in the DWR relaxation state. 

 

Figure 2. Graph showing the linear regression model adjusted for knitted fabric SL3 that 

describes the relation between the inverse of loop length and courses/cm for the DWR 

relaxation state.  



 

 

 

Figure 3. Graph showing the linear regression model adjusted for knitted fabric SL3 that 

describes the relation between the inverse of loop length and wales/cm for the DWR 

relaxation state.  

 

Figure 4. Graph showing the linear regression model adjusted for knitted fabric SL3 that 

describes the relation between the inverse of loop length and stitch density for the DWR 

relaxation state. 

Table 6 offers some generic models for the three fabrics knitted under conditions SL1, 

SL2 and SL3 that can be perfectly used to predict variable SL because they optimally 

explain variability by obtaining an R2 of around 98%. 

 



 

 

Table 6. The proposed generic linear regression models for the three studied fabrics 

knitted under conditions SL1, SL2 and SL3. 

Sample  DV  IV 

Relaxation states 

DDR DWR 

Linear relation R2 Linear relation R2 

SL1,2,3 

SL CPCM 

𝑆𝐿

=
1

0.207143 · 𝐶𝑃𝐶𝑀
 

99.841 

𝑆𝐿

=
1

0.21914 · 𝐶𝑃𝐶𝑀
 

99.812 

SL WPCM 

𝑆𝐿

=
1

0.112946 · 𝑊𝑃𝐶𝑀
 

99.698 

𝑆𝐿

=
1

0.105759 · 𝑊𝑃𝐶𝑀
 

99.818 

SL SD 

𝑆𝐿

=
1

0.00775448 · 𝑆𝐷
 

99.737 𝑆𝐿 =
1

0.0075501 · 𝑆𝐷
 99.791 

DV: Dependent variable; IV: Independent variable; WPCM: Wales/cm; CPCM: Courses/cm; 

SD: Stitch density/cm2; SL: Loop length (cm). 

To verify the validity of the obtained models, they were all validated by analysing a set 

of batches that represented all the diameters and each knitted fabric. To analyse them, 

the loop length of each batch was calculated in the DDR and DWR relaxation states. 

Next the obtained models were used to calculate the estimated values. The estimated 

error was the difference between the estimated value and the real value. The estimated 

errors of the models proposed for each variable are summarised in table 7. 

Table 7. Summary of the estimated errors made by the proposed models for each fabric 

knitted under conditions SL1, SL2 and SL3 to estimate loop length (SL). 

Sample  DV  IV 

Relaxation states 

DDR DWR 

Estimated error si Estimated error si 

SL1 

SL CPCM 0.020 0.009 0.022 0.005 

SL WPCM 0.010 0.010 0.009 0.012 

SL SD 0.015 0.011 0.020 0.010 

       

SL2 

SL CPCM 0.004 0.003 0.012 0.006 

SL WPCM 0.016 0.005 0.015 0.004 

SL SD 0.016 0.003 0.015 0.009 

       



 

 

SL3 

SL CPCM 0.013 0.010 0.012 0.011 

SL WPCM 0.012 0.004 0.005 0.004 

SL SD 0.010 0.009 0.009 0.005 

DV: Dependent variable; IV: Independent variable; WPCM: Wales/cm; CPCM: Courses/cm; 

SD: Stitch density/cm2; SL: Loop length (cm). 

Table 7 shows how the estimated errors, made when the models proposed for each 

analysed knitted fabric were used, are minor errors. We conclude that these models 

efficiently represent the variability obtained with all the proposed knitted fabrics. 

Table 8. Summary of the estimated errors made by the generic models proposed to 

estimate loop length (SL). 

Sample  DV IV 

Relaxation states 

DDR DWR 

Estimated error si Estimated error si 

SL1,2,3 

LM C 0.012 0.010 0.013 0.008 

LM P 0.011 0.007 0010 0.008 

LM DM 0.014 0.010 0.014 0.009 

DV: Dependent variable; IV: Independent variable; P: Wales/cm; C: Courses/cm; DM: Stitch 

density/cm2; LM: Loop length (cm). 

Table 8 summarises the estimated errors made when the generic models proposed to 

estimate loop length were used. The errors made when these models were used are, in 

some cases, somewhat greater than those proposed in Table 7, but are still minor errors. 

Thus we conclude that these models can also efficiently represent the variability of all 

the fabrics proposed jointly without separating them. 

Conclusions 

This study proposes linear regression models (Tables 5 and 6) to help predict loop 

length by knowing only one of the following variables; wales/cm, courses/cm and stitch 

density/cm2; in relaxation states Dyed and Dry Relaxation and Dyed and wash 

relaxation, without having to apply regulation UNE-EN 14970, which is a somewhat 



 

 

bothersome procedure. This work explains how to avoid operations to identify wales, 

the direction that samples unreave in, cutting a long a column, counting the number of 

loops along a given length, removing yarn from knitted fabric, placing the measuring 

machine pincers by foreseeing loss of twist to measure its length, and repeating this 

whole process 10 times to then calculate its mean.  

The loop lengths of the three knitted fabrics were modelled with the interlock 

structure, and all with different loop lengths, after a dyeing process by linear regression 

models. They are indicated in Tables 5 and 6. After their validation, we can see that the 

estimated errors were made when the proposed models (both the specific models for 

each proposed fabric and the generic ones) were used, which are minor errors. Thus we 

conclude that these models efficiently represent the variability obtained from each 

proposed knitted fabric. 

After validating the proposed models, we found that they can be suitably used to 

calculate loop length in the proposed knitted fabrics by knowing only one of these 

variables: courses/cm, wales/cm and stitch density. 
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