
Universitat Politècnica de València
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Resum

Arquitectures de múltiples nuclis com a multiprocessadors (CMP) i solucions

multiprocessador per a sistemes dins del xip (MPSoCs) actuals es basen en

l’eficàcia de les xarxes dins del xip (NoC) per a la comunicació entre els di-

versos nuclis. En aquest sentit, els CMPs i MPSoCs que s’han fabricat en els

darrers anys s’han implementat basant-se en NoC amb una topologia simple,

normalment malles o anells. No obstant, a mesura que els nombre de elements

a connectar creixia, xarxes simples no eren capaç de satisfer els requeriments

del sistema, que són principalment, una baixa latència i alt rendiment. Aix́ı,

la comunitat investigadora ha proposat i analitzat NoCs ms complexes. No

obstant, aquestes solucions són més dif́ıcils de implementar – especialment els

enllaços llargs – fent que aquest tipus de topologies complexes siguen massa

costoses o inclòs inviables.

En aquesta tesi, presentem un metodologia de disseny que minimitza la

pèrdua de prestacions de la xarxa degut a la seua implementació real, prin-

cipalment per la complexitat dels commutadors i dels enllaços llargs. Com

a primer pas, re-dissenyem el commutador fent-lo modular. Cada mòdul del

commutador és capaç de arbitrar, commutar, i emmagatzemar els missatges

que li arriben. Com a segon pas, flexibilitzem la col.locació d’aquestos mòduls

arran del xip, permetent que mòduls d’un mateix commutador estiguen dis-

tributs per el xip.

Aquesta metodologia de disseny l’hem aplicat en diferents escenaris. Primer-

ament, hem transformat NoC ja conegudes com la malla 2D introduint el

nostre commutador modular. Els resultats mostren com la modularitat i la

distribució del commutador redueixen la latència i el consum de potència de la

xarxa. A més a més, aquests beneficis són majors en aquelles topologies on la

xv
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complexitat del commutador és major, com per exemple, la flattened butterfly

o la concentrated mesh.

En segon lloc, hem utilitzat la nostra metodologia de disseny per a imple-

mentar un crossbar distribüıt. El nostre crossbar distribüıt té unes presta-

cions clarament millors que la resta de configuracions, tant en latència com en

rendiment. No obstant, per a xarxes amb un gran nombre de nodes, el nostre

crossbar distribüıt requereix massa recursos. En aquest cas, hem analitzat un

crossbar distribüıt jeràrquic viable que, a més a més manté pràcticament les

prestacions del crossbar distribüıt.



Abstract

Network-on-Chip (NoCs) have been widely accepted as the interconnection

choice for Chip MultiProcessor (CMP) and MultiProcessor System-on-Chip

(MPSoCs). In this sense, current CMPs or MPSoCs rely on simple NoC

designs based on rings or meshes. As the number of cores to interconnect

grows, simple NoCs are not able to fulfil system requirements, that is, low

latency and high throughput. In this sense, more complex NoC solutions

have been proposed and analyzed. However, complex designs means complex

implementations – specially critical is link length – which makes these solutions

costly or even unaffordable.

In this dissertation, we present a floorplan-aware NoC design methodology

that minimizes the implementation drawbacks of complex NoC designs, that

is, high-radix switches and long links. As a first step, we redesign the switch

by making it modular and locally self contained. That is, each small block has

its own buffering, arbitration, and crossing capabilities. As a second step, we

flexibilize the placement of the basic modules, allowing a distribution of the

switch basic blocs all over the chip.

We have applied our floorplan-aware NoC design into different scenarios.

First, we show that it is possible to build a conventional NoC as a 2D mesh

by using a floorplan-aware switch. Results show that modularizing and dis-

tributing the switch along the link reduces the network critical path and power

consumption over conventional implementations. Additionally, these benefits

increase as the switch radix increases, and hence, our floorplan-aware switch

fits perfectly in complex NoC implementations, as the flattened butterfly or

concentrated meshes.

Second, we have leveraged our floorplan-aware NoC design methodology

xvii
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to implement a distributed crossbar. Our distributed crossbar clearly outper-

forms in terms of latency and throughput the rest of configurations. For very

large networks, our crossbar resources requirements could be unaffordable. In

this case, a hierarchical approach has been implemented which almost keeps

all the crossbar benefits but reducing resources used.



Resumen

Las actuales arquitecturas de múltiples núcleos como los chip multiproce-

sadores (CMP) y soluciones multiprocesador para sistemas dentro del chip

(MPSoCs) han adoptado a las redes dentro del chip (NoC) como elemento

óptimo para la inter-conexión de los diversos elementos de dichos sistemas.

En este sentido, fabricantes de CMPs y MPSoCs han adoptado NoCs sencil-

las, generalmente con una topoloǵıa en malla o anillo, ya que son suficientes

para satisfacer las necesidades de los sistemas actuales. Sin embargo a medida

que los requerimientos del sistema – baja latencia y alto rendimiento – se hacen

más exigentes, estas redes tan simples dejan de ser una solución real. Aśı, la

comunidad investigadora ha propuesto y analizado NoCs más complejas. No

obstante, estas soluciones son más dif́ıciles de implementar – especialmente los

enlaces largos – haciendo que este tipo de topoloǵıas complejas sean demasiado

costosas o incluso inviables.

En esta tesis, presentamos una metodoloǵıa de diseño que minimiza la

pérdida de prestaciones de la red debido a su implementación real. Los princi-

pales problemas que se encuentran al implementar una NoC son los conmuta-

dores y los enlaces largos. En esta tesis, el conmutador se ha hecho modular,

es decir, formado como unión de módulos más pequeños. En nuestro caso, los

módulos son idénticos, donde cada módulo es capaz de arbitrar, conmutar, y

almacenar los mensajes que le llegan. Posteriormente, flexibilizamos la colo-

cación de estos módulos en el chip, permitiendo que módulos de un mismo

conmutador estén distribuidos por el chip.

Esta metodoloǵıa de diseño la hemos aplicado a diferentes escenarios.

Primeramente, hemos introducido nuestro conmutador modular en NoCs con

topologias conocidas como la malla 2D. Los resultados muestran como la mod-

xix
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ularidad y la distribución del conmutador reducen la latencia y el consumo de

potencia de la red.

En segundo lugar, hemos utilizado nuestra metodoloǵıa de diseño para im-

plementar un crossbar distribuido. Nuestro crossbar distribuido tiene unas

prestaciones claramente mejores que el resto de configuraciones, tanto en la-

tencia como en rendimiento. No obstante, para redes con un gran número de

nodos, nuestro crossbar distribuido necesita demasiados recursos. Para solu-

cionar este problema de escalabilidad, se ha estudiado un crossbar distribuido

jerárquico viable que, además mantiene prácticamente las prestaciones del

crossbar distribuido.



Chapter 1

Introduction

In this chapter, we first introduce the reasons that have motivated this disser-

tation (Section 1.1). Then, we briefly define the specific objectives aimed by

the dissertation (Section 1.2). Finally, we outline the structure of the remain-

ing chapters in this document (Section 1.3).

1.1 Motivation

As technology advances, more and more transistors can be included in the

same die. In this scenario, conventional out-of-order superscalar uniprocessors

present an excessive design complexity that do not exploit all the technology

opportunities at reasonable power budgets. In contrast, Chip Multiproces-

sor (CMP) and Multiprocessor System-on-Chip (MPSoC) systems have been

chosen as the power efficient solution for current necessities and challenges.

Rather than a complex monolithic uniprocessor, a CMP system is compounded

of multiple replicated simple tiles on a single die where each tile includes a

processor, some cache structure, and a switch.

The complexity of conventional uniprocessor solutions is managed via repli-

cation and design reuse. Nowadays, commercial solutions are able to reach

several tens of cores (see Figure 1.1). Examples of such solutions are the Po-

laris prototype chip [2] by Intel with 80 simple cores, the Single-chip Cloud

Computing prototype [3] by Intel with 24 x86 dual-core tiles, and the Tilera

100-core chip [4]. On the other hand, an MPSoC system is built by multiple

1
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Figure 1.1: Tiled CMP.

heterogeneous processing elements with different sizes and functionalities, such

as processors, memories and I/O components. MPSoCs are typically used in

the embedded system market domain. In both cases, the trend is that the

number of replicated cores will be increased up to thousands of cores.

1.1.1 Network-On-Chip

Aggregating several cores in a single die leads to the necessity of intercon-

necting them. Initially, when the number of cores to interconnect was low,

ad-hoc wiring solutions or a shared bus [5, 6] were sufficient solutions to ful-

fil performance requirements. However, as the number of cores to intercon-

nect increases, those initial solutions became inefficient. As an alternative,

Network-on-Chip (NoC) have been widely accepted as the proper intercon-

nection choice for CMPs and MPSoCs. NoCs are able to meet the severe

constraints imposed by the new on-chip environment [7, 8]. The idea is quite

simple: a point-to-point network inside the chip connects all the devices by

means of switches and links. The popularity of NoCs grew also due to its phys-

ical scalability, specially when a simple 2D topology with a low-radix switch is

implemented. That is, the planar structure of a 2D NoC makes them suitable

for the planar silicon technology, as for example the simple 2D mesh as can

be seen in Figure 1.2. For that reason, most existing NoC designs are based

on simple topologies as rings [9] or the most popular 2D mesh [10, 11]. In

fact, current commercial solutions rely on a 2D mesh such as the Polaris pro-
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Figure 1.2: 2D mesh planar scalability schematic.

totype chip [2] and the Single-chip Cloud Computing prototype [3] by Intel.

The Tilera 100-core chip [4] includes several 2D meshes. Simpler commercial

solutions can be found, as for example the Intel Nehalem [12], which relies on

a bidirectional ring.

A NoC is built from basic components as switches, links, and network

interfaces. Switches and end nodes are connected by links, thus forming the

topology and final network structure. Although the network interface must

be carefully designed in order not to introduce bottlenecks, the complexity is

usually shifted to the switch design. A basic switch should store its incoming

flits, route them, and deliver them onto the proper output port. Despite that a

switch can be designed in different manners, a crossbar-based switch design has

been widely accepted [13,14,14], that is, a switch in which inputs and outputs

are interconnected by a matrix of connections. Figure 1.3 shows a basic 5× 5

crossbar-based canonical switch. This switch is made of input buffers, which

store the incoming flits. Then, a routing module, usually replicated at each

input port, is used to compute the proper output port for the stored incoming

flits. Next, the switch allocator arbitrates which input port is connected to

an output port. Finally, the crossbar is the interconnection structure that

physically connects – based on the switch allocator decision – the input ports

with the output ports. Typically, the most critical components in a switch are

the crossbar and the switch allocator. That is, these elements fix the switch

throughput and switch operating frequency. In contrast, the input buffering

is the main responsible for the area and power consumption of the switch.

Notice that, as the switch radix increases more input/output ports must be

handled by the switch components, and hence, the switch complexity increases,
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Figure 1.3: 5 × 5 crossbar-based canonical switch schematic.

leading to an unavoidable increment in area, and most probably a decrease in

its operating frequency.

On the other hand, in the NoC scenario, link design becomes more critical

than switch design. NoC severe timing and power consumption constraints

have made link design a priority. Contrary to the off-chip domain, wiring

delay becomes not only appreciable but significant in the message’s critical

path. Wire delay can be reduced by inserting repeaters along the link at the

expense of increasing its area and power consumption. This fact gets worse

as the wire length increases to connect more distant components (nodes or

switches). Long interconnects are costly or even unfeasible [15] in terms of

power consumption. In fact, the popularity of modular and scalable NoC

topologies as the 2D mesh is in part due to these wiring concerns. However,

despite that the 2D mesh minimizes wire length with respect to more complex

architectures and topologies, link power consumption can still be more than

70% of the total network energy consumption [16].

1.1.2 NoC Topologies

Simple 2D network topologies as rings or meshes rely on low-radix switches

which leads to a fast network with good performance when the number of ele-

ments to interconnect remains low. However, meanwhile a simple 2D topology

offers a proper connectivity for systems with dozens of tiles (processors), those

network implementations are unable to fulfil larger system requirements. As

the amount of devices to interconnect increases, the performance – measured
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as latency and throughput [17] – of these simple topologies is highly impacted

due to its lack of scalability. First, message latency increases due to the larger

network diameter, increasing also the energy to transmit messages even with

a very low traffic injection rate when no contention exists. But, the main lim-

itation is the network throughput these topologies may achieve. Indeed, the

throughput of these topologies is highly impacted as the bisection bandwidth1

increases linearly with the square of the number of nodes to interconnect. As

the network traffic increases, it becomes congested, and hence, message la-

tency exponentially increases due to the queueing latency. Furthermore, the

2D mesh structure may bring an unbalanced network utilization. Switches

placed at the borders are underused with respect to switches placed at the

center of the network. Unbalanced network utilization reinforces the conges-

tion problem by increasing queueing message latency and making message

latency unpredictable.

The performance degradation and energy increment that those topologies

suffer when the number of cores to interconnect increases, force the design-

ers to explore new solutions based on planar processes. However, the current

planar silicon substrate technology restricts the space of implementable net-

works [18]2. In this sense, researchers have developed more complex topologies

that overcome the inefficiencies of basic ones but still being implemented as

a planar structure. A flattened butterfly topology [21,22] (see Figure 1.4(b)),

multi-stage networks such as the Clos network [23] (see Figure 1.4(d)), topolo-

gies based on fat-tree networks [24,25] (see Figure 1.4(e)), concentrated meshes

(C-meshes) [26] (see Figure 1.4(a)), hierarchical topologies [27], or multidrop

express channels (MEC) [28] (see Figure 1.4(c)) are some remarkable solutions

recently suggested by researchers.

In general, these complex topologies reduce network latency by reducing

the hop count of messages. Reducing hop count is achieved by concentrating

nodes to a switch (C-mesh), by increasing the connectivity between switches

(flattened butterfly or MEC), or by completely modifying the network con-

1Bisection is the minimum set of network components that split the network in two equal

halves. Bisection bandwidth is the bandwidth at the bisection.
2Recently, a 3D silicon technology has appeared. However, this technology is currently

in experimentation phase [19, 20] so will not be considered in this thesis.
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(a) C-mesh. (b) Flattened. (c) MECs.

(d) Clos network. (e) 4-ary Fat-tree.

Figure 1.4: Complex network topologies.

cept (Clos or tree-based networks). From the theoretical point of view, there

is no wining topology that clearly overcomes the rest in all the critical as-

pects of the NoC environment, mainly performance (throughput and latency),

power consumption, and implementation costs (area). In Table 1.1 we can see

different metrics for different 64-node topologies. As it can be seen, a 4-ary

3-tree topology (similar construction as Figure 1.4(e)) presents the maximum

bisection bandwidth but the number of switches and the network diameter

is higher than the C-mesh topology (see Figure 1.4(a)) and the 4-ary 3-flat

topology (see Figure 1.4(b)). The 4-ary 3-flat topology has the lowest network

diameter, but the switch radix (number of ports) – and hence its complexity

– is the highest too. Moreover, final applications to run on top of these sys-

tems influence the topology selection process [7]. Thus, low latency, resources

available, or throughput requirements fixed by applications can determine the

topology pick for the network design.

In NoCs, contrary to the off-chip domain, complex topologies exacerbate

two important drawbacks. First, those topologies rely on high-radix switches.
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Switches Bisection BW Diameter Switch radix

2D mesh 64 16 15 5

4-ary 3-tree 48 64 5 8

C-mesh 16 16 5 8

4-ary 3-flat 16 32 3 10

Table 1.1: Analytical properties for different 64-node topologies.

Second, more resources are needed when designing such switches which leads

to an increment in power consumption. This increment in resources gets even

worse since the number and length of links increases. As the switch radix

increases, switch complexity –and hence switch latency – increases too, as can

be seen in Figure 1.5(a). This figure shows the normalized critical path and

area3. As the radix increases, both the switch delay and area increase – the

increment in area is specially critical. Beyond 10 ports, the increment curve is

even higher. Thus, topologies made by high-radix switches, although reduce

hop count, they suffer from increased switch latency. Furthermore, high-radix

switches suffer from traffic concentration, that is, they receive traffic from a

higher number of input ports which can lead to a switch congestion, and hence,

reducing overall network throughput. Figure 1.5(b) shows the throughput per

output port of a switch when each input port has an injection traffic rate

of one flit/cycle4. As it can be seen, the throughput of a switch gets worse

as the number of input/output ports increases. This traffic concentration

is noticeable in high-radix topologies5. For example, the concentrated mesh

topology, the flattened topology or the hierarchical proposals presented in [27]

achieve a network throughput that is even lower than the one achieved by the

simple 2D mesh topology.

If we add the fact that long links (found in high-radix networks) also lead to

possibly prohibitive increases in power dissipation, all the previous comments

lead to questioning whether high-radix networks are feasible and preferable.

3Results obtained after synthesising the canonical switch presented in Appendix A with

the 45nm Opensource Nangate Library.
4Flit (flow control bit) is the minimum amount of information that is flow controlled in

the network.
5We refer to high-radix topologies those implemented by using high-radix switches.
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Figure 1.5: Switch properties as a function of switch radix.

1.1.3 Crossbars

When derived to the ideal case, a fully connected network where each node is

directly connected to any node with a bidirectional link is the most aggressive

high-radix network. Alternatively, a less aggressive solution is a single crossbar

which can also be used to interconnect all the nodes. Figure 1.6 shows a

N × N crossbar where a simple matrix connects N inputs with N outputs.

The crossbar has been traditionally discarded by the common belief of its

infeasibility due to its high wiring complexity, and its arbiter complexity (N

inputs to N outputs). Notice that replacing an entire conventional NoC, like

a 2D mesh, by a crossbar provides many advantages from a conceptual point

of view. First, the bisection bandwidth of a crossbar is higher than that of the

2D-mesh network. While the bisection bandwidth of the 2D mesh is
√

N , the

bisection bandwidth of the crossbar can be computed as N2/4, where N is the

number of nodes in the network. Moreover, the average latency in a crossbar

is noticeably reduced (theoretically in terms of cycles) as only one hop (one

cycle) is required by a node to reach any other node in the die.

In addition to the huge performance improvement, crossbars present sev-

eral interesting features. As each node is directly connected to the rest of

nodes a crossbar does not depends on the traffic pattern, that is, traffic to

a node does not affect traffic to the rest of nodes avoiding collisions between

packets addressed to different destinations (see Figure 1.7(a)). In this sense,

a crossbar is insensitive to bursty traffic and network contention. A burst of
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Figure 1.6: Crosspoint-based crossbar.

messages from a given input to a given output will not interfere with other

communicating flows. On the contrary, in a 2D mesh (Figure 1.7(b)), the red

flow is temporarily blocked by the green flow of messages, even in the case both

flows are for different destinations. The absence of network conflicts reduces

traditional problems as deadlock or head-of-line blocking. A crossbar ensures

deadlock-freedom. Whereas Head-of-line blocking (where packets requesting

free resources are blocked by packets requesting to other outputs) is removed

inside the crossbar, it may occur on the NIC limiting the throughput to a

58.6% when uniform traffic and a single FIFO per input is used [29]6. More

complex NIC implementation or buffered crossbars can increase this limit up

to 100% [30].

In addition, direct connection between nodes simplifies implementation.

First, there is no need for routing packets that traverse the network and,

hence, no routing bits must be prepended to packet headers, thus increasing

the effective network throughput. Most important is that support for multi-

cast and broadcast in crossbars is straight-forward, as only the crossbar has

to be configured to multiple outputs. Figure 1.8 shows two forms to manage

a broadcast message. In Figure 1.8(a) any broadcast message compete for all

the outputs at a time. When a broadcast message wins it uses all the outputs.

6Despite that this limit is far away than the maximum – 100 % – is still higher than in

other architectures, specially as the network size increases.
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(a) Collision avoidance in a crossbar. (b) Packet blocked by a collision in a

2D switch

Figure 1.7: Collision avoidance in a crossbar network.

On the other hand, in Figure 1.8(b) a broadcast message is sent at the same

time a unicast message progresses. As it can be seen, at cycle one, input two

requires the use of output two, and hence, the broadcast message is able to

arrive to any destination but to output two. During the next cycle, the broad-

cast message is sent to output two. Broadcast transmission ends when the

broadcast message is transmitted to all the requested outputs. Notice that to

support multicast messaging, the network interface will need minor changes.

The properties mentioned above – high throughput, absence of collisions –

joined to the constant latency obtained from any source node to any destina-

tion node promote the crossbar as highly predictable, which allows for simpler

QoS solutions being implemented in crossbars.

Although theoretically crossbar are not scalable, in [1, 31] a 128 × 128

centralized crossbar has been designed and synthesized. In [32] buffers are

introduced inside the crossbar design to solve scalability and implementation

cost issues. In these works, it is shown that a proper and meticulous design

process can lead to a feasible large centralized crossbar as in Figure 1.9. Simi-

larly, in [21,24,28], it is shown that high-radix topologies are feasible without

an excessive cost in terms of resources.

In addition to the resources needed for these high-radix solutions, the de-
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(a) Broadcast message treated

as a indivisible unit.

(b) Broadcast message.

Figure 1.8: Broadcast support for a fully connected network.

Figure 1.9: Crossbar-based fully connected network floorplan [1].

sign of each component is also critical. Indeed, a naive implementation of the

switch will minimize or even cancel the theoretical benefits of these topologies.

Indeed, the real problem is that those designs are not floorplan-aware, in the

sense that the design tools can not take profit from the design and perform

an optimal floorplan.

1.1.4 Contribution

In this dissertation, we aim to minimize the negative impact of a real imple-

mentation of a NoC by presenting a novel floorplan-aware design methodology.



12 Chapter 1. Introduction

We consider a complex NoC design as a concatenation of small and simple

modules. The simplicity of those modules makes them easily optimized at de-

sign time or by the synthesis tools. In addition, the modularity of a large and

complex design allows the designer to properly place each module along the

chip. By simplifying, modularizing, and spreading along the chip a complex

NoC design, higher operating frequencies can be achieved because problems

related with long links are minimized and switch design is optimized. With

this approach, the large gap between the theoretical performance of high-radix

networks and their real performance when implemented is closed with respect

to other methodologies.

Figure 1.10 shows the flow diagram of this dissertation. The starting point

is a canonical switch in which its major components are buffering, routing,

arbitration, and forwarding incoming flits. The first step in this thesis is to

convert the canonical switch into a modular switch design made of simple and

identical modules. To perform this first step, it is necessary to reorganize the

canonical switch pipeline. With this approach, we mimic the canonical switch

behaviour. We call this novel switch the modular switch (see Figure 1.11(b)).

In the modular switch, each output port is independent of the rest of ports.

That is, each output port is able to store, arbitrate, and forward a flit. In

addition to the independence of the output ports, the modular switch has

another interesting property. Output port tasks – arbitration, buffering, and

forwarding – are splitted in smaller units thus leading to simpler and faster

decisions.

Modularizing the switch allows the designer to properly place and route

the switch along the chip, because each module can be handled independently.

The NoC design methodology presented in this dissertation fixes the basic

module (termed AC) as the basic design unit. In this sense, as it can be

seen in Figure 1.12, it is possible to spread a single switch along the chip

by spreading the AC modules that compound that switch. Thus, as a second

contribution in this thesis, we provide a distributed switch approach where the

switch components are spread over the chip. At the physical level, the network

becomes a chain of AC modules uniformly distributed over the chip surface

(see Figure 1.12(b)). By spreading basic modules link length is reduced by

half, and hence, the link power consumption is reduced and overall network
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Figure 1.10: Thesis flow diagram.

frequency is increased.

By reducing link length, and modularizing the switch, high-radix topologies

can be reconsidered with this approach. Indeed, in a third contribution in this

thesis, we promote the use of high-radix networks by using the distributed

modular switch approach. By doing this, the gap between theoretical network

performance and real network performance (when placed and routed) gets

reduced.

Indeed, it is possible to reuse the modular switch design philosophy to im-

plement a large crossbar in an efficient, modularized, and distributed manner
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(a) Canonic switch schematic. (b) Modular switch schematic.

Figure 1.11: Canonic and modular switches schematic.

(a) Floorplan with standard switches. (b) Floorplan with distributed switches.

Figure 1.12: Floorplan of a 2D mesh with standard and distributed switches.

for small and even medium – up to 64 node – size networks. Basically, a large

crossbar is decomposed in a cascade of AC modules. In fact, our floorplan-

aware design we propose in this thesis for a distributed crossbar is able to use

less resources than a conventional 2D mesh for small networks. In order to

cover ultra-large many-core systems, a hierarchical design is proposed to over-

come the scalable problems of very large crossbars. A hierarchical distributed

crossbar allows a crossbar-based design for systems larger than 64 nodes.
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1.2 Objectives

This section presents the objectives of this dissertation. The key objective we

seek is to describe a simple and novel philosophy to design a NoC that reduces

the negative impact of long links and improve overall network performance.

Basically, NoC overall functionality – buffering, arbitration and forwarding– is

mixed and splitted into simpler and spread –distributed – decisions. In order

to achieve this overall goal, we pursue the following specific goals:

• Provide an insight of the most recent related work in switch and high-

performance on-chip network design.

• Describe a new switch architecture (modular switch) where arbitration,

buffering, and forwarding capabilities are pipelined into a cascade of

small and simple modules.

• Propose a new floorplan-aware 2D mesh NoC architecture which reduces

link interconnect negative impact. For that purpose we design a proper

place-and-route of our modular switch, called the distributed switch. The

distributed switch is the foundation of our high-performance NoC solu-

tions.

• Leverage our distributed switch to implement and improve current high-

radix 2D topologies.

• Demonstrate the feasibility of fully connected networks implemented as

large crossbars for small and medium networks, when the distributed

switch philosophy design is reused. We refer to our crossbar as the

distributed crossbar. We show the inefficiencies of current 2D high-radix

topologies with respect to crossbars for small and medium networks.

• Propose a feasible and efficient high-performance floorplan-aware hier-

archical distributed crossbar design – hierarchical distributed crossbar –

for many-core systems.

In conclusion, we propose a new floorplan-aware NoC design philosophy,

that is able to improve current designs. Our philosophy can be used to im-

plement a simple 2D mesh – distributed switch – or leverage this solution to
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implement a feasible high-radix topology. Finally, our distributed switch can

be leveraged to recover traditionally discarded solutions as large crossbars.

Our distributed crossbar is suitable for small and medium networks, meanwhile

our hierarchical distributed crossbar is suitable for high-performance large net-

works.

1.3 Dissertation Outline

This dissertation begins with this introductory chapter (Chapter 1). Then,

we continue with Chapter 2 describing the basics of on-chip interconnection

networks and an analysis of the current state of art that contributes to the

matter of this dissertation. Chapter 3 presents the modular switch which is

the baseline switch that will be used in later Chapters. Chapter 4 presents

the distributed switch which is the solution to minimize the impact of long

links. Chapter 3 and Chapter 4 focus on a simple topology as the 2D mesh,

however, these chapters present the basic concepts and design methodology

that will be used in Chapter 5. Indeed, in Chapter 5 we present the application

of the distributed switch design to high-radix topologies. Then, Chapter 6

shows that a fully connected network designed as a distributed crossbar is

feasible for medium networks. To overcome scalability concerns, a hierarchical

distributed crossbar is presented in the same chapter. Finally, the dissertation

ends with Chapter 7, which summarizes the conclusions and summarizes the

contributions related to the research field.



Chapter 2

Technical Background and

Related Work

In this chapter, the goal is to describe the basics and terminology of on-

chip interconnection networks. For the sake of understanding we will cover

the main aspects, but it is not the intention of this chapter to provide an

in-depth view on the subject, since the on-chip network field is as complex

as the general interconnection network field, and there exist several aspects

that are beyond the scope of this dissertation. We refer the reader to the

established textbooks on this topic and related ones for further background

and introductory material [7, 8, 17, 33].

First, in Section 2.1 a brief description of the design parameters that in-

volve networks-on-chip are presented. Then, in Section 2.2, we dive into a

more extensive description of the aspects that surround this kind of networks.

Finally, this chapter, in Section 2.3, shows the related work and existent con-

tributions that serve as a reference for this dissertation.

2.1 On-chip Interconnection Networks

In the field of interconnection networks, there is a growing interest and amount

of research in the on-chip domain. Since the appearance of the NoC concept,

many research groups and institutions have turned their attention into it and

they have contributed to a plethora of proposals in related conferences and

17
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journals. The integrated circuit technology has evolved to accommodate a

multiprocessing device capable of high-performance computation. As a result

of the high integration scale in the deep sub-micron domain and the increasing

number of connecting elements, on-chip interconnection has become a need and

influences the performance of the final system. So, any gain in the efficiency

of the on-chip interconnection layer will be highly beneficial for the entire

system. Next, we describe the main design factors that should drive any

research devoted to NoCs.

2.1.1 Design Factors

As aforementioned, NoCs play a major role in the design of the modern high-

performance computers, nevertheless, they are not simple; there are many

factors that affect the choice of an appropriate interconnection layer at design

time. The main factors are:

• Performance. As commented, performance is a key point in intercon-

nection networks, not only from the point of view of raw throughput,

but also from the point of view of latency. Latency is a critical design

issue in several systems such as real-time systems. Moreover, in on-chip

networks, messages must reach destinations in terms of nanoseconds.

• Scalability. Scalability is the first design rule that an interconnect de-

signer should keep in mind. Scalability in interconnection networks im-

plies that the bandwidth of the network increases proportionally to the

number of elements of the system. Latency should also be kept to rea-

sonable limits when increasing the system size. Otherwise, the intercon-

nection network would become a bottleneck, limiting the efficiency of the

whole system. Scalability also implies that network cost and resources

are proportional to the network size.

• Reliability. An interconnection network should be able to deliver infor-

mation in a reliable manner. Interconnection networks should be de-

signed for continuous operation in the presence of a limited number of

faults. More important, as technology scales, manufacturing defects will

increase, thus demanding an efficient treatment.
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• Simplicity. Not only for the sake of cost, but making simpler designs

leads to the implementation of architectures that work with higher work-

ing frequencies, thus, increasing the system performance, and occupying

less area. In fact, the silicon area usage is a critical aspect in on-chip

networks. Indeed, reducing the area, translates into the opportunity for

making room for more devices inside the chip.

• Power consumption. One of the most important aspects in networks-

on-chip, not critical in other network environments, is the reduction

or minimization of power consumption. Indeed, effective power-aware

techniques are needed to bring better management of the total power

consumed by the processing cores.

All these previous factors must be specifically considered when designing an

on-chip network. In this thesis all the contributions take most of these factors

as a reference. In the next section we present the basics for interconnection

networks.

2.2 Interconnection Network Basics

The network architecture design is the result of several design choices like

network topology, switching and flow control techniques and routing strategies.

The network topology defines the physical interconnection between nodes and

other elements. The switching and flow control techniques define how and

when the information is transmitted through the network resources. Finally,

the routing strategies manage the different path choices of communication

between the nodes.

There are some common elements that conform a network architecture.

The first elements are the nodes. Nodes are the elements that communi-

cate through the network and perform basically two main tasks: computation

and/or storage. Nodes connect to other nodes through a network interface

associated to a switch, depending on the topology of the network. A switch is

the basic component that connects different devices. Links are used to connect

the devices (network interfaces and switches) among them. Figure 2.1 shows
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Figure 2.1: Routing, switching and flow control in a network.

a network with a 2D-Mesh topology highlighting where switching, flow control

and routing is performed. Next, we describe each network component.

2.2.1 Network Topology

Different network categories can be devised based on how all the elements of

a system are connected to the network (see examples in Figure 2.2):

• Shared-medium networks: In this type of network there is a transmission

medium that is shared by all the nodes, and only one node is able to begin

communication at a time, the rest of nodes read (and monitor) the shared

medium. Every device has the circuitry to handle addressing of other

nodes and the data management. In these networks, the routing device

is the shared medium, called also bus. Buses have limited bandwidth, so

they suffer from scalability problems, as the number of connected nodes

increases.

• Direct networks: Each node has a routing device attached, called switch,

which is the component that establishes the connection to other nodes

through point-to-point links. Each node is directly connected usually to

a small subset of nodes in the network. The concept of network interface

is weak in this type of networks as the end node and the switch (also
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(a) Shared-medium network (b) Direct network

(c) Indirect network (d) Hybrid network

Figure 2.2: Network architectures.

called router) are tightly connected. Nodes are connected according to

a certain interconnection pattern (topology).

• Indirect networks: Instead of directly connecting the nodes through

point-to-point links, the communication between a pair of nodes can be

performed by intermediate stand-alone switches. Every node has a net-

work interface that connects to a switch (through a point-to-point link)

and switches are connected between them (also through point-to-point

links).

• Hybrid networks: This type of networks is a mixture of the previous

approaches. In general, they combine mechanisms from shared-medium-

networks and direct or indirect networks.

Although there are very subtle differences between direct and indirect net-

works, the functionality is similar in many aspects. An indirect network in

which every switch is connected to a single node is equivalent to a direct net-



22 Chapter 2. Technical Background and Related Work

work. Also, terms router and switch, although having different meanings, are

used with no distinction by the community, so both terms for the routing

devices are interchangeable. In the rest of the dissertation, unless noted, the

term switch is assumed.

There are also some common aspects to all these types of networks. Al-

though links are usually formed by two communication channels, one in each

direction, one of the basic aspects of a network is how communication chan-

nels are arranged. Network performance significantly differs if links are bidirec-

tional or unidirectional. This choice impacts directly on the routing techniques

and algorithms and associated issues, like deadlock avoidance. We assume the

use of bidirectional channels on every link, though.

Each type of network can also be categorized with different properties:

• Switch degree: This property refers to the number of channels that con-

nect a switch to its neighbours.

• Diameter: Is the maximum distance between a pair of end nodes in the

network.

• Regularity: A network is defined as regular when all the switches have

the same degree.

• Bisection Bandwidth: Bisection of the network encompasses the mini-

mum set of links that split the network in two equal halves. Bisection

bandwidth is the resulting bandwidth at the bisection.

• Homogeneity: A network is homogeneous if every node is equal in all

aspects to the rest of nodes.

There are three common basic topologies used in interconnection networks.

The first one is the crossbar. A crossbar (see Figure 2.3) allows the connection

from any node to any other node simultaneously at the same time other con-

nections are established (as long as the requested input and output are free).

Crossbar networks, typically, are used for high-performance computing mul-

tiprocessor solutions and in the design for switches in direct networks. The

drawback with crossbar topologies is that they do not scale well as system

grows due to the quadratic requirement of connections.
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Figure 2.3: A crossbar network.

Strictly orthogonal topologies are the second common type. In this kind of

networks we can find the n-dimensional meshes and tori (see Figure 2.4). A

n-dimensional mesh or torus has k nodes placed along each dimension. A mesh

differs from a torus because it does not have the wraparound channels that

connect the nodes at the borders of the topology. Note that the torus topol-

ogy duplicates the bisection bandwidth of the mesh topology and reduces the

diameter. These topologies are the most common example of direct networks.

Multistage interconnection networks (MINs) are topologies driven by the

concept of indirect networks as seen in Figure 2.5. Between input and output

devices there are several switch stages. Examples of these networks are Clos

networks, tree based networks or the butterfly network [7]. The arrangement of

stages and the connection patterns determine the routing in these networks.

MINs have been heavily used to interconnect parallel computers with large

number of processors in commercial and high-performance solutions. However,

for on-chip networks mapping of such topology pattern in the 2-dimensional

surface of the chip is a big challenge [23].
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(a) Mesh (b) Torus

Figure 2.4: A 4 × 4 2-dimensional mesh and torus.

Figure 2.5: A multistage network topology.

Networks-on-chip Topologies

Earlier on-chip communication architectures fall on the share-medium network

paradigm, that included buses as the communication subsystem. Examples of

this kind of architecture is the Cell processor [34], that is well suited for a

small number of processing elements (or nodes). But the trend nowadays in

the industry of high-performance computing is to include a reasonably large

number of processing cores inside the chip, and shared-medium network de-

signs have poor scalability and bandwidth impacting heavily on the network

performance.

Networks-on-chip emerged, thus, as a response to effective on-chip com-

munication. On-chip networks are based on a paradigm that is a mixture of
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Figure 2.6: The processing element in a tile-based CMP.

the concept of direct and indirect networks. Current multicore architectures

are composed as a wall made of elemental brick nodes that work together

to achieve the high-performance computing goal, i.e, the chip is formed by

several processing devices. These devices are called usually tiles. A tile, fun-

damentally, apart from the processing elements, has also a switch attached

that handles the communication between tiles. See a simplified schematic of

a tile in Figure 2.6.

As the chip can be seen as a collection of tiles, there is a major taxon-

omy where chips can be differentiated between homogeneous (inducing regular

topologies) and heterogeneous designs (more suited with irregular topologies).

Every tile is connected to a subset of other tiles through an on-chip network.

An example of homogeneous configurations are the tiled chip multiprocessors

(CMPs) where all the tiles are equal, i.e, tiles are replicated along the chip (see

Figure 2.6). Instead, high-end multiprocessor systems-on-chip (MPSoCs) are

an example of heterogeneous designs where components are different in many

aspects: size, functionality, performance, throughput, etc. In this thesis, we

focus on CMP systems with regular structures.

A popular choice in NoC design is the use of orthogonal topologies as

most of the direct network architectures are implemented with this property

in mind. Orthogonal topologies, which are associated with regular patterns,

allocate the nodes in a n-dimensional space, with k nodes along each dimen-

sion. Every switch has at least one link crossing each dimension, and is labelled

with an identifier depending on the coordinates. All links that communicate

to other switches are bidirectional (formed by two channels, one in each di-
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Figure 2.7: A 8 × 8 concentrated Mesh.

rection). As the distance between a pair of switches is the sum of the offsets

in all dimensions, the routing strategy is usually implemented as a function of

selecting the links that decrement the absolute value of the coordinate offsets

between the current node and a destination node, a very simple mechanism.

The most popular design in NoCs is the n-dimensional mesh, used in most

of the commercial and non-commercial (prototypes) NoC designs. The most

suitable topology is the 2-dimensional mesh (Figure 2.4(a)). This kind of

topology is vastly used (or at least assumed) because it fits the chip layout.

However, a 2D mesh network does not scale in performance as its bisection

bandwidth increases linearly with the square of the number of nodes. To

overcome this issue, more complex topologies has been proposed to implement

a NoC. In this dissertation three solutions are mentioned: the concentrated

mesh or C-mesh (see Figure 2.7), the flattened butterfly (see Figure 2.8), and

the fat-tree (see Figure 2.9). The C-mesh network [26] is an evolution of a 2D

mesh. Basically, the C-mesh concentrates a fixed number of cores to a switch

(see Figure 2.7). By concentrating cores to a switch, hop count is reduced. In

contrast, switch radix, and hence, traffic concentration is increased. In this

sense, lower network latencies are obtained at the expense of reduced network

throughput.

To solve C-mesh drawbacks, other high-radix topologies that use concen-
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(a) Flattened butterfly. (b) Multidrop express channel.

Figure 2.8: A 8 × 8 flattened butterfly and multidrop express channel.

tration have been proposed [21]. The flattened butterfly is an evolution of

a butterfly network. Basically, the flattened butterfly consist in flattening a

common butterfly network, that is, converting a multistage network into an

orthogonal network (see Figure 2.8(a)). A flattened butterfly has the same

bisection bandwidth than the butterfly network but reduces the hop count [7].

As the C-mesh, the switch radix increases. Additionally, the flattened butter-

fly presents another concern as the number and length of links increase, and

hence, power consumption. To solve wiring issues, Multidrop Express Chan-

nels are proposed in [28] (see Figure 2.8(b)). Basically, all the links along

a row or column are condensed into a single unidirectional bus, one in each

direction. By condensing links in a bus, link rate utilization is optimized and

power consumption reduced.

Finally, tree-based networks are feasible if some simplifications are made [24,

25], creating a fat-tree topology. A fat-tree topology (see Figure 2.9) is an in-

direct topology where the bandwidth is doubled at each upper layer, achieving

full bisection bandwidth. However, as before, the switch radix is increased,

and hence, the physical implementation becomes complex, or alternatively,

the number of switches increases dramatically.
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Figure 2.9: A 4 × 4 fat-tree topology.

2.2.2 The Switch

As aforementioned, each tile is composed of several elements. The switch is

in charge of the communication between the input ports of the switch and its

output ports. Typically, a switch architecture is structured by the following

general parts (Figure 2.10):

• Buffers: Buffers are a key component and its design and position inside

the switch affect other aspects of the switch design. The task of a buffer is

to store temporarily units of information (typically called flits). Buffers

are typically associated to the channels of the switch. Channels, also

called ports, are divided into input ports, that receive messages, and

output ports, that send the flits to other switches or nodes. Note that,

to save area and power, buffers at the output ports are usually not

implemented.

• Crossbar: The crossbar is the switching element and is non-blocking.

Crossbars allow the connection between all inputs of the switch to all

the outputs. Crossbars are classified by their radix, i.e. the maximum

numbers of connections they can make.

• Routing unit: This unit is the responsible for decoding the unit of in-

formation provided by the incoming message, and based on the routing

function and destination of the message, computes the most suitable

output ports for transmitting the message.

• Arbiter unit: This unit takes its input from the routing unit and config-

ures the crossbar accordingly to the requests between input and output
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Figure 2.10: Canonical switch architecture.

Figure 2.11: Switch stages.

ports, taking into account switching and flow control issues (both will

be explained later).

Pipelining is a typical design method for high-performance switches. The

different stages work in parallel with different data streams, thus providing

parallelism and, thus, high throughput. A typical pipeline design of a switch

can be seen in Figure 2.11 where four stages are shown (IB, RT, VA/SA, and

ST). In this thesis we assume this pipeline design for the canonical switch.

The baseline switch is described in the appendix of the dissertation.

2.2.3 Data Units

In an interconnection network, the typical unit of information between nodes

is the message (see Figure 2.12). A message is a collection of bits that the
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Figure 2.12: Data units.

sender wishes to transmit to a destination (or a set of destination nodes),

i.e. it contains the data that must be transmitted. This information unit,

however, due to resource restrictions affected by design choices, may need to

be divided into smaller units, called packets, through a packetization process

(usually performed at the network interface). A packetization of a message

implies some reassembly and reordering at the destination node. A packet

(or the message) is comprised of a header, which contains the information for

routing and control, to be used by the routing devices, a body which contains

the data, and optionally a tail, for flow control or arbitration purposes. Often,

packet and message terms are interchangeable by the community, when both

are equal in size. The term packet is usually employed even when the message

has not been packetized. In this thesis we use the term message when wormhole

switching is assumed (see next section) and the term packet when virtual cut-

through switching is used (see also next section).

A packet is divided further into flits (flow control digits), which are the

smallest unit of information that is flow controlled. As the width of the link

can be lower than the size of a flit, the flit is further divided at the physical

level, into phits (physical digits). It is left to the designer and the parameters

involved, the size of every unit. However, in on-chip networks, due to the vast

amount of bandwidth available, the phit size usually equals the flit size.

2.2.4 Switching

Switching techniques are responsible for the allocation of network resources

to messages/packets inside the switches. Their basic function is to perform

the setting of connections between buffers at the input and the output ports.

The choice imposes several design constraints in the switch that impact per-
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formance, fabrication costs and power consumption of the elements in the

network. Next, we describe the main switching techniques used in on-chip

networks.

Circuit Switching

In circuit switching (Figure 2.13), the network establishes a reserved path

between source and destination nodes prior to the transmission of the message.

This is performed by injecting in the network a flit header, which contains the

destination of the transmission. This header acts as some kind of routing

probe that progresses towards the destination node reserving the channels

that it gets. When the probe reaches its destination, a complete path between

destination and source node has been set up due to the acknowledgement that

is sent back to the source node. As the path has been reserved for this flow,

messages cross the network avoiding buffer needs and collisions with other

flows. The circuit is torn down when the transmission finishes. An example

of a circuit switching-based on-chip network is described in [35].

Circuit switching can be very advantageous when messages are very fre-

quent and long. Nevertheless, this switching technique has several important

drawbacks. If circuit set up time is long compared to transmission time of

the data, it will strongly penalize the performance of the network since links

will be poorly used. Additionally, as channels are reserved for a given flow,

no other flows can use them even if the connection is idle, thus channels may

become even more underutilized.

Store and Forward

Instead of reserving all the path for a certain flow, there are some techniques

that operate at message/packet granularity. These techniques are referred as

packet switching. The most basic technique related to packet switching is store

and forward (SAF). When a packet arrives to a switch, the switch waits to

store the whole packet in its input port buffer before the packet is forwarded.

So, input port buffers must be large enough to store a packet (see Figure 2.14).

As can be deduced SAF has longer buffer requirements than circuit switch-

ing. In addition, latency of packets is multiplicative with hop count along the
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(a) Request for circuit establishment

(b) Acknowledgement and circuit establishment

Figure 2.13: Circuit switching.

path (as the forward operation waits for the completion of the store operation).

Virtual Cut-Through Switching

SAF switching is based on completely receiving a packet before any routing

decision is made. But, this is not a very practical decision, since the packet

header contains all the required information to perform the routing, and it is

physically located at the beginning of the packet (typically in the first flit). So,

the routing process can be started as soon as the packet header arrives to the

input buffer, without waiting for the rest of the packet. Thus, the packet can

be forwarded provided the selected output port chosen by the routing strategy

is free. This is what is done in virtual cut-through (VCT) switching (Figure

2.15).

In this case, as packets can advance through the switches of the network

once the packet header has arrived to each buffer (and has been decoded),

the base latency for this switching technique is mostly additive to the distance

between the nodes (hop count). Despite this, buffer requirements are the same

for VCT and SAF. VCT requires there is enough free buffer space to store the
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(a) Store phase

(b) Forward phase

Figure 2.14: Store and forward switching.

entire packet. In fact, VCT behaves like SAF when the output link is busy.

The switch needs to completely allocate the entire packet. This is the switching

technique commonly used in off-chip high-performance interconnects [17, 33]

as buffer size is not as critical as in NoCs.

Wormhole Switching

VCT switching is an improvement over SAF, but in some network architec-

tures, the choice of a buffer size to hold an entire packet could be critical. The

requirement to completely store a packet in the buffer of a switch may prevent

to design a small, compact, and fast switch [33]. In wormhole switching (WH)

buffers at the ports of a switch only have to provide enough space to store

only few flits, depending on the round-trip time delay (RTT) 1, instead of the

1Round-trip time delay can be defined as the elapsed time between a unit of information

is sent and the acknowledgement of that transmission is received.
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(a) Packet stored in the source node

(b) Portions of packet being forwarded

Figure 2.15: Virtual cut-through switching.

whole message. In WH switching (Figure 2.16), the message is forwarded im-

mediately before the rest of the message is entirely received, but as opposed to

VCT, there is no need to have enough space for the rest of the message in case

the message blocks. In that case, the entire message remains stored through

the buffers of several switches. The major advantage of WH switching is the

low storage requirements at switches. However, the most important drawback

is that WH switching could lead to high contention levels at the network, be-

cause a message may block several resources when is traversing the network,

causing low utilization of links and buffers.

Virtual Channels

To overcome the problem of contention induced by wormhole switching, virtual

channels [36] were proposed. Buffers basically are operated as FIFO (First-in,
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Figure 2.16: Wormhole switching.

Figure 2.17: Virtual channels.

First-out) queues. Therefore, if a message reserves the channel but due to the

saturation of the network it remains blocked at the current switch, no other

message behind this message can use the physical channel even if its requested

output port is available. This problem is known as head-of-line blocking.

When using virtual channels, the buffer at the input port is divided into

different virtual buffers and the channel is shared by all the virtual buffers

(see Figure 2.17). Of course this virtual multiplexing requires some local ar-

bitration and must be taken into account by flow control and switching tech-

niques. Virtual channels can be used to improve message latency and network

throughput. Their major drawback is that the available link bandwidth is

distributed over all the virtual channels sharing a physical link, resulting in

lower speeds. Again, in the on-chip network domain, the designer must eval-

uate the trade-off and the impact overhead on the network. Virtual channels

are not restricted to wormhole switching, the concept can be extrapolated to

other design choices, depending on the need of their functionality (examples

are deadlock-free routing algorithms and quality-of-service protocols).
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Figure 2.18: Ack/nack flow control.

2.2.5 Flow Control

Transmission of a flit between the input and output ports in a switch is a task

performed by the switching technique. Flow control, however, is in charge

of administering the advance of information between switches. Buffers are a

temporary resource where to store flits, but they are finite. Flow control tech-

niques are in charge of determining when the flits can be forwarded evaluating

the capacity of the buffers and the link bandwidth.

There are three flow control mechanisms that are commonly used: ack/nack,

stop & go and credit-based. The ack/nack flow control mechanism is based on

data acknowledgements. When a flit arrives to a buffer, if the buffer has space

available, then the flit is accepted and an acknowledgement signal (ack) is

sent back. Instead, if there is no space available, the flit is dropped and a

negative acknowledgement is sent. The flit must be retained at its origin until

it receives a positive acknowledgement.

Stop & go emerged as an alternative to reduce the signalling (control traf-

fic) between the sender and the receiver. Stop & go flow control is based on

every buffer having two thresholds corresponding to certain sizes computed

from the round-trip time. When the space occupied in the buffer reaches the

stop threshold, a signal is sent back to the sender precisely to stop the trans-

mission, taking into the account that still remains enough buffer space for the

flits that are still being transmitted by the sender. When the buffer occupancy

diminishes under or equal to the second threshold, go, then another signal is

sent to reactivate the flow of flits.

With credit-based flow control, each sender, at its end of the link, maintains

a count of credits, which is equal to the number of flits that can still be
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Figure 2.19: Stop & go flow control.

Figure 2.20: Credit-based flow control.

stored at the buffer on the receiver side. Whenever a flit is forwarded to the

receiver buffer, as it occupies a slot, then the counter is decremented. If the

counter reaches zero, it means that there is no available buffer space at the

other end, and no flit can be forwarded. On the other hand, whenever a flit

is forwarded and frees the associated buffer space, a credit is sent back to

increment the counter. The drawback of this flow control mechanism is the

significant amount of credit signalling sent backwards, which could impact on

network performance.

2.2.6 Arbitration

A switch is composed of multiple input and output ports with their associated

buffers and channels. Multiple inputs, according to routing decisions, may

request the same output port. In this scenario, an arbitration operation is

required to decide which one of the requests is allowed to connect to the output

port. The arbitration mechanism must ensure the output to only one of the

inputs that have requested it, and the others must wait until they are granted.
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As the arbitration operation introduces a latency to determine the assignment

of the different output ports, it is critical for a network-on-chip environment

that these operations are performed fast enough to keep low latencies.

The main goal of an arbitration mechanism is to provide fairness between

all the ports while achieving maximal matchings between requests and re-

sources. Although there are many proposals for arbitration algorithms and

implementations, we can distinguish two general arbitration techniques that

differentiate on how to assign priorities between the requestors.

The first one is fixed priority. An arbiter with fixed priorities assigns the

requests in an established order to the different input ports. This order is de-

termined by the static priority assigned to each input port. In this mechanism,

the arbitration is simple, but introduces unfairness and potentially, starvation.

If one of the input buffers with higher priority keeps requesting the associated

output, the inputs with lower priority get blocked, even, inducing the chance

that the inputs with low priority never get the request satisfied.

The second one is called round-robin. An arbiter that implements round-

robin arbitration cycles priorities between all the input ports by assigning

the lowest priority to the input port which request was last served. This

arbitration technique introduces fairness between the requestors, but is more

complex to implement. Usually, represents a trade-off between implementation

cost and performance.

2.2.7 Routing

As we have described before, topology defines the physical organization of

the network composed by the nodes. In fact, a given topology defines the

available paths between all the nodes. The routing algorithm is the responsible

of deciding which path has the message to follow to be effectively routed from

its source to its destination. The choice of the routing algorithm becomes of

outmost importance for performance reasons. Indeed, in the on-chip network

domain not all solutions from the off-chip network domain are suitable due

to environmental restrictions. The designer must find a trade-off between

efficiency, flexibility and implementation cost of routing.

As this thesis does not delve into routing algorithms, we only hint the most

used routing algorithm in NoCs. The DOR routing algorithm routes messages
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in an established dimension order. For instance, in a 2D mesh topology, the

routing algorithm sends messages through the X dimension until the offset

in that dimension is cancelled, then the message is routed through the Y

dimension. This algorithm is also known as XY routing algorithm. In this

thesis we assume XY routing as the routing algorithm for 2D meshes.

2.3 Related Work

In this section, we describe those contributions that have motivated this dis-

sertation. We focus on the state-of-the-art in three main topics. First, switch

design proposals linked with the modular switch presented in Chapter 3. Sec-

ond, research targeting high-radix topologies for NoCs. Finally, those works

that challenge the NoC community by claiming large crossbar designs are fea-

sible for NoC environments.

2.3.1 Switch Design

We can find in the literature, and in real implementations and prototypes,

two different switch architectures. The first one is a single stage switch. In

this architecture, a flit crosses the entire switch and reaches the input port

of the next switch in one cycle, typically. This is the usual case for MPSoC

systems [37]. On the other hand, we may find pipelined switches for high-end

MPSoC and CMP systems. This is the case for the Intel Polaris chip [2].

During the last years many efforts have been done in order to reduce the

latency of NoC switches for CMP systems. Initially, the knowledge and estab-

lished techniques from the off-chip network domain (from high-performance

interconnects) were applied to the emerging NoC field [38, 39]. First, NoC

switches were designed using well-known routing algorithms (e.g. DOR rout-

ing) and switching techniques (e.g. wormhole switching). Also, tied with

wormhole, virtual channels were advocated in order to time multiplex the

physical channel and, therefore, reduce the blocking induced by wormhole

switching. All these techniques forced the switch to become complex and

slow. Different efforts have been made to reduce the complexity and latency.

For example, in [13] different techniques are applied and a one-cycle switch
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is achieved, or in [14] the output port is predicted rather than computed in

order to minimize latency.

In order to reduce the complexity and latency of the switch, it is possible

to exploit the network topology to optimize the switch design. In [40] a low

latency switch that supports adaptivity is presented. Its main characteristic

is that it exploits the properties of a 2D-mesh in order to perform adaptivity.

Another similar proposal, presented in [41], simplifies the switch by exploiting

the properties of the ring topology. The same author evolved the proposal into

a low latency switch for a mesh network [42]. In [43] special features are added

to simplify the switch design in a virtual cut-through environment. Finally,

the Rotary Router is presented in [44]. This switch improves performance by

decomposing a switch structure into two independent rings structures. Again,

by decomposing a complex design into a sum of smaller and simpler ones,

performance can be improved.

Additionally, it is possible to reduce the complexity and latency of the

switch, by exploiting the area-performance trade-off provided by the logic

synthesis principle [45] that performs an area-performance trade-off. When

delay constraints are loose, area-efficient netlists can be achieved, but when

more tight delay constraints are needed, high performance can be obtained at

the cost of area. Then, by minimizing the complexity of an arbiter we can

relax delay constraints thus achieving higher performance. Then, it is possible

to split a task into several smaller tasks that are independent, and hence, they

can perform in parallel. Assuming that principle, in [38], the authors remark

the need of reducing the complexity of the crossbar from previous works [46],

arguing that smaller switch modules achieve faster switches. Similarly, Gi-

labert et al. [47] propose a decoupled crossbar for each virtual channel rather

than a shared crossbar for all the virtual channels. Decoupling resources in a

switch relaxes delay constraints thus improving area and power consumption.

Kim et al. [48] proposed an efficient microarchitecture for the implementa-

tion of a high-radix switch. This proposal is based on the implementation

of a decoupled fully buffered crossbar that enables scalable performance with

the number of ports. This work, however, is not directly suitable for an on-

chip network scenario, where technology constraints impose new limitations,

specially on the maximum operating frequency of the design [25].
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It is possible to apply decoupling techniques to any part of the switch.

In fact, it is possible to replace virtual channels by physical parallel ports.

This has been inherited from the off-chip domain [49]. Carara et al. [50] reuse

this concept for NoCs. In particular, they take advantage of the abundance

of wires in current and expected deep sub-micron technologies. Carara et al.

based their work in spatial division multiplexing (SDM) introduced by Leroy

et al. [51] and Lane Division Multiplexing (LDM) technique introduced by

Wolkotte et al. [52]. However, despite the critical path is reduced resources

are increased which is the main problem of its decoupling technique.

Jongman Kim et al. reuse the decoupling concept to design a low-latency

switch [53, 54]. In [53], the Row-Column (RoCo) switch is presented. This

switch achieves low latency decomposing a 2D switch into two halves, one in

each dimension. That is, incoming messages from one dimension are handled

independently from incoming messages in the other dimension. Additional

logic is used to handle messages from one dimension to the other. Decompos-

ing the switch into dimension slices is extended to the 3D scenario [54], where

the Dimensionally-Decomposed (DimDe) switch is presented. This switch de-

sign optimization was previously considered in [55], where the adaptive Chaos

Router is presented. Chaos switch decoupled X direction from Y direction.

In [56] a hierarchical optimal implementation (Partitioned Crossbar Input

Queued) of a crossbar is presented. In this paper it is shown that a parti-

tioned crossbar is able to obtain higher switch efficiency than a conventional

crossbar design.

Buffering management determines the behaviour of a switch. Initial switch

designs rely on input buffer queues that store incoming messages before the

switch manages them. However, Input Queued switches [57] present conges-

tion problems that tend to reduce overall network performance. Furthermore,

these kind of switches are exposed to the Head-of-Line (HOL) blocking prob-

lem. A simple solution to remove that risk to HOL blocking is to introduce

the Virtual Output Queueing technique [58,59] which maps flits addressed to

different output ports into different queues, that is, using one dedicated queue

per output port. The problem of this solution is that buffering resources should

be hugely increased, making this solution unfeasible for high-performance net-

works. Other similar solutions as Combined Input Output Queued switches,
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place buffers at both sides of the switch, that is at the input side and the

output side. This kind of solution to be efficient, requires a complex circuitry

to speed-up the switch in order to take the most from buffer at both sides.

A more revolutionary solution is to integrate buffering and crossbar in the

same structure, creating a buffered crossbar. This novel idea places memo-

ries or registers in the crosspoints of the crossbar. However, this technique

leads to a complex switch being unaffordable in an NoC environment [60]. In

contrast, buffered crossbars have been redesigned in order to become an op-

timum solution for high-radix switches or large crossbar-based NoC. Kim et

al. proposed a buffered crossbar for high-radix switches [61]. In this paper, it

is confirmed that buffering a crossbar improves overall network performance

as it was previously stated in [30]. However, the switch design environment is

different than the network design presented in this dissertation. Meanwhile,

in this dissertation we focus on NoCs, in [61] authors design each high-radix

switch on a chip, where multiple chips are connected to develop a multicore

system.

In this thesis we start decomposing a switch in basic and equal modules and

then distributing them over the chip area. As important as the proper place-

ment and interconnection of these modules, is how they communicate. In this

sense, our proposal introduces a communication protocol between logic mod-

ules that is similar to that presented in [62]. In this work, the Ambric register

is presented. In addition of a conventional clock signal that charges/discharges

the register, two control signals – valid and accept signals – are added setting

communication between registers, modelling an asynchronous communication

protocol reinforced by the clock signal. Similarly, Jacobson et al. [63] use the

same concept to design a complete synchronous pipeline – controlled by a

clock signal – where data transfer is fixed by an asynchronous signal. These

works recall the elastic concept in digital design [64]. Elasticity refers to the

flexibility of a system to adapt to the variability of delays. In this sense, any

synchronous design managed by asynchronous signals that adapt data transfer

rate to the pipelined design can be considered a elastic circuit. In this sense,

it is possible to adapt any design to elasticity [65, 66].
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2.3.2 High-Performance NoC Topologies

The design space of complex network topologies has been widely explored and

built in the domain of off-chip interconnection network. In fact, some networks

used were adopted from the well-know multistage networks used in telephony,

as for example Clos network [67]. However, the severe constraints imposed by

the new on-chip environment – low latency and power consumption require-

ments – keep NoC designers from using those complex topologies. Recently

however, some papers demonstrate that it is feasible to introduce complex

network topologies to NoC environment.

In [26], Balfour and Dally proposed the use of concentrated mesh topolo-

gies in combination with express channels for large networks. Concentration

means connecting several nodes to the same switch. By using a concentrated

mesh, network interface complexity is slightly increased since is able to receive

messages from different nodes. On the other hand, the number of switches,

and hence, hop count is reduced, reducing network latency. In contrast, link

length is increased as the switches are physically moved further away. thus,

in [26] researchers show that improvements in area and energy efficiency can

be obtained when using a concentrated mesh over conventional 2D meshes.

To reduce power consumption of complex networks, an on-off technique is

used in [68]. In this paper, a Parallel Concentrated mesh (PC-mesh) is pre-

sented. The PC-mesh is just several concentrated meshes working in parallel.

To optimize power consumption, a proper algorithm turns off those parallel

concentrated meshes that are not required. Then, by properly using different

concentrated meshes working in parallel is possible to improve latency without

increasing power consumption.

Another solution to overcome performance scalability of 2D meshes is the

use of high-radix switches, that is, network topologies where each switch is

connected to its neighbouring switches –as the 2D mesh – and extra switches

placed in the same row or column. This kind of solutions requires the use of

long links – express channels – to connect switches that are placed at two hops

of distance. In [69], extra long links connecting 2-hop away switches are used in

a 2D mesh baseline topology. Increasing the switch connectivity and reducing

the hop count, network latency is reduced, and throughput is increased at

the expense of an increment in power consumption. In the same way, Kim
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et al. [21, 22] proposed the use of a flattened butterfly to solve the scalability

limitations of low-radix topologies. The flattened butterfly network connects

a single switch with all the switches placed in the same row and column.

Some papers, redefined the NoC scenario and introduce some complex net-

work topologies that are far away from the conventional 2D mesh. Networks

as the fat-tree [70] or the multistage Clos network [67] are considered. In [25],

Ludovici et al. analyzed the feasibility of the on-chip fat-tree implementation.

Fat-trees are indirect topologies based on complete trees. In [25], the authors

show how technology constraints impose severe limitations to the practical uti-

lization of tree-based high-radix topologies. In [24], the authors go beyond the

previous simplification, and reduce the fat-tree complexity by forcing a deter-

ministic routing algorithm, developing the Reduced Unified Fat-Tree (RUFT).

Results show that such simplification allows RUFT to achieve lower latency

than an original fat-tree for low and medium traffic loads.

However, as stated in [27,28], all these high-dimensional on-chip networks

designs suffer from traffic concentration, that causes at the end a reduction in

the maximum network throughput. In [23, 71] a high-radix Clos network-on-

chip is implemented. In this paper, authors stated that a proper placement

of Clos network switches should be done to obtain good performance. Thus,

a proper floorplan algorithm is required to minimize power consumption of

long interconnects. Results show that, an implemented Clos network obtains

better results than conventional network topologies, reducing network latency

and increasing network throughput. Grot et al. target the flattened butter-

fly implementation drawbacks by introducing a Multidrop Express Channel

network [28] where a high degree of inter-node connectivity provides a lower

latency and bandwidth is handled efficiently. In this paper, each switch is con-

nected to a group of switches using a unidirectional bus – multidrop express

channel. The use of Multidrop Express Channels reduces power consumption

of conventional express channels. Alternatively, in [27] a different approach is

presented. In this work, a hierarchical network-on-chip that suits the particu-

lar requirements of CMP traffic demands is proposed. The main advantage of

this hierarchical on-chip network is its low latency specially when considering

high traffic locality. As a drawback, the network throughput provided by this

hierarchical network, when no local traffic distribution is considered, is lower
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than the one provided by a regular 2D mesh topology. Finally, a complete

NoC topology comparison and analysis can be found in [7].

2.3.3 Long Link Issues

The implementation of complex topologies in a 2D silicon substrate requires

the use of long interconnection links. Long links suffer from an excessive power

consumption and large latency, that makes them costly or even unfeasible. To

minimize the impact of long links, in [72–74] long links are replaced by elastic

buffers, that is, buffered links where a trade-off between latency and power

consumption is made, because a flit requires several hops to traverse an elastic

buffer. In [75], authors focus on 3D technology as an ideal scenario to implant

high-radix topologies because long 2D links evolve to short and power efficient

3D vias. Similarly, a 3D packaging is considered in [22] in order to implement

the flattened butterfly.

Despite the link length, the trade-off between link delay and link power

consumption is critical. In this sense, it is necessary to insert repeaters along

the wire when needed [15]. This method reduces interconnect delay and signal

transition times. In order to minimize the power consumption of a wire,

it is necessary to insert the proper number of minimum sized repeaters [76]

that satisfies the delay constraint imposed by the operating frequency of the

switch. This technique is called power-optimal repeater insertion [76]. There

exist other link power optimization techniques, that are not considered in this

dissertation since they focus on the technological point of view which is not in

the scope of this thesis.

As important as link delay and power consumption, is the area occupied

by links. As the number of links increase due to the network complexity in-

crement, the area of those links increases as well. It is possible to reduce the

area occupancy of wires by using high metallization layers to route long in-

terconnects. By using high metallization layers, it is possible to place other

functional blocks as SRAM below the link interconnects, because the other

functional blocks as SRAM require the use of the lowest metallization lay-

ers [77]. Using this technique, wires do not require dedicated area except for

the repeaters inserted along the wires.

Crossbar-based NoC have been rejected as a valid solution for NoC design
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due to the common believe that their unaffordable cost in terms of resources

used, wires and crosspoints. Indeed, some papers reject crossbar-based NoCs

due to its inefficient behaviour to unbalanced traffic [78]. But, in general,

designers consider crossbar-based designs as a ideal network implementation

unreachable due to its implementation infeasibility. For example, in [79] a one-

cycle crossbar is considered as the maximum theoretic performance achievable.

That is, a one-cycle crossbar based design is considered as the network baseline

which the rest of solutions can be compared to.

In contrast, despite to initial reluctance, large crossbar-based designs are

slowly introduced in the NoCs community. Crossbar cost can be reduced

by using buffered crosspoints. That is, crossbar crosspoint are buffered, and

hence, pipelined. Registering the crosspoint forces messages to require more

than one cycle to traverse the network, on the other hand, it makes large cross-

bars feasible. Buffered crossbars appeared in the switch design optimization.

Different buffered crossbars are presented in [32, 80–82]. In cite [80] buffering

the crossbar allows the designer to achieve 100% throughput under uniform

traffic and a simple round-robin arbitration scheme. By extrapolating this

technique to the whole network a buffered crossbar-based chip is implemented

in [83]. In this paper, low latency and high throughput is obtained. Using

pipelined crossbar philosophy is the Mesh-of-Trees (MoT) presented in [84,85].

In these papers, conventional NoC is replaced by a mesh of buffered trees to

obtain a low latency and high throughput network. Finally, in [1,31] an accu-

rate and detailed physical implementation of a centralized crossbar is made.

However, a centralized crossbar is a slow element that should handle several

input requests. However, the main drawback of a centralized crossbar is that

strongly depends on design constraints. That is, the results of proposal pre-

sented in [1, 31] are obtained for a fixed number of cores, where their size,

shape, etc. are set by the designer. If some design constraint are modified,

the whole design should be redesigned. In the next chapters we will go over

the proposed designs that build the current thesis.

Notice that all these works (high-radix topologies, reducing link impact,

and switch architectures) are well known. However, most of them do not

take the floorplan as a central issue. And the works that consider the physical

implementation, differ of our approach in the sense that we redesign the switch,
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network, or crossbar (converting it into a modular design) in order to be easily

distributed over the chip.
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Chapter 3

Modular Switch

In this chapter we perform the first step towards a floorplan-aware NoC design.

This first step focuses on redesigning the switch into modular basic blocks, each

one independent of the others.

Basically, buffering, arbitration, and switch traversal tasks are mixed and

partitioned into a tree of small, simple and identical modules called Arbitration-

Crossbar (AC) module. An AC module is basically an M -to-1 crossbar with

an output buffer, where M is the degree of the AC module. Additionally,

arbitration and flow control mechanisms handle the crossbar.

This chapter is organized as follows. First, we provide a brief description

of a canonical switch. Then, we describe the proposal of this chapter, the

modular switch design. Finally, we provide an evaluation of the modular

switch compared to the canonical switch organization.

Despite that the modular switch has a performance improvement over a

canonical switch, the aim of the chapter is not to present an optimized switch

but a switch that will be ready to be distributed along the links, enabling a

floorplan-aware NoC design, which will be presented in the next chapter.

3.1 Canonical Switch

As commented in the introductory chapter, a NoC is built from basic com-

ponents as switches, links, and network interfaces. Switches and end nodes

are connected by links, thus forming the topology and final network structure.

49
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Although the network interface must be carefully designed in order not to

introduce bottlenecks, the complexity is usually shifted to the switch design.

Indeed, many previous works have focused in different switch architectures.

In CMPs the current trend is to design pipelined switch architectures with

wormhole switching in order to increase clock frequency and reduce buffer

requirements.

The basic pipelined wormhole switch design (see the Appendix A for a

detailed description of the baseline canonical switch design) is shown in Fig-

ure 3.1(a). It performs four basic tasks to an incoming flit: buffering, routing,

arbitration, and forwarding. In a conventional switch those tasks are pipelined

in different stages: input buffer (IB), route computation (RC), switch allocator

(SA), and switch traversal (ST). The IB stage is used to allocate an incoming

flit from an input port into a queue. The RC stage is used to compute the

output port the message has to take. This is usually achieved, in a 2D mesh

topology, by using a small logic block implementing the DOR routing algo-

rithm. Once the output port is computed, at the next cycle, in the SA stage

the flit contends for the requested output port (with all the flits requesting the

same output port). Finally, on success, the flit crosses the internal crossbar of

the switch, thus reaching the output port. This is done in the ST stage. If the

switch implements virtual channels, then an additional stage, named virtual

channel allocation (VA) is required to arbitrate for the output virtual channel

amongst the virtual channels of an input port. In parallel, the flow control

mechanism communicates the local switch state to the neighbouring switches

to prevent buffer overflows and optimize their utilization.

Figure 3.1(b) shows the pipeline stages of the switch. We can see how a

header flit is handled in all the stages, whereas payload flits only visit the IB

and ST stages. The tail flit is used to release the switch resources that have

been occupied by the header flit.

In order to increase performance (higher throughput and/or lower laten-

cies) several techniques have been proposed that can be applied to the canon-

ical switch design. Some techniques focus on specific parts of the switch as

routing [86], arbitration [17], or crossbar [47]. Some of these modify switch

pipelining shown in Figure 3.1(b) by performing some stages in parallel. In

contrast, other proposals modify the whole switch architecture [44, 50, 53]. In
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(a) Canonical switch schematic. (b) Canonical switch pipeline.

Figure 3.1: Canonical switch schematic and pipeline.

general, switch optimization efforts lie on improving switch performance mea-

sured as throughput or latency at the expense of increasing the complexity

of the switch. Our contributions redesign the switch in a different direction,

taking as a design parameter modularity and simplicity. In this thesis we use

as the baseline switch the one with four stages (IB, RT, VA/SA, X). Notice

that the advanced switch solutions tend to add complexity to the switch, thus

not being a good choice as a baseline for a modularized switch design.

3.2 Modular Switch

The modular switch is a pipelined buffered wormhole switch which is mainly

made of a sum of independent modules called AC modules. Each AC module is

able to store, arbitrate and forward its incoming flits. Figure 3.2 shows a mod-

ular switch consisting of five input/output ports. Each input port can reach

any output port except the output port that goes in the opposite direction of

the input port (U turns are not allowed). Also, the local port connecting the

core to the switch can be reached from any input port. Thus, each output

port works as a 4-to-1 switch (N is set to four). That is, each output port is

able to buffer, route, and forward those packets that request that output port.

This switch is suitable for a low-radix topology as the 2D mesh.

3.2.1 Output Port Controller

Figure 3.3 shows the block diagram of an output port controller. As it can

be seen, the output port controller circuitry – and hence all the switch – is
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Figure 3.2: Modular switch schematic.

OUTPUT PORT CONTROLLER

Figure 3.3: Output port controller schematic.

composed of two different modules: the Routing Computation (RC) module,

and the Arbitration-Crossbar (AC) module. Thus, the modular switch is a

pipelined buffered wormhole switch with logM N stages, where M is the AC

module degree and N is the number of input ports that can reach a given

output port in the switch. In the example provided in Figure 3.3, M is set

to two and N is set to four. An important characteristic of the switch is that

each output port is managed independently. That is, each output port has its

own circuitry (output port controller) which is not connected to the circuitry

of the rest of output ports.

3.2.2 AC Module

The AC module, depicted in Figure 3.4, is the most important component

in the switch. As each AC module is independent of the rest of the switch
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Figure 3.4: AC module of degree 2 schematic.

circuitry, the critical path of a single AC module sets the clock cycle time

of the whole switch. It performs arbitration, switch traversal (crossbar), and

buffering tasks. Transmission between AC modules is implemented through

a customized flow control mechanism which administers buffering, which is

controlled by the upstream AC module, and arbitration, which is coupled by

the flow control signals from the downstream AC module (later described).

As it can be seen in Figure 3.4, the AC module has three main components:

a multiplexer, an arbiter, and a buffer. The AC module is a simple M -to-one

multiplexer with its output registered. The arbiter decides at every cycle

which input is connected to the output of the AC module. The signal that

fixes which input has granted the access to the buffer resources is winner?.

The decision of which input crosses the AC module depends on local status

– a token – and input signals from the upstream AC modules. Figure 3.5(a)

shows a simple 2 × 1 round-robin arbiter. As it can be seen, the arbitration

decision is determined by a token register amongst the inputs that request that

AC module. A flow control signal – upstreamVALIDi – is associated to any

link attached to an AC module. This signal is activated when the link has a

valid flit. Only inputs with valid flits compete for the buffering resources. The

arbiter has been designed to keep flits belonging to the same packet crossing

the module consecutively – interleaving flits of different packets is not allowed.

Additionally, one token registers the last input that accessed to local resources

(buffer). The token register updates when a tail flit leaves the AC module,

which is pointed when the grant signal gets active. The token fixes the priority
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(a) Round-robin arbiter. (b) Round-robin arbiter with traffic pri-

ority.

Figure 3.5: Round-robin arbiters.

of the inputs, when the token value changes, the input with the highest priority

becomes the input with the lowest priority. Notice that, for higher AC radices

the token register becomes a counter that fixes the highest priority input.

The grant signal will increase the token counter by one. Finally, a request

signal is created at the arbiter module. This signal is an OR of the incoming

inputs. When the signal is activated, the buffer will store an incoming flit, if

the upstream flow control allows this operation.

Thus, the arbiter shown in Figure 3.5(a) is a round-robin arbiter that pro-

vides a grant only to those inputs that request that AC module. Nonetheless,

more complex arbitration policies can be applied, as for example, to provide

some priority depending on traffic classes. To implement more complex arbi-

tration policies, minor changes must be applied to the arbiter shown in Fig-

ure 3.5(a), just introducing extra upstream flow control signals and increase

the complexity of the token counter update process. Figure 3.5(b) shows a

generic arbiter schematic where some extra upstream flow control signals have

been added – upstreamPRIORITYi. If active, the associated flit will have

higher priority. However, in this thesis we do not address the priority support

in AC modules.

The buffer is implemented by using a mux-in-first-out buffer [8]. Figure 3.6

shows an schematic of the buffer implemented. The output link attached to

the AC module is connected to a fixed slot. That slot will be considered the

master slot of the buffer, as if no contention exists, all flits will use only this
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slot. Only when contention exists, flits will occupy the rest of slots that will

be considered as slave slots. When contention disappears, flits stored on the

slave slots leave the AC module one by one, by crossing the buffer slot by slot

until they reach the master slot before leaving the AC module. Meanwhile

the oldest stored flit is leaving the buffer, flits in the buffer move at the same

time, thus, no bubbles are introduced neither when the communication flow

is stalled nor when it is restarted. By using this structure for the buffer, the

zero-load latency of the modular switch is one cycle per stage (AC module

crossed), that is, when no contention exists, a flit needs logM N cycles to cross

the modular switch. As any AC module performs local decisions, at least one

incoming flit will cross the AC module when no contention exists. Notice that,

the minimum AC buffer size that fulfils round-trip-time constraints between

AC modules is two (see Section 3.2.5 for a more detailed explanation). Then,

by assuming buffer size of two flits (two slots), each input-output path of the

modular switch is able to store 2 logM N flits (two per stage).

Two signals control the buffer. The request signal created at the arbiter,

and the downstream flow control – downstreamFC – signal that comes from

the downstream AC module. The request signal means that an incoming

flit wants to be stored. Downstream flow control signal tells the module if

the downstream AC module is able to receive new flits. An AC module can

receive flits if there is free space on its buffer. Additionally, request signal is

used to enable the registers to store an incoming flit. This operation is allowed

if there is an empty slot which is equivalent to the write pointer being active

(signals to the enable input at the registers at Figure 3.6). The write pointer

of the register measures the buffer occupancy. Finally, when buffer occupancy

is reaching the maximum, it generates the flow control signals that would be

sent to the upstream AC modules. Notice that, when assuming a two slot

buffer, the write pointer logic gets reduced to a single register that determines

if the master slot is available or not.

3.2.3 RC Module

The RC module performs the routing computation. Our switch is designed

to perform a simple XY routing algorithm for the 2D mesh topology. How-

ever, other routing algorithms can be leveraged. Nevertheless, as deterministic
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Figure 3.6: AC module buffer schematic.

routing is used in our design, each RC module is able to perform look-ahead

routing [87], which increases the overall performance of the switch. Figure 3.3

also represents the pipeline of the switch. At each stage a flit visits an AC

module inside the switch. Also, notice that the RC module has no timing con-

straints and it can be computed during the two cycles needed by a flit to cross

the switch. In this dissertation, the RC module is computed in parallel with

the last AC stage of the modular switch. By performing the RC tasks during

the second stage of the switch, only two routing computations are needed,

each one for a different flit coming from a different input port at the last AC

module of an output port of the modular switch.

3.2.4 Advantages and Disadvantages of the Design

The modular switch design requires additional resources when compared to the

canonical switch design (will be seen later). In contrast, a higher operating

frequency will be obtained. Another penalty that this design presents is the

increment in metallizations (wiring) at the input side of the switch, where

each input port of the switch connects to all the output ports of the switch.

Note in Figure 3.2 that each input port is connected to all output ports.

That increment in wiring increases the power consumption of the switch at

the benefit of increasing the operating frequency. In the next chapter we will

propose a distributed floorplan strategy for the modular switch – unfeasible for

the canonical switch – which will decrease the power consumption of links, and
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hence, the overall network power consumption with respect to a conventional

floorplaning.

As it will be shown later, the modular switch presents two main advan-

tages. First, as each output port has its own buffer, modular switch buffering

resembles output queuing technique. Furthermore, an output port buffer is

distributed among its stages. Populating each stage with intermediate buffer-

ing allows the switch to increase its throughput. Additionally, the simplicity

of the switch when placed and routed, will enable a faster implementation

when compared to a simple canonical switch, as it will be shown later.

3.2.5 Flow Control

To fully decouple AC modules, a flow control protocol is designed between an

AC module and the upstream AC modules it is connected to. In this sense,

only two signals between two connected AC modules are enough (see Fig-

ure 3.7). An upstreamVALID signal comes from each upstream AC module

and means that the flit on its output is ready for the downstream AC module.

On the contrary, the downstreamFC signal travels in the opposite direction.

This signal, when set, indicates that the flit has been accepted by the down-

stream AC module. If the corresponding incoming downstreamFC signal is

inactive, it means that data flow control must be stopped, and hence, the AC

module stall its own flow control communication, and incoming flits must be

stored in the slave slots on the buffer.

Figure 3.8 shows an schematic of the flow control signalling that involves

an AC module with its upstream modules. The upstreamVALIDi signals are

taken by the arbiter module in order to decide which input accesses buffering

resources. The arbiter decision in addition to the local buffer status are used

to generate downstreamFCi signals. If the buffer is able to accept an incoming

flit, then the winner will have its downstreamFCi signal active, meanwhile the

rest of incoming inputs will have their downstreamFCi signals inactive. If the

buffer is full, all the downstreamFCi signals are set to zero. Figure 3.8 also

shows the complete path – marked line – that should be crossed by a flow

control signal. The path starts at the upstream AC module, travels down

to the proper AC module, crosses the arbiter, and returns up to the starting

point. Flow control signalling must cross the link twice in a cycle in order to
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Figure 3.7: Flow control signalling.

fulfil timing constraints, in contrast of the data path that only crosses the link

once. If no optimization is performed, the flow control signalling that crosses

two times the link sets the critical path of the whole switch.

Finally, the buffer status occupancy must be computed to generate the

proper downstreamFCi signals. Figure 3.9 shows how this info is retrieved.

When one slot is available – penultimate slot is full – and the incoming down-

streamFC signal is inactive, means that the next cycle is the last one that the

buffer will be able to receive a flit until the data flow resumes. Notice that,

the downstreamFC signal just crosses an AND gate before being registered.

That means, that any downstream flow control signal involved crosses at most

one link.

Figure 3.10 shows how a message crosses an AC module when there is

no contention (see Figure 3.10(a)), and when there is contention (see Fig-

ure 3.10(b)). data in 1 signal refers to the first input port of the AC module

(see Figure 3.4). If data in 1 signal has a valid flit, the upstreamVALID1 signal

(see Figure 3.7) is set. In this example, only this input is receiving incoming

flits. Note that buffer size has been set to two and the occupancy of each slot is
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Figure 3.8: Flow control signalling generation.

Figure 3.9: Buffer state signal generation.

recorded by the signals buffer 0 and buffer 1. FC signals refer to flow control

signals. The downstreamFC is the input flow control signal that comes from

the downstream AC module. When set to one it means the downstream AC

module is able to receive more flits. The downstreamFCi signals are the flow

control signal sent to the upstream AC modules connected through data in i

ports. As it can be seen in Figure 3.10(a), when no contention exists only a

single slot in the buffer is used. In this case, flow control signals are active

which means that communication flow is active. However, when the down-

streamFC signal gets inactive (see Figure 3.10(b)), communication flow stalls.

To avoid discarding flits flying on the link, the second slot on the AC mod-

ule is used in this case. Additionally, downstreamFCi signals are recomputed,

and if necessary, propagate the Stall state to the upstream AC modules, thus

stopping the whole communication flow. When the downstreamFC signal is

deasserted, the AC module drains its flits one by one, and communication flow
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(a) Flit Transmission without contention.

(b) Flit transmission with contention.

Figure 3.10: Example of flow control operation between two AC modules.

resumes without introducing bubbles (see Figure 3.10(b)).

The downstreamFC and downstreamFCi signals are independent from each

other. The downstreamFCi signals are computed by using the local buffer

occupancy information and a registered version of the downstreamFC signal

(see Figure 3.9). In a two slot buffer, downstreamFCi signals are a one-cycle

delayed version of the downstreamFC signal. Decoupling both signals allows

any flow control signal to involve at most two adjacent AC modules, and

hence, any flow control signal may traverse at most one link in one clock cycle.

Relaxing the delay constraint imposed to flow control signalling reduces the

impact of the flow control into the whole network critical path.

The use of local flow control mechanisms reduces the communication over-

head. That is, an AC module only requires to communicate with its connected

AC modules. Another important benefit is the reduction of the critical path

of the whole network. The flow control mechanism resembles the one previ-

ously used in [62–64, 88]. In that work, flow control signals allow messages

to cross a synchronous network resembling asynchronous networks, by imple-

menting a handshake protocol between adjacent stages. Then, flits cross the
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network by using an asynchronous communication protocol but clock signal is

not removed keeping the network synchronous which reinforces communication

between modules.

In this flow control scheme, the storing capacity of the AC module can

be set to any value at design time. However, if the buffer size (slot) of the

AC module is lower than two, the round-trip-time constraint between modules

cannot be met and, hence, there is no possibility to transmit consecutive flits

without introducing bubbles, and thus impacting performance. Setting buffer

size equal to two ensures minimum buffer size with no data loss [89]. By

increasing the buffering resources the network throughput will increase at the

cost of increasing the modular switch area and power consumption.

3.2.6 AC Module Radix Comparison

The AC module design can be parametrized by its radix (the number of in-

put ports). Both area and delay depend on the AC radix. Also, the pipeline

depth of the modular switch will vary accordingly. In this section, we an-

alyze how area and delay are affected by the AC radix. Later we analyze

the impact on performance (taking into account the pipeline depth). For this

analysis, AC modules with different radices have been synthesized using the

45nm technology open source Nangate [90] with Synopsys DC [91]. The poste-

rior Place&Route has been made with the Cadence Encounter tool [92]. From

the complete set of metallization layers – M1-M10 – available in this library,

only M1-M4 layers have been used to implement the logic of the AC modules.

The reason is that high metallization layers will be used in next chapters to

implement general purpose signals – supply signal and ground signal – or long

links.

Table 3.1 shows the area and the delay for an AC module with different

radices. The increment in area and delay of the different AC-x with respect

the AC-2 are also included. As expected, as the AC-radix increases, area and

delay increases as well. However, this increment is not linear. This is because

the buffering remains constant (we need only two buffer slots regardless of the

AC radix). Notice that, the radix increment does not modify the flow control

and buffer behaviour. That is, the same conclusion obtained in the previous

section is applied to AC modules with radix higher than two. However, as
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AC Radix Area (um2) Increment (%) Delay (ns) Increment (%)

2 2025 0.00 0.53 0.00

4 2704 33.53 0.65 22.64

8 3364 66.12 0.87 64.15

16 6084 200.44 1.08 103.77

Table 3.1: Area requirements and delay for different AC-radix modules. In-

crement with respect to AC-2 included.

the number of inputs increases the number of flow control signals increases

affecting the critical path of the AC module. Notice that, there exists an

upstreamVALIDi and a downstreamFCi signal that relates the AC module

with its connected upstream AC modules. Additionally, the multiplexer and

the arbiter are modified. Thus, an AC-16 module is only three times bigger

than an AC-2 module, despite it is able to handle eight times more inputs.

Similarly, the delay does not increase linearly. An AC-16 module is just two

times slower than an AC-2 module. Figure 3.11 shows the area and delay

breakdown of each component for different AC-radix modules.

As it can be seen in Figure 3.11(a) the main contributor to AC area is

the multiplexer. However, as the AC radix increases the complexity of the

arbiter increases, and hence, it requires more resources. On the other hand,

the area of the buffer remains almost constant as the buffering size only de-

pends on the flit size which is invariant with the AC radix. Similarly, the

delay related with buffering tasks remains almost unalterable as it deals with

charging/discharging a FIFO. On the other hand, multiplexing and arbitrat-

ing delay depends on the AC radix, because as the AC radix increases more

inputs must be handled.

3.3 Modular Switch Analysis

As each output port controller is independent and identical to the other output

port controllers, the critical path of an output port controller is equivalent to

the critical path of the entire switch. If we analyze the delay of the paths

of a switch, we observe that the critical path are those that interconnect
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(a) Area.

(b) Delay.

Figure 3.11: Area and delay for different AC module radices.

SWITCH SWITCH

LINK

Figure 3.12: Modular switch delay path.

two adjacent switches (see Figure 3.12). That is, the slowest path is the

one between two switches and the flow control logic that connects the two

AC modules each at a different switch. Identically to the canonical switch,

the delay of the modular switch is contributed by a combinational logic that

creates the signals and the wire delay to transmit those signals from one switch

to another.

In order to know such delays, a 5-port switch with AC-2 modules has been

implemented using the 45nm technology open source Nangate [90] with Synop-

sys DC. We have used M1-M4 metallization layers to perform the Place&Route

with Cadence Encounter. No link customization has been made, that is, the

Place&Route tool is responsible of implementing and optimizing the links, and

inserting the proper number and placement of the repeaters as necessary. We
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observe, after synthesizing the modular switch that the combinational delay

of the data path and the flow control path are almost identical. The minimum

combinational delay obtained by the synthesis tool for those paths is 0.65ns.

Then, the critical path (T) of a modular switch is

T = 0.65ns + link delay (3.1)

where the link delay depends on the topology chosen and the chip layout.

Figure 3.13 shows the critical path of the modular switch with AC-2 and AC-

4, and the canonical switch as a function of the link length. First, notice that

the modular switch delay with AC-2 is higher than the delay of a single AC-2

module shown in Table 3.1. The difference is due to the delay introduced by

the flow control signalling when two AC modules are connected. Similarly, the

delay of the modular switch with AC-4 is higher than the delay of the single

AC-4 module. Second, the modular switch with AC-2 has a lower critical

path than the rest of switches. The difference is maximum when link is short,

and hence link delay barely influences the switch critical path. Thus, when no

interswitch distance is considered, the modular switch with AC-2 has a critical

path 20% smaller than the canonical switch. As the link length increases, the

difference is reduced because link delay becomes the main factor in the whole

switch critical path. However, the modular switch with AC-2 has a critical

path 6.5% shorter than the canonical switch for interswitch distance of 2.4mm.

In contrast, the modular switch with AC-4 has a critical path that is much

close to the canonical switch critical path. It is only 3% shorter for link length

equal to zero, and no difference exists for larger link lengths.

Table 3.2 shows the area and delay when link length is zero1 of the mod-

ular switch with AC-2 and AC-4 modules as well as for the canonical switch.

As expected the modular switch consumes more resources. This is due to the

redundant resources that the modular switch requires to make each output

port independent. The increment in area rises up to 21% when the modular

switch is built with AC-2. In contrast, the modular switch with AC-4 reduces

the area overhead down to 6%. Note that, the increment in area when using

AC-2 is at the expense of reducing the critical path. When using AC-2 mod-

ules, the critical path is reduced by 20% meanwhile, it is reduced just by 3%

1This case allows to analyze the switch logic without considering the link influence.
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Figure 3.13: Modular switch delay.

Area (um2) Increment (%) Delay (ns) Increment (%)

Canonical 17651 — 0.75 —

Modular AC-2 22500 21.0 0.65 -13.3

Modular AC-4 16520 -6.0 0.73 -3.0

Table 3.2: Area requirements and latency by the modular and canonical switch

when link length is zero. Increment values with respect to the canonical switch

shown.

when using AC-4.

3.4 Network Performance with Synthetic traffic

In order to analyze the performance of a network, we have developed a cycle-

accurate network simulator, which is able to mimic the behaviour of the net-

work when implemented with canonical switches or with modular switches

with different AC radices. The simulator, called gMemNoCsim, is an event

cycle-accurate and flit-accurate simulator developed in C/C++. This simula-

tor has been used extensively during the last years within the group in different

conference and journal publications. The simulator allows three different kind

of evaluations: synthetic traffic patterns, coherence protocols with traces, and

coherence protocols with connection to a system-level application running on

top of the simulator (via GRAPHITE [93] simulation tool).
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The tile, for synthetic traffic, has been modeled as an ideal NIC that injects

messages into the network at a constant injection rate. Each NIC is made of

a single queue that stores the flits waiting to be transmitted. Three types

of traffic patterns have been used: uniform, bit-reversal, and bit-complement.

With uniform traffic, each end node has equal chances to become the target

of a newly generated message. With bit-reversal traffic, messages generated

by node coded in binary as bN−1bN−2 . . . b0 target node b0b1 . . . BN−1. With

bit-complement messages generated by a node target the node with the ID

resulting from complementing all the bits of the source ID node (e.g. node N-

1 targets node 0). Unless stated the contrary, flit size has been set to 64 bits.

Two message generation scenarios will be considered. First, an ideal scenario

where all messages are 1-flit long. In a second scenario, message generation

pattern has been created to model a real application traffic on CMPs. In this

scenario, there exist two messages sizes. Short 1-flit long messages (64 bits to

allocate mainly a 32-bit address, few bits for the coherence protocol command,

and the message header), and long 9-flit long messages (72 bytes to allocate

mainly a 32-bit address, a 64-byte line cache, some bits for the coherence

protocol command, and the message header). Short messages represent 70%

of messages injected.

Network performance is measured as the accepted traffic rate (flits per

cycle per node) and the average end-to-end flit latency. End-to-end latency is

measured as the time elapsed since the flit generation at the source node until

the reception at the destination node. In absence of contention, end-to-end

latency is equal to the network latency measured in switch-to-switch hops plus

two cycles (one cycle for flit injection and one cycle for flit extraction from

the network). For the canonical switch we model the 4-stage design (IB, RT,

VA, ST) with a buffer size of four and for the modular switch we model the

AC-based pipelined design. Networks have been warmed up by injecting 20000

messages, and results are collected after 200.000 messages are received. These

numbers for transient and permanent scenarios are typical and have been used

in previous research works.
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3.4.1 AC Radix Influence

The AC radix sets the network performance. First, the AC radix determines

the switch pipeline depth (see Section 3.2), and hence, network latency per

switch hop. Additionally, as each AC stage has its own buffer, modifying the

AC radix means changing in-network buffering resources and hence network

throughput will be affected. In this section, we compare network performance

of a modular switch with AC modules implemented with two ports (radix 2;

AC-2), and a modular switch with AC modules implemented with four ports

(radix 4; AC-4). In a 2D mesh with a switch radix of 5 (four switch-to-switch

ports and a local port), a modular switch with AC-2 has an output port depth

equal to two, meanwhile the modular switch with AC-4 has a output port

depth equal to one (the switch radix equals the AC radix, excluding U turns).

Figure 3.14 shows the average network latency measured in cycles and the

accepted traffic measured in flits/cycles/node for the modular switch with two

AC radices and for the three different traffic patterns. Network size is set to

64 nodes (8×8 mesh) and messages are one flit long. Dimension order routing

is used.

As it can be seen, as the AC radix increases the network zero-load latency

is smaller because the switch pipeline depth gets reduced. Notice that we are

obtaining cycle level results. Theoretically, the zero-load latency reduces to

half when increasing the AC radix from two to four (going from a depth of 2

AC-2 modules down to a single AC-4 module per switch output port). In prac-

tice, this reduction is smaller due to added and constant injection/extraction

delay. Another interesting observation is that network throughput is highly af-

fected for uniform traffic when increasing the AC radix. There are two reasons

that explain this behaviour. First, as the AC radix increases the buffering re-

sources of the modular switch decrease. Second, increasing the AC radix means

to increase the number of inputs that compete for a buffer, thus, contention

increases degrading the network throughput. Notice that, this worsening is

not noticeable for bit-reversal or bit-complement traffic patterns.

Now, we compare the canonical switch with the modular switch with AC-2

modules. Figures 3.15 and 3.16 show the network latency measured in cycles

and the accepted traffic measured in flits/cycles/node when message size is

set to one flit for the three synthetic traffic patterns. As done in the previous
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Figure 3.14: Cycle-level load-latency graph for a 64-node network built with

a modular switch with different AC radices. Messages are one flit long.

analysis, the switch operating frequency has not been taken into account to

analyze the strength of the modular switch. Network size is set to 16 (4 × 4

mesh) and 64 (8 × 8 mesh) nodes. Notice that a flit requires two cycles to

cross the modular switch but five to cross the canonical switch – four to cross

the switch and one to cross the link. Thus, the modular switch has a lower

zero-load latency. Although a more advanced switch can be engineered with

lower number of pipeline stages, notice that, the aim of this chapter is not

to present a switch that overcomes the canonical switch but a switch which

has the same functionality than the canonical switch, and it is designed to be

optimally placed along the chip, as it will be shown in next chapters.

Significant differences are obtained when focusing on the network through-

put. Figure 3.15 shows that the modular switch has a higher network through-

put than the canonical switch. This is due to the distributed buffering along

the switch stages that reduces message contention. That is, the canonical

switch has a single buffer per input port which compete for the output re-

sources with the rest of buffers. If one message of an input port losses an

output port grant, no messages from this buffer will leave the switch. On the

contrary, the modular switch spreads the buffering resources along the stages.

Thus, messages get more chances to advance through the network, thus, im-

proving the network efficiency. This improvement in network throughput does

not depend, however, on the traffic pattern used. For a 16-node network, the

increment in throughput is, at most, 20% – for uniform traffic. As network

size increases, differences increase a bit. For a 64-node network, the increment

in throughput grows up to 26%.
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Figure 3.15: Load-latency graph for a 16-node network built with the modular

and the canonical switch. Messages are one flit long.
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Figure 3.16: Load-latency graph for a 64-node network built with the modular

and the canonical switch. Messages are one flit long.

When traffic configuration is stressed differences are even higher. Fig-

ures 3.17 and 3.18 show the achieved performance for a 16- and a 64-node

network, respectively, when short and long messages are considered (bimodal

traffic). For a 64-node network the throughput increment of the modular

switch is almost 38% when uniform traffic is considered. On the contrary, for

non-uniform traffic patterns, the modular switch achieves lower throughput

benefits.

The previous results do not consider implementation issues, and thus, oper-

ating frequencies. Figures 3.19 and 3.20 show the same results but now latency

is measured in nanoseconds and accepted traffic in flits/nanoseconds/node for

16- and 64-node networks, respectively. As it can be seen, the modular switch

presents now much lower network latency and much higher throughput. To

the intrinsic benefits of using the modular switch – higher throughput due

to its distributed buffering – its higher operating frequency implies that the
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Figure 3.17: Cycle-level load-latency graph for a 16-node network built with

the modular and the canonical switch. Bimodal traffic: 70% 1-flit messages

and 30% 9-flit messages.
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Figure 3.18: Cycle-level load-latency graph for a 64-node network built with

the modular and the canonical switch. Bimodal traffic: 70% 1-flit messages

and 30% 9-flit messages.

modular switch increases its goodness with respect to the slower canonical

switch. For the uniform traffic, throughput is increased up to 47% and 60%

for 16- and 64-node networks, respectively, meanwhile latencies are reduced

up to 51% and 65%, respectively.

3.5 Application Performance and Power Consump-

tion

Now, we analyze the network power consumption when running parallel appli-

cations on top of the CMP system. Different SPLASH-2 applications have been

run in a 16-core CMP system using the GRAPHITE Simulator [93]. gMem-

NoCsim simulator has been coupled with GRAPHITE to model a 2D mesh
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(c) Bit-complement.

Figure 3.19: Time-level load-latency graph for a 16-node network built with

the modular and the canonical switch. Messages are one flit long.
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(b) Bit-reversal.
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Figure 3.20: Time-level load-latency graph for a 64-node network built with

the modular and the canonical switch. Messages are one flit long.

when using, both, the AC-2 modular approach and the canonical approach.

Additionally, a coherence layer models a regular MOESI invalidation-based

coherence protocol. To avoid protocol-level deadlocks we assume parallel (vir-

tual) networks, as done in the Tilera chip. Notice that using parallel networks

instead of virtual channels keeps the critical path of the network unalterable.

The configuration of the CMP system is summarized in Table 3.3.

Figure 3.21 shows execution time of applications, normalized to the canon-

ical when running different SPLASH-2 application with both switch designs.

As expected, execution time of applications when using the modular switch

is significantly lower. As the traffic generated by SPLASH-2 applications is

low, the main contribution to the reduction in execution time comes by the

fact that the modular switch reduces the number of cycles a flit needs to tra-

verse the network (two hops per switch instead of four hops per switch with

the canonical approach). Notice that these differences could be much lower if
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Parameter Values

CMP 16 cores, tiled organization, Distributed Shared Memory

Cores x86 Architecture, Area 2.4mm2, in-order, single thread

L1 inst cache private, 64KB, 4-way

L1 data cache private, 64KB, 4-way

L2 cache shared, 512KB per tile, 16-way

Messages Short messages: 1-flit long. Long Messages: 9-flit long

Table 3.3: CMP configuration.

Figure 3.21: Execution time when running different SPLASH-2 applications

with a modular and canonical switches.

compared to an optimized switch with less stages.

However, by running real traffic an interesting conclusion is revealed. A

network implemented with modular switches significantly reduces the energy

consumption despite its larger buffering requirements. Figure 3.22 shows the

energy required due to links and switches when implementing a 16-node net-

work with a modular switch and a canonical switch. Energy of each network

component has been measured over the synthesised, place&route switches by

using Power Compiler by Synopsys [94]. The energy is decomposed in two

terms, the static energy due to the leakage power, and the dynamic energy

which is caused by the flits crossing the network. As it can be seen, the static

energy is a small fraction of the whole network energy, and hence, despite

that the modular switch increases the network resources, that increment does

not highly affect the total energy consumption. In contrast, as the modular

switch reduces the contention of the network due to its distributed buffering,

the energy needed by a flit to cross the network is highly reduced.
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Figure 3.22: Energy consumed by network implemented with modular and

canonical switches when running different SPLASH-2 applications.

3.6 Reliability Analysis

To conclude this chapter, focused on the AC-module-based design, we want

to focus the attention now on the reliability offerings of such design approach.

Now, in this section we analyze the robustness of the modular switch archi-

tecture against the new challenges imposed by the nanoscale manufacturing

scenario. Concretely, we analyze the fault-tolerance robustness of the pro-

posed architecture. Notice that this fact is not a central contribution of the

thesis. However, the extra redundancy of the modular switch design allows for

a certain level of fault tolerance that is not naturally available in the canonical

switch design.

We compare fault-tolerant benefits of the modular design against the canon-

ical switch architecture. For that purpose, we assume both switches to be

composed as a sum of transistors. Additionally, each transistor has a failure

probability (TFP). Based on this assumption, any sub-block of a switch has a

probability of a permanent fault (Ri) given by:

Ri = 1 − e−TFP∗Ni (3.2)

where Ni is the number of transistors in that sub-block. Transistor count is

computed by dividing the area of a sub-block by the area of the 2-input NAND

gate in Nangate Open Source Library [90] to obtain an approximate gate count.

The transistor count of the sub-block was calculated from the gate count. This



74 Chapter 3. Modular Switch

Figure 3.23: Fault tolerance of the modular switch.

methodology is based on the assumption that the density of transistors per

unit area is roughly homogeneous and the same across the chip. By assuming

this scenario, each transistor has a failure probability that does not depend on

its location. From this analysis we have that the switch architecture with more

transistors is more prone to manufacturing defects. Therefore, the probability

of having a failure in the modular architecture is higher as the modular switch

presents a larger transistor count than the canonical switch.

However, as the modular switch includes redundant resources (see Fig-

ure 3.23) its architecture presents inherent fault-tolerance. In this sense, some

errors can be tolerated by the modular architecture despite the presence of fail-

ures at the port of the switch. Figure 3.23 shows a modular switch schematic

where some failures reduce switch functionality but some ports still work. As

it can be seen, north and south ports suffer some failures in the AC and RC

modules of the second stage, and hence, the whole output ports get inactive.

In contrast, output ports to local and west present some failures at the first

stage, and the link to access to the west output port, respectively. However,

both ports can still be operated, although not providing full service.

Figure 3.24 shows the probability of having a given number of ports work-

ing for two different failure rates, (TFP =10−4 and FTP=10−5). The modu-

lar switch architecture presents a more robust behaviour than the canonical

switch. Note that, the canonical switch presents, for high values of TFP, a
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Figure 3.24: Probability of having different number of ports working for dif-

ferent switch designs.

high probability failure for the whole switch (no ports working). This proba-

bility is close to 0.8 meanwhile the probability that any port of the modular

switch works remains lower at 0.3. The canonical switch relies on the use of

single centralized modules as the crossbar and the arbitration modules. Those

modules are shared amongst all the input/output ports, and hence, whenever

the crossbar or the switch arbitration module fails, the whole switch fails. In

contrast, any output port of the modular switch is independent of the rest

of ports, and hence, failures affecting a given output port, do not affect the

remaining ports of the switch. This redundancy makes the modular switch

more robust against transistor errors than a canonical switch. For a low tran-

sistor failure rate (see Figure 3.24(b)) the probability of a correct operation is

0.48 for the modular switch and 0.4 for the canonical switch. In addition, the

probability of a total failure is negligible for the modular switch, meanwhile

the canonical switch has a probability larger than 0.1 to fail the whole switch.

Despite the fact that the modular switch has this unexplored redundancies and

fault-tolerant properties, in this thesis we pursue performance and implemen-

tation efficiency, thus leaving for future work the fault-tolerance properties of

the modular switch design.
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3.7 Conclusions

In this chapter we have introduced the modular switch design, which will be

used and exploited as the baseline design for the rest of the chapters. The

main property of the modular switch is that is mainly formed of simple AC

modules. Any AC module is independent and it is able to perform all the

switch tasks needed, that is, buffering, arbitration, and switch traversal.

The modular switch design allows for higher operating frequencies when

implemented, thus exhibiting higher throughput and lower latency values. In

addition, redundancy within the design allows for higher fault-tolerant degrees.

In the next chapter we deal with the floorplan of the AC modules in order

to make a distributed and optimum placement, thus maximizing the benefits

of the design. Notice that this distribution is not possible in a centralized

switch design (as the one imposed by a canonical switch design).
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Distributed Switch

In this chapter, we present a new switch architecture that optimizes the phys-

ical implementation of the modular switch in different scenarios as FPGAs or

ASICs. We refer to this novel switch architecture as the distributed switch. In

this chapter, we will focus on 2D meshes for the sake of clarity.

On ASICs, the distributed switch moves the circuitry of the switch along

the link in contrast to a conventional floorplan where the entire switch is placed

in a single bounded area. In our distributed switch, in contrast, the switch

and the link are glued. Packets are buffered, routed, and forwarded at

the same time they are crossing the link. By properly placing the AC

modules, maximum link length (between logic blocks) is reduced, reducing the

whole network critical path and power consumption.

On FPGAs, the distributed switch is properly placed by guiding the map-

ping tool which is the responsible of allocating the network into the FPGA

resources. In this scenario, the distributed switch divides each AC module into

single bits, and then, each AC module bit is placed on a pre-build logic block of

the FPGA. Using the logic blocks as buffering resources removes the necessity

of using the slower SRAM blocks of the FPGA. Thus, the distributed switch

allows the FPGA to reach higher operating frequencies meanwhile optimizing

resources.

The distributed switch can be seen as an elastic switch. When using the

distributed switch, each pipelined stage of the communication between two

nodes is independent of the rest of the network. Additionally, each stage

77
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communicates with its previous connected stages and its next stage, allowing

a local communication that allows flits to cross the network step-by-step by

using local information at each stage.

4.1 Distributed Switch

The modular switch design presented in the previous chapter has an interesting

property. Each output port has its own circuitry that is independent from the

circuitry of the rest of output ports (see Figure 3.2). This property allows the

modular switch to be distributed over the links while keeping the connectivity

of the switch with its neighbours, that is, it allows to spread the circuitry

of each output port controller of the switch along the link that connects that

output port circuitry with the adjacent switch. Figure 4.1 shows the spreading

of the output port circuitry of the switch along the link. Note that each of

the stages of the output port controller is placed at half the length of the link

connecting to the adjacent switch. For the sake of clarity, the RC module has

been omitted. However, in order to reduce wire redundancy, the RC module

is computed in parallel with the second stage.

There are several benefits of distributing the switch over the link. First,

the maximum operating frequency can be increased. As it has been seen in the

previous chapter, the critical path of a switch is highly related with the link

delay, and this delay depends on the link length. Distributing the switch over

the link, allows to convert an interswitch link in several smaller sublinks, and

hence reducing the critical path, increasing the maximum operating frequency.

Second, power consumption is reduced without increasing the delay of the

communication between switches. That is, distributing the switch over the

link forces the link to be pipelined (distributed link). However, the pipeline

of the distributed link is not only introduced to minimize power consumption

but to perform the switching tasks. Pipelining the link minimizes the delay

constraints of the link. Then, power consumption of the link is reduced. Thus,

interconnects can be designed reducing the power consumption meanwhile the

pipeline of a message is not increased.

The third benefit of distributing the switch over the link is that any stage of

the pipelined switch is connected to a fragment of the link (sublink). Thus, the
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effects of process variation over the pipelined switch can be easily minimized,

as shown in [95]. In [95] a simple technique to reduce the process variation

effects of the switch was presented. Basically, any performance variation in the

switch is compensated by making the link faster, which is a simple and well-

known technique. However, this technique could not be used inside a pipelined

switch [96]. In a distributed switch, any stage of the switch is connected to

a sublink and, therefore, any process variation of any pipeline stage of the

switch can be compensated by the sublink that is connected to.

(a) Modular output port. (b) Distributed output port.

Figure 4.1: Output port controller for a modular switch and a distributed

switch.

Distributing the switch over the link may have a negative consequence,

the number of wires between some AC modules increases. Remember that

in the modular switch, any input port is connected to all the output port

controllers inside the switch. In the distributed switch, this interconnection

becomes longer because AC stages are separated from each other. This effect

can be seen in Figure 4.2. The figure shows the connectivity between two

modular switches and its equivalent distributed link. While a typical link has

a length of L plus the length of the wire inside the switch (negligible), the

distributed switch presents six smaller links of length L/2, accounting for a

total of 3L routed wires per distributed link. Then, a distributed link, presents

three times more routed wires than the equivalent centralized link. Despite the
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increment in routed wires, the length reduction of each sublink in a distributed

link will reduce the delay constraint of these sublinks and then, reducing the

total power consumption of the distributed link.

(a) Link between adjacent modular

switches.

L/2L/2 L/2L/2

INCREMENTED ROUTED

      WIRES

(b) Equivalent distributed link.

Figure 4.2: Link scheme for both scenarios a modular switch and a distributed

switch designs.

The negative effect of these longer wires is minimized by using higher met-

allization layers, achieving low power consumption (see Section 4.1.3). This is

the case of the distributed switch. In contrast, in the modular switch, the dis-

tances between internal AC modules are shorter as they are inside the switch

area and, hence, they are routed by using lower metallization layers which

have worse properties, and hence, higher power consumption numbers.

Figure 4.3(a) shows the floorplan of a 3x3 2D-mesh with standard (mod-

ular) switches. Note that, each modular switch is constrained to a bounded

area, equidistant to other switches. Figure 4.3(b) shows the floorplan of a 3x3

2D-mesh when distributed switches are implemented. Interconnection wires

have been omitted for clarity. Note that, the AC modules of the different

distributed switches are spread on the die. AC modules connected between

them are placed at distance L/2. AC modules grouped by a shaded area build

a distributed link, as shown in Figure 4.2(b).

The critical path of this switch can be computed in the same way as the

critical path of the modular switch. The combinational logic delay of the
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(a) Floorplan with standard switches. (b) Floorplan with distributed switches.

Figure 4.3: Floorplan of a 2D mesh with standard and distributed switches.

distributed switch is identical to the combinational logic of the modular switch

and therefore the delay of the combinational part of the critical path remains

identical. However, remember that for the distributed switch the link length

is half the length of the modular switch link. The length reduction of the

distributed switch sublinks allows the designer to reduce the link delay fixing

the same link delay for both approaches, the distributed sublink consumes less

power than the modular link. Then, identically to the modular switch, the

critical path of the distributed switch can be computed as

T = 0.60ns + link delay (4.1)

4.1.1 Reducing Power Consumption

The main disadvantage of the distributed switch is the higher number of wires,

that increases the leakage power consumption of the switch. To minimize

leakage we can switch off or remove some sublinks based on the applied routing

algorithm. Indeed, the XY algorithm avoids any YX transition. Therefore,

only two ports may compete for an X output port: the local port and the

west input port for the east output port, and the local port and the east port

for the west output port. By leveraging the XY routing algorithm, we can
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remove half of the links in the X direction. Figure 4.4 shows a distributed

link where half of the wires have been removed in order to reduce the leakage

power consumption.

This technique can also be applied to the modular switch. However, it

only affects to logic modules inside the switch area rather than along the link.

Thus, the benefit of applying this technique in the modular switch is much

lower.

Figure 4.4: Removing intra switch sublinks when using XY to minimize power

consumption.

4.1.2 Distributed Switch With Spread Buffers

As mentioned in Chapter 3 the minimum buffer requirements for a proper

communication flow is set to two slots per AC module. However, we can take

further advantage of these buffers. Figure 4.5 shows a distributed switch with

spread buffers (DSB switch). In a DSB switch, the logic of the AC modules

remains unchanged. In contrast, the buffer slots of the different AC modules

are evenly spaced. In order to prevent bubbles from being introduced, the flow

control remains untouched and relates to AC modules. From a behavioural

point of view, each AC module still has two buffer slots (one inside the AC

module and one in between two AC modules). That distance can be computed

as L/N , where L is the total length of the wire and N the total number of

buffer slots of a distributed switch path. Figure 4.5 shows a distributed link

with spread buffers (DSB link) with four buffer slots (two per AC module). In

Figure 4.5, each AC module has one buffer slot, while the second buffer slot
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is shifted at a distance of L/4. Therefore, all the buffer slots are from each

other at a distance of L/4.

In a DSB link, the buffer properties described in the previous section still

hold, that is, if there exists no contention, the delay of the link is only two

cycles (one cycle per stage). If the link blocks due to contention, then the

extra slots (one per stage) are used, increasing the delay of the link up to four.

To keep the buffer behaviour, it is necessary to duplicate the number of wires

over the link as it can be seen in Figure 4.5, because internal wires between

slots became wires. There is no extra logic inserted and hence the operating

frequency of the switch remains identical.

AC

AC D Q

L/4L/4

AC D Q

L/2

D Q

L/4 L/4

D Q

D Q

D Q

L/2

Figure 4.5: Distributed with spread buffers switch.

4.1.3 Wire Design

The proper placement and route of the components of a NoC is critical to

obtain good performance. In particular, designing the links of a NoC is deter-

minant. In fact, Placement&Route tools as Encounter by Cadence, are able

to optimize the wires that interconnect different logic blocks. However, it is

possible to design links manually, in order to minimize some parameter con-

straints as power or delay. In this section we describe the design of the wire

between switches to minimize power consumption for both scenarios: when

modular switches are used, and when distributed switches are implemented.

Wire delay has been set to the maximum value that allows to match the

operating frequency of the switch to 1 GHz (see Equation 4.1) for both the
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Figure 4.6: Diagram of a repeated wire composed of three sections

modular (or standard) switch and the distributed switch. That is, for the

modular switch wire delay has been set to 0.35ns, meanwhile for the distributed

switch has been set to 0.40ns. In contrast, wire length differs from one switch

design to the other. Wire length for the modular switch is set to 2.4mm

identically to the experimental scenario analyzed in the previous chapter. For

the distributed switch, although the tile is identical, wire configuration is

different and, therefore, in practice wire length is divided by two, being 1.2mm

(see Section 4.1). We do not take into account switch area in any of both

designs.

We insert repeaters along the wire when needed [15]. This method reduces

interconnect delay and signal transition times. Figure 4.6 shows a wire with

three inserted repeaters. Each segment of the wire is represented by a resistor

and a capacitor that model the resistance and the capacitance of this segment

of the wire, respectively. In our case, we have modelled the wire by using

the 5-pi wire model [97]. As in the design of the switch, repeaters have been

designed by using the Nangate 45nm technology library, as stated in [90]. This

technology sets the supply voltage to 1.1V, and the electrical and physical

parameters of the different metallizations available which are used to route

the wires. MOS transistors used for the repeaters follow the properties of the

PTM model for 45nm [98].

We use the higher metallization layers offered by the technology (M7-M8)

to route the interconnection wires. This decision has been made because

of two reasons. First, because the resistance of higher metallization layers

is lower and, hence, the power consumption is lower. Second, the use of

high metallization layers for switch interconnects allows the designer to use

lower metallization layers for other purposes, as SRAM. By using the higher

metallization layers for the interconnecting wires, it is possible to route wires
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between switches over functional modules as SRAM [1,77], that is, route wires

without using dedicated area for them. The repeaters inserted along a wire

use the same type of resources as other functional blocks as for example the

logic of the switches or the SRAM. Then, the repeaters inserted along a wire

occupy some dedicated area that must be taken into account. Table 4.1 shows

a summary of the parameters used to design the wires between switches.

Technode (nm) 45

Wire latency (ns) 0.35/0.40

Vdd (V) 1.1

Wire Width (um) 0.8

Wire Space (um) 0.8

M7-M8 Resistance (Ω / mm) 300

M7-M8 Capacitance (fF / mm) 190

Table 4.1: Physical and electrical data for 45nm NoC wires

In order to minimize the power consumption of a wire, it is necessary

to insert the proper number of minimum sized repeaters [76] that satisfies

the delay constraint imposed by the operating frequency of the switch. This

technique is called power-optimal repeater insertion [76]. Table 4.2 shows

the number and size1 of the repeaters of a wire for different wire lengths,

when using the optimal repeater insertion technique together with the wire

parameters showed in Table 4.1. As can be seen, shorter wires require much

smaller repeaters, thus consuming less power. This is the reason why the

redundancy in wires for the distributed switch is compensated by the reduction

in power consumption of each fragment of the wire.

Wire Length 2.4 1.2 0.6

Number of repeaters 7 6 3

Size of the repeaters 15 6 6

Table 4.2: Number and size of the repeaters of a wire.

1The size or gain of a repeater is the relation between the width and length of the

transistors channel.
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4.2 Distributed Switch Analysis

Now, we focus on the analysis of the distributed switch, compared to the

modular switch. First, we perform an analysis of the link delay, then the area

requirements, power consumption, and finally, variability and fault-tolerance.

4.2.1 Link Delay vs Link Length

As it has been said in previous section, the critical path of the modular and

the distributed switch are identical. That is, the critical path has two main

components. The logic component fixed by the AC module, which is identical

in both switches, and the delay of the link, which is different (see Equation 4.1).

In this section, we analyze the maximum operating frequency – minimum

critical path – of the modular switch and the distributed switch. Figure 4.7(a)

shows the critical path of both switches as computed in Equation 4.1 with

respect to the intercore distance computed in millimetres (mm). The wire

length of the modular switch is equal to the intercore distance. In contrast,

the wire length of the distributed switch is half the distance of the intercore

distance. Figure 4.7(a) shows that for short wire lengths (lower than 0.5

mm), the critical path remains almost constant and equal for both switches.

However, for larger wire lengths, the critical path increases as the wire length

increases in both cases. However, the increment in the critical path is smaller

for the distributed switch. Figure 4.7(b) shows the reduction in percentage in

the critical path of the distributed switch with respect of the modular switch.

As it can be seen, there is no reduction for short wire lengths. In contrast,

as the wire length increases, the critical path of the distributed switch gets

smaller than the critical path of the modular switch. The reduction of the

critical path increases up to 53% for long intercore distances.

4.2.2 Area Results

Logic Area Results

In this section, we analyze the area of the modular and distributed switch.

Note that area results provided in this section do not include the link con-

necting different switches. Remember that both switches are identical from a
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Figure 4.7: Modular and distributed switch delay.

Area (um2)

Modular Switch 28356.72

Distributed Switch 24437.28

Table 4.3: Area occupied by a modular switch and a distributed switch

functional point of view, meaning that both switches provide the same out-

put response for an identical input stimuli. Then, there is no difference in

performance (at cycle level) when introducing both switches in a network.

Table 4.3 shows the area occupied by the logic for both switches. The

distributed switch occupies a 13.82% less area than the modular switch. The

main reason for the small difference is that the distributed switch presents a

simpler design that helps the synthesis tool to optimize the design. Further-

more, the are of the wires inside the modular switch connecting AC modules

is considered in the area numbers provided in the table. These wires, when

distributed are accounted in the area of the links.

Link Area Results

In this section, we discuss the different link area resources required by both

the modular switch and the distributed switch. In the area occupied by a link

two elements take part: the routed wires, and the repeaters inserted along

the link. As mentioned in previous sections, a modular link differs from a

distributed link in the number and size of repeaters and in the length of the
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routed wires. For a modular switch the total area required by wires is given

by

WireAreamodular = N ∗ (W + S) ∗ L (4.2)

where N is the width of the link (set to 66), W is the width of the wire (equal

to 0.0008mm), S is the interwire spacing (in our case is 0.0008mm), and L

is the length of the wire (equal to 2.4mm). Then, the area occupied by the

wires of a modular link is 0.2534mm2. On the other hand, the total routed

wire area of a distributed link can be calculated as

WireAreadistributed = N ∗ (W + S) ∗
L

2
∗ 6 (4.3)

The total area of the routed wires of the distributed link is equal to 0.7603mm2.

The area occupied by the wires of a distributed link is three times the area

occupied by the wires of a modular link (remember the 3L overhead mentioned

before). However, this increment in the routed wire area is not a major concern

because – as it is said in Section 4.1.3 – the wires of a link can be routed over

other functional blocks as SRAMs. Thus, routed link wires may not require

dedicated area.

Table 4.4 shows the area occupied by the repeaters inserted along the link

for a modular, distributed, distributed with half the links removed, and a DSB

link. As the number of sublinks increases in the distributed and DSB links,

the number of repeaters increases. As a consequence, area resources required

by distributed switches increase with respect to the modular switch. In fact,

the distributed link area is two times the modular link area. Furthermore, the

DSB link has three times more area than the distributed link. In contrast, the

distributed link when removing part of the links (X-improved) requires only

an 8.3% more area than the modular link.

Whole Switch Area Results

Table 4.5 shows whole switch area results for the different architectures pre-

sented. The area of the whole switch is calculated considering the area of

switch modules and the area of four links – link for the local port is con-

sidered inside the logic area of the switch. As shown, the distributed switch

architecture presents a 22% more area than the modular switch. The DSB
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Area (um2)

Modular link 2697.3

Distributed link 5845.32

X improved distributed link 2922.66

DSB link 12824.83

Table 4.4: Area occupied by the repeaters of a link

Area (um2)

Modular 39145

Distributed 47817

X improved distributed 41973

DSB 75733

Table 4.5: Area occupied by the whole switch

switch and DSB links area requirements are greater as the area of this switch

is practically twice (98%) the area of the modular switch. On the contrary, the

X-improved distributed switch occupies only 7.2% more area than the modular

switch.

Therefore, the distributed switch approach has an impact on area that

should not be overestimated. The benefits of this area overhead will come

true with the power consumption values shown in the next section.

4.2.3 Power Consumption

Switch Modules Power Consumption

Table 4.6 shows the total power consumption of a modular switch and its

equivalent distributed switch. The power consumption of the switch is broken

down in three components: internal power, switching power and leakage power.

The internal power consumption is due to the charging and discharging of the

parasitic capacitance of the cells of the switch. The switching power is due to

the charging and discharging of the load capacitance of the cells of the switch.

Finally, the leakage power is the power consumed by a logic cell when no

activity is registered. Table 4.6 shows also the clock tree power consumption.
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Power (mW) Internal Switching Leakage Clock tree Total

Modular 45.80 25.05 0.36 14.78 71.21

Distributed 42.20 20.25 0.30 12.05 62.7

Table 4.6: Power consumption of a modular and a distributed switch

The power consumption has been obtained using the Power Compiler tool

by Synopsis. Results show that the distributed switch has a lower power

consumption, obtaining a reduction of 11.95%. This saving in power is due to

the synthesis tool improvement due to the simplicity of the distributed switch

design. In the same way, the distributed switch achieves a remarkable power

reduction in the clock tree. Concretely, clock tree power consumption of the

modular switch is 14.78 mW, whereas the distributed switch clock tree power

is only 12.05 mW, representing a 18.47% of power reduction.

Note that despite part of the power consumption improvement achieved by

the distributed switch is a direct consequence of shifting some switch parts to

the link, the power of the distributed link does not increase as a consequence

of this, as described in next section.

Wire Power Consumption

In this section we analyze the power consumption of a single wire for different

wire lengths. The electrical and physical parameters of the wire are presented

in Section 4.1.3, and the link configuration – the number and size of repeaters

– is the same as explained in Section 4.1.3. Table 4.7 shows the power con-

sumption during a clock cycle for a single wire for different wire lengths. Power

consumption has been obtained using Cadence Virtuoso. In the same way as

electrical and physical parameters, power consumption of a wire depends on

the input signal. In the absence of signal transition, the wire only consumes

leakage power. In this case, the difference in power consumption, when the

input is set to 1.1V or it is set to 0V is small. In contrast, when a logic

input transition occurs, power consumption increases enormously due to the

contribution of the dynamic power. In fact, the leakage power consumption

is negligible with respect to the power consumption when an input transition

takes place. Table 4.7 also shows that as the length of the wire decreases, the
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Power Consumption (uW)

Wire length (mm) Input transition No input transition

2.4 358 0.800

1.2 152 0.350

0.6 69.3 0.162

Table 4.7: Power consumption in a clock cycle for different link lengths

power consumption of the wire decreases. In average, there exists a reduction

of 55% in power consumption when reducing the length of the wire by two.

Link Power Consumption

Wire power consumption values in Table 4.7 are used to compute the power

consumption of both the modular and the distributed link (see Section 4.1.3).

Define N as the total number of wires in a link. N is set to 66 (see Sec-

tion 4.1.3). Define Ps(l) the total power consumption during a clock cycle of

a single wire of length l when there is no input transition (third column in

Table 4.7). Define Py(l) the total power consumption during a clock cycle of a

wire of length l when there is an input transition (second column in Table 4.7).

The probability of an input signal transition depends on both the link

utilization (Lu) and the switching activity. Note, that the switching activity

(α) is defined as the average probability of bit transition when flits traverse

the link. Typical values of switching activity are in the range of 0.3− 0.5 [99].

Therefore, we define T as the probability that an input signal modifies its value.

This parameter takes into consideration both the probability of transmitting

a flit and the switching activity. Concretely, the value of T is given by T =

Lu ∗ α. Finally, the power consumption of a modular link (Pm) as defined in

Section 4.1.3 is:

Pm(T ) = N ∗ T ∗ Py(2.4mm) + N ∗ (1 − T ) ∗ Ps(2.4mm) (4.4)

The power consumption of the modular link has two terms. The first term

defines link dynamic power consumption, while the second term defines the

link static power consumption, that is, when no information is crossing the

link.
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To measure the power consumption of a distributed link (Pd), it is neces-

sary to remark that a distributed link is made of six sublinks of length 1.2mm.

Thus, when no information is crossing the link, the static power of the dis-

tributed link is the static power consumption of six sublinks of length 1.2mm.

In contrast, as mentioned before, the dynamic power consumption depends on

the number of flits that crosses the link (defined by the probability T ). As

shown in Figure 4.2, the distributed link is two stages long. Thus, any flit

that crosses a distributed link, will traverse two small sublinks. Therefore, by

assuming the same traffic rate as in the modular link (defined by probability

T ), the distributed link is traversed by a number of flits defined by 2∗T . Then,

the power consumption of a distributed link is:

Pd(T ) = N ∗ 2 ∗ T ∗ Py(1.2mm)+

N ∗ 2 ∗ (1 − T ) ∗ Ps(1.2mm) + N ∗ 4 ∗ Ps(1.2mm)
(4.5)

Figure 4.8 shows the average power consumption per clock cycle of a mod-

ular and a distributed link for different values of T . For high traffic rates

(high values of T), the distributed link consumes less power than the modu-

lar link. Concretely, for T = 1, the distributed link is able to save 3.47mW

per clock cycle (up to 14.68%). On the contrary, for low traffic rates (low

values of T), the higher number of routed wires in the distributed link causes

the distributed link to consume more power. However, when low traffic rate

is present in the network, the main contributor of the power consumption is

the leakage power of the link, which is negligible in comparison with the dy-

namic power consumption of those links (see Section 4.2.3). For T = 0 the

distributed link only consumes 138.6uW per clock cycle, while the modular

link only consumes 52.8uW. The difference then is only 85uW per clock cycle.

Anyway, for low link utilization rates, the different links over the network are

inactive. In these long inactivity periods, links can be turned off reducing its

power consumption to zero. In such network scenario, the link power con-

sumption is mainly defined by the dynamic power consumption of the link.

In that case the distributed link provides a power consumption decrement of

14.68%, which is the power consumption saving when only the dynamic power

consumption is taken into account (T = 1).
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Figure 4.8: Power consumption of a modular link and a distributed link.

In order to minimize the static power consumption of the distributed link

– when low link utilization rates exist – it is possible to turn off half the

distributed link in all the X links (see Section 4.1.1). In this case, where half

the wires are off, the power consumption is measured as:

Px(T ) = N ∗ 2 ∗ T ∗ Py(1.2mm)

+N ∗ 2 ∗ (1 − T ) ∗ Ps(1.2mm) + N ∗ Ps(1.2mm)
(4.6)

The power consumption of the distributed link with half the wires off is

identical to the power consumption of the distributed link for high link uti-

lization rates (T ). The difference in power consumption between both config-

urations is for low traffic rates. For low values of T , there is a reduction in the

power consumption. This decrement in power consumption is 50% of the static

power consumption, that is a decrement equal to 69.3uW for T = 0 which is

only 16.5uW higher than the static power consumption of the modular switch.

Distributed Switch with Spread Buffers Link Power

In Section 4.1.2 a DSB switch is presented. When no contention exists on the

link, flits cross the link using sublinks of length L/2 (non-congestion sublink).

However, when there exists contention on the link, flits traverse the link by

crossing sublinks of length L/4 (congestion sublink). Define C as the proba-

bility that a link is congested. Thus, the power consumption of a DSB link
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(Pb) is computed as

P c
b (T ) = N ∗ C ∗ (4 ∗ Py(0.6mm) + 8 ∗ Ps(0.6mm)+

N ∗ 6 ∗ Ps(1.2mm)) + N ∗ (1 − C) ∗ (12 ∗ Ps(0.6mm) + Pd(T ))
(4.7)

Note that in the absence of congestion (C = 0), the power consumption of

the DSB link is higher than the power consumption of the distributed switch.

This happens because the leakage power of the twelve sublinks of length L/4

take part. This difference can be reduced by turning off the congestion sublink

in the absence of congestion. Similarly, if there exists congestion, it is possible

to turn off the non-congestion sublink. Thus, the power consumption of the

DSB switch is

P c
b (T ) = N ∗ C ∗ N ∗ (4 ∗ Py(0.6mm)+

N ∗ 8 ∗ Ps(0.6mm)) + N ∗ (1 − C) ∗ (Pd(T ))
(4.8)

Similarly, the power consumption of the modular link and the distributed

link can be computed as a function of the congestion. In this case, the power

consumption of the modular switch is

P c
m = N ∗ C ∗ Pm(T = 1) + N ∗ (1 − C) ∗ Pm(T ) (4.9)

and the power consumption of the distributed switch is

P c
d = N ∗ C ∗ Pd(T = 1) + N ∗ (1 − C) ∗ Pd(T ) (4.10)

Figure 4.9 shows the average power consumption per clock cycle of a mod-

ular, distributed, and DSB link as a function of T . The figure shows link

power consumption for three values of the congestion C parameter: when no

congestion exists (C = 0), when half the time the link is congested (C = 0.5),

and when the link is congested all the time (C = 1). Note that as conges-

tion increases, the DSB switch has lower power consumption than the mod-

ular switch and the distributed switch. For C = 1, the DSB link consumes

19.31mW per clock cycle. That is a reduction of 0.75mW per clock cycle

(3.78%) with respect to the distributed link, and a reduction in power con-

sumption of 4.32mW (18.27%) with respect to the modular link. When no

congestion is present (C = 0), the power consumption of the DSB link is

identical to the distributed link.
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(a) non congested link (C=0).
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Figure 4.9: Power consumption of a modular, distributed, and a DSB switch.

Parameter Values

CMP 16 cores, tiled organization, Distributed Shared Memory

Cores x86 Architecture, Area 2.4mm2, in-order, single thread

L1 inst cache private, 64KB, 4-way

L1 data cache private, 64KB, 4-way

L2 cache shared, 512KB, 16-way

Table 4.8: CMP configuration.

Application Power Consumption

In this section we analyze the energy results of two networks, a 4 × 4 2D-

mesh implemented with modular switches, and a 4× 4 2D-mesh implemented

with distributed switches when running parallel applications on the CMP sys-

tem. Different SPLASH-2 applications have been run in a 16-core modelled

CMP system using GRAPHITE Simulator [93]. On top of the simulator,

a detailed network simulator has been coupled to model the different net-

work architectures. Additionally, a coherence layer models a typical MOESI

invalidation-based coherence protocol. The configuration of the CMP system

is summarized in Table 4.8. Remark that as the operating frequency of the

switches is not considered, no differences in the execution time are obtained.

Figure 4.10 shows the network energy results for the different benchmarks.

Figure 4.10(a) shows the network energy detailed as the sum of the link energy

and the logic energy. In contrast, Figure 4.10(b) shows the network energy

detailed as the sum of the static energy – due to the leakage power consump-

tion – and the dynamic energy, due to the flits crossing the network. In any
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(a) Logic and link network energy.

(b) Dynamic and static network energy.

Figure 4.10: Network Energy for different applications.

benchmark, results are normalized to the energy of the modular switch net-

work. The first conclusion that can be extracted from Figure 4.10 is that,

the distributed switch is most energy-efficient than the modular switch. This

efficiency grows, on average, up to 13%. This is due as the distributed switch

network reduces the link dynamic energy consumption which is the main com-

ponent of the network energy, compensating the increment of the link static

energy due to the increment in wires as described in the previous sections.

These conclusions can be seen in Figure 4.10. As it shows the links are the

components that consume more energy in the network. Its energy consump-

tion is up to 69%. Additionally, the dynamic energy consumption is the main

component of the network which represents up to 96%.
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Figure 4.11: Operating frequency of a modular switch and a distributed switch.

4.2.4 Operating Frequency vs. Peak Power Consumption

In previous sections, we have analysed how by reducing link length, the power

consumption of the distributed switch is reduced compared to the modular

switch. The same happens for the power consumption of the distributed link

over the power consumption of the modular link. Those results have been

obtained when both scenarios work at the same operating frequency in order to

allow a fair comparison. However, reducing link length has another important

benefit. When shortening the link, the minimum link delay – that sets the

total latency of the switch – can be reduced. That is, given a power budget,

the distributed link is able to work at higher frequencies.

Figure 4.11 shows the operating frequency of the distributed switch and

the modular switch. Note that, for the same operating frequency, the dis-

tributed switch consumes less power than the modular one. Furthermore, the

distributed switch is able to reach an operating frequency higher than the

modular switch. Concretely, the maximum operating frequency of the dis-

tributed switch is 1.65GHz, whereas the maximum operating frequency of the

modular switch is 1.44GHz or, in other words, the maximum frequency of the

distributed switch is 14.3% higher than that of the modular switch.
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(a) Baseline (b) After Compensation

Figure 4.12: Probability density function of the maximum achievable fre-

quency of switch architectures.

4.2.5 Variability Robustness

In this section we analyze the robustness of the proposed architecture against

process variations. To do so, we injected systematic front-end variations, ran-

dom front-end variations, and back-end variations in the canonical, the mod-

ular and the distributed switch architectures. For that purpose we used the

variability model presented in [96] to generate 500 instances of each design.

This model is able to accurately introduce variations into synthesized designs

enabling to characterize the impact of process variations in circuit timing. The

variability sources considered are: transistors channel length (σLeff
= 12%),

threshold voltage (3σVth
= 33%) and the metal thickness (3σt = 10%). These

values reflect expected variations for a 45nm technology node [100].

Figure 4.12 shows the probability density function of the maximum achiev-

able frequency for the canonical, the modular, and the distributed switch ar-

chitectures. On one hand, it is possible to see how variations affect similarly

the different designs (Figure 4.12(a)). This is explained by the fact that in all

cases the link is involved in the critical path of the design. As a consequence

of this, systematic variations caused similar effects to the components spread

across the link due to spatial correlation. Concretely, the measured variation

(σ/µ) – where µ is the free-variability operating frequency – for the canonical,

the modular, and the distributed switch, are 14.5%, 13.8%,and 16.4%, respec-

tively. These measurements show how the impact of parameter variations is

slightly greater in the distributed architecture. However, there exist several
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well known techniques that can be used to mitigate process variations [101].

Among the possible architectural solution to mitigate the impact of variations

we chose the one given in [95]. This technique, an adaptive supply voltage link

design, compensates the effect of variations in NoC performance by adjusting

the voltage of the link. In this way, this technique is suitable for compensat-

ing variations in the architectures we are analysing as in all cases the design

critical path is set by link delay. In order to analyze the ability of the differ-

ent architectures to compensate variations using such technique we increased

the link voltage of designs to 1.25V in those cases where the real operating

frequency is lower than the design operating frequency. Figure 4.12(b) shows

the maximum achievable frequency for the different architectures considered

after adjusting link voltage. As shown in this figure, when the supply voltage

of the link is increased more instances of the circuit are able to operate over

the target frequency.

4.2.6 Fault Tolerance

Figure 4.13 shows the behaviour of the modular and the distributed link

against a crosstalk noise, which is the main cause of a transient fault in a

link. The Figure 4.13 shows the probability of having a bit error in a modular

and a distributed link due to a crosstalk noise. The link error has been mea-

sured assuming the model developed in [102]. In this model, the noise error is

assumed to have a voltage Vn defined by a normal distribution with variance

σN . Then, the error probability of each single wire can be written as

ǫ = Q(
Vdd

2 ∗ σN

) (4.11)

where Q(x) is the Gaussian pulse. As it can be seen in Figure 4.13, the dis-

tributed link presents lower link error probability despite the increased num-

ber of wires. This is because a single wire in a distributed link is shorter, and

hence, it suffers less crosstalk noise [103]. Then, the distributed link is more

robust against transient errors than other longer links as those implemented

in a modular or canonical switch.
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Figure 4.13: Crosstalk-induced link error probability.

4.3 Leverage Distributed Switch to FPGA Environ-

ment

In this section now we turn our attention to FPGAs. FPGA platforms are

growing in terms of resources and capabilities. In recent years, researchers

have focused on the possibility of synthesising an entire multi-core system on

a FPGA, developing the concept of Network-on-FPGA. The first Network-

on-FPGA mimicked generic NoC designs without considering the own char-

acteristics of FPGAs [104]. In particular, the abundant number of wires and

the structure of the FPGA memory resources. First, current FPGAs present

abundant wiring resources, and even more important, long wires fulfilling de-

lay constraints are feasible. With respect to storage resources, FPGAs present

in general two kinds of possibilities. Using the FPGA logic to perform stor-

age functions or using some dedicated slower SRAM blocks. A non-optimized

network implementation can be seen in Figure 4.14(a). As it can be seen, a

switch is placed by the placement tool by collocating the buffering resources

onto the SRAM block which lead to slow network implementations.

In this scenario, the distributed switch concept can be extrapolated to

an FPGA environment to optimize the network implementation. Thus, the

FPGA distributed switch is a modular switch where each AC module is prop-

erly mapped bit-to-bit on the FPGA LUTs (see Figure 4.14(b)). The imme-

diate effect is that buffering can be optimally performed by LUTs removing

the necessity of using the SRAM blocks, and hence, the critical path length
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Figure 4.14: Canonical and distributed FPGA switches.

decreases. Thus, packets are buffered, routed, and forwarded at the same time

they are crossing the links of the network. The AC module suits perfectly to

the logic blocks of the FPGA, thus optimizing the use of FPGA resources.

To validate the benefits of the FPGA distributed switch we synthesized

and mapped the distributed and a canonical switch to a Virtex 5 FPGA chip.

For the synthesis, mapping, and placement & routing of the designs we used

the ISE 12.2 toolset of Xilinx. Table 4.9 shows the area measured in slices

and delay measured in nanoseconds of our distributed switch with a canonical

switch. The distributed switch is made of AC-2 modules. The canonical

switch described in the Appendix A has been modified to have a pipeline

depth equal to two. Two buffer sizes have been analyzed for the canonical

case. First, two slots per buffer which is the minimum buffering size to fulfil

the round trip time. Additionally, four buffer slots to equal the buffer resources

to the distributed switch. Independently of the buffer size, the input buffers

of the canonical switch are always mapped to distributed RAMs for better

area efficiency after appropriately constrained by the synthesis/mapping tool.

Both switches have five input/output ports. Finally, two datapaths widths

have been analyzed, flit size of 16 and 32 bits.

As it can be seen in Table 4.9, for small datapaths of 16 bits, the proposed

design requires the least amount of area, while in the case of 32 bits it is in

the middle between the area of the canonical design with 2 and 4 buffers per

input, respectively. Due to the small amount of logic in each distributed switch
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Flit= 16bits
Canonical Distributed

Area Delay Area Delay

2buf/input 321 6.7
272 2.7

4buf/input 343 6.9

Flit= 32bits
Canonical Distributed

Area Delay Area Delay

2buf/input 406 8.5
427 2.9

4buf/input 475 8.8

Table 4.9: The area in slices and the delay in nanoseconds of the canonical

and distributed switch.

pipeline stage, the critical path of the AC-based switch is 50% lower than the

critical path of the canonical switch. Notice that the optimized placement of

the distributed switch allows that despite the increment in the datapath the

distributed switch delay remains almost constant meanwhile the critical path

of the canonical switch strongly gets affected by the datapath widths.

4.4 Conclusions

In this chapter, a distributed switch for a 2D mesh architecture is presented.

The distributed switch architecture is suitable for different environments as

FPGAs or ASICs. In ASICs, the distributed switch moves the circuitry of

a typical switch along the link, reducing maximum link length, and hence,

reducing network critical path and power consumption. In an FPGA envi-

ronment, the distributed switch suits the circuitry of a conventional switch on

the fast logic blocks of the FPGA, removing the necessity of using the slowest

SRAM blocks. When the switch placement is optimized, FPGA operating

frequency is increased. In both cases, the performance improvement is at cost

of increasing the resources used. In ASIC environment, the number of links

inserted is increased. On FPGAs, the number of logic blocks used increases

too.

In the next chapter we reuse the distributed switch strategy in order to

implement high-radix architectures. By introducing the distributed switch on
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these high-radix architectures, the known overheads of high-radix switch/network

implementations are minimized or even removed. This is an additional dimen-

sion the distributed switch approach offers, which is fully exploited in the next

two chapters.
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Chapter 5

High-Radix Topologies

In this chapter, we leverage the distributed switch design to implement high-

radix topologies as the concentrated mesh (C-mesh) or the flattened butterfly

(FBF). We define a high-radix topology as the one using switches with more

than five ports.

Distributing the switch over the links minimizes the high-radix switch de-

sign drawbacks. First, as switches are modularized and spread over the link,

high-radix switch critical path is kept almost constant and independent of the

link length and switch radix. Additionally, traffic concentration is minimized

due to the distributed buffering of the distributed switch. Finally, infeasible

long links involving distant switches become naturally pipelined.

As the switch radix increases, more modules are needed. Increasing the

switch pipeline allows the designer to relax link restrictions increasing network

performance. Thus, the distributed switch benefits shown in the previous chap-

ter increase as the switch radix increases.

The aim of this chapter is to shown the behaviour of the high-radix topolo-

gies, and how the distributed switch approach, when applied, outperforms

conventional switch designs. However, high-radix topologies – despite they

overcome the commercially extended 2D mesh – do not provide the definitive

solution to NoCs. In the next chapter we will be more aggressive in the design

and will propose a single crossbar design.

105
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5.1 Topology Comparison

In this section we compare different topologies and show that there is no a

best configuration that overcomes the rest. Tables 5.1 and 5.2 show the main

properties for each 64-node network topology analyzed. We compare the con-

ventional 2D mesh network, a 4-ary 3-tree fat-tree network, the concentrated

mesh (C-mesh) network, and the 4-ary 3-flat flattened butterfly network1.

These topologies have been chosen as the most suitable ones for a 64-node

network, as analyzed in [7]. For the sake of comparison, we assume all the

topologies use switches implemented with AC modules in both cases, dis-

tributed over the links or placed at a bounded place. The effect of long links

in performance is omitted.2

Table 5.1 shows the resources required for each topology. The first four

columns show the number of switches, the switch degree, the number of ACs

per output port, and the total number of ACs in the network. The switch

degree determines the number of ACs per output port, and hence, the area of

each switch. The fifth column shows the normalized area with respect to the

2D mesh topology. The area of each architecture is related to the number of

ACs of each network. Note that, high radix topologies increase the area of a

switch but reduce the number of switches. This balance allows the 4-ary 3-tree

topology to have just an 11% more area and the C-mesh to have even a 10%

less (compared to the 2D mesh baseline). Note that, the flattened butterfly

topology presents an increment of 67% which should be taken into account.

The last two columns show the number of unidirectional links and the

maximum link length between switches as a function of the intercore distance

L. As it can be seen the 4-ary 3-flat and the C-mesh topologies reduce the

number of links due to their concentration property, that is, the number of

nodes connected to a switch (see Table 5.2). In contrast the fat-tree topology

increases the number of links. As important as the number of links is the

maximum link length. As the link length increases the delay of that link

increases, and hence, the overall network performance suffers. In this sense,

the flattened butterfly has the worst response, as its maximum link length is

1In this dissertation the flattened butterfly will be named as FBF.
2Note that any high-radix topology introduces longer links than the ones used in a

conventional 2D mesh.
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Switch ACs per ACs Number of Link

Sw degree output port total area links length

2D mesh 64 5 3 864 1 224 L

4-ary 3-tree 24 8 3/7 960 1.11 256 2L

4-ary 3-flat 16 10 11/15 1440 1.67 96 3L

C-mesh 16 8 7 784 0.90 48 L

Table 5.1: Area referred parameters for 64-end nodes for different topologies

implemented using the modular switch design.

Nodes BB BB Ejection Zero-load Switch

/Switch (flits/cycle) Rate latency (cycles) cycles

2D mesh 1 1 0.5 12 2

4-ary 3-tree 4 3 0.33 11.375 2/3

4-ary 3-flat 4 32 1 10.000 4

C-mesh 4 8 1 10.500 3

Table 5.2: High-level parameters for 64-end nodes for different topologies im-

plemented using the modular switch design.

three times the intercore distance. Some techniques have been proposed to

minimize the impact of long links [72].

First columns of Table 5.2 show the maximum number of nodes per switch,

the bisection bandwidth (BB), and the BB ejection rate for each architecture,

that is the ratio of messages that crosses the link. Those metrics are related

with the throughput of the network. As expected, the 4-ary 3-tree, and the

4-ary 3-flat network configurations exhibit the largest bisection bandwidth.

Theoretically, the bisection bandwidth obtained is enough for sustaining the

maximum traffic injection rate under uniform traffic distribution. However,

this is not necessarily always true, as shown in [27]. The reason behind this

is the traffic concentration that high-performance high-radix topologies suffer

(see nodes/switch column in Table 5.2). In addition, flow control, switching

and routing implementation in those topologies impacts the maximum achiev-

able throughput. This will be seen later.

Finally, Table 5.2 shows the average zero-load latency measured in cycles.

For the sake of comparison, switches have been modelled using AC modules,

and consequently switches with different port degrees present different pipeline
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depths. Switch pipeline depth is measured as log2(Switch Degree). As shown

in the table, the best zero-load latency result is achieved by the 4-ary 3-flat.

The reason behind this latency reduction is due to the optimum trade-off

between switch hop latency and the number of switches/crossbars crossed.

In summary, the results presented in Table 5.1 and 5.2 show that there

is not a suitable topology that overcomes the rest by looking its theoretical

parameters. The flattened butterfly (FBF) has a lower zero-load latency and

high throughput but suffers large penalty area. Additionally, this topology

increases the number and maximum length of links which will affect the real

performance –as it will be shown later. Similar problems present the 4-ary

3-tree topology. Its increment in area is lower than the flattened butterfly

but, on the contrary, it is not able to reach a zero-load latency as the flattened

butterfly achieves. Finally, the C-mesh topology is able to reduce the area

and latency of the 2D mesh network but it reduces the BB which in practice

means the throughput will be highly impacted. From now on, we will focus

on two high-radix topologies, Cmesh and the flattened butterfly topologies.

5.2 Distributed High-Radix Topologies

In this section, we extend the design philosophy described in previous chap-

ters and focus on implementing high-radix topologies as the C-mesh and the

flattened butterfly. To implement a distributed high-radix topology it is nec-

essary to leverage the previously described distributed switch. As told before,

the distributed switch is an output port sliced switch. Thus, implementing

a high-radix topology means to increase the number of independent output

ports. The increment of input/output ports can be due to the increment

in connectivity with other switches, as the flattened butterfly topology (see

chapter 2), or the increment in the number of end-nodes connected to a single

switch as the case of the C-mesh architecture (see chapter 2). By increasing

the number of input/output ports, the number of stages – and hence the num-

ber of AC modules – of a single output port controller will be increased. Then,

a high-radix distributed switch with N input/output ports has N − 1 output

port controllers attached to a single output port. Each output port controller

is a mesh of trees where each stage is buffered. Each stage is made of a sum
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(a) 4-to-1 output port controller. (b) 8-to-1 output port controller.

Figure 5.1: Output Port Controller.

of AC modules working in parallel (see Figure 5.1). Each AC module has M

input ports that define the AC module radix3.

Figure 5.1 shows the main modifications when leveraging the 4-to-1 dis-

tributed switch suitable for a 2D mesh to a 8-to-1 high-radix switch suitable

for a high-radix topology as for example the C-mesh. The AC module radix

is set to 2, an hence, in this case the number of stages is fixed by the equa-

tion S = log2 N . As it can be seen, the number of AC modules is increased,

increasing the area of the whole switch. In contrast, the critical path remains

almost unalterable with respect to N because stages are pipelined. Then, in-

dependently of N the critical path depends on a single AC module4. Note

that, the RC module remains at the last stage in order to minimize its impact.

A big concern arises when N is not divisible by two. Figure 5.2 shows

a 16-to-1 output port controller to just handle 10 input ports. Figure 5.2(a)

shows an asymmetric 16-to-1 output port controller, where 10 inputs are con-

centrated in the first 10 entries of the output port controller. By concentrating

the input port to the first input of the output port controller, some AC mod-

ules can be removed – crossed AC modules – to minimize area overhead. In

addition, some internal path unbalances occur. Note that, Inputs 8 and 9

cross the output port without conflicting their traffic with other inputs. That

3As analyzed in Chapters 3 and 4 it is possible to implement the distributed switch by

using AC modules of different degree. However, in this chapter we focus on the AC module

with degree 2.
4Some differences exist due to the synthesis tools inefficiencies when managing designs

of different size.
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(a) Asymmetric 10-to-1 output port con-

troller.

(b) Symmetric 16-to-1 output port con-

troller.

Figure 5.2: 16-to-1 output port controller to handle 10 input ports.

is, the fourth stage serves 50% of time to those inputs, meanwhile the rest

of time is offered amongst the rest of inputs. To minimize unfairness, input

signal reorganization can be done as shown in Figure 5.2(b). Notice that,

despite that only 10 inputs signals are considered, all the 16-to-1 output port

controller structure is required. In contrast, inputs are better balanced across

the output port controller. Some unfairness exist as some input – input 3 and

4, and input 5 and 6 – contend at the first stage with other inputs, meanwhile

the rest do not compete for resources until the second stage. However, traffic

from different inputs is better balanced at the expense of not minimizing any

buffering overhead.

Table 5.3 shows the maximum number of ports required in a network, its

corresponding number of stages in an output port controller, and the corre-

sponding number of AC modules per output port when comparing a C-mesh,

FBF and a conventional 2D mesh – no U-turns allowed. Notice that high-radix

architectures increase the number of ports with respect to the 2D-mesh. This

effect is due to the increment in the connectivity amongst switches – FBF – or

due to the increment in end nodes connected to a switch – C-mesh and FBF.

In this chapter, we assume that both topologies have 4 end nodes connected

to any switch. Implementing high-radix topologies with a modular switch as

described implies increasing the area of the switch (measured as a function of
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Topology Max. Ports Pipeline Depth AC modules per port

2D mesh 5 2 3

C-mesh 8 3 7

FBF 10 4 11/15

Table 5.3: Different topology parameters when implementing using a dis-

tributed switch.

the number of AC modules), and increasing the number of stages required to

cross a single switch. However, this increment in the switch latency will be

compensated by the reduction in the number of switches to cross, as it will

be shown later. Note that, the number of AC modules per output port in a

FBF architecture can take two values. This is due to the unbalance shown in

Figure 5.2.

Similarly to the results presented in the previous chapters, the network

critical path is fixed by the maximum link length between AC modules. As in

the previous chapters, the maximum link length between AC modules is fixed

by the maximum link length between switches divided by the number of stages

of the switch. Figure 5.3 shows the maximum link length between switches,

for the 2D mesh, the C-mesh, and a 64-node FBF topologies in a NoC where

each tile occupies a square area of size L × L. Remember that, the 2D mesh

and C-mesh link length between switches remains constant with the number

of nodes. As shown in Figure 5.3, the link length of the C-mesh doubles the

link length of the 2D mesh because the switch of the C-mesh handles four tiles

(see Figure 5.3(b)). More harmful is the increment in the link length between

switches that suffers the FBF topology. As it can be seen in Figure 5.3(c),

the FBF has a maximum link length between switches that is six times larger

than the 2D mesh case. In general, in a squared network – same number of

nodes in the X direction as in the Y direction – the relationship between the

maximum link length between switches in a FBF and in a 2D mesh is equal

to
√

(N) − 2, where N is the number of nodes in the network.
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(a) 2D mesh floorplan. (b) C-mesh floorplan. (c) FBF floorplan.

Figure 5.3: Different topology floorplans.

Topology Link Length between switches Switch Depth Link length

2D mesh L 2 1/2 * L

C-mesh 2 ∗ L 3 2/3 * L

FBF (N − 2) ∗ L 4 (N-2)/4 * L

Table 5.4: Link length configuration for a 2D mesh, C-mesh, and FBF archi-

tectures.

5.3 Implementation Analysis

In this section, we analyze the area and critical path for the concentrated

mesh and the flattened butterfly topologies implemented with the canonical

switch and the distributed switch design methodology presented in this chap-

ter. Those topologies implemented with the canonical switch are referred to as

Cmesh-C and Flattened-C. Similarly, those topologies implemented by the dis-

tributed switch approach are referred to as Cmesh-D and Flattened-D. Addi-

tionally, both topologies have been implemented with the canonical switch but

registering the long links, that is, any link longer than the inter-core distance

is splitted into registered segments with length is at the inter-core distance.

Buffering the link minimizes the maximum link length, and hence, improves

the network critical path but increases network pipeline. A trade-off should

be achieved to optimize zero-load latency as it will be shown in next sections.

Those implementations with links registered are referred to as Cmesh-CR and

Flattened-CR, respectively. Finally, these topologies are compared to the 2D
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mesh case implemented with the canonical switch.

Figure 5.4(a) shows the critical path of the Cmesh topology implemented

with different switch architectures when compared to the conventional 2D

mesh. When no inter-core distance is considered, switch complexity fixes the

critical path. As concluded in previous chapters, the modular switch has lower

complexity than the canonical switch, and hence, lower critical path. In this

sense, the Cmesh-D has the lowest critical path, despite it has a higher radix-

degree than the 2D mesh canonical switch. In contrast, the differences in

the critical path for the Cmesh-C and 2D mesh are small despite the higher

complexity of the Cmesh switch. As the inter-core distance increases, link

delay becomes critical. As it can be seen, the Cmesh-C is the most affected

architecture. that is, a conventional high-radix switch gets highly affected by

the link length. In fact, for a 2.4mm inter-core distance, the critical path of the

Cmesh-C network is three times the critical path of the 2D mesh. Link length

impact on the critical path can be minimized by registering the link. Then,

Cmesh-CR reduces the critical path by 50% and 41% with respect to the non-

registered Cmesh-C. As mentioned above, the Cmesh-D presents the lowest

critical path amongst all the Cmesh architectures. The optimum placement

of the AC modules allows the designer to implement a Cmesh network with

no critical degradation when the inter-core distance is 1.2mm. For 2.4 mm

inter-core distance, the Cmesh-D has a 18% increment in the critical path due

to the inefficiencies of the Place&Route tool.5

Similar conclusions can be obtained when implementing the FBF. Fig-

ure 5.4(b) shows the critical path of the FBF topology implemented with

different switch architectures and compared to the 2D mesh. The results for

the 2D mesh architecture reflect the benefits achieved by the simpler imple-

mentation of the topology. It is the topology with the lowest critical path. As

the inter-core distance increases, the difference with the rest of architectures

increases. On the other hand, the critical path of the Flattened-C is the high-

est. This is due to its higher switch complexity, and the long links required.

Registering the long links minimizes their impact. Thus, the flattened-CR

highly reduces the critical path of its baseline flattened-C. As the maximum

link length increases, the difference increases because long link critical path

5In theory, the critical path of both networks should be identical.
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Figure 5.4: Critical path for high-radix topologies and the 2D mesh for a

64-node network when implemented using different switch architectures.

gets worse. In this sense, distributing the switch along the link has the same

effect on the critical path than registering the links, but the network hop count

is not increased as it will be shown later. Thus, the flattened-D has similar

critical path than the flattened-CR for small inter-core distance. As the inter-

core distance increases, the lower switch complexity allows the distributed

switch to outperform the flattened-CR in terms of critical path.

Figure 5.5 shows the area of a switch used for the different network ar-

chitectures. In any case, the larger switch area is shown6. As expected, the

distributed switch for high-radix topologies occupies more area than the equiv-

alent canonical switch. The Cmesh-C switch is a 65% larger than the 2D

mesh-C switch. Remember that the Cmesh-C switch has three input/output

extra ports which represents an increment of 60%. Registering the links –

Cmesh-CR – implies to increase the resources used up to 24%. The Cmesh-D

is a 23.4% larger than the Cmesh-C which is similar to the difference be-

tween the canonical switch and the distributed switch. Remember that, the

Cmesh-D consumes less resources than the Cmesh-CR. The flattened-C switch

is 121% larger than the canonical switch. Registering the links implies to in-

crease the area by 24%. Finally, the flattened-D switch is a 42% larger than

the flattened-C. Notice that, the difference between the distributed switch and

6Some area reduction is achieved for those switches placed at the network boundaries

where the number of input/output ports is lower than the port of the switches placed at the

center of the network.
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Figure 5.5: Canonical and distributed switch area for different architectures.

the canonical switch increases as the number of input/output ports increase

due to the tree-based structure of the distributed switch.

Then, referred to the implementation parameters – critical path and area

– several conclusions can be obtained. First, the distributed switch has the

shortest critical path. In fact, its critical path is close to the critical path to the

simpler 2D mesh switch. That is, the distributed switch almost removes the

dependency between the critical path with the switch radix and link length.

In fact, the higher the switch radix the higher the benefits of distributing

the switch. Notice that, this behaviour can be obtained in part by pipelining

the link – as the elastic buffers do. However, this last solution implies to

increase the network hop count. Thus, as analyzed in the previous chapter,

the distributed switch can be seen as an elastic switch that reuses the buffering

of the pipelined link to perform switching tasks. In contrast, switch area is

increased. For large switch radix, the distributed switch area exceeds the area

of other switch architectures.

5.4 Network Performance

In order to analyze the performance of high-radix topologies, we have lever-

aged our cycle-accurate network simulator to model these topologies. Same

simulating parameters as those used in Chapter 3 have been chosen. Addi-

tionally, clock cycle has been adjusted to each topology implemented by using

the results obtained in the previous section. The tile has been modelled as an

ideal end node that injects messages into the network at a constant injection

rate where each end node is made of a single queue that stores the flits that
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are waiting to be transmitted. Network size is set to 64 nodes. Three types

of traffic distribution have been used: uniform, bit reversal, and bit comple-

ment. Flit size has been set to 64 bits. Two message generation scenarios are

considered: messages that are 1-flit long, and bimodal traffic where there exist

two messages sizes. Short messages 1-flit long, and long messages 9-flit long.

Short messages represent 70% of messages injected. Network performance is

measured as the accepted traffic rate (flits per nanosecond per node) and the

average end-to-end flit latency measured in nanoseconds. Intercore distance is

set to 1.2 mm. XY routing algorithm is used.

Figures 5.6 and 5.7 show the accepted traffic and the network latency for

different Cmesh network implementations when compared with the 2D mesh

implemented with the canonical switch – 2D mesh-C. Surprisingly, as it can

be seen in both figures, despite the increment in resources of the Cmesh net-

works, those architectures do not clearly outperform the 2D mesh-C topology.

The Cmesh-C is in fact the one with the poorest performance achieved as it

has the highest latency and the lowest throughput. Registering the links –

Cmesh-CR – reduces the latency with respect to the non-registered architec-

ture – Cmesh-C. However, the Cmesh-CR network latency is almost equal than

the 2D mesh-C meanwhile, the 2D mesh-C outperform Cmesh-CR in terms of

throughput. There exist two combined reasons that explain this loss in perfor-

mance. First, the increment in the network critical path that suffer Cmesh-C

and Cmesh-CR makes the network latency to be higher when compared to

the 2D mesh-C network latency. Additionally, the increment in the switch

radix without increasing path diversity makes throughput to decrease due to

traffic concentration at the switch inputs. Distributing the logic – Cmesh-D –

along the links has two effects. First, network latency gets reduced due to the

large critical path reduction. In this sense, Cmesh-D network latency clearly

improves the 2D mesh-C latency. Additionally, the throughput of the Cmesh-

D outperforms other Cmesh configurations due to the distributed buffering.

However, it can not be concluded that Cmesh-D outperforms the 2D mesh-C

in terms of throughput. For uniform traffic, the traffic concentration due to

the increment in the switch radix makes the Cmesh-D throughput to be lower

than the 2D mesh-C throughput. In contrast, for the bit reversal traffic pat-

tern, Cmesh-D outperforms the 2D mesh-C, meanwhile for the bit complement
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Figure 5.6: Load-latency graph for a 64-node 2D mesh-C, Cmesh-C, Cmesh-

CR and Cmesh-D networks. Messages are one flit long.
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Figure 5.7: Load-latency graph for a 64-node 2D mesh-C, Cmesh-C, Cmesh-

CR and Cmesh-D networks. Bimodal traffic considered.

traffic pattern, both architectures behave similar7.

Figures 5.8 and 5.9 show the accepted traffic and the network latency for

different FBF network implementations when compared with the 2D mesh im-

plemented with the canonical switch – 2D mesh-C. As it can be seen, similar

conclusions can be obtained. Despite the increment in resources the Flattened-

C configuration presents the worst performance, due to its large critical path.

For the same reason, the Flattened-C presents lower throughput than the

2D mesh-C. In this case, the FBF configuration also suffers from traffic con-

centration but is not as pronounced as the Cmesh architecture. Thus, traffic

concentration is not the main cause of the lower performance of the Flattened-

C configuration. It can be proved by analysing the Flattened-CR behaviour.

As it can be seen, the Flattened-CR configuration mostly outperforms the 2D

7Cmesh throughput can be increased by using non-minimal or more complex routing

algorithms. However, it is out of the scope of this dissertation.
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Figure 5.8: Load-latency graphs for a 64-node 2D mesh-C, Flattened-C,

Flattened-CR and Flattened-D networks. Messages are one flit long.
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Figure 5.9: Load-latency graphs for a 64-node 2D mesh-C, Flattened-C,

Flattened-CR and Flattened-D networks. Bimodal traffic considered.

mesh-C in terms of latency and throughput. In this case, distributing the logic

presents visible benefits. Notice that, the Flattened-D is the architecture with

the lowest latency and the highest throughput in all the cases analyzed. Dis-

tributing the logic over the link, allows to optimize the switch implementation

and thus, enabling to get the most from the chosen topology8.

When analysing both architectures – Cmesh and FBF – the benefits of

using the distributed switch outperforms the benefits shown in the previous

chapter. First, high-radix topologies are limited by its longer links. Addition-

ally, increasing the switch radix means to increase the switch pipeline depth

which allows the designer to spread the switch in a more optimized manner. As

it can be seen, the distributed switch approach clearly outperforms other solu-

tions like registering the links. This is due to the distributed switch reducing

8As before, more complex routing algorithms leverage the flattened architecture perfor-

mance which is out of the scope of this dissertation.
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the maximum link length without introducing extra cycles.

5.5 Conclusions

In this chapter, the distributed switch is leveraged to fulfill high-radix topology

demands. As shown in this chapter, the benefits of the distributed switch

become larger as the network architecture becomes complex. First, because

more complex architectures require the use of longer links which are the main

drawback of conventional designs. Second, they also require the use of high-

radix switches which forces the switch pipeline to become deeper, allowing the

designer to distribute the switch efficiently over the link.

Despite these improvements, the benefits of these architectures against a

conventional 2D mesh are not spectacular if a simple routing algorithm is

used. In the next chapter, we redefine the distributed switch to implement a

distributed modular crossbar which clearly outperforms previous proposals.
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Chapter 6

A Distributed Crossbar

In this chapter we reuse the modular design in order to develop a floorplan-

aware crossbar NoC design. Basically, a large N × N crossbar is made of

as set of AC modules. AC modules are properly placed along the chip in

order to minimize link length, as done in the distributed switch approach in

the previous chapter. Thus, large crossbar wiring, logic, and arbitration is

split and spread along the chip. Thus, the contribution of this chapter is the

most extreme design of the distributed switch approach, focusing on a single

chip-level crossbar network.

This chapter is organized as follows. First, we describe the distributed

crossbar NoC design. Then, we provide an evaluation of the distributed cross-

bar NoC compared to 2D architectures as the 2D mesh, the C-mesh, and the

flattened butterfly network described in previous chapters.

6.1 A Distributed Pipelined Decoupled Crossbar

The Distributed Crossbar (DC) design is a distributed pipelined decoupled

crossbar design made of AC modules (see Chapter 3). It is distributed as

the crossbar logic is spread over the chip. It is pipelined as the flits will travel

along the crossbar passing through different stages implemented with small

multiplexers and registers. It is decoupled as each output of the crossbar will

be totally decoupled from the rest (resembling a port slicing implementation

approach).

121
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Input 1

Input N

Output 1

Output N

(a) Conventional NxN crossbar.
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Input N
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Output N

(b) Decoupled NxN crossbar.

Figure 6.1: Conventional and decoupled NxN crossbars.

In a die with N nodes, a conventional N × N crossbar can be decoupled

into N independent N×1 subnetworks, where each independent N×1 subnet-

work connects any node to a given destination node (port slicing design) [48].

Figure 6.1 shows the decoupling process. Decoupling the crossbar allows the

synthesis tool to improve its efficiency and, hence, to increase the maximum

operating frequency of the design [47]. Furthermore, it allows to distribute the

logic of the interconnect across the chip as it will be shown later. A crossbar

implemented with decoupled N×1 subnetworks, theoretically allows achieving

1 flit/cycle/output. This can be achieved with low-complex, independent, and

local arbiters.

Once the N × N crossbar is partitioned into N N × 1 independent sub-

networks, we implement each N × 1 subnetwork with a set of AC modules of

radix M . By using a simple and local decision, floorplan is simplified, and

hence, a faster design can be obtained as shown later. Notice that, the RC

module has been removed, as routing is performed at the NIC, once a flit gets

injected into the proper subnetwork no routing is required. By leveraging the

AC module, an N × 1 network can easily be pipelined with S stages. Notice

that N , M , and S are closely interrelated. Indeed, we can deduce

S = logMN (6.1)

Figure 6.2 shows a 16×1 network designed with AC modules and pipelined

into 2 and 4 stages. As shown, the 16×1 network is designed as a tree of iden-

tical AC modules. N of these tree structures working in parallel are referred to

as DCx, where x is the degree of the AC modules. Thus, Figure 6.2(a) shows
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(a) S=2, M=4 (b) S=4, M=2

Figure 6.2: Pipelined decoupled 16 × 1 network (N=16) with different orga-

nizations.

part of a DC4 configuration whereas Figure 6.2(b) shows part of a DC2 one.

Similarly, we also implement a crossbar with ACs assuming M = 16, referred

to as DC16 (not shown). In all the cases, 2-flit buffers are used in all the

ACs in all the DC networks. Thus, a DC16 network will have lower buffering

capacity than a DC2 network because DC16 has less AC modules.

6.1.1 DC Floorplan

Once the N × N crossbar is designed as a set of independent AC-connected

N × 1 networks, the next step is to smartly distribute the AC modules across

the chip in order to minimize the impact of long interconnects and, hence,

optimizing the trade-off between maximum operating frequency and power

consumption. This is the most critical step in the design (and the most novel

one), since a proper distribution of AC modules will minimize the impact of

long links on performance.
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The critical path of our pipelined decoupled crossbar is made of the delay

of the AC logic and the delay of data and control bits along the link between

two adjacent AC modules, as can be derived from Figure 6.2. The delay of the

AC module depends mainly on M (number of inputs) whereas the delay of the

wire depends mainly on its length. Thus, the maximum operating frequency

of the distributed crossbar is mainly set by M and the length of the links

between ACs.

To minimize the impact of long wires and thus maximizing the operating

frequency of the interconnect, the AC modules of a given N × 1 network

are physically distributed through the chip. In a conventional mesh-based

CMP system, the distance between adjacent nodes is the inter core distance L

(see Figure 6.3(a)). Inter core distance is set by the distance of two adjacent

Network Interface Controllers (NIC). As it can be seen, the maximum distance

between NICs in a regular floorplan for a 4 × 4 mesh is 3L in each direction,

and a maximum distance of 6L (we assume horizontal and vertical links only).

In this floorplan each switch is connected to a single NIC.

On the other hand, a balanced distribution of AC modules is achieved when

the distance between two connected AC modules is bounded by D/S, where

D is the maximum physical distance between two AC modules in an N × 1

subnetwork, and S is the number of pipeline stages. In order to minimize D, we

have reorganized the tiles in order to concentrate the injection/ejection ports

to the network as shown in Figure 6.3(b). We call this mapping concentrated

floorplan. D is now reduced down to 4L (2L in each direction).

The concentrated floorplan approach is not suitable for a conventional 2D-

mesh network. As shown in Figure 6.3, the distance between adjacent NICs is

increased from L in a conventional regular floorplan to 2L in the concentrated

floorplan. Therefore, the operating frequency of a 2D-mesh network would

be impacted (or a pipelined link design would be required). Table 6.1 shows

the maximum link length between adjacent AC modules (D/S) for different

DC networks and different CMP sizes: 16 nodes and 64 nodes. Table 6.1

also shows the constant length (L) between NICs for a standard 2-D mesh.

As can be seen, although network size increases quadratically, the distance

between AC modules increases linearly. Also, AC modules with less number

of ports (e.g. those used in DC2) are more effective (as the number of stages
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(a) 4x4 2D mesh floorplan. (b) 16 nodes concentrated floorplan.

Figure 6.3: 2D mesh and a concentrated floorplan.

NoC DC2 DC4 DC16

4 × 4 network (D = 4L) L L 2L 4L

8 × 8 network (D = 12L) L 2L 4L 6L

16 × 16 network (D = 28L) L 3.5L 7L 14L

Table 6.1: Maximum link length between adjacent AC modules. In the DCx

designs, the concentrated floorplan is used.

is increased).

Once the floorplan for the location of the injection/ejection ports is fixed,

and the maximum distance between AC modules is set, then, a proper place-

ment of the AC modules is needed for each N × 1 subnetwork. Figure 6.4

shows the proposed placement scheme for a 16 × 1 network built from AC2

modules (M = 2, S = 4, D = 4L; DC2 network) where the output node is

TILE 15. The remaining 15 16 × 1 networks have been manually distributed

in a similar way, always guaranteeing that the maximum distance between AC

modules is lower or equal to L (D/S = 4L/4).

Figure 6.5 shows the placement schematic of a 16-node DC2 network. Scale
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(a) AC placement. (b) 16× 1 network.

Figure 6.4: AC module placement for a 16 × 1 subnetwork, corresponding to

TILE15. M = 2, S = 4.

is set for a tile of 1.2mm×1.2mm. As each AC module is functionally indepen-

dent, AC modules from different subnetworks can be grouped. As it can be

seen, in a 4×4 DC2 networks, all AC modules are placed in just eight regions.

Our DC design philosophy described in this section can be applied to any

NoC environment independently of the number of cores, their size, shape or

distribution along the chip. Basically, the number of cores and its maximum

distance determines the optimum placement of the AC modules, and hence,

network performance. In contrast, a centralized crossbar design is largely

influenced by the location, size, and shape of cores which could compromise

the original centralized design. With our philosophy, AC modules are always

appropriately spread over the chip, ensuring that maximum link length is

D/S.

6.1.2 Flow Control

The flow control signalling that manages the communication between the dis-

tributed crossbar modules is identical to the flow control of the modular switch

presented in Chapter 3. However, the distributed crossbar has an interesting

property, an AC module is just connected to a single downstream AC mod-
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Figure 6.5: 16-node AC module placement.

ule1. By assuming this, it is possible to reduce the flow control critical path by

replicating the arbitration logic of an AC module on its adjacent upstream AC

modules. Thus, each upstream AC module has two arbiters. The main arbiter

computes which input wins its buffer resources. The second arbiter obtains

the same result as the main arbiter of the connected downstream AC module.

By doing this, the upstream AC module knows if its flits will be accepted at

the downstream AC module without needing to wait for the acknowledgement

from the downstream AC module. Figure 6.6 shows the improved flow control

mechanism used in this chapter. In this design, downstreamFCi signals are

generated by using only the buffering state as it will be shown later. Addi-

tionally, the second arbiter must receive the upstreamVALIDi signal from the

rest of upstream AC modules. As it can be seen from the figure, now the flow

control signalling crosses at most one link length, thus, reducing the impact of

the flow control on the critical path. On the contrary, the resources of the AC

module increases, as the second arbiter mimics the behaviour of the upstream

AC module. This optimization must be done in those scenarios where link

length fixes the timing or power constraint of the network.

This optimization reduces the critical path of the distributed crossbar, but

1Remember that, the second stage AC module of the modular switch is connected to an

AC module at each output port of the next downstream switch.
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Figure 6.6: Improved flow control signalling generation.

can not be applied in a high-radix topology implemented with the distributed

switch design. An example is provided in Figure 6.7. This figure shows the

signals involved in an optimized AC module flow control environment. The

last AC module in a switch output port is connected to one AC module at

each output port at the next switch it is connected to. This means that all

the arbiters at these AC modules would need to be replicated. In addition,

the signalling between the upstream switches will need longer wires, as the AC

modules will be spread over the links. Figure 6.7 shows the signalling involved

for a single AC module in a 2D mesh where U-turns are not allowed. Notice

that, upstreamVALID signal must traverse two links in a clock cycle. Thus,

introducing the optimization described above does not reduce the critical path

but even increases the critical path due to the use of longer signal wirings. This

does not happen in the DC approach since AC modules are configured to build

a tree-configuration, where AC modules connected to the same downstream

AC module are at the same tree level and close enough in the concentrated

floorplan.
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Figure 6.7: Unfeasible flow control optimization for the modular switch.

6.1.3 Hierarchical Distributed Crossbar

As it will be shown in next sections, the distributed crossbar design outper-

forms other NoC architectures at the expense of increasing the resources. For

large systems it is possible to implement the distributed crossbar using a hi-

erarchical approach, minimizing its costs. Thus, the Hierarchical Distributed

Crossbar (HDC) NoC architecture will be able to retrieve the maximum per-

formance of the Distributed Crossbar at the same time that area is bounded

to reasonable limits.

In an HDC network sets of nodes are grouped in regions or subnetworks.

Each region is per se a DC network. All DC subnetworks are then connected

with each other using a fully connected network, with direct links between each

DC network. Figure 6.8 shows the Hierarchical Distributed Crossbar scheme

for a 16- and 64-node network, where each region has
√

N nodes. Figure 6.8(a)

shows a 16-node HDC network where 4-node DCs are used. Figure 6.8(b)

shows a 64-node HDC network made of 8 regions with 8 nodes each. Both

HDC networks are implemented with a hierarchical approach with two levels

(at the first level the DC network and at the second level the fully connected

network).
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(a) 16-node network.
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(b) 64-node network.

Figure 6.8: 16-node and 64-node HDC networks.

Each region in the HDC network is directly connected to the rest of other

regions. Thus, at each subregion there exists a special node called gateway to

reach other subregions. Therefore, these nodes have to deal with both intra-

region messages and inter-region messages. Meanwhile intra-region messages

are directly sent to its destination by means of the local DC network, inter-

region messages are forwarded through two DC networks, one in the source

local region to reach the gateway, then it crosses a direct link to reach the next

gateway, and finally, it crosses the destination region. Note that, each gateway

receives messages from all the nodes in a region, and hence, a gateway may

become a bottleneck. Although the HDC approach can use different hierarchy

levels, we bound the analyzed cases to HDC networks with only two levels.

In order to enable inter-region communication the message injector module

of the gateway has to be able to handle both inter- and intra-region messages.

Figure 6.9 shows an schematic of how the interconnection of regions is per-

formed. As shown in this figure, at the inputs of the regions, used to build the

DCs, the messages may come from both local input queues (INi) and external

region queues (REGi). In this way the additional hardware resources required

for implementing the HDC networks are the additional queuing resources re-

quired in the input gateways to store the flits coming from other regions, the

multiplexors that enable to handle both inter- and intra-region messages, and

the repeaters and wiring resources required to build the inter-region links.

Once the levels of hierarchy have been chosen, the parameter that defines
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Figure 6.9: 16-node HDC region schematic.

the HDC network is the number of nodes in each region. The HDC network

enforces the same number of nodes in a region and the number of regions, thus

each region has
√

N nodes. Notice that other unbalanced configurations are

possible (e.g. 16 regions made of 4 nodes each or 4 regions made of 16 nodes

each). However, in these cases the unbalance leads to worse performance and

implementation results. We explore in Table 6.2 different configurations. The

table shows basic metrics for different configurations of a 64-node network.

An HDCn network is defined as a Hierarchical Distributed Crossbar with n

regions with the same number of nodes in each region. The balanced HDC

configuration is, therefore, HDC8. Thus, the HDC network with N nodes is

made of
√

N disjoint regions of
√

N nodes.

Table 6.2 shows five metrics: area, Bisection Bandwidth (BB), BB traffic

concentration, Effective BB, and Zero-load latency measured in number of

hops. The BB traffic concentration measures the percentage of traffic that

crosses each bisection channel, that is, the traffic demand over each bisection

channel. The 2D mesh has been implemented by introducing a modular switch

made of AC modules as described in Chapter 3. Area is computed as the

number of AC modules to implement each architecture, and normalized to the

2D mesh case. As it can be seen, HDC4 has the largest bisection bandwidth

and the lowest zero-load latency. In contrast, HDC4 has several drawbacks.

First, the huge bisection bandwidth means that the wiring of this architecture

is so large – in terms of number and length – that could not be affordable.
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Area Bisection Bandwidth BB traffic concentration Effective BB Zero-load latency

2D mesh 1 16 100 16 12

HDC8 (HDC) 0.52 32 100 32 5.625

HDC16 1.11 8 100 8 7

HDC4 0.23 128 25 32 3.875

Table 6.2: High-level parameters for 64-end nodes for different HDC configu-

rations and a 2D-mesh.

Secondly, the BB has a low traffic concentration that reduces the effective

BB down to 32, which is identical to the effective BB of the HDC (with less

wiring). Note that, without taking into account real implementation, HDC4

has the lowest zero-load latency. However, the length of the links will drive a

severe degradation when real implementation comes into play, making HDC4

unfeasible. For the rest of the configurations affordable, HDC8 and HDC16,

HDC has larger effective BB and lower zero-load latency. Similar conclusions

can be obtained for larger networks.

Finally, two aspects arise on an HDC network. Routing and inter-region

wires. As told before, in a DC network routing is performed at the source. On

the contrary, in an HDC network, inter-region messages should be routed at

the source but also at the destination gateway. Routing in the HDC network

is based on node labelling and messages are routed using the final destina-

tion address included in the flit header. Nodes are labelled with increasing

and consecutive order in each region. The most significant bits of the label

identify the region and the least significant bits identify the node within the

region. With this label strategy the gateway for a particular region is easily

computed. By taking the destination bits of a message and the source node

ID, the destination region is computed. Notice that routing is performed only

in the source nodes and in the gateway nodes. In the source node the message

is forwarded to the local region output gateway according to the destination

region ID. In the destination region, input gateways use the final destination

address to forward messages to the end node. In a balanced HDC network,

the region ID can be used as the gateway ID to forward the message. That is,

region 3 is reached through node 3 in the source region.

Another important aspect in the HDC proposal is the inter-region links

that connect ACs at different regions (connect gateways). As mentioned be-

fore, inter-region links connecting the different regions have to be carefully
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designed. If not, those paths will become the critical paths of the HDC net-

work design. In order to avoid the penalization of the whole system, for the

design of the inter-region links we apply a pipelined approach, as proposed

in [73]. In this sense, if the propagation time of a link is higher than the

clock cycle imposed by maximum achievable frequency of DCs, then the link

is pipelined and several clock cycles are spent for crossing a region. In our case,

the maximum link length will set the number of cycles required to travel from

a region to another one. For the 64-node and 256-node network, inter-region

link pipeline depth are set to 2 and 4 without reducing the overall operating

frequency of the HDC network.

6.2 Implementation Analysis

In this section we perform an analysis of the critical path, area, and wiring of

the DC network, compared to a traditional 2D mesh, C-mesh, and the flat-

tened butterfly (FBF). The 2D mesh switch, the C-mesh, the FBF (see next

section) and the AC modules have been synthesized using the 45nm technology

open source Nangate [90] with Synopsys DC. We have used M1-M4 metalliza-

tion layers to perform the Place&Route with Cadence Encounter of the AC

modules. Once the modules of the switches are synthesized, they are imported

as hard macro-blocks to perform the implementation of the whole network. In

order to avoid designing the whole tile, which is out of the scope of this the-

sis, we used the MCPAT tool [105] to find out the area required by the tile

when synthesized using a 45nm technology node. Two intercore distances for

different NoC performance have been chosen, 1.2 and 2.4 millimetres. Inter-

connection links between switches in the 2D mesh, C-mesh and FBF have been

forced to be routed by using the highest metallization layers available. Simi-

larly, long links between AC modules in our DCx networks have been routed

by using the same metallization layers. Notice that maximum size of repeaters

available in the Nangate Library is not high (32X). By assuming higher per-

formance repeaters or ad-hoc link designs, delays lower than the ones obtained

in this thesis are possible, thus increasing the difference in performance of our

DCx proposal over other topologies.
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6.2.1 Critical Path

Figure 6.10 shows the critical path for the 2D mesh, the C-mesh, the flat-

tened butterfly, and the different DCx networks. The critical path is set by

the AC module plus the link delay between AC modules. Remember that

the maximum link length depends on the intercore distance and the network

architecture (see Table 6.1). As it can be seen, the critical path of each config-

uration strongly depends on the link length (fixed by the inter-core distance)

and the AC degree. As the link length and the AC module degree increase

(S lowers), the critical path increases2. As expected, a regular structure with

the smallest link length as the 2D mesh or the C-mesh present the minimum

critical path. Differences lay on the higher complexity of the C-mesh that

forces the synthesis tool to fix a higher critical path than the 2D mesh despite

that both architecture have the same maximum link length and AC degree.

In contrast, the FBF architecture is highly sensitive to link length. As it can

be seen, for a large network the critical path of the FBF is highly affected.

Similar conclusions can be obtained when considering DCx architectures. As

the degree of the AC module increases, the delay increases (see the ideal case

when no inter-core distance is considered in Figure 6.10). Note that, DC2

presents the lowest critical path due to its lower AC degree, and its higher

pipelining that reduces the maximum link length of the network. In contrast,

the critical path of the DC16 is highly affected due its ultra low pipelining.

6.2.2 Area and Wiring Analysis

Table 6.3 shows the complete area needed for a 2D mesh, C-mesh, FBF, and

the DC networks for two system sizes of 16 and 64 nodes. All the cases are

implemented by using a modular design. Table 6.3 also shows the increment

in area with respect to the FBF. In this chapter, we use the FBF as the

baseline reference as it presents the lowest zero-load latency amongst the well-

known 2D architectures analyzed, as it will be shown later. Results show

how, surprisingly, the DC networks built out of AC modules with high degree

require less area than a FBF for a 16-node system. The reason is that the

2Remember that different switch architectures have a different pipelining depth. The

critical path defines the delay of each stage (see Chapter 3).
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Figure 6.10: Critical path measured in nanoseconds for different network ar-

chitectures.

area of an ACx module strongly depends on its buffering. Notice that an

ACx module has the same buffer slots regardless x. Thus, high degree AC

modules are efficient in terms of area. Additionally, increasing the degree of

the AC module means that the number of modules in the network reduces

significantly.

For 8 × 8 systems, similar conclusions can be obtained. However, DCx

networks do not scale as well as FBF as the number of cores increases. In this

case, the larger wires required offset the savings in buffering achieved. Notice

that this impact is alleviated as AC modules with higher degrees are used:

DC2 takes a 109.9% area overhead meanwhile DC16 has an area reduction

of 18.6% overhead. From the area results, it is clear that a trade-off between

performance improvement and area cost is needed to really assess the potential

of DC networks. We provide such a trade-off in the following section, however,

remark that in a 64-node network scenario with a typical inter-core distance of

2.4mm, the whole area is 36864 ∗ 104, and hence, DC2 and DC4 only occupy

a 2.41% and 1.05% of the whole chip, respectively, which is an affordable

area when application latency and throughput requirements demands for a

high-performance network.

Note that when comparing other high-radix topologies, similar results are

obtained. When the network is small, the reduction in the number of switches

allows to reduce the area with respect to a conventional 2D mesh. When
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4x4 Network 8x8 Network

Area(um2) Increment(%) Area(um2) Increment(%)

2D mesh 42.3 ∗ 104 33.4 190.6 ∗ 104 -54.6

C-mesh 31, 7 ∗ 104 0 173.0 ∗ 104 -58.8

FBF 31, 7 ∗ 104 0 420, 2 ∗ 104 0

DC2 53.6 ∗ 104 69.1 886.9 ∗ 104 109.9

DC4 24.6 ∗ 104 -22.4 387.1 ∗ 104 -7.7

DC16 13.4 ∗ 104 -57.7 342.0 ∗ 104 -18.6

Table 6.3: Network area for different architectures and system sizes.

the number of nodes increases, the C-mesh network reduces its differences

with respect to the 2D mesh, but, it still has lower area. However, the main

drawback of the C-mesh network is its poor performance as it we will shown

later. The FBF network presents a similar trend as the DC4 or DC16 networks.

When the number of nodes increases, the area of the FBF highly increases

occupying more area than a conventional NoC.

Another concern is the wiring increment. However, technology wiring den-

sity allows the designer to obviate this problem. In a chip with a core size

of 1.2mmx1.2mm, it is possible to route more than 7000 wires between two

switches when applying a non-commercial technology library (45nm Nangate),

fulfilling NoC wiring needs. For larger cores, the number of available wires be-

tween switches increases. Additionally, large links can be routed using high

metallization layers. By using this kind of low-error layers, combinational logic

can be placed below as the standard combinational cells use the lowest met-

allization layers. In this scenario, long links do not demand dedicated area,

except for the area needed to implement the link drivers. Thus, area overhead

introduced by links is minimum assuming the smaller inter-core distance con-

sidered. Finally, note in Figure 6.4(a) that the optimum placement of the AC

modules in a DCx network enforces that several AC modules are placed close

to each other. Thus, long wiring concern is further reduced.
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6.3 Performance Analysis

6.3.1 Synthetic traffic

In this section we analyze the performance of our DCx proposals in terms

of average packet latency and network throughput, and compare it with the

performance achieved by the 2D mesh NoC, C-mesh and the FBF networks.

To do this, we use the simulation infrastructure described in Chapter 3, and

the DCx fabrics described in Section 6.1. End nodes have been modelled as

ideal NICs that inject messages into the network at a constant injection rate.

Each NIC is made of a single queue per destination node where flits are stored

before being injected. Despite in the next section real traffic will be analyzed,

short and long messages have been used to model a real CMP traffic scenario.

Short messages are composed of a single flit, while long messages are made

of 9 flits. Flit size is set to 64 bits. Short messages represent 70% of the

network load. Message destination follows three traffic distributions: uniform,

bit-reversal, and bit-complement.

Figures 6.11, 6.12, 6.13, and 6.14 show the accepted traffic and the flit end-

to-end network latency measured in flits/nanosecond/node and nanoseconds,

respectively. Results shown in Figure 6.11 and 6.12 have been obtained when

link length is fixed to 1.2mm. Results shown in Figure 6.13 and 6.14 have

been obtained when link length is fixed to 2.4mm. In every case, clock period

for each network architecture has been obtained from Figure 6.10.

The best network architecture in terms of performance is DC2, because

DC2 is able to reach the highest throughput and the lowest latency. In con-

trast, as it has been shown in the previous section, it requires more resources

than the rest of architectures analyzed. Note that DC2 is better than DC4 and

DC16, despite that DC2 has a larger network pipelining. The reason is that

DC2 presents the best trade-off between clock cycle and network pipelining.

That means, the higher the pipelining – and hence intermediate buffering –

the higher the overall performance.

Another noticeable fact is that DC2 and DC4 networks have the best

response to any kind of traffic distribution. Note that as any output port

has its own subnetwork, traffic to one node does not interfere to the rest of

traffic. That property is desirable in those scenarios where traffic differs from
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Figure 6.11: Accepted traffic and end-to-end flit latency for a 16-node 2D

mesh, C-mesh, FBF and DCx topologies. Link length equals to 1.2mm.

the uniform distribution. As it can be seen in Figures 6.11 and 6.12 DC2 and

DC4 present small differences when considering uniform traffic distribution or

other traffic distributions3.

On the other hand, DC16 does not present as good performance as the rest

of DCx configurations. This is due to the high degree of the AC modules that

concentrates traffic, thus, leading to congestion. Additionally, its large links

force the network to a high critical path degrading the DC16 performance –

as it can be seen in the 64-node networks (Figures 6.12 and 6.14). Thus, in

general, DC16 presents a bad response, similar or higher latency than a 2D

3Notice that, it is measured end-to-end flit latency in nanoseconds. This is the rea-

son that DCx suffers saturation when introducing bit reversal and bit complement traffic

distributions.
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Figure 6.12: Accepted traffic and end-to-end flit latency for a 64-node 2D

mesh, C-mesh, FBF and DCx topologies. Link length equals to 1.2mm.

mesh and worse throughput.

With respect to other conventional 2D topologies, it can be confirmed in

Figures 6.11 and 6.12 that 2D mesh performance does not scale well. Despite

its optimal planar physical placement over silicon technology, as the network

diameter increases, its bisection bandwidth does not scale well, reducing dras-

tically its throughput and network latency. Note that the 2D mesh behaviour

is highly sensitive to traffic distribution. In fact, when non-uniform traffic is

considered, 2D mesh performance is severely degraded. As it can be seen in

Figure 6.12, the FBF presents lower zero-load latency but poorer throughput

than the 2D mesh. The reason is that concentration – high-radix switches due

to its higher connectivity leads to congestion, reducing its throughput, but

at the same time, the lower number of hops to traverse the network makes a
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Figure 6.13: Accepted traffic and end-to-end flit latency for a 16-node 2D

mesh, C-mesh, FBF and DCx topologies. Link length equals to 2.4mm.

reduction in latency. In this sense, C-mesh suffers from traffic concentration

that reduces the throughput. Additionally, longer link lengths than the 2D

mesh degrades its performance minimizing or even removing the benefits of

reducing the hop count.

When increasing the link length, similar conclusions can be obtained. As it

can be seen in Figures 6.13, and 6.14, small pipelined networks with long links

as FBF or DC16 do not scale well. In contrast, DC2 and DC4 still have the

best performance due to its deeper pipeline. Note that, differences between

both networks are increased due to the longer links used in the DC4 network.

From now on, we focus on DCx proposals as they provide the best per-

formance. The best solution is DC2 which, when considering uniform traffic

and the non-commercial 45nm Nangate Library, has a reduction in zero-load
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Figure 6.14: Accepted traffic and end-to-end flit latency for a 64-node 2D

mesh, C-mesh, FBF and DCx topologies. Link length equals to 2.4mm.

latency of 48.2% when compared to the 2D mesh for a 16-node network and

and intercore distance of 1.2mm (see Figure 6.11(b)). For larger intercore

distances (see Figure 6.12(b) and 6.14(b)) the reduction grows up to 48.7%

(see Figure 6.13(b)). In both cases, the increment of throughput is 125%.

Similarly, for a 64-node network, DC2 has a reduction of latency of 36.2%

and 37.8% for intercore distance of 1.2mm and 2.4mm, respectively. In those

cases, the increment in throughput is 200% and 125%. Note that, those val-

ues are higher when considering traffic distribution different than the uniform

distribution.

Table 6.4 shows the improvements in performance for medium size net-

works (64-node) of the DC2 and DC4 with respect to the FBF – which is

the best 2D topology analyzed. Table 6.4 shows the increment in throughput
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Increment in Throughput (%) Decrement in Latency (%)

1.2mm 2.4mm 1.2mm 2.4mm

DC2 447.0 544.7 42.1 34.4

DC4 276.1 274.8 29.7 2.3

Table 6.4: Improvements in performance of DC2 and DC4 over the FBF.

and the decrement in zero-load latency measured as a percentage. Results are

provided for both cases, 1.2mm and 2.4mm, and uniform traffic distribution.

For other traffic distributions similar conclusions will be obtained as it can

inferred from previous figures. As it can be seen in Table 6.4, DC2 and DC4

outperform the FBF topology in throughput and latency. The main differ-

ence lies on the throughput. Both DC2 and DC4 present a huge increment

in throughput. The increment for the DC2 grows up to 544.7% for long in-

tercore distance (2.4mm). For the DC4, the increment is 274.8% in the same

scenario. With respect to the zero-load latency, differences are not so large.

The reason is that, the FBF is designed to minimize the network hop count,

and hence, the network latency. Despite this, DC2 and DC4 outperforms the

FBF in terms of latency. The difference is bigger for small chips, where DC2,

and DC4 suits best. In this case, latency decrement is 42.1% and 29.7% for

the DC2 and DC4 networks. For longer chips, differences decrease down to

34.4% and 2.3%.

6.3.2 Performance an Energy Results With Applications

Now we evaluate the behaviour of the DC2 network when running parallel

applications on the CMP system. Different SPLASH-2 applications have been

run in a 16-core modelled CMP system using the GRAPHITE simulator [93].

On the top of the simulator a detailed network simulator has been coupled

to model the different network architectures. Additionally, a coherence layer

models a regular MOESI invalidation-based coherence protocol. The configu-

ration of the CMP system is summarized in Table 6.5.

Figure 6.15 shows the applications execution time and the energy con-

sumption when using the DC2, and a 2D mesh modular network. Results

of this plot are normalized with respect to the 2D mesh. As shown in Fig-
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Parameter Values

CMP 16 cores, tiled organization, Distributed Shared Memory

Cores x86 Architecture, Area 2.4mm2, in-order, single thread

L1 inst cache private, 64KB, 4-way

L1 data cache private, 64KB, 4-way

L2 cache shared, 512KB, 16-way

Table 6.5: CMP configuration.

ure 6.15(a), the DC2 network clearly outperforms the results of the 2D mesh,

confirming the conclusions obtained in the previous section. The maximum

improvements are achieved in the case of the Ocean benchmark where the

DC2 network reduces execution time by almost 30%. On average, DC2 allows

a speed-up of 14.8%.

More significant conclusions can be obtained from Figure 6.15(b). Figure

6.15(b) shows the results of energy consumption for the different benchmarks

normalized to the energy consumption of a 2D mesh. In this plot the contribu-

tions of both static and dynamic energy are shown. The energy values of AC

modules and links, for both static and dynamic energy, have been obtained

after the synthesis of the networks. Notice that, DC2 is more energy-efficient

than the 2D mesh, despite that, the DC2 network needs more resources (re-

member Table 6.3). On average, the energy reduction is up to 26%. The

reason is that the static consumption depends on the resources, and hence,

DC2 requires more static energy than the 2D mesh. On the other hand, dy-

namic consumption is highly related with zero-load latency, because it is made

of the flits traversing the network. The higher the number of hops to traverse

the network, the higher the energy. Then, as it can be seen in Figure 6.15, the

main component in the DC2 network energy is the static component mean-

while the dynamic energy consumed is just a fraction of the energy consumed.

This trade-off between static energy – resource-dependent – and dynamic en-

ergy – zero-load latency-dependent – makes the DC2 network to present lower

energy consumption than the 2D mesh.
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(a) Execution Time.

(b) Network Energy.

Figure 6.15: Normalized execution time and energy for the DC2, and a mesh-

based network for real applications. Results normalized to the 2D-mesh case.

6.4 Hierarchical Distributed Crossbar Performance

In previous sections, it is shown how DCx networks outperform conventional

topologies as C-mesh or FBF. However, DCx could lead to an increment in area

which could be unaffordable. Thus, in this section, we analyze the performance

and implementation analysis of a hierarchical distributed crossbar (HDC), and

we compare it to the DC2 network which we proved that has the best results.

The HDC network allows to implement a crossbar-based network beyond 64

nodes without needing an infeasible amount of resources. HDC has been built

by using AC-2 modules. Thus an HDC N -node network is made by using
√

N regions with
√

N nodes each. In this way, the zero-load latency of each

subregion is log2(
√

N) cycles. As inter-region links have been pipelined the

critical path of the HDC is equal to the critical path of an
√

N DC network.

Table 6.6 shows the area and critical path of the 2D mesh, DC and HDC.

Notice that, the area of the HDC network is not only the area of the DC

network but is lower than the area of the 2D mesh for a 16- and 64-node
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Area (um2) Critical Path (ns)

4 × 4 8 × 8 16 × 16 4 × 4 8 × 8 16 × 16

2D mesh 42 ∗ 104 191 ∗ 104 357 ∗ 104 0.65 0.65 0.65

HDC 14 ∗ 104 99 ∗ 104 858 ∗ 104 0.65 0.65 0.65

DC2 54 ∗ 104 886 ∗ 104 19176 ∗ 104 0.65 0.77 1.98

Table 6.6: Area and critical path of the 2D mesh, DC and HDC.

network. For larger networks, the HDC becomes larger than the 2D mesh but

with a very significant performance boost. Notice that the area of the HDC

network is much lower than the area of the DC2 network. Indeed, is less than

10% of the area of the DC2 network. On the other hand, the critical path is

also reduced. As the number of nodes increases, the critical path of the DC2

network degrades. On the contrary, HDC critical path depends on the critical

path of the subregions, and hence, it is kept low despite the huge increment in

the number of nodes. Thus, for large networks, the HDC critical path is three

times lower than the DC2 critical path.

Figure 6.16 shows end-to-end latency measured in nanoseconds and ac-

cepted traffic measured in flits/nanosecond/node. As it can be seen in Figure

11(a), DC2 is still the best option for a small network. HDC does not work

properly for small networks. First, because flits must traverse two regions of

two stages which equals to the hop count in a 2D mesh. Additionally, traffic

congestion suffered at the gateways reduces the HDC network throughput to

values lower than the 2D mesh throughput. As the network size increases,

HDC scales better in terms of performance and area. As it can be seen in

Figure 6.16(b) the HDC network overcomes the 2D mesh and it gets closer

to the DC2 architecture in terms of zero-load latency. The throughput of the

HDC is lower than the throughput of the DC2 but clearly outperforms the 2D

mesh. For larger networks (see Figure 6.16(c)), the HDC configuration has the

lowest zero-load latency. This is due to the optimum AC module placement

which reduces the critical path of the network. The throughput achieves by the

HDC network remains lower than the DC2 throughput because of the traffic

concentration produced at the gateways. Table 6.7 details the zero-load la-

tency in nanoseconds and the maximum accepted traffic in flits/ns/node. Note
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Figure 6.16: Accepted traffic and end-to-end latency for different network

architectures with uniform traffic.

that, HDC improves a conventional 2D mesh by 25.5% in zero-load latency

and up to 50% in throughput for a 64-node network. In a 256-node network,

this improvement increases up to 50.8% and 185% in zero-load latency and

throughput, respectively.

Figure 6.17 shows the applications execution time and the energy consump-

tion when using the HDC, the DC, and a 2D mesh modular 16-node network.

Results of this plot are normalized with respect to the 2D mesh. As shown

in Figure 6.17, both the DC and the HDC networks clearly outperform the

results of the 2D mesh. The maximum improvements are achieved in the case

of the Ocean benchmark where the DC network reduces execution time by

almost 30%, and HDC reduces execution time by 26%. On average, the DC

network allows a speed-up of 14.8%, whereas the HDC network reaches 13.1%.



6.5. Conclusions 147

Accepted Traffic (flits/ns/node) Zero-Load Latency(ns)

4 × 4 8 × 8 16 × 16 4 × 4 8 × 8 16 × 16

2D mesh 0.72 0.38 0.20 5.8 9.4 16.3

HDC 0.57 0.57 0.57 4.9 7.0 7.9

DC2 1.18 0.99 0.74 3.4 5.7 9.7

Table 6.7: Accepted traffic and end-to-end latency for a HDC, DC, and a

mesh-based network implementations.
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Figure 6.17: Normalized execution time and energy for a HDC, DC, and a 2D

mesh network for real applications.

Specially noticeable is the fact that differences in performance between HDC

and DC architectures are slim. This is a very important result as HDC area

is 80% lower than the one required for the DC network. This demonstrates

the HDC architecture presents the best performance-area trade-off among the

different topologies considered, as the DC architecture was seen to be the one

with the best network performance for a 16-node network.

6.5 Conclusions

In this chapter, we go one step beyond the previous proposals and present a

new on-chip architecture based on an efficient floorplan-aware implementation

of a distributed crossbar, where not only the crossbar is spread across the chip

but also the buffering and arbitration is decentralized. As a result, our DC

network architecture presents the minimum latency and the highest network
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throughput among the proposed on-chip architectures analyzed, at the expense

of increasing resources needed. Despite the resources increased, whole network

power consumption is reduced due to the reduction in the power consumption

when flits cross the network as the network latency – and hence number of

hops – is reduced.

Our DC design philosophy can be implemented easily on any NoC environ-

ment, making our proposal appealing to NoC designers. It reduces the design

and implementation complexity of a NoC centralized crossbar, meanwhile the-

oretical crossbar performance is maintained.
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Conclusions

In this final chapter, we present the conclusions of this dissertation, the con-

tributions to the research domain and a brief list of research directions that

will be addressed in the future. Finally, we also expose the results in terms of

scientific publications and other contributions derived from the work presented

in this dissertation.

7.1 Conclusions

The following is a list of conclusions extracted from the current dissertation.

These conclusions helped to obtain the contributions and scientific publica-

tions that are at the core of the document.

• Current high-performance multicore solutions pledge for tile-

based designs. Tile-based design is gaining momentum for newer Chips

Multiprocessor (CMPs) and Multiprocessor System-on-Chips (MPSoCs)

solutions. As the expected trend is to include more and more cores inside

a chip, these solutions rely on networks-on-chip (NoCs) to handle all the

communication traffic between cores.

• 2D meshes and rings have been established as the proper so-

lution for current CMP and MPSoC. Simple planar topologies as

2D meshes and rings have been chosen to implement current CMP and

MPSoCs. Their acceptance relies on that they fit perfectly the chip lay-

149
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out. Additionally, their simplicity removes several challenging issues to

physical designers, which can handle those kind of topologies easily.

• Performance of those simple topologies do not scale with the

number of nodes. Current fabricated CMP and MPSoC that rely on

2D meshes or rings manage a number of cores that could be considered

small. As the number of cores increases, the performance of such kind

of topologies degrades. That is, network latency increases due to the

increment in the hop count and throughput decreases due to contention.

• High-radix topologies could lead to the same problem. One solu-

tion to outperform performance degradation of 2D meshes or rings when

the number of cores increases is introducing high-radix switches, that is,

to increase the network connectivity which in general means that they

can handle with more cores and/or they can communicate with more

and/or farther switches. The performance of such high-radix topologies

such as Concentrated mesh or the flattened butterfly clearly outperforms

the 2D mesh and ring performance for large systems. However, if no

complex routing algorithm is applied, performance of high-radix archi-

tectures remains low due to switch contention, and link underutilization.

• NoC implementation determines the network performance. As

important of the theoretical architecture behaviour is its implementa-

tion. That is, suboptimal NoC implementation leads to a decrement in

the theoretical network performance or even makes a solution unfeasible.

In this sense, high-radix architectures are more sensitive to the physical

implementation, because they make use of complex switches, and longer

links.

• Crossbars provide low latency and high throughput. Crossbars

have been discarded due to the common belief that their implementa-

tion cost is unfeasible. However, their theoretical performance outper-

forms the rest of architectures. Recent works have shown that a detailed

crossbar implementation is feasible, introducing this solution into NoC

environment.
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• Simplifying logic allows to improve physical design. Removing

complex NoC modules, and splitting them into a sum of smaller and

simpler modules simplifies the overall NoC design, and offers the design-

ers the possibility to close the gap between theoretical design and final

physical implementation.

• Future challenges in CMPS and MPSoCs rely on a proper NoC

physical design. Nowadays, interconnection network knowledge clearly

outperforms fabrication reality. Thus, next CMPs and MPSoCs ad-

vances could be related with physical design implementation which can

get closer manufacturing in industry and research in academia.

7.2 Contributions

The overall contribution of the dissertation is to present a modularized design

methodology that allows to implement a floorplan-aware NoC design that min-

imizes long link drawbacks as high power consumption and delay. Minimiz-

ing link impact reduces overall network critical path and power consumption.

Additionally, the modularized design methodology allows to introduce large

crossbars into the NoC scenario, thus, reducing network latency and increas-

ing network throughput. This overall achievement has been obtained with a

step by step procedure described next:

• Modularizing the switch improves switch performance. A modu-

lar switch is presented that clearly outperforms the canonical switch with

identical functionality. Modularizing the switch introduces two main ad-

vantages. First, buffering is distributed among the stages increasing the

switch throughput. Additionally, critical path is reduced as complex

switch tasks as arbitration is simplified and spread over several stages.

• Spreading the logic over the chip reduces link impact. The

modular switch can be spread over the link reducing the maximum link

length. By distributing the logic link delay and power consumption is

reduced, enhancing the overall network performance and power.
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• Introducing crossbars to NoC. Recently some studies have tried

to introduce crossbar in the NoC domain. However, crossbars are not

widely accepted as a proper solution. In this dissertation a distributed

crossbar has been designed that minimizes conventional crossbar designs,

as a complex control logic and long links.

Analysing this dissertation step by step, more detailed contributions can

be stated:

• We have designed a modular switch design (Chapter 3) able to increase

throughout by 60% when compared to a 2D mesh case for a 64-node

network.

• We have designed a distributed modular switch design (Chapter 4) able

to reduce the network critical path up to 53% for large core size. In

this case, a 13% energy savings can be obtained when compared to the

functionally identical modular switch.

– The distributed and modular switch design increases fault toler-

ance, when compared to the 2D mesh canonical-switch-based design

due to their modular nature.

– The distributed and modular switch can minimize easily variation

process due to the relation between link and logic.

• We have adapted high-radix topologies with the modular distributed-

switch based design (Chapter 5) where performance is increased and the

critical path is reduced.

• We have proposed a distributed crossbar (Chapter 6) that reduces ap-

plication execution time of 14.8% with an energy saving of 26% in a

64-node network over the 2D mesh.

• We have also proposed a hierarchical approach able to overcome scala-

bility issues of crossbars. With the resulting design (HDC) we are able

to reduce application execution time a 13% with an energy saving larger

than 50% in a 64-node network. In this case, the area occupied by the

hierarchical crossbar is smaller than the conventional 2D mesh.
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7.3 Future Work

In this Section we highlight possible future work directions coming from this

dissertation. The following is a list of possible directions:

• Extend Network-on-FPGA contribution. Network-on-FPGA de-

signs are being considered valuable by NoC industry because, by using

FPGAs, conventional NoC designs can be better analyzed and simulated,

and hence, fabrication process can be properly modelled, reducing costs

and fabrication time. In this sense, current FPGAs provide peculiar

features that forces NoC designer to even redefine basic interconnection

assumptions. In Chapter 4, the distributed switch has been enhanced to

fulfil FPGA environment constraints. It has been shown that a modu-

larized switch clearly suits a FPGA architecture. Thus, a first attempt

to get introduced onto the FPGA world has been made but FPGA world

provides a huge range of opportunities to be taken into account.

• Analyze system requirements to improve hierarchical distributed

crossbar. This dissertation has been focused to implement a floorplan-

aware NoC. However, system requirement as, number of applications to

be run, type and behaviour of traffic, communication pattern between

nodes, etc. can be used to even outperform the hierarchical network. A

complete study of how system requirements can be properly defined to

match a hierarchical network must be done.

• Introduce snoopy coherence protocol into NoC. Snoopy proto-

cols have typically been discarded due to the difficulty of implementing

broadcast messages in a 2D mesh NoC. Notice that, the distributed

crossbar NoC is suitable to support broadcast messages, and hence, a

snoopy protocol can be easily implemented. Simplifying the coherence

protocol could lead to an overall network simplification which can lead to

minimize the impact of the distributed crossbar, reducing area overhead

and power consumption. On the other hand, a significant reduction of

the application execution time could be achieved.
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7.4 Publications

The following list enumerates the papers related with this dissertation that

have been published, or are under review process, in specialized conferences

or journals. We outline for each contribution the novelties that are part of

this dissertation.

• Antoni Roca, José Flich, Federico Silla, and José Duato. ”A Latency-

Efficient Router Architecture for CMP Systems”, 13th Euromicro Con-

ference on Digital System Design, Architectures, Methods and Tools

(DSD), 2010.

This publication is the first attempt to build a modular switch. In this

paper, the switch allocator is modularized meanwhile the rest of blocks of the

canonical switch – input buffer and crossbar – are not modified.

• Antoni Roca, José Flich, Federico Silla, and José Duato. “A low-latency

modular switch for CMP systems.” Journal of Microprocessors and Mi-

crosystems Embedded Hardware Design, 35(8):742754, 2011.

In this publication we further develop the modular switch design. In fact,

the modular switch presented in this dissertation has minor changes with re-
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• Antoni Roca, José Flich, Federico Silla, and J. Duato. ”A low-Latency

Router Architecture for CMP Systems.” in Actas XXI Jornadas de Par-

alelismo (JP2010), pages 1-9.

• Antoni Roca, Carles Hernández, José Flich, Federico Silla, and J. Duato.

”Modular Distributed Switch: Spreading the Switch along the Link.” in

Actas XXII Jornadas de Paralelismo (JP2011), pages 221226.

• Antoni Roca, Federico Silla, José Duato José Flich. ”A full custom
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Appendix A

Canonic Switch Model

A.1 gNoC: A Switch Design for CMP Systems

gNoC is a baseline switch design targeted for CMP systems, where high fre-

quencies are usually required. However, it is not the intention of gNoC to

reflect current state-of-the-art switches for CMPs. Instead, gNoC must be

seen as a canonical academic implementation of a basic switch design. The

real purpose of gNoC is to help in the evaluation of different techniques pro-

posed and presented in the book. We consider gNoC as the baseline switch

which the modular switch presented in Section 4.

The main features of the switch is its pipelined design and its support

for virtual channels. Furthermore, gNoC has been built as a modular switch

where the main parameters that define the switch can be tuned at design time.

Parameters such as flit width, link width, number of input/output ports, and

number of virtual channels, can be set at synthesis time. However, the gNoC

switch instantiation used through this book is designed with five input and

five output ports, so that four ports are intended to provide connectivity with

the neighbouring switches in a 2D mesh and the fifth port connects to the

local computing core.

The baseline design relies on wormhole switching but virtual cut-through

switching has also been implemented to support broadcast. The Stop&Go

flow control protocol has been deployed in order to control the advance of flits

between adjacent switches.

157
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In the following sections we describe the gNoC baseline switch design.

Figure A.1 shows the main components of the baseline switch design. In

this Figure, gNoC does not implement virtual channels (we later enhance the

switch with support for VCs).

Figure A.1: Switch schematic.

A.1.1 Pipeline Organization

The gNoC switch follows the standard pipelined design with five stages: in-

put buffer (IB), routing (RT), switch allocator (SA), crossbar (XB), and link

traversal (LT). Note, however, that as the last stage does not belong to the

switch, the gNoC design is actually a four-stage pipelined switch design.

A standard pipelined design as gNoC is a non-optimized design from a

point of view of latency because no stages are performed in parallel and there-

fore the latency for traversing the pipeline is five cycles. However, a pipelined

switch design like gNoC allows each stage to be almost independent from the

others, thus allowing for a simpler analysis of the impact each component has

over the entire switch. This feature is very interesting from an academic point

of view. Figure A.2 shows the pipeline when different flits of a single packet
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are processed by the switch. Notice the first flit is a header flit followed by

payload flits of the same message. The header flit crosses all the stages while

the remaining flits cross only the IB, XB, and LT stages.

Figure A.2: Pipeline stages when forwarding a message through a gNoC

switch.

The gNoC implementation used throughout this book implements buffering

of flits at the input ports only. In this implementation, the IB stage can store

up to four flits at each input port. This number has been chosen in order to

guarantee the round-trip time of the link and the delay in the flow control

(Stop&Go) mechanism. The link delay is set to one cycle. Therefore, bubbles

between flits are avoided and thus, maximum throughput per flow is achieved.

Furthermore, notice that the IB stage not only stores the incoming flits but

also the flits that are in transit across the switch (e.g. flits crossing the switch),

which are not removed from the input buffer until they completely leave the

switch. Therefore, those flits which are at different stages of the switch such

as the RT, SA or XB stages are kept in the IB buffer, thus being unnecessary

to replicate those flits across the switch. For this purpose, control signals

distribute the basic control information required by each module. In this way,

there is no need to add pipeline registers within the switch for storing the

message flits, but only control pointers. More specifically, a set of control

read/write pointers at each input buffer guarantees the proper operation of

the switch.

Instead of using memory macros, buffers in the IB stage have been designed



160 Appendix A. Canonic Switch Model

using FIFOs. More specifically, they have been implemented using a Push-

In-Mux-Out register [8] as its power consumption is lower than that of a

conventional shift register. Implementing a Push-In-Mux-Out register forces

the IB stage to implement a write pointer and several read pointers used to

store the incoming flits and later retrieve the stored flits. The write and read

pointers also make the implementation of the Stop&Go flow control easier,

since those pointers reflect the input buffer occupancy, as it will be explained

later.

The routing stage (RT) has been designed as a modular block, in order to

support, with no major modifications, the several routing algorithms described

in [7]. Nevertheless, the DOR algorithm is the one used in the baseline design.

Additionally, distributed routing has been supported in gNoC, instead of using

the source-based routing approach. Notice that the RT stage is replicated on

every input port. The reason is that the routing algorithm depends only on the

destination information which is independent for the different packets arriving

at the router. Additionally, a global routing unit for the whole switch would

increase the wiring complexity of the switch. Nevertheless, the DOR algorithm

(and other options like LBDR) are small enough to allow replication through

all the input ports, thus being a more cost-effective option than the increased

wiring.

The RT stage is fed by the flit header of the message that includes its

destination (in coordinates of the 2D mesh). The switch has an internal regis-

ter with its coordinates and a small logic is used to implement DOR routing.

Figure A.3 shows the logic for the DOR routing implementation in the RT

stage. The routing proposals from [7] also rely on current and destination

switch coordinates.

The SA (switch allocator) stage is in charge of deciding the flits that get ac-

cess (through the crossbar) to a given output port. A switch allocator module

has been implemented for each output port. The allocators are independent

from each other (arbitration decisions from one allocator do not influence an-

other allocator’s decision). The SA module receives from each RT module (one

per input port) the requests for the output port. The SA module determines

which input port will be connected to its own output port. As a result, the SA

module generates control signals that program the crossbar and the FIFO of
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Figure A.3: Simple DOR implementation in gNoC switch design.

an IB stage. Each SA module has been designed using a round-robin arbiter

according to [106]. The decision of designing a round-robin arbiter has been

made due to its simplicity, that allows the SA stage to have a low delay [106].

Note that there exist more advanced arbiter designs [7]. However in a switch

with no virtual channels and with deterministic routing, the round-robin ar-

biter guarantees maximal matching. If an output port receives at least one

request, that output port will grant one of them. Also, an input port will only

raise one request.

In [17] there exists a discussion on the convenience of performing a flit-level

arbiter or a packet-level arbiter. In a flit-level arbiter each flit of a packet has

to compete for an output port. In contrast, in a packet-level arbiter, when the

header of a packet obtains an output port, the connection remains set for the

whole message. Hence only the header of a packet will compete for an output

port. In the first case, a fair arbitration can be achieved [17] meaning that

all packets of all input ports have the same chances to be selected at every

arbitration cycle. As a disadvantage, flits from different packets will share

the same buffer at the IB stage in the downstream switch, thus increasing

the complexity of the control logic that determines the proper operation of

the input buffer. In contrast, a packet-level arbiter may lead to unfair situ-

ations [17], but allows a simpler arbiter design and an easier IB stage design

as flits from different packets are not mixed in the same downstream buffer.
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In addition, in a packet-level arbiter power consumption will be much lower

since arbitration is performed packet by packet rather than flit by flit. gNoC

implements a packet-level arbiter.

A.1.2 Flow Control

The flow control mechanism is an important part of a router. The gNoC switch

implements a simple Stop&Go flow control. The operation of the Stop&Go

algorithm is simple: when the input buffer of the IB stage is going to be full,

a Stop signal is sent back to the previous switch, which is injecting flits to this

IB. When the IB reaches a level where new flits can be stored, a Go signal

is sent back. Notice that both signals can be seen as a physical signal where

the value of this physical signal determines the Stop or Go status of an IB.

Thus, the IB status –determined by the write/read pointers– is enough to

generate the flow control information. However, the Go signal generation and

the round trip time of a link determine the minimum IB size needed in order

to not introduce any bubble between data flits. In order to minimize this

dependency between the flow control mechanism and the IB size, the gNoC

switch generates the Stop&Go signal using the current IB and the SA status.

In this way, once the SA determines that a flit is winning an output resource,

as this flit will leave the router in the next cycle, then we can anticipate the

IB status, thus anticipating one cycle the generation of the Go signal.

A.1.3 Virtual Channel Support

Some changes have been introduced to the baseline router presented above in

order to support virtual channels. At each input port the number of input

buffers has been incremented, thus providing buffering support for V virtual

channels. As all the virtual channels are devoted the same numbers of re-

sources, a static partition of the overall buffer at the input port is feasible,

thus simplifying the design. Note that a multiplexer has to be introduced at

the input port to map an incoming flit into the proper buffer (associated to

the virtual channel the flit is using). In order to reduce the complexity of the

control logic associated to each input port, each virtual channel has its own

RT module as can be seen in Figure A.4(a). Notice that an alternative could
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be to have only one RT module for each input port.

The basic functionality of the switch with virtual channel support deter-

mines that a message mapped to a virtual channel of an input port can access

any virtual channel at any output port. That forces the resource allocator of

the switch to be complex. To deal with this issue, in the gNoC switch, the

SA stage is extended to support the virtual channel allocation stage (VA-SA).

Indeed, we may think of this stage performing both actions in parallel. The

first action deals with assigning a free virtual channel to a header flit that

requests a free virtual channel of an output port. The second action deals

with each output port to arbitrate amongst all the virtual channels of all the

input ports that request that output port. The way to implement the VA-SA

stage has been widely studied [7]. gNoC implements a VA-SA stage that is

divided into two simple arbiters. Firstly, there is an arbiter at each input

port that arbitrates amongst all the virtual channels of that input port. That

functionality has been implemented with a round-robin arbiter identical to

the one implemented in the SA stage previously described. After performing

this arbitration, only a single flit from each input port is competing for an

output port. The second task of the VA-SA implemented in the gNoC switch

design is to arbitrate amongst all the input ports for an output port resource.

Note that this second task is identical to the SA stage described above. As a

side effect, by implementing the VA-SA stage in two parts reduces the match-

ing capabilities of the VA-SA stage as only one flit from an input port may

compete for an output port, thus not achieving maximal matching. However,

splitting the VA-SA stage into two simple arbitration processes reduces its

latency with respect to more complex arbiter designs that perform maximal

matching amongst all the virtual channels of all input ports. An scheme of

the VA-SA stage can be seen in Figure A.4(b).

A.1.4 Switch Implementation

Table A.1 shows the area and latency (critical path) of the gNoC switch design

without virtual channels and five input and outputs ports. No link delay has

been computed. Flit size has been set to 8 bytes. Flit size is identical to the

short message size in a CMP scenario. Input buffer size is set to four flits.

The router has been implemented using the 45nm technology open source
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(a) Input port with virtual channels. (b) VA-SA stage.

Figure A.4: gNoC switch support for virtual channels.

Nangate [90] with Synopsys DC. The wire model used is 5K-hvratio-1-1. We

have used M1-M4 metallization layers to perform the Place and Route with

Soc Encounter.

module area (um2) critical path (ns)

IB 3113.45 0.55

RT 124.26 0.32

SA 337.88 0.75

XB 1975.6 0.52

gNoC 17651 0.75

Table A.1: Area and delay the router modules and gNoC

Notice that the SA stage is the one with the highest latency, thus becom-

ing the bottleneck of the switch. This large latency is due to the complexity

of the arbiter (although being a round-robin arbiter) when compared to the

other stages, and the management of flow control signalling in the same stage.

Figure A.5 shows the critical path of the canonic switch when assuming dif-

ferent intercore distances. As it can be seen, the critical path increases as the

link length increases. From now on, we consider the canonic switch critical

path as:

T = 0.75ns + link delay (A.1)
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Figure A.5: gNoC critical path.

For the area results note that the IB stage is the stage with major area

requirements. The area computed for the IB and RT stages must be repli-

cated for each input port, while the area computed for the SA stage must be

replicated by the number of output ports. The final entry in the table reflects

the total area and delay of a 5-port gNoC switch design. Figure A.6 summa-

rizes the area of each stage (computing all the modules) of a gNoC switch.

Figure A.6 also shows the power consumption of each stage. Note that the IB

stage consumes almost 70% of the overall power budget of the router.

When introducing virtual channels the area and latency of the router are,

obviously, incremented. Each new IB and RT module will be similar to the

modules in a switch with no virtual channel. However, these two modules

must be replicated by the number of virtual channels, thus increasing the area

of the entire switch. Note that the increment in area of the VA-SA stage with

respect to the SA stage, or the area increment due to the increased amount

of RT stages, are secondary. That can be inferred from Table A.1, where it

can be seen that the RT stage and the SA modules do not highly contribute

to the whole switch area. The crossbar remains identical to the case where no

virtual channels are used as the policy used in the VA-SA stage is to reduce

the requests from an input port down to one (independently from the number

of virtual channels implemented). Finally, the latency of the switch is affected

by the increased complexity of the VA-SA stage. Remember that the VA-SA

stage is divided into two phases. Table A.2 shows the difference in area and
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Figure A.6: Area and power of the gNoC switch.

latency of the gNoC switch design with no virtual channels and with 5 virtual

channels. Finally, Figure A.7 shows the floorplan of the core of the canonic

switch.

gNoC area (um2) critical path (ns)

no VC 17651 0.75

5 VC 89976 1.01

Table A.2: Area and delay of the gNoC with no VC and five VC

A.1.5 Virtual Cut-Through and Tree-Based Broadcast Sup-

port

The pipelined wormhole switch described above has been modified to sup-

port virtual cut-through (VCT) switching and tree-based broadcast support.

Notice that support for the fork operations described in that chapter is also

provided. In order to migrate a wormhole switch to a VCT switch, some

changes at different levels must be applied. The most important consideration

is that packets must fit into switch buffers, because VCT is leveraged. Thus,

the changes required are: (1) packetization at the network interfaces; (2) ad-
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Figure A.7: Core floorplan of the canonic switch.

justing buffer size to packet size; (3) changes in flow control, in order to adapt

it to the nature of VCT. In addition, to support a tree-based broadcast and

fork operations, we need also to: (4) change the arbiter logic to support repli-

cating packets; (5) remove stale copies of packets (being replicated/forked).

he main changes between a wormhole switch with packet-level arbitration

and a VCT switch relies on the flow control mechanism, as a VCT switch must

guarantee that a packet that is crossing the switch will be completely trans-

mitted without interruption. Furthermore, the changes in the flow control

mechanism applied to the VCT switch will incur in modifications in the struc-

ture of both the IB and the SA stages. In addition, packetization is performed

at the node interfaces when required (thus not covered by this discussion on

switch design). Nevertheless, some short explanation on packet size is worth.

Messages in CMPs (using a coherence protocol) can be either short messages

containing a coherency command and a memory address or long messages

containing a cache line. In both cases, the length of those messages is known.

Additionally, the percentage of short messages is usually much larger than that

for large ones. Thus, the maximum packet size can be seized to that of short

messages. In that case, long and less frequent messages should be packetized.
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On the other hand, the Stop&Go flow control protocol implemented in the

wormhole switch can be relaxed in order to make it more efficient. Instead

of leveraging a flow control at the flit level, the nature of VCT allows imple-

menting it at the packet level. The reason is that when a packet is granted an

output port in VCT, all the flits of that packet will be forwarded. Therefore, a

stop or go signal may be asserted per packet. Note that we assume links with

one cycle delay, and thus round trip time is set to three cycles. In this case

buffers must be set to four flits to avoid introducing bubbles. However, for

messages with sizes shorter than packet size and round-trip time (e.g. one-flit

packets), bubbles between packets are generated if the buffer size does not ful-

fil the round trip-time restriction. To avoid bubbles we decided to pad short

packets to the input buffer depth. Obviously, this may affect performance.

Changes in the SA stage should be minimum since the SA stage is the most

critical stage in our design (explained previously). To address this concern we

have implemented the arbiters shown in Figure A.8. Figure A.8(a) describes

the arbiter in charge for unicast fork operations, while Figure A.8(b) shows the

arbiter for broadcast operations. Both arbiters follow the same design strategy

used in the wormhole switch. Both arbiters add a new module performed in

parallel with the unicast arbiter previously described (see Figure A.8). This

new module arbitrates between fork and broadcast requests similarly to the

unicast requests. The grant signals of this module enable (or disable) the

unicast grants. Higher priority is given to fork/broadcast requests. Finally a

multiplexer decides if a unicast request or a broadcast/fork request is winning

the crossbar. By doing this, minimum impact on the SA stage latency is

expected.

Finally, Table A.3 summarizes the frequency and area of the wormhole and

VCT implementations with no virtual channels. Both switches have the same

input buffer size and flit width. Note that VCT is faster than the wormhole

switch. This is due to the fact that VCT switching allows the switch to relax

the creation of the Stop&Go signal because in VCT the Stop&Go flow control

is performed per-packet rather than per-flit as in the wormhole switching.

Then, relaxing the Stop&Go signal reduces the critical path of the VCT switch.

Furthermore, VCT is designed with an IB size equal to the packet size. This

design constraint, in addition to the flow control decreasing complexity, allow
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Figure A.8: Arbiter for the VCT switch with fork or broadcast requests.

the IB to be simpler than the IB of the wormhole switch. For that reason, the

area of the VCT is smaller than the wormhole switch for the same size of the

IB in both cases.

area / Freq Wormhole VCT

area (um2) 17651 13643

freq (GHz) 1.33 1.54

Table A.3: Area and frequency for the wormhole and VCT switches

A.1.6 High-radix Switches

In this subsection, we analyze the area and critical path of the canonical switch

with respect to the number of input/output ports. Note that, high-radix

switches (more than 5 ports) are required to implement high-radix topologies

as C-mesh or flattened butterflies analyzed in Chapter 5. Table A.4 shows

the area and the critical path for a canonical switch with different number of

input/output ports. As it can be seen, the area, and the critical path increases

as the number of input/output ports increases, as expected.
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Ports Area (um2) Critical Path (ns)

3 Ports 10108 0.69

4 Ports 14083 0.70

5 Ports 18630 0.75

6 Ports 22952 0.83

8 Ports 35154 0.89

10 Ports 46870 0.96

Table A.4: Area and frequency for the wormhole and VCT switches

A.1.7 Variability in the Router

In order to analyze the effects of variability in the switch presented in the

previous section, we applied the variability model to 100 instances of our 8x8

mesh NoC synthesized using 45nm technology and studied how variability

modifies the operating frequency of each of the switches of the network and

also each of their modules. From the 100 NoC instances analyzed, 50 of them

were produced using a value equal to 1 for the ρ correlation parameter while

the other 50 were produced with ρ set to 0.5. We analyzed the influence in

the switch of random and systematic variations. Figures A.9(a) and A.9(b)

show the probability distribution function (pdf ) of the relative operating fre-

quency with respect to their own nominal frequency (Table A.1) of each stage

of the switch in two scenarios: when only systematic variation with corre-

lation 1 is considered(A.9(a)) and when only random variation is taken into

account(A.9(b)).

Figures A.9(a) and A.9(b) show that systematic variation has a larger

influence in the operating frequency of the switch than random variability.

This is due to the fact that random variability differently affects two adjacent

components. Thus, random variability , as will be shown later, may even be

reduced or canceled as the number of gates in a chain of logic increases [107],

as it can be seen for the IB and the XB module. Notice that despite the

differences in the pdf of the different stages, all the pdf have the same nature.

They can be seen as an addition of different peaks which are spread out due

to the variability . Each peak represents different paths in a stage. These

paths become alternatively the critical path in their respective stage. The fact
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(a) Only systematic Leff variations

considered(ρ = 1).

(b) Only random Vth variations considered.

Figure A.9: Frequency variation in the stages of a switch pipelined

that the critical path changes due to the variability increases the difficulty to

estimate the influence of the variability in a pre-synthesis design, because not

only the nominal critical path has to be taken into account.

Furthermore, Figures A.9(a) and A.9(b) show that variability (both sys-

tematic and random) influence differents stages in different ways. However,

the different kinds of variability affects the same stage in the same manner.

Then, the properties of the implementation of each stage is critical in order to

understand how the variability affects it. For a small and fast module (like the

RT module) with a small number of gates in the different paths, variability

affects the most. Small changes due to the variability have great impact. On

the opposite extreme, a slow module with a big number of gates in their paths

(VA-SA module) is slighty affected. Notice that these two modules as their

number of paths is small have only one main peak. In the middle of these two

extremes are the IB and the XB module. Their main characteristic is that as

their number of paths is bigger and these path are similar (they are regular

modules), the number of paths that becomes the critical path increases.

Figures A.10(a) and A.10(b) show the probability distribution function
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(pdf ) of the relative operating frequency with respect to their own nom-

inal frequency of the switch when only systematic variation with correla-

tion 1 is considered(A.10(a)) and when only random variation is taken into

account(A.10(b)). When only random variability is considered, the influence

of this varibility is smaller than when only systematic variability is considered.

Then, when only random variability is considered, it is the VA-SA stage the

one that determines the operating frequency in all cases since this stage is

slower than the others. On the other hand, when only systematic variability

is considered the operating frequency can be determined for different stages

despite the VA-SA module is still being the main stage that fixed the op-

erating frequency of the switch. This can be seen in Table A.5. Table A.5

shows the correlation between the operating frequency of the switch and the

operating frequency of the stages of this switch. Note that the correlation of

the VA-SA stage is the higest in all case because this stage is the stage that

fixed the operating frequency of the switch in almost all the cases. Note how-

ever, that the correlation when only systematic (sys) variability is considered

is higher than when only random (rnd) variability is taken into account in all

the stages. When only systematic variability is considered, this correlation is

high even for those modules that do not determined the operating frequency

of the switch. This is due to the fact that all the components in the switch

are affected by variability in a similar way. This mean that if the frequency

of one stage is reduced because systematic variability, then the frequency of

the other stage will probably be also reduced. therefore, it can be seen as a

biased variability that causes that the critical path does not change among the

switches so often. This effect is not present when only random variability is

considered due to the nature of the random variability that affects adjacents

components differently.

Figures A.11(a),Figures A.11(b), A.12(a) and A.12(b) show the probabil-

ity distribution function (pdf ) of the operating frequency of each of the stages

of a switch and this switch when systematic and random sources of variation

are simultaneously considered. These figures and Table A.5 show that there

exist small difference in frequency, between high and low correlation.

Table A.6 shows the main parameters of each configuration described

above. It shows the nominal, maximum, mean and minimum frequencies and
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(a) Only systematic Leff variations

considered(ρ = 1).

(b) Only random Vth variations considered.

Figure A.10: Frequency variation in switch pipeline

variability

stage sys(ρ = 1) sys(ρ = 0.5) rnd sys(ρ = 1)+rnd sys(ρ = 0.5)+rnd

IB 0.9955 0.8789 0.1178 0.9732 0.8745

RT 0.9922 0.7644 0.2354 0.9549 0.6879

VA-SA 1.0000 0.9998 1.0000 0.9788 0.9902

XB 0.9933 0.9765 0.1715 0.9644 0.9712

Table A.5: Correlation between stage delay and switch delay

(a) Systematic correlation of variability set

to 1.

(b) Systematic correlation of variability set

to 0.5.

Figure A.11: Frequency variation in the stages of a switch pipelined as a

consequence of both systematic and random variations.
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(a) Systematic correlation of variability set

to 1.

(b) Systematic correlation of variability set

to 0.5.

Figure A.12: Frequency variation in switch pipeline as a consequence of both

systematic and random variations.

Param. sys(ρ = 1) sys(ρ = 0.5) rnd sys(ρ = 1)+rnd sys(ρ = 0.5)+rnd

Nom. Freq. 1.0101 1.0101 1.0101 1.0101 1.0101

Max. Freq. 1.3158 1.1891 1.0373 1.3316 1.3298

Mean Freq. 0.9624 0.9635 1.0091 1.0023 1.0041

Min. Freq. 0.8123 0.8143 0.9681 0.8258 0.8110

σ/µ 0.0642 0.0657 0.0094 0.0695 0.0703

Table A.6: Nominal, maximum, mean and minimum frequencies and frequency

variation of a switch

the frequency variation of each pdf. Frequency variation is computed as (σ/µ)

where σ is the standard deviation and µ is the mean of the pdf. Data in Ta-

ble A.6 confirm that the exact value of th ρ parameter introduces very small

differences. Moreover, random variability moves the mean frequency more

than the systematic one. As mentioned before, this is due to the fact that

random variability makes that the critical path changes from one instance of

the switch to another more often than systematic variability.
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[77] Dinesh Pamunuwa, Johnny Öberg, Li-Rong Zheng, Mikael Millberg, and

Axel Jantsch. Layout, performance and power trade-offs in mesh-based

network-on-chip architectures. In VLSI-SOC, pages 362–, 2003.

[78] Luciano Bononi, Nicola Concer, Miltos D. Grammatikakis, Marcello

Coppola, and Riccardo Locatelli. Noc topologies exploration based on

mapping and simulation models. In DSD, pages 543–546, 2007.

[79] Daniel Sanchez, George Michelogiannakis, and Christos Kozyrakis. An

analysis of on-chip interconnection networks for large-scale chip multi-

processors. TACO, 7(1), 2010.

[80] Roberto Rojas-Cessa, Eiji Oki, and H. Jonathan Chao. On the combined

input-crosspoint buffered switch with round-robin arbitration. IEEE

Transactions on Communications, 53(11):1945–1951, 2005.

[81] Roberto Rojas-Cessa, Zhen Guo, and Nirwan Ansari. On the maximum

throughput of a combined input-crosspoint queued packet switch. IEICE

Transactions, 89-B(11):3120–3123, 2006.

[82] M. Katevenis and G. Passas. Variable-size multipacket segments in

buffered crossbar (cicq) architectures. In Communications, 2005. ICC

2005. 2005 IEEE International Conference on, volume 2, pages 999 –

1004 Vol. 2, may 2005.

[83] Ioannis Papaefstathiou, George Kornaros, and Nikolaos Chrysos. A

buffered crossbar-based chip interconnection framework supporting qual-

ity of service. In ACM Great Lakes Symposium on VLSI, pages 90–95,

2007.

[84] Aydin O. Balkan, Gang Qu, and Uzi Vishkin. A mesh-of-trees inter-

connection network for single-chip parallel processing. In ASAP, pages

73–80, 2006.

[85] Aydin O. Balkan, Gang Qu, and Uzi Vishkin. Mesh-of-trees and alter-

native interconnection networks for single-chip parallelism. IEEE Trans.

VLSI Syst., 17(10):1419–1432, 2009.



184 Bibliography
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