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Abstract

A significant number of variables to discriminate be-
tween paroxysmal and persistent atrial fibrillation (ParAF
vs. PerAF) has been widely exploited, mostly assessed
with statistical tests aimed to suggest adequate approaches
for catheter ablation (CA) of AF. However, in practice, it
would be desirable to utilize simple classification mod-
els readily understandable. In this work dominant fre-
quency (DF), AF cycle length (AFCL), sample entropy
(SE) and determinism (DET) of recurrent quantification
analysis were applied to recordings of complex fraction-
ated atrial electrograms (CFAEs) of AF patients, aimed to
create simple models to discriminate between ParAF and
PerAF. Correlation matrix filters removed redundant infor-
mation and Random Forests ranked the variables by rele-
vance. Next, coarse tree models were built, optimally com-
bining high-ranking indexes, and tested with leave-one-out
cross-validation. The best classification performance com-
bined SE and DF with an Accuracy (Acc) of 88.2% to dis-
criminate ParAF from PerAF, while the highest single Acc
was provided by DET reaching 82.4%. Hence, careful se-
lection of reduced sets of features feeding simple classifi-
cation models is able to discriminate accurately between
CFAEs of ParAF and PerAF.

1. Introduction

Atrial fibrillation (AF) requires therapeutic interven-
tions even in patients which suffer no subjective discom-
fort [1]. Its treatment includes electrical [2] and pharma-
cological [3] cardioversion, but catheter ablation (CA) has
become the first line therapy [4] due to its superiority to
other therapies in improving all-cause mortality [5].

In clinical practice, one of the goals for the straightfor-
ward characterization of atrial substrate aims at discrimi-
nating between patients into paroxysmal (ParAF) and per-
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sistent (PerAF) AF, as statistics have shown that the suc-
cess rate of CA is strictly dependent on the AF type, so
that the area of ablation has to be extended in the case of
PerAF [6]. Accordingly, this defines a challenge for a pre-
cise characterization of the atrial substrate aimed at guid-
ing optimally CA, where, methodologies to distinguish be-
tween complex fractionated atrial electrograms (CFAE) of
ParAF and PerAF would be very interesting and useful in
fast and efficient atrial substrate mapping [7].

Previous works proposed several discriminatory strate-
gies based on non-linear variables assessed with statistical
tests, aimed at classifying ParAF and PerAF from CFAEs.
To this respect, Ciaccio et al. measured CFAESs repetitive-
ness [7] and quantified the degree of morphological het-
erogeneity in CFAE deflections [8]; Acharya et al. adopted
recurrence plots, recurrence quantification analysis (RQA)
and entropy measures [9]; Ndrepepa ef al. and Ravi et al.
used the atrial fibrillation cycle length [10,11] and Sanders
et al. employed spectral analysis and the dominant fre-
quency mapping [12].

However, during clinical practice, it would be desirable
to utilize straightforward classification models which are
readily understandable, fed with features easily applicable
to CFAEs. This work exploits non-linear strategies and
simple models to discriminate between ParAF and PerAF
from CFAEs of patients undergoing CA in AF. We studied
the dominant frequency (DF), AF cycle length (AFCL),
sample entropy (SE) and determinism (DET) of RQA. The
indexes extracted from CFAEs were processed and se-
lected prior to be converted into features for coarse tree
classification models.

The main hypothesis is that a careful selection of re-
duced sets of features feeding simple classification mod-
els is able to discriminate accurately between CFAEs of
ParAF and PerAF, thus being able to provide straightfor-
ward insights into atrial substrate evaluation and improved
therapeutical decisions on AF management.
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2. Database and preprocessing

A total of 204 electrograms of 16 seconds were sampled
at 977 Hz from ParAF and long-standing PerAF patients
who underwent CA at the cardiac electrophysiological lab-
oratory of Columbia University Medical Center. The In-
ternal Review Board approved its acquisition and analysis.
For ParAF patients in sinus rhythm, AF was induced by
rapid pacing at the coronary sinus or at the lateral wall
of the right atrium. 90 and 114 CFAEs were recorded
for ParAF and PerAF, respectively, which were identi-
fied observing the published criteria in [7] from the four
pulmonary veins (PV): left superior (LSPV), left inferior
(LIPV), right superior (RSPV) and right inferior (RIPV);
and the anterior (ANT) and posterior (POS) free wall of
the left atrium.

The CFAEs were segmented into 1, 2 and 4 second-
length sequences with no overlapping, thus creating three
datasets. The first one consisted of 3264 one second-
length sequences; the second one had 1632 two second-
length sequences and the third dataset accounted on 816
four second-length sequences.

The signals were band-pass filtered by the acquisition
system (0.5-450 Hz), which removed baseline drift and
high frequency noise (CardioLab, GE Healthcare, Wauke-
sha, WI), then resampled at 1 KHz and filtered with a
wavelet-based method for noise reduction [13].

3. Methods

3.1. Sample entropy

SE has been chosen due to its ability to outline the
dynamics of atrial activity in AF patients as well as the
severity of the atrial remodeling [14]. SE assigned a non-
negative value reflecting the complexity of each sequence,
with lower values corresponding to more self-similarity in
the time series. The maximum template length m and tol-
erance r were set at 2 and at 0.35 times the standard de-
viation of the segment [14]. SE was applied to 1, 2 and 4
s-length sequences from the corresponding datasets.

3.2. Recurrence Plots and RQA measures

In order to produce recurrence plots (RPs), the CFAE
segments were considered as time series and their trajecto-
ries were projected into a d-dimensional phase space (PS).
The PS was reconstructed with Takens’ theorem, using
an embedding dimension (d) and a time delay (7) found
with Nearest Neighbors and Mutual Information strategies,
respectively. The RPs were produced representing each
pair of trajectory states as black dots if their distance was
below the threshold, which was set at 10% of the mean
of the PS diameter [15], and with white dots otherwise.

RPs were used to visualize recurrent patterns within 1,
2 and 4 s-length sequences. The RQA measure selected
was the determinism (DET), which quantifies the sequence
predictability by measuring the percentage of recurrence
points that belong to diagonal lines of a minimum length,
set at 50.

3.3. DF and AF Cycle Length

The DF was measured by identifying the highest spec-
tral peak in the electrophysiological range of interest of
3-12 Hz. The DF has been proven to be generally greater
in PerAF and lower in ParAF, as revealed by previous stud-
ies [8]. The DF was computed on the 16 s-length CFAE:s at
the different recording sites using the Welch Periodogram.

The AFCL was measured by detecting local activation
waves within the CFAEs [16], inverting the distances be-
tween consecutive activations and averaging them. The
AFCL was computed on the 16 s-length CFAEs at all the
recording sites.

3.4. Statistical tests and feature selection

The Mann-Whitney test verified the null hypothesis that
the indexes were similar for ParAF and PerAF, with sig-
nificance value set at 0.05. The test was performed for the
indexes at each atrial recording site. For the three datasets,
the p-values returned were averaged for channels and the
resulted values are reported in section 4.

Feature selection was used to remove data containing re-
dundant or irrelevant variables [17]. Two main techniques
were combined: the filters method, which selected the fea-
tures independently from the predictor choice in a prepro-
cessing step, and the wrapper method, which selected the
features with machine learning techniques for classifica-
tion. For the filters method we applied a filter to the corre-
lation matrix, removing the most redundant variables with
respect to the others, with a cutoff value of 0.60. After the
correlation matrix filtering, the wrapper method was ap-
plied via the Random Forest (RF) algorithm for variable
importance, which provides a ranking of the features con-
sidered as the most relevant for classification. The RF as-
signed to each variable a score (Gini impurity) from O to
100. The higher the value the more important the feature.
In this study, just the variables having scores higher than
40 were selected.

3.5. Classification models

The classification of ParAF and PerAF was performed
using coarse tree models together with leave-one-out
cross-validation. Each coarse tree model was built using
one possible combination of the variables that passed the
features selection process. In particular, for all segment
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lengths, all the possible subsets of features were used to
find out the coarse tree providing the highest accuracy.
Aimed at simplifying even more the classification, a coarse
tree model for each variable was created having just one
input feature. Accuracy values obtained with the classifi-
cation process were reported as percentages.

4. Results

The mean and the standard deviation values resulted by
applying SE and DET to 1, 2 and 4 s-length datasets are re-
ported in Table 1 organized by AF type. The SE mean val-
ues decreased with the segment length, with greater values
in PerAF, as compared to ParAF, thus reflecting a higher
degree of disorganization in PerAF. Contrarily, DET val-
ues increased with segment length, showing greater val-
ues in ParAF than in PerAF, providing ParAF as more pre-
dictable than PerAF.

The AFCL and the DF applied to the 16 s-length CFAEs
revealed values of AFCL with average and standard de-
viation of 7.0141.46 in ParAF, and 7.75+1.56 in PerAF,
while DF had respectively average and standard deviation
of 5.5941.36 in ParAF and 6.2041.08 in PerAF.

As shown in Table 2 for SE and DET, the Mann-Whitney
test rejected the null hypothesis in most of the channels,
with particularly low p-values in the RSPV, while in the
RIPV the null hypothesis was accepted, revealing a similar
atrial remodeling in both AF types. For the AFCL, the p-
values resulted always higher than the significance level of
0.05, but in the RSPV. Finally, the statistical tests run for
DF showed no differences between ParAF versus PerAF
just in the LSPV and in the POS.

The correlation matrix obtained by averaging correla-
tion values of the 1, 2 and 4 s-length datasets provided a
strong negative correlation between the indexes pairs of
SE-DET and AFCL-DET recorded at the same measure-
ment sites, while a strong positive correlation appeared be-
tween the pair SE-AFCL measured at the same channel.

Application of the correlation matrix filter to 1 and 2 s-
length datasets removed the indexes DFy 1py and entirely
the indexes of DET and AFCL, due to their strong corre-
lation with SE. For the 4 s-length dataset, the subset of in-

dexes kept were SE| gpy, SE[ 1py, SERspy- SER1pV>
SEpps, AFLCANT. DFpspy. DFrspy. DFRripys

DFANT: DFpos-
For the three datasets, the variables scoring provided by

the Random Forest is presented in Figure 1. For the 1 and 2
s-length datasets, the variables ranked with a score higher
than 40 were DFLSPV’ DFRSPV’ DFRIPV’ SELIPV and
SEpos, while in the 4 s-length dataset also the AFLCANT
was included as it surpassed the threshold value.

After testing all the possible sets of highly ranked
features, the group SEPOS’ DFLSPV’ DFRSPV and
DFR1py provided the best classification performance with

Table 1. Sample entropy and Determinism mean and stan-
dard deviation values for datasets of 1, 2 and 4 s-length
segments. Values obtained by averaging among CFAEs.
SE DET
ParAF PerAF ParAF PerAF

Is 0.123 £ 0.042 0.148 £0.057 0.608 = 0.135 0.524 £ 0.160
2s 0.120 £ 0.043 0.145 £ 0.056 0.656 & 0.140 0.556 £ 0.177
4s 0.117 £0.043 0.143 £0.057 0.688 £ 0.135 0.585 £ 0.179

Table 2. Mann-Whitney test p-values obtained, for each
measurement site, by averaging the p-values returned in
the test performed for the three segment length datasets.

channel SE DET AFCL DF

LSPV 0.0006 0.0001 > 0.05 > 0.05
LIPV 0.0253 0.0080 > 0.05 0.0287
RSPV < 0.0001 < 0.0001 0.0192 0.0007
RIPV > 0.05 > 0.05 > 0.05 0.0035
ANT 0.0035 0.0016 > 0.05 0.0387
POS 0.0002 0.0006 > 0.05 > 0.05

an accuracy of 88.2% for all segment lengths. The same
accuracy value was reached adding to the group also
SEj 1py. However, in order to simplify as much as possi-
ble the model, we decided to consider as optimal the min-
imal set of features providing the highest accuracy. Accu-
racy values of the models built with the other possible com-
binations of the highest-ranked features (score > 40) had
mean and standard deviation of 70.7£8.7% for 1 s-length,
70.8£8.3% for 2 s-length and 69.248.8% for 4 s-length.
Which is a significant reduction in accuracy.

The highest accuracy achieved by a single index was
provided by DET] [py with 82.4% for any segment length
as well, while the averaged single accuracies reached
by the other indexes were 60.2+11% for 1 s-length,
54.7+13.7% for 2 s-length and 57.34+11.4% for 4 s-length.
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Figure 1. Variable importance ranked with the Random
Forest algorithm for 1, 2 and 4 s-length analyses. The cut-
off value of 40 is shown in red.
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5. Discussion and conclusion

The study of the discriminatory power of DFRpy us-
ing statistical test led to the wrong conclusion that the in-
dex is not discriminative for ParAF and PerAF, as the null
hypothesis of no differences between ParAF and PerAF
was accepted. Contrarily, the feature selection ranked the
DFRIPV’ together with SEPOS’ DFLSPV’ DFRSPV’ as
the set of most important variables to classify the AF type
with the patients analyzed, reaching the highest accuracy
(88.2%). We can conclude that a careful selection of re-
duced sets of features feeding simple classification mod-
els are able to discriminate accurately between CFAEs of
ParAF and PerAF, thus providing simplified insights into
atrial substrate evaluation and improved therapeutical de-
cisions on AF management.
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