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Abstract

In the last years, convolutional neural networks (CNNs)
have become popular in ECG analysis, since they do not
require pre-processing stages, nor specific pre-training.
However, their ability for ECG quality assessment has still
not been thoroughly assessed. Hence, this work introduces
a comparison about the ability of several CNN algorithms
to classify between high and low-quality ECGs. Taking
advantage of the concept of transfer learning, five com-
mon pre-trained CNNs were analyzed, such as AlexNet,
GoogLeNet, VGG16, ResNetl8 and InceptionV3. They
were fed with 2-D images obtained by turning 5 second-
length ECG segments into scalograms through a contin-
uous Wavelet transform. To train and validate the algo-
rithms, 1,168 noisy ECG intervals, along with other 1,200
ECG excerpts with sufficient quality for their further inter-
pretation, were extracted from a public database. The ob-
tained results showed that all CNNs provided mean values
of accuracy between 89 and 91%, but notable difference in
terms of computational load were noticed. Thus, AlexNet
was the fastest algorithm, requiring notably less CPU us-
age and memory than the remaining methods. Conse-
quently, this CNN exhibited the best trade-off between
high-quality ECG identification accuracy and computa-
tional load, and it could be considered as the most con-
venient algorithm for ECG quality assessment.

1. Introduction

In the last decade, convolutional neural networks
(CNNs) have evolved significantly. Indeed, they are being
today applied in a broad variety of areas, such as sports,
health, automotive and robotics, among others [1]. Within
the field of medicine, these networks have been widely
employed for automatic tasks, such as analysis and inter-
pretation of ECG signals, classification of different kinds
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of arrhythmias, or biometric identification of subjects [2].
Nonetheless, ECG quality assessment is an interesting and
unresolved clinical challenge where CNNs have still not
been explored.

In general terms, accurate interpretation of the ECG
recording could be blurred by the presence of large lev-
els of noise, even making the signal unusable [3]. This
problem is aggravated in the case of wearable or portable
ECG monitoring systems. These devices have the ability
to acquire ECG signals for extended periods of time in un-
controlled and ever-changing environments, while the pa-
tient continues with a normal daily life, and therefore the
acquired ECG signal could be strongly affected by differ-
ent kinds of noises [4]. The most common nuisance in-
terferences found in these ECG recordings are powerline
interference, baseline wander, motion artifacts, and high-
frequency electromyography disturbances [4]. In this con-
text, automatic identification of contaminated and noisy
ECG intervals is essential to only process those excerpts
with sufficient quality to avoid further misinterpretations
and misdiagnoses [3].

To this end, several algorithms, mostly based on the de-
tection of ECG fiducial points and other morphological
events, have been recently proposed [3]. However, the
ECG recordings strongly affected by noise and morpho-
logical alterations do not allow reliable detection of most
of their relevant waves and points [5], thus reducing the
ability of those methods for an accurate ECG quality as-
sessment [3]. In fact, some authors are currently demand-
ing other kinds of indicators of ECG quality which are not
based on morphological ECG features and events [3].

Recently, the use of CNNs has emerged as a viable op-
tion to estimate ECG quality. These networks are able to
obtain the most relevant ECG characteristics without the
need of detecting and delineating its fiducial points and
other waveforms. To date, however, only a few works have
introduced algorithms based on CNNs for ECG quality as-
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sessment [6,7]. Moreover, these methods could be notably
overfitted, since they have been designed and trained from
scratch with a reduced number of ECG samples. In fact,
the lack of publicly available datasets with enough ECG
samples and annotations makes the use of pre-trained CNN
architectures an attractive alternative to discern between
high- and low-quality ECG excerpts. Taking advantage of
the concept of transfer learning, a pre-trained CNN scheme
can be adapted to a new task, thus saving learning time
and resources [8]. For instance, the performance of a well-
known pre-trained CNN has been recently exhibited a no-
tably better performance in ECG quality assessment than
other CNN models designed from scratch [9]. Therefore,
the main goal of the present work is to compare several
pre-trained CNN architectures to discern between high-
and low-quality ECG segments obtained from a portable
recording system.

2. Database

In the present work, the training dataset proposed for
the PhysioNet/CinC Challenge 2017 [10] was used. This
database is composed by 8,528 single-lead ECG signals
lasting between 9 and 60 seconds. They were acquired
with a sampling rate of of 300 Hz and 16 bits of resolution
by linking a portable ECG monitoring system (AliveCor™)
to a smartphone. In addition to the signals, their classifi-
cation by experts into four different rhythms, i.e., normal
sinus rhythm, atrial fibrillation, other rhythms, and noisy
recordings, is also available.

To make training and validation of the CNN-based al-
gorithms possible, the ECG signals were divided into 5
second-length intervals and clustered into two classes. The
excerpts belonging to noisy recordings formed the group
of low-quality ECGs, whereas those obtained from sig-
nal containing sinus rhythm, atrial fibrillation, and other
rhythms constituted the group of high-quality ECGs. The
result was a dataset with a great imbalance between both
groups, such as Table 1 shows. To overcome this problem,
a balanced subset was constructed by randomly selecting
1,200 ECG intervals with the a high-quality label, as well
as all 1,168 excerpts with a poor-quality one. It should be
noted that representativity of all rhythms was maintained

Table 1. Number of recordings and 5 second-length ECG
segments found in the training set of the PhysioNet/CinC
Challenge 2017 database for each cardiac rhythm.

Rhythm # of Recordings # of Segments
Sinus Rhythm 5,154 28,413
Atrial Fibrillation 771 4,329
Other Rhythms 2,557 14,697
Noise 46 1,168

in the new high-quality subset, becase it was composed by
400 sinus rhythm excerpts, 400 atrial fibrillation episodes
and 400 intervals of other rhythms.

3. Methods
3.1. ECG-based scalograms

Many pre-trained CNNs are 2-D models fed with im-
ages [11]. Hence, ECG excerpts were firstly transformed
into 2-D images to be inputted to the five compared algo-
rithms. For that purpose, time-frequency representation of
every 5 second-length ECG interval was turned into a 2-
D matrix using a Continuous Wavelet transform [12]. The
resulting wavelet coefficients were then graphically repre-
sented with a Jet colormap to obtain a wavelet scalogram.
This kind of 2-D image has been used as input for many
CNN-based algorithms in a wide variety of scenarios [11].
The parameters used in the described transformation were
a Morlet function as mother wavelet, and a number of
wavelet scales determined by 48 voices per octave.

3.2. Pre-trained CNN models

Five well-known CNN models were here compared,
i.e., AlexNet, VGG16, GooglLeNet, ResNet18 and Incep-
tionV3. AlexNet became very popular after winning a fa-
mous challenge dealing with visual recognition [13]. Since
then, it has been used in a huge variety of applications [1].
The original architecture of this network is composed of
eight layers with learning ability, where five are convolu-
tional and three are fully-connected. Furthermore, to re-
duce spatial length of the feature map, two pooling lay-
ers are included in the model. Moreover, a linear activa-
tion function is employed in all convolutional and fully-
connected layers. Finally, to reduce the problem of over-
fitting, two dropout regularization functions are inserted
after the two first fully-connected layers.

Thanks to its architecture based on the utilization of
small-sized convolution kernels, VGGNet has also become
a popular CNN scheme [14]. This network takes advan-
tage of the idea that highly deep and efficient models can
be reached by making use of numerous convolutional lay-
ers with small-sized kernels. There exist several variants
of this model with different deeper levels, but the most
used is VGG16 and thereby it was selected for the present
work [14]. This CNN is composed by 13 convolution lay-
ers with different number of kernels, and 5 max-pooling
layers for feature extraction. At the end of the model, three
full-connected layers are also found. As before, activa-
tion and dropout regularization functions are included in
the model to prevent overfitting.
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From a structural point of view, GooglLeNet [15]
presents an architecture totally different from the previ-
ous networks. While AlexNet and VGG16 are based on
a sequential structure of layers, Googl.eNet makes use of
a model composed of several branches in parallel. In fact,
this network introduces a novelty, i.e., the Inception Mod-
ule. This block is built through three convolutional and
one max-poling layers, which are placed in parallel to fi-
nally combine their feature maps.

On the other hand, the main characteristic in the ResNet
model is the use of residual blocks, which allow to easily
train very deep CNN architectures [16]. Hence, given an
input, the convolution layers transform the input data into
residue feature maps, while the original input is added di-
rectly to the transformed signal bypassing the convolution
layers. In this way, the output is the sum of the original
input data with the residue feature maps. Although several
variants of this architecture exist, the popular ResNet18
was used in the present work.

Finally, InceptionV3 consists of a network architecture
based on three different inception modules, similar to that
previously described for GoogLeNet [17]. The main con-
tribution of this network is the use of different ways for
factoring data into smaller convolutions, thus increasing
computational efficiency and reducing grid size.

It is worth noting that all the models have been de-
signed to deal with hundreds, or even thousands, of dif-
ferent classes, and hence the output layer of the five net-
works was adapted to exclusively work with two classes,
i.e., high- and low-quality ECGs.

3.3. Performance assessment

Training and validation of all CNN-based algorithms
were developed by running 5 times a holdout approach,
where data were stratifiedly divided into two sets, i.e., 80%
of samples were used for training and 20% for testing.
Note that, to conduct the fine-tuning of the algorithms, a
stochastic gradient descent with a momentum of 0.9 and
a learning rate of 0.001 was used during ten epochs with
mini-batches of ten samples.

On the one hand, the ability of each method to discern
between high- and low-quality ECG excerpts was assessed
in terms of sensitivity (Se), specificity (Sp) and accuracy
(Acc). Additionally, computational time, CPU usage, and
memory consumption required by the algorithms during
the validation phase were also computed. All experiments
were developed with Matlab R2019a (The MathWorks,
Inc), under an all-in-one workstation HP ProOne 600 G2
with a processor Intel 17 at 3.41 GHz. The results obtained
for all these metrics in the five conducted training/testing
cycles were averaged to provide a more global overview
about the performance of each method.

Table 2. Values of mean and standard deviation for Se, Sp
and Acc obtained by the analyzed CNN-based algorithms
in the validation phase.

Model Se (%) Sp (%) Acc (%)

AlexNet 88.90+3.27 92.50 £4.00 90.70+0.96
VGGl6 85.60£8.98 93.70+3.87 89.65+3.42
GoogLeNet  88.80£2.77 92.70£1.72 90.75+£0.75
ResNet18 88.40+2.19 93.80+1.30 91.10+£0.91
InceptionV3  89.00£2.24 93.50£0.79 91.25+0.88

Table 3. Values of mean and standard deviation for com-
putational time, CPU consumption and memory usage re-
quired by each algorithm during the validation phase.

Model Time (s) CPU (%) Mem. (MB)

AlexNet 12.764+0.21 30.40+0.52 2814.8+75.08
VGGl6 78.84+0.57 39.27+0.29 4854.24+58.87
GoogLeNet 25.33+0.45 37.03£0.31 1589.8+8.87
ResNet18 21.07£0.36 41.65£0.32 3266.0+24.03

InceptionV3 76.86+£0.25 32.51+0.33 1814.2+15.97

4. Results

As can be seen in Table 2, similar mean values of Acc
were obtained for all methods, ranging from 89.65% for
VGG16 to 91.25% for InceptionV3. Moreover, the mean
values of Sp and Se were well-balanced for all algorithms,
because differences between 1 and 3% were only noticed.
Nonetheless, for all cases a better ability to identify low-
quality ECG segments than high-quality ones was ob-
served, since mean values of Sp were about 92% and Se
around 88%. Of note is also that a low dispersion was ob-
served for the three performance metrics, presenting values
of standard deviation lower than 4% in most cases.

Regarding computational time, CPU consumption, and
memory usage required by the CNN models during the
testing phase, the results are showed in Table 3. The
most remarkable differences among the methods were no-
ticed in computational time. Precisely, this measure ranged
from 12.76 to 78.84 seconds per iteration, being AlexNet
6.5 times faster than VGG16. Likewise, the memory re-
quired by GoogLeNet was significantly lower than the one
needed by VGG16, varying this mesure between 1,589.8
and 4,854.2 MB. Finally, regarding the CPU consump-
tion, slightly differences were only encountered among all
methods. Nonetheless, it should be noted that AlexNet was
the algorithms requiring less CPU usage.

s. Discussion and conclusions

In the present work, five pre-trained CNN models have
been compared for quality assessment of single-lead ECG
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signals acquired using a portable recording system. The
obtained results have shown that VGG16 and InceptionV3
required much more time than the remaining algorithms to
classify all ECG intervals included in the subset of test-
ing. Furthermore, for a comparable CPU comsumption,
VGG16 also demanded substantially more memory than
the other methods. The huge number of hyper-parameters
required by this CNN scheme could explain this behavior.
In fact, VGG16 contains more than 138 million of hyper-
parameters, whereas the others less than 65 million [14].

On the other hand, GoogLeNet and ResNet18 have re-
ported computational time and CPU usage notably higher
than AlexNet. In fact, both algorithms required nearly
twice the time and around 7-10% more of CPU consump-
tion than AlexNet for the same task. In view of these re-
sults and having in mind that no great differences in values
of Se, Sp, and Acc were noticed for all CNN schemes,
it could be concluded that AlexNet has reported the best
trade-off between poor-quality ECG identification accu-
racy and computational load, and therefore it is the most
convenient CNN-based approach for quality assessment of
ECG signals obtained from wearable and portable record-
ing systems.
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