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Abstract

Electrical cardioversion (ECV) is a well-established
strategy for atrial fibrillation (AF) management. Despite
its high initial effectiveness, a high relapsing rate is also
found. Hence, identification of patients at high risk of early
AF recurrence is crucial for a rationale therapeutic strat-
egy. For that purpose, a set of indices characterizing fib-
rillatory (f -) waves have been proposed, but they have not
considered nonlinear dynamics present at different time-
scales within the cardiovascular system. This work thus
explores whether a multiscale entropy (MSE) analysis of
the f -waves can improve preoperative predictions of ECV
outcome. Thus, two MSE approaches were considered, i.e.,
traditional MSE and a refined version (RMSE). Both algo-
rithms were applied to the main f -waves component ex-
tracted from lead V1 and entropy values were computed for
the first 20 time-scales. As a reference, dominant frequency
(DF) and f -wave amplitude (FWA) were also computed. A
total of 70 patients were analyzed, and all parameters but
FWA showed statistically significant differences between
those relapsing to AF and maintaining sinus rhythm during
a follow-up of 4 weeks. RMSE reported the best results for
the scale 19, improving predictive ability up to an 8% with
respect to DAF and FWA. Consequently, investigation of
nonlinear dynamics at large time-scales can provide use-
ful insights able to improve predictions of ECV failure.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia encountered in clinical practice, affecting 33 mil-
lion individuals worldwide and presenting increasing inci-
dence, as well as an age-dependent prevalence [1]. Also,
this arrhythmia today remains being the major cause of
cardiovascular morbidity and mortality [1]. When persis-
tent AF arises, it lasts for more than 7 days and an external
intervention is required for its termination [2, 3]. To this

end, electrical cardioversion (ECV) is a well-established
strategy. Although this procedure is able to initially revert
almost every patient to sinus rhythm (SR) [3], its mid- and
long-term success rates are notably limited. In fact, nearly
20% of the patients relapse to AF after 4 weeks and around
70% do it within a year [2]. Hence, being able to anticipate
patients at high risk of AF recurrence after ECV is crucial
for a rationale therapeutic strategy [4].

In this context, some parameters characterizing fibril-
latory (f -) waves extracted from the electrocardiogram
(ECG), such as the f -waves amplitude (FWA) and domi-
nant frequency (DF) [5], have been proposed as predictors
of early ECV failure. The well-known Sample Entropy
(SampEn) has also been proposed for the same purpose,
because it has been suggested by previous works that the
presence of more disorganized atrial activity can be asso-
ciated with higher probability of AF recurrence [6]. This
index has obtained encouraging outcomes, thus reporting a
better predictive ability of early ECV failure than FWA and
DF [6]. However, SampEn is not able to precisely quantify
dynamics generated at different spatiotemporal scales by
some complex systems, such as the cardiovascular one [7].
To overcome this issue, multiscale entropy (MSE) was pro-
posed by Costa et. al. [8]. This metric was introduced as
a modification of SampEn to quantify the complexity of
a time series over several time-scales, and simultaneously
to reduce fast-temporal scales that may mask complex dy-
namics inherent to the system [9]. Hence, this work ex-
plores whether a MSE analysis applied to the f -waves can
improved preoperative predictions about ECV outcome.

2. Methods

2.1. Study population

Seventy patients diagnosed with persistent AF indicated
for ECV were considered. A standard 12-lead ECG was
continuously recorded during the entire ECV procedure
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with a sampling rate of 1024 Hz and 16 bit resolution. Af-
ter a 4 week follow-up, 39 patients relapsed to AF and the
remaining 31 maintained SR.

2.2. Preprocessing of the ECG signal

The f -waves encountered in standard lead V1 for an
interval of 90 second in length before ECV were ex-
tracted by means of an adaptive QRST cancellation algo-
rithm [10]. Lead V1 was chosen due to its proximity to
the left atria, as it typically exhibits the largest f -waves
amplitude [5]. Briefly, the ECG signal was first prepro-
cessed for removal of baseline wander, powerline interfer-
ence and high frequency noise [11]. The R-peaks were then
detected [12] and the QRS complexes were clustered into
morphologies after an R-peak-based alignment. The QRS
clustering was performed by a template matching proce-
dure, where a cross correlation coefficient higher than 70%
was always ensured. Finally, the QRST cancellation algo-
rithm was applied in a recursive way, starting from the
smaller cluster of QRS complexes and following an up-
ward order. The QRST complex duration was set to the
minimum value between 470 ms (typical value) and 90%
of the median RR interval. The resulting f -waves were
high-pass filtered at 3 Hz to remove ventricular residua.

2.3. Characterization of the f -waves

Considering f(n) to be theN sample-length signal con-
taining f -waves and n = 1:N , the index FWA was defined
as [6]

FWA =

√√√√ 1

N

N∑
n=1

|f(n)|2. (1)

On the other hand, the DF was estimated as the fre-
quency where the local maxima of the averaged (avg-)
power spectral density (PSD) of the f -waves was located,
within the 3–12 Hz band, i.e.,

DF = arg{ max
fk=3−12 Hz

{avg-PSD(fk)}}. (2)

The avg-PSD was estimated as the mean value of individ-
ual PSDs computed with a 2 second-length sliding proto-
col on signal segments of 6 seconds in length. PSDs were
estimated using the Welch periodogram and those with a
cross-correlation coefficient below 0.7 were discarded.

To compute the f -waves organization, SampEn was ob-
tained from their main component [6, 13]. This signal,
named ff(n), was obtained by applying a band-pass fil-
ter to f(n) centered on the DF with a 5 Hz bandwidth.
SampEn is defined as the negative natural logarithmic like-
lihood ratio that two sequences of length m that remain

similar within a distance r will remain similar for an incre-
mental length of one unit [7]. From a mathematical point
of view, this entropy can be obtained as follows: [7]:
1. Compute the subvectors of length m, vm(n), as:

vm(n) = {ff(n+ i) : 0≤i≤m− 1} . (3)

2. Estimate the Chebyshev distance between every pair of
subvectors, i.e.:

djk(m) = max
i
{vm(j)− vm(k)} . (4)

3. Compute the number of matches of length m within a
distance r, φmk (r), and the probability of encountering a
match, φm(r), according to:

φmk (r) =
1

N −m− 1

N−m∑
j=1
j 6=i

(djk(m) < r), and (5)

φm(r) =
1

N −m

N−m∑
i=1

φmk (r). (6)

4. Increment m in one unit and compute φm+1
k (r) and

φm+1(r) through equations (3)–(6).
5. Finally, SampEn is defined as

SampEn(x,m, r,N) = − ln
φm+1(r)

φm(r)
. (7)

As a modification of SampEn, MSE was originally pro-
posed to account for the long-range correlations that are
likely to be present in complex dynamical systems occur-
ring at different spatiotemporal time-scales [8]. Hence,
this index estimates SampEn over a coarse-grained version
of ff(n). According to [8], the coarse grained series at
time-scale τ can be estimated as:

ffτ (j) =
1

τ

jτ∑
i=(j−1)τ

ff(i), for 1≤j≤N
τ
. (8)

Despite that MSE has been used in a wide variety of
ECG-based applications [9], an artificial decrease in the
complexity associated to the coarse graining procedure is
found. To counteract this limitation, a refined version
of MSE (RMSE) was proposed by Valencia et. al. [14].
RMSE implies two modifications regarding MSE, i.e. (i)
the coarse grained series, ffτ (n), are estimated by low-
pass filtering ff(n) with a normalized cut-off frequency
of 0.5/τ and subsequently downsampling it by τ , and (ii)
the dissimilarity threshold r is set to a percentage of the
standard deviation of the coarse-grained series.

In the present work, MSE and RMSE values for the first
20 time-scales were estimated. Moreover, the resulting
curves obtained by plotting both indices as a function of
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the time-scales were also characterized by its area (A) and
slopes (S) in short (SS, τ = 1:6) and long (LS, τ = 7:20)
scales. Note that the slopes were computed by a linear
fitting of the entropy values into a first grade polynomial.
Finally, it should also be noted that SampEn, MSE and
RMSE were computed using the widely recommended val-
ues of m = 2 and r = 0.2 times the standard deviation of
ff(n) or ffτ (n) [7], as previously described.

2.4. Performance assessment

Normality in distributions obtained for the proposed in-
dices was analyzed using a Kolmogorov-Smirnov hypoth-
esis test. Then, statistical separability between groups of
patients was evaluated using a two-sample t-test, if data
were normally distributed, and a Wilcoxon rank sum test in
other case. On the other hand, a receiver operating charac-
teristic (ROC) curve was used to evaluate the discriminant
ability of each index [15]. This plot displays the fraction of
true positives out of positives (sensitivity) against the frac-
tion of false positives out of the negatives (1− specificity)
at different threshold settings.The optimum threshold was
determined according to the Youden’s criterion. Moreover,
the area under the ROC curve (AROC) was also computed
as an aggregate measure of performance for each metric.

3. Results

Fig. 1 shows MSE and RMSE curves as a function of τ .
As can be seen, a very similar behavior and values are seen
for both indices. Of note is that, for every τ , statistically
significant higher median values and narrower interquartile
ranges were observed for the patients who relapsed to AF
than for those who maintained SR during the follow-up.
However, discriminant abilities were found to be notably
different among the time-scales, so only the entropy values
computed for the time-scale exhibiting the highest AROC
are given in Table 1.

As can be observed in this table, among the previously
proposed predictors of ECV, only FWA was unable to
provide statistical differences between groups of patients.
Moreover, SampEn did not outperform the classification
performance of DF, but that index provided a better trade-
off between sensitivity and specificity. Both, DF and Sam-
pEn, obtained higher values for the patients relapsing to
AF than for those maintaining SR. Similarly, MSE and
RMSE indices also obtained higher values for the patients
presenting AF recurrence, but they outperformed classifi-
cation ability of SampEn at large time-scales, particularly
for the time-scale 19.

Finally, it is also interesting to note that all RMSE-based
parameters showed a better performance than MSE-based
ones. Nonetheless, in both cases S presented a higher dis-
criminant ability in the SS region, while A was better dis-
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Figure 1. Median and interquartile ranges of (a) MSE
(b) RMSE as a function of the time scale (τ ) for patients
relapsing to AF (red) and maintaining SR (blue).

cerning between groups of patients in the LS region. Even
though these aggregated complexity indices were unable
to outperform the classification achieved by single entropy
values for τ = 19, they provided more balanced values
of sensitivity and specificity. For instance, SSS reported
values around 75%.

4. Discussion and conclusions

According to the results obtained in this work, lower
values of SampEn and DF for the patients maintaining SR
than for those relapsing to AF have also been reported
by some previous studies, thus suggesting that the pres-
ence of more disorganized f -waves increases the probabil-
ity of AF recurrence after ECV [6, 13]. Contrarily, while
previous findings point to higher values of FWA for the
patients maintaining SR [6], an opposite trend was here
found. However, it should be noted that the values for both
groups of patients were very close and no statistically sig-
nificant differences were noticed. These contradictory re-
sults could be due to the use of different ways to extract
f -waves, as well as to compute FWA.

Anyway, the performance of these parameters was no-
tably outperformed by the proposed MSE- or RMSE-based
indices. Thus, these metrics achieved improvements in dis-
criminant ability between 3 and 8%. These results agree
with the idea introduced by Costa et. al. [8] that complex
dynamical systems present long-range spatiotemporal cor-
relations. In fact, the best results were provided by entropy
values computed for the largest time-scales. Moreover, al-
though the aggregated indices estimating complexity over
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Table 1. Main results for the previously proposed predictors of ECV and the most predictive MSE- and RMSE-based
parameters. Median values and interquartile ranges for patients relapsing to AF and maintaining SR, statistical significance
(p-value), sensitivity (Se), specificity (Sp) and AROC are provided.

Parameter AF relapse SR maintenance p-value Se (%) Sp (%) AROC (%)
FWA 0.051 (0.039) 0.049 (0.080) 0.356 41.936 84.615 56.493
DF 5.615 (1.160) 4.883 (1.404) 0.003 69.231 61.290 70.678
SampEn 0.114 (0.039) 0.094 (0.050) 0.004 71.795 58.064 70.389
MSE (τ = 19) 0.616 (0.075) 0.565 (0.066) < 0.001 92.308 61.290 75.517
MSE ALS 8.291 ( 0.573 ) 7.901 ( 1.111 ) < 0.001 79.487 67.742 74.938
MSE SSS 0.087 ( 0.005 ) 0.082 ( 0.021 ) < 0.001 76.923 67.742 73.780
RMSE (τ = 19) 0.627 (0.077) 0.568 (0.065) < 0.001 94.871 58.064 78.164
RMSE ALS 8.362 ( 0.542 ) 7.922 ( 0.844 ) < 0.001 84.615 64.516 76.427
RMSE SSS 0.088 ( 0.005 ) 0.081 ( 0.017 ) < 0.001 76.923 74.194 75.021

several time scales, i.e., A and S, were not able to out-
perform single-scale measures, they still performed better
than FWA, DAF, and SampEn. Also, A provided the best
accuracy in the LS area, while S did it in the SS region,
thus suggesting that the real system complexity is better
devised in the long-range, when most of the fast temporal
variations have been removed [8].

To sum up, multiscale entropy analysis seems to be help-
ful in unveiling internal dynamics that rule the processes
of SR rhythm maintenance in the mid- and long-term after
ECV. Nonetheless, further analysis with broader databases
are needed for corroborating this conclusion.
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