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A Burnup Credit Methodology for PWR Spent Fuel 

Storage Pool 
 

VICTOR FARIA DE CASTRO 

 

(ABSTRACT) 

In the past, criticality safety analyses for spent fuel storage and transport canisters assumed the spent fuel 

to be fresh (unburned) fuel with uniform isotopics corresponding to the maximum allowable enrichment. 

However, because this assumption ignores the decrease in reactivity as a result of irradiation, it is very 

conservative for fuel with significant burnup. The concept of taking credit for the reduction in reactivity due 

to fuel burnup is commonly referred to as Burnup Credit. 

In this work a methodology for giving Burnup Credit in development is presented. The final goal is to 

obtain the loading curve that determines the region on a spent fuel storage pool in which a fuel element 

must be stored. Several analyses on the code were carried out with the SCALE6.1 code package, more 

specifically, the TRITON depletion sequence, with KENO-VI and NEWT transport codes, and CSAS6 

criticality sequence, which uses KENO-VI transport code. 

The methodology consists in determine the upper subcritical limit (USL) which is the limit for the keff at 

safety conditions. The USL was determined with a set of benchmark critical experiments available for 

SCALE. Once the bias and its uncertainty are determined the USL can be established and, with a 

conservative axial burnup profile, the loading curve can be obtained. 
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I. INTRODUCTION 

 

Unirradiated reactor fuel has a well-specified nuclide composition that provides a straightforward and 

bounding approach to the criticality safety analysis of transport and storage casks [1]. In the past, criticality 

safety analyses for spent fuel storage and transport canisters assumed the spent fuel to be fresh 

(unburned) fuel with uniform isotopics corresponding to the maximum allowable enrichment. This fresh-

fuel assumption provides a well-defined, bounding approach to the criticality safety analysis that eliminates 

all concerns related to the fuel operating history, thus, considerably simplifying the analysis. However, 

because this assumption ignores the decrease in reactivity as a result of irradiation, it is very conservative 

for fuel with significant burnup [2] 

The concept of taking credit for the reduction in reactivity due to fuel burnup is commonly referred to as 

Burnup Credit. This reduction in reactivity that arises with fuel burnup is due to change in concentration of 

fissile nuclides and the production of parasitic neutron-absorbing nuclides. Actinide-only burnup credit 

refers to a methodology that considers only the two major actinides present in spent fuel: uranium and 

plutonium. Fission product burnup credit considers a number of fission products and minor actinides. Full 

burnup credit refers to a combination of actinide-only and fission product burnup credits. 

For over two decades, burnup credit has been sought for the transportation, storage, and disposal of spent 

commercial nuclear fuel. Progress has included the issuance of the first version of U.S. Nuclear 

Regulatory Commission (NRC) Interim Staff Guidance 8 (ISG8) in 1999. The latest version, Revision 2, 

has endorsed actinide-only burnup credit and was issued in 2002. Experimental data necessary for 

validation of the isotopic compositions and the nuclear cross sections of fission products have not been 

deemed to be adequate thus far, and approval of full burnup credit, including both actinides and fission 

products, has been subsequently delayed [3]. Since 2004, Oak Ridge National Laboratory (ORNL) has 

been working on a project whose goal is to develop scientific and technical information necessary to 

support preparation and review of a safety evaluation for cask designs that use full burnup credit to 

transport PWR spent fuel. Cooperative work between ORNL, NRC, the Electric Power Research Institute 

(EPRI), and the U.S. Department of Energy (DOE) was established in order to execute this full burnup 

credit project [4]. The issuance of the ISG8 – Revision 3 was predicted to 2011 and presumably will 

provide recommendations for full burnup credit. 

I.1 Criticality accident requirements 

 

Criteria in matters of criticality analysis were based on the NRC regulation 10 CFR 50.68 [5] along with the 

guidance document [6]. When giving credit for soluble boron it is assumed the hypothesis that there is no 

loss in boron inside the spent fuel storage pool. 
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1. For PWR fuel storage pools where no soluble boron credit is taken, the criticality safety analysis 

will follow the condition: 

a) If no credit for soluble boron is taken, the k-effective of the spent fuel storage racks loaded with 

fuel of the maximum fuel assembly reactivity must not exceed 0.95, at a 95 percent probability, 

95 percent confidence level, if flooded with unborated water. 

2. If soluble boron credit is taken, two conditions are to be analyzed: 

a)  If credit is taken for soluble boron, the k-effective of the spent fuel storage racks loaded with fuel 

of the maximum fuel assembly reactivity must not exceed 0.95, at a 95 percent probability, 95 

percent confidence level, if flooded with borated water, and; 

b)  The k-effective must remain below 1.0 (subcritical), at a 95 percent probability, 95 percent 

confidence level, if flooded with unborated water. 

I.2  Criticality safety analysis method and computational code 

 

Following the recommendations of the [ISG8R2], the criticality safety analysis methods must adequately 

consider all the neutronic and geometric features of the storage pool. In particular, the storage racks that 

contain layers of neutron absorbing materials, or structural poisoned material (e.g. borated water), need 

detailed modeling. 

ISG8R2 recommendation calls for validation of the analysis tools using measured data to determine 

appropriate bias and uncertainties [7]. In this work the code system SCALE6.1 was used in order to obtain 

fresh fuel burnup details (isotopic concentrations) using TRITON, for later use in the criticality analysis in 

the spent fuel storage pool, using CSAS6. 
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II. THE SCALE CODE SYSTEM 
 

The SCALE code system, developed at Oak Ridge National Laboratory (ORNL) in the United States, 

provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor 

physics, spent fuel characterization, radiation shielding, and sensitivity and uncertainty analysis. 

SCALE6.1 is built on a modular design and provides a framework with 89 computational modules, 

including three deterministic and three Monte Carlo radiation transport solvers that are selected based on 

the desired solution. 

As mentioned before, two main control modules of SCALE6.1 were used for the calculations: TRITON, a 

code for transport, depletion and sensitivity and uncertainty analysis, and CSAS6, a criticality code for 

calculation of the neutron multiplication factor for the system. Both of these codes prepare a resonance-

corrected cross-section library for subsequent use in the KENO-VI 3-D transport code. Unless specified, 

all cases were run with the 44-groups ENDF/B-V master library available on SCALE package. Also, NEWT 

deterministic transport code was used on TRITON depletion sequence as a means to compare the 

TRITON transport codes in a burnup calculation. 

 

II.1 TRITON: Transport Rigor Implemented with Time-dependent Operation for 
Neutronic depletion 

 

TRITON is a multipurpose SCALE control module for transport, depletion, and sensitivity and uncertainty 

analysis for reactor physics applications. TRITON can be used to provide automated, problem-dependent 

cross-section processing followed by multigroup neutron transport calculations for one-, two-, and three-

dimensional (1D, 2D, and 3D) configurations. Additionally, this functionality can be used in tandem with 

the ORIGEN depletion module to predict isotopic concentrations, source terms, and decay heat, as well as 

generate few-group homogenized cross sections for nodal core calculations. [15] 

TRITON provides the capability to perform deterministic transport analysis for 1D geometry using 

XSDRNPM and for a wide variety of 2D arbitrary geometry configurations using NEWT. TRITON also 

includes Monte Carlo depletion capabilities using KENO V.a and KENO-VI. Both KENO codes offer 

powerful 3D geometric representations for depletion calculations. With the rigorous treatment of neutron 

transport available within XSDRNPM, NEWT and KENO, coupled with the accuracy of ORIGEN depletion 

capabilities and SCALE multigroup cross-section processing calculations, TRITON provides a rigorous 

first-principles approach for calculation of cross sections and isotopic depletion source terms for fuel 

designs. 
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Five cross-section processing options are supported in TRITON: (1) the CENTRM-based discrete 

ordinates option, (2) the CENTRM-based two-region option, (3) the CENTRM-based doubly 

heterogeneous option, (4) the NITAWL-based option, and (5) the BONAMI-based option. Because the first 

option, CENTRM-based discrete ordinates, is the most rigorous and accurate [14] it was the chosen cross-

section processing tool for all the calculations in the study presented. 

For this work, TRITON was used with the depletion sequences t-depl and t6-depl, which invokes NEWT 

and KENO-VI, respectively as transport model. Figure 1 shows the scheme used for the depletion 

calculation using NEWT, while Figure 2 shows a depletion scheme using KENO transport code. 

 

 

Figure 1: TRITON depletion sequence using NEWT as transport code 
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Figure 2: TRITON depletion sequence using KENO as transport code 

 

II.2 Cross-section processing 

 

SCALE features a material information processor for the control modules that utilize free-form input data 

consisting of easily visualized engineering parameters to derive and prepare input data for many of the 

functional modules used in SCALE. 

The Material Information Processor Library (MIPLIB) reads and checks a unified set of engineering-type 

data and performs the calculations that are necessary to create input data files for use by the BONAMI 

(BONdarenko AMPX Interpolator) code, and, optionally: 

- CRAWDAD (Code to Read And Write DAta for Discretized solution); 

- NITAWL (Nordheim Integral Treatment And Working Library Production); 

- CENTRM (Continuous ENergy TRansport Module); 

- PMC (Produce Multigroup Cross sections); 

- CHOPS (Compute HOmogenized Pointwise Stuff); 

- CAJUN; 

- WAX (Working Library AJAX); 

- WORKER; 
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- XSDRNPM (X-Section Dynamics for Reactor Nucleonics with Petrie Modifications); and/or 

- ICE (Intermixed Cross Sections Effortlessly) to provide a problem-dependent cross-section 

library. 

As stated in the previous section, the CENTRM-based discrete ordinates (SN) option was chosen in this 

work for cross-section processing. With this option, the Bondarenko self-shielding method is used to 

determine the problem-dependent multigroup cross sections in the unresolved resonance energy range. 

The unresolved resonance calculation is performed by the BONAMI functional module. For the resolved 

resonance energy range, the CENTRM functional module is used to determine the 1D pointwise (~105 

energy groups) flux solution using an SN method. After the BONAMI and CENTRM calculation, the PMC 

functional module is invoked to collapse pointwise cross sections using the CENTRM pointwise flux 

solution. The flux weighting provides problem-dependent multigroup cross sections in the resolved 

resonance range. The CENTRM SN option also employs the SCALE functional modules CRAWDAD and 

WORKER to reformat data libraries to the appropriate format for BONAMI, CENTRM, and PMC. 

The engineering-type data read by the Material Information Processor include the unit cell description 

defining the materials, dimensions, and boundary conditions of the geometry that will be used in the 

resonance self-shielding calculations and the flux-weighting cell calculations used in cross-section 

processing. Also, the user must specify the type of geometry in which the unit cell is. Because the 

geometry of the problem is a PWR fuel assembly, the LATTICECELL was used. This cell description is 

especially suited to large arrays of identical cells such as a fuel assembly lattice. The unit cell data are 

used to provide the lump shape and dimensions for resonance cross-section processing, to provide lattice 

corrections for cross-section processing. The unit cell data are utilized by the code to define the geometric 

and resonance self-shielding corrections that will be applied to the cross sections. The cell-weighted cross 

sections have a flux disadvantage factor applied to them. Thus, the unit cell specification plays a major 

role in providing accurate problem-dependent cross sections. A unit cell as used on the calculations is 

depicted on Figure 3. 
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Figure 3: Unit cell used for cross-section processing 

 

II.3 CSAS6/KENO-VI: 

 

CASA6 is a criticality module that automatically prepares cross-sections for KENO-VI transport analysis. 

As TRITON cross-section processing, the CSAS6  processes SCALE cross sections using the 

Bondarenko method (via BONAMI) and collapsing of pointwise continuous energy cross sections using a 

problem dependent pointwise continuous flux (via WORKER, CENTRM, and PMC) to provide a 

resonance-corrected cross-section library based on the physical characteristics of the problem being 

analyzed. The codes utilized in CSAS6 start with an AMPX master format cross-section library and 

generate a self-shielded, group-averaged library applicable to the specific problem configuration. These 

cross sections are then used in the KENO-VI Monte Carlo code to determine the effective neutron 

multiplication factor (keff). 

KENO-VI is a Monte Carlo transport code whose primary purpose is to determine k-effective. Other 

calculated quantities include lifetime, generation time, energy-dependent leakages, energy- and region-

dependent absorptions, fissions, flux densities, and fission densities. It uses the SCALE Generalized 

Geometry Package (SGGP) which contains a much larger set of geometrical bodies, including cuboids, 

cylinders, spheres, cones, dodecahedrons, elliptical cylinders, ellipsoids, hoppers, parallelepipeds, planes, 

rhomboids, and wedges. The code’s flexibility is increased by allowing the following features: intersecting 

geometry regions; hexagonal, dodecahedral, and cuboidal arrays; bodies and holes rotated to any angle 
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and translated to any position; and a specified array boundary that contains only that portion of the array 

located inside the boundary. 

SCALE also provides a visualization tool for KENO, called KENO3D, which provides the user a means to 

obtain a visual model of the geometry and all the materials present in the model. 

II.4 NEWT 

NEWT (New ESC-based Weighting Transport code) is a two-dimensional (2-D) discrete-ordinates 

transport code developed based on the Extended Step Characteristic (ESC) approach for spatial 

discretization on an arbitrary mesh structure. The ESC approach was developed to obtain a discrete-

ordinates solution in complicated geometries to handle the needs of irregular configurations. Deterministic 

solutions to the transport equation generally calculate a solution in terms of the particle flux; the flux is the 

product of particle density and speed and is a useful quantity in the determination of reaction rates that 

characterize nuclear systems. NEWT provides multiple capabilities that can potentially be used in a wide 

variety of application areas. 

These include 2-D eigenvalue calculations, forward and adjoint flux solutions, multigroup flux spectrum 

calculations, and material-weighted cross-section collapse. NEWT provides significant functionality to 

support lattice-physics calculations, including assembly cross-section homogenization and collapse, 

calculation of assembly discontinuity factors (for internal and reflected assemblies), diffusion coefficients, 

pin powers, and group form factors. Used as part of the TRITON depletion sequence, NEWT provides 

spatial fluxes, weighted multigroup cross sections, and power distributions used for multi-material 

depletion calculations and coupled depletion and branch calculations needed for latticephysics analysis. 

II.5 ORIGEN-S 

The ORIGEN (Oak Ridge Isotope Generation) code1 was developed at Oak Ridge National Laboratory 

(ORNL) to calculate nuclide compositions and radioactivity of fission products, activation products, and 

products of heavy metal transmutation. ORIGEN analyzes the full isotopic transition matrix through 

application of the matrix exponential method to solve the rate equations that describe the nuclide 

generation, depletion, and decay processes. ORIGEN-S has the ability to utilize problem-dependent 

multigroup cross-sections and energy-dependent fission product yields. 

The libraries include nuclear data for 2226 nuclides produced by neutron activation, fission, and decay. All 

decay data are based on ENDF/B-VII. The multigroup cross-section data are developed from the JEFF-

3.0/A neutron activation file containing cross-section data for 774 target nuclides and 23 different reaction 

types. In addition, energy-dependent fission product yields from ENDF/B-VII are included for 30 

fissionable nuclides. 
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The ability to couple ORIGEN-S with cross sections developed from transport calculations is automated in 

the TRITON depletion sequence of SCALE. In the SCALE code system, multigroup cross-section data are 

available from ENDF/B-V, -VI, and -VII files. These cross sections are processed to account for the 

resonance self-shielding of the particular configuration specified by the user. Then they are collapsed to 

one group using the neutron flux spectrum determined from the transport code analysis and applied 

directly in the ORIGEN-S depletion calculation. 

Nuclear data are stored in a binary format library developed for ORIGEN-S that contains all radioactive 

decay data and neutron cross sections required to solve the transmutation and decay equations. The data 

are stored in the library as a compressed transition matrix that can be used directly by the code. Cross 

sections are stored as average one-group values that have been obtained by weighting multigroup  eutron 

cross sections. Infinite dilution cross sections for ORIGEN-S are available in multigroup format, which 

were obtained based on JEFF-3.0/A libraries. Alternatively, self-shielded cross sections can be accessed 

from any of the ENDF/B-based data libraries available in SCALE. 

SCALE6.1 package also provides a utility module, called OPUS, which produces a condensed output file 

and plot data from output generated by the ORIGEN-S code that computes reactor fuel depletion, 

activation and fission- product buildup, and the associated photon and neutron source spectra. 
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III. CRITICALITY ANALYSIS VALIDATION 
 

III.1 Introduction 

 

Like mentioned before, the code CSAS6 was used for the criticality analysis, which applies the Monte 

Carlo transport code KENO-VI. 

The criticality safety analysis was carried out using the 44-groups ENDF/B-V available in the SCALE 

package. The KENO-VI calculations simulated 805 generations, with 600 neutron histories per generation, 

and skipped the first 5 generations before averaging; thus, each calculated kef values is based on 480000 

neutron histories. 

III.2 The upper subcritical superior limit (USL) 

 

For a given subcritical configuration, confidence that the system neutron multiplication factor guarantee 

the subcriticality of the system is necessary. This implies that an acceptable margin based on biases and 

uncertainties to be determined. 

The USL is defined as the maximum value kef can assume, under conservative hypothesis, for the system 

to be consider subcritical, that is:  

 

                                                                                  (1) 

 

ks – System effective multiplication factor obtained by simulation 

 ks – Statistical uncertainties. Includes calculation and design uncertainties 

kc – Average of the effective multiplication factors obtained from benchmarks experiments, 

using a particular calculation method. 

 kc  –  Uncertainty of the benchmark experiments. Must include not only the uncertainty of 

these experiments, but the uncertainty on the bias, that results from extrapolation of these experiments to 

the range of the parameters associated to the design of the spent fuel storage pool. 

 km  –  Subcriticality margin under operational limitations (usually  km = 0.05) 

 kBU  – Uncertainty to be considered when burnup credit is taken. Includes the uncertainties 

associated to the burnup calculations used to obtain the isotopic concentrations 
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To obtain the USL, the bias  = (1 – kc) must be determined. The benchmark sets BORON and 

VALSCALE were used in order to calculate this bias. These sets of critical experiments used as 

benchmarks are considered representative for the composition, configuration and nuclear features of the 

system. 

The results for these benchmarks calculations are represented in the Table 1, where N is the number of 

experiments and  kc, is the uncertainty in the bias  = (1 – kc). 

 

Table 1: Benchmark calculations for VALSCALE and BORON sets 

Experiment N kc  kc 

VALSCALE 79 1.00035 0.0172691 
BORON 8 0.99426 0.0059682 

 

For the standard experiments set for validation of the SCALE code, VALSCALE, the values for βVS y ΔβVS 

are obtained: 

 

        
                                 

                (2)                               

                                       for βVS <  0 

  

Although the reference [8] implies the values of the USL take into account the values of the bias, negative 

or positive, in this study, in order to be conservative, the negative bias is discarded. 

For the experiments set that contain boron, BORON, the values for βVS y ΔβVS are obtained: 

 

       
                                       

                  (3)                           

                                                for βB >  0  
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The VALSCALE set provide the most conservative bias and uncertainty, so it will be the choice set for 

establishing the USL, which is the safety limit to determine when a storage pool is safe in terms of 

criticality. 

Further analysis of the results should give more statistical data so as to obtain the USL based not only on 

the uncertainties provided by the SCALE6.1 code, but the statistical confidence interval accordingly to the 

Spanish norm UNE [9] and [5]. 



13 

 

IV. BURNUP CREDIT METHODOLOGY IN A PWR POWER PLANT 
 

IV.1 Introduction 

 

In the storage pool of the studied PWR, two regions are differentiated: region I, which is the oldest, with a 

greater separation between element racks; and region II, with elements with a burnup degree and greater 

enrichment. The application of this methodology will focus on the acquisition of a criterion, which will 

decide the most suitable region for the safe storage of combustible material. 

Initially, the spent fuel storage pool was formed by the racks in region I. Due to the lack of storage space 

for combustible materials, the pool was later equipped with new steel racks with a greater content of boron 

and of a different design, to allow the storage of a greater number of materials. 

Region I can store both new and used combustible materials. Each storage position is equipped with a 

neutron-absorbing canal, made of bored steel with content in minimum weight of natural boron 1.6 wt%. 

Region II only permits the storage of used combustible materials, with a maximum initial enrichment of 4.5 

wt% in 235U. These racks are made of bored steel with content in minimum weight of natural boron at 1.7 

wt%. 

Region II only permits the storage of combustible materials that have reached a certain level of average 

burnup, depending on the initial enrichment. 

 

IV.2 Characteristics of Region II for fuel storage 

 

The distribution of the fuel racks of region II, as well as that of region I, is shown in Figure 4.. 

Region II racks can hold spent combustible materials. The pool is equipped with neutron-absorbing 

vessels, made of stainless steel poisoned by at least 1.7 wt% of natural boron, in a chessboard-like 

configuration. 
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Figure 4: Region I and II of the spent fuel storage pool 
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Figure 5: Guide tubes distribution on a fuel element 

IV.3 Characteristics of the fuel element 

The configuration of the fuel elements in the present paper is shown in Figure 5, whereas the 

characteristics and dimensions are given in Table 2. 

Table 2: Characteristics of a fuel element in region II 

Reticule 16 x 16 
Number of fuel pins 236 
Number of guide tubes 20 
Pin pitch 14.3 mm 
Diameter of the fuel pellets 9.11 mm 
External diameter of the pin 10.75 mm 
Cladding thickness 0.725 mm 
Cladding material Zircaloy 
External diameter of the guide tube 13.8  0.03 mm 
Internal diameter of the guide tube 12.4 mm 
Material of the guide tube Zircaloy 
Mass of uranium by fuel element  473.2 kg  2% 
Active length 3400  15 mm 

 

IV.4 Geometric model of Region II of the fuel element pool 
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 The fuel element pool can be modelled from a basic, or reference, cell, with boundary conditions of 

specular reflection on the XYZ axes, except for the case of axial burnup credit, where the reflection will 

exclusively be on axes X and Y (Figure 6). 

 

In Table 3 the most important data for the modelling of the reference cell and that of the uranium oxide pin 

is shown. 

Table 3: Data of cell and fuel pins 

Data Description Value Reference 

1 Number of pins by element 236 KWU BT33-94-E065b 
2 Number of guide tubes by element 20 KWU BT33-94-E065b 
3 Diameter of the pellet (cm) 0.911 BT51-33-71331 

BT41-33-72309 
4 Radius of the pellet (cm) (3)/2 0.4555 Calculation 
5 External diameter of the clad (cm) 1.075 BT51-33-71331 
6 External radius of the clad (cm) (5)/2 0.5375 Calculation 
7 Internal radius of the clad  0.93 BT51-33-71331 
8 Internal radius of the clad (7)/2 0.465 Calculation 
9 Width of the clad (cm) (6)-(8) 0.0725 Calculation 
10 Thickness of the gap (cm) (8)-(4) 0.0095 Calculation 
11 Active length of the element (cm) 340 BT41-33-72309 

BT-51-33-71331 
12 Maximum active length of the element (cm) 341.5 Calculation  
13 Maximum active length of the element (cm) 384.5 BT-51-33-71331 
14 Material of the clad Zircaloy-4 Department of Mechanical 

and Materials Engineering 
15 Maximum effective density of the pellets (g/cc) 10.5156 Calculation 
16 Pin pitch (cm) 1.43 BT51-33-71331 
17 Width of the fuel element 

(16 x pin pitch) (cm) 
16*1.43 = 28.8 Calculation 
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Figure 1: Outline of the reference cell model Figure 6: Outline of the reference cell model 
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The effective fuel pellet density is the density of the pellets averaged on: 

 

 The pellet cells 

 The active length of the fuel pins 

 The number of fuel pins by fuel element 

 

The contribution of the fuel cells can be obtained from the mass of uranium per fuel element, as specified 

in table 2, since this mass depends on the density of the pellet, the pellet cell, and the active length. 

Therefore, when considering the core fabrication tolerances specified in the previous table, the maximum 

possible effective density of the pellets is obtained: 
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Max(MU) = maximum mass of uranium per fuel element (473.2 kg + 2%) 

NFR = number of fuel rods per fuel element (NFR = 236) (1) 

d = Diameter of the pellet (9.11 mm) (2) 

Min(LA) = minimum active length of the fuel pins (3385 mm) (10)-15 mm 

UO2 = molecular mass of UO2 (270) 

U = atomic mass of uranium (238) 

 

The composition in volume of the Zircaloy-4 can be seen in Table 4. To obtain this, the values of the 

weight fractions of the constitutive elements were used: Zr (0.983), Sn (0.013), Fe (0.002), Cr (0.001) and 

O (0.0012), of the mixture density (~6.56 g/cc) and the densities of each compound Zr = 6.4 g/cc; Sn = 

7.31 g/cc; Fe = 7.86 g/cc; Cr = 7.20 g/cc; O = 1.0 g/cc; according to the expression: 
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compound ofDensity 

density) Mixture ·fraction (Weight 
 fraction  Volume 

 

. 

Table 4: Composition (% in volume) of Zircaloy-4 

Element % in volume 

Zr 97.785 
Sn 1.170 
Fe 0.167 
Cr 0.091 
O 0.787 

 

The guide tube is used to control the power and the neutron flux during the burnup of the element inside 

the reactor. In Table 5 can be seen the most significant data for the modelling of the guide tube. 

Table 5: Geometric data of the guide tube 

Data Description Value Reference 

1 Number of guide tubes by fuel element 20 KWU BT33-94-E065b 
2 Internal diameter of the guide tube (cm) 1.24 BT51-33-71331 
3 Internal radius of the guide tube (cm) (2)/2 0.62 Calculation 
4 External diameter of the guide tube (cm) 1.38 BT51-33-71331 
5 External radius of the guide tube (cm) (4)/2 0.69 Calculation 
6 Pin Pitch (cm) 1.43 BT51-33-71331 
7 Material of the guide tube Zircaloy-4 Department of Mechanical 

and Materials Engineering 

 

The reference cell is the basic unit that defines the spent fuel pool of region II. The data and their origin 

reference for the modelling of the reference cell are given in Table 6. 

Table 6: Data of the reference cell 

Data Description  Value Reference 

1 Fuel Pitch (mm) 250  0.5 KWU BT33-94-E065b 

2 Internal length of the neutron-absorbing canal (mm) 240  1 KWU BT33-94-E065b 

3 Wall thickness of the absorbing canal (mm) 2 KWU BT33-94-E065b 
4 Temperature (except when otherwise indicated) (ºC) 4 Hypothesis 

Design criterion  
5 Material of the absorbing canal Borated steel KWU BT33-94-E065b 
6 Density of the absorbing canal (g/cc) 7.647 KWU BT33-94-E065b 
7 Number of neutron generations 805 Hypothesis 

Design criterion 
8 Number of neutrons per generation 600 Hypothesis 

Design criterion 
9 Number of rejected generations 3 Hypothesis 

Design criterion 
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V. BURNUP ISOTOPES 

V.1 Determination of actinides and fission products 

 

Although ORIGEN-S can track over 2000 nuclides, this much detail is not necessary, because a great 

number of those nuclides decay very rapidly, while others are not presented in sufficient amounts as to be 

considered important in the kef calculations. The following criteria are recommended by DeHart [10] and 

are considered adequate for the nuclides to be considered in the analysis. 

1. Those nuclides that contribute significantly to the absorption of thermal neutrons in spent fuel are 

to be included; 

2. All fissile nuclides are to be included; 

3. Nuclides must be fixed in the fuel matrix (i.e., no credit taken for volatile elements); and 

4. The predicted concentrations of selected nuclides in spent fuel must be verifiable by comparison 

with chemical assay measurements. 

Criterion 2 requires 235U, 239Pu y el 241Pu to be included in the actinide set. Moreover the guide [6] clearly 

express that 135Xe must not be included. 

Table 7 shows the selected nuclides for the analysis. These nuclides are part of a TRITON set that adds 

trace quantities of specific nuclides for the ORIGEN-S calculations. As previously stated, the parameter 

ADDNUX was fixed to the value ADDNUX=2 from which, apart from the 135Xe, all nuclides added were 

used for the criticality analysis of the storage pool. 

Table 7: Selected nuclides in the burnup calculations 

Actinides 234U, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 
243Am, 242Cm, 243Cm, 244Cm 

Fission 
Products 

1H, 10B, 11B, 14N, 16O, 83Kr, 93Nb, 94Zr, 95Mo, 99Tc, 103Rh, 105Rh, 106Ru, 
109Ag, 126Sn, 135I, 131Xe, 133Cs, 134Cs, 135Cs, 137Cs, 143Pr, 144Ce, 143Nd, 
145Nd, 146Nd, 147Nd, 147Pm, 148Pm, 149Pm, 148Nd, 147Sm, 149Sm, 150Sm, 
151Sm, 152Sm, 151Eu, 153Eu, 154Eu, 155Eu, 152Gd, 154Gd, 155Gd, 156Gd, 
157Gd, 158Gd, 160Gd, 91Zr, 93Zr, 95Zr, 96Zr, 95Nb, 97Mo, 98Mo, 99Mo, 100Mo, 
101Ru, 102Ru, 103Ru, 104Ru, 105Pd, 107Pd, 108Pd, 113Cd, 115In, 127I, 129I, 
133Xe, 139La, 140Ba, 141Ce, 142Ce, 143Ce, 141Pr, 144Nd, 153Sm, 156Eu 

Although [6] points that all fission products, but 135Xe can be used, a total of 15 actinides and 77 fission 

products were selected. 
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VI. INFLUENCE OF THE OPERATION PARAMETERS ON ISOTOPE 

CALCULATIONS 
 

VI.1 Introduction 

 

The isotope inventory of a fuel element depends on its burnup history: that is, not only on the operational 

cycles of the reactor, but also on the specific power at which the fuel element has been operating on the 

nucleus, as well as the thermal-hydraulic parameters of the operation. This implies that each burnup 

element has its own unique history, which differs from the rest of the elements [11]. 

Thus, the follow-up of the history of the specific operation of each fuel element is unfeasible for the 

proposals of design and security analysis, and, therefore, it is necessary to identify a simpler operation 

history, which is conservative in terms of kef. 

For a better understanding of the effects of the operation history with regard to power, the effects of the 

mean specific power and the burnup time must be separated in the isotope inventory. In order to 

analyse this effect, several calculations have been carried out, using the code TRITON to obtain the 

isotopic distribution resulting from the element burnup, from the initial enrichment and CSAS6 for the 

criticality calculations performed so to obtain the kef.  

VI.2 Effect of the average burnup in the burnup calculations 

 

Three burnup groups had been evaluated: 10, 20 and 30 GWd/MTU along with three types of enrichment: 

3.0, 3.6, 4.5 wt%. To be even more conservative, no cooling time was assumed. The results in terms of Kef 

are presented in Table 8 and will serve as the case basis for the following calculations of this section.  

Table 8: Basis Case 

Enrichment 10 GWd/MTU 20 GWd/MTU 30 GWd/MTU 

3.0% 1.03302 ± 0.00085 0.93620 ± 0.00082 0.84582 ± 0.00081 

3.6% 1.08608 ± 0.00095 0.99546 ± 0.00092 0.90840 ± 0.00089 

4.5% 1.14761 ± 0.00094 1.06515 ± 0.00089 0.98748 ± 0.00086 

 

In general, the results reveal that the value calculated for kef increases as the specific power is increased. 

This behaviour is because the creation of fission products depends on the specific power, but not on the 

decay rate. 

On the other hand, there are some contrasting effects. Thus, an increase in the concentration of 235U is 

quite probable as the specific power increases, since there is an increase in the concentration of 

plutonium isotopes, and therefore, the fissions of 239Pu and 241Pu cause a decrease in the fission rates of 



21 

 

235U, required to maintain the fixed level of power. In addition, both the 239Pu and the 241Pu are produced 

by the absorption of the 238U of high-energy neutrons. 

This also suggests that the hardening of the neutron spectrum, produced when operating at high specific 

power, also favours the production of both isotopes. A possible cause of this hardening is the poisoning 

effect of Xenon during the operation of the reactor, since its equilibrium state is proportional to the specific 

power. 

Another possible effect is the decay of 241Pu at 241Am. At low levels of specific power, this decay is more 

important than fission, which causes the diminishing of the kef, since the 241Am, is a highly absorbing 

nuclide. 

As can be observed, there are contrasting effects. Thus, if the production of actinides predominates, the 

kef will be smaller at low power. If more fission products had been chosen, the opposite would have 

happened, that is, that the production of fission products would have predominated, and at high specific 

power, the kef would be smaller. 

In the case considered, when eliminating most isotopes coming from fission products, the results are not 

conclusive. There is no a specific conservative power, which leads us to select the specific reference 

power for all the calculations, as the power obtained as a mean of three 365-day burnup cycles. 

 

VI.3 Effect of burnup time-dependent variations 

 

The isotopic distribution at the end of a fuel assembly life depends on the burnup history until it reaches 

said point. In this section such history, including downtimes is analyzed. The same burnup and enrichment 

groups from the previous sections are used. A total of seven different cases had been carried out: 

Case 1: One month downtime (30 days). 

P1 15 days P2 15 days P3 
   

Case 2: No downtime is assumed for the next cases. 

P1 P2 P3 
 

Case 3: P1 = P2 = 2P3 

P1 P2 
 

P3 
 

Case 4: P2 = 2P1 = 2P3 

 
P2 

 

P1 P3 
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Case 5: P1 = 2P2 = 2P3 

P1 
  

P2 P3 
 

Case 6: P3 = 2P1 = 2P2 

  
P3 P1 P2 

 

Case 7: P1 = P2 = P3 = P4 

P1 P2 P3 P4 
 

∑
  

       
⁄

 

                  

 

Tables 9 to Table 11 show the obtained results. The most conservative values of the Kef are highlighted. 

Table 9: Results for burnup time-dependent variations at 3.0% 

 Enrichment 3.0 wt% 

 10 GWd/MTU 20 GWd/MTU 30 GWd/MTU 

Case 1 1.03403 ± 0.00093 0.94361 ± 0.00091 0.86386 ± 0.00086 

Case 2 1.03536 ± 0.00094 0.94476 ± 0.00084 0.86331 ± 0.00083 

Case 3 1.03596 ± 0.00092 0.94469 ± 0.00090 0.86548 ± 0.00078 

Case 4 1.03624 ± 0.00093 0.94628 ± 0.00089 0.86590 ± 0.00089 

Case 5 1.03456 ± 0.00086 0.94402 ± 0.00088 0.86499 ± 0.00078 

Case 6 1.03416 ± 0.00087 0.94639 ± 0.00086 0.86427 ± 0.00085 

Case 7 1.03621 ± 0.00089 0.94453 ± 0.00088 0.86537 ± 0.00085 

Basis Case 1.03525 ± 0.00081 0.94421 ± 0.00064 0.86440 ± 0.00049 

ΔK/K  (σ) -0.003%  (0.00096) 0.073%  (0.00106) 0.039%  (0.00095) 

 

Table 10: Results for burnup time-dependent variations at 3.6% 

 Enrichment 3.6 wt% 

 10 GWd/MTU 20 GWd/MTU 30 GWd/MTU 

Case 1 1.08636 ± 0.00104 0.99874 ± 0.00086 0.92297 ± 0.00079 

Case 2 1.08542 ± 0.00093 0.99941 ± 0.00107 0.92180 ± 0.00079 

Case 3 1.08693 ± 0.00093 0.99977 ± 0.00095 0.92066 ± 0.00092 

Case 4 1.08624 ± 0.00092 1.00105 ± 0.00090 0.91970 ± 0.00081 

Case 5 1.08556 ± 0.00087 0.99949 ± 0.00094 0.92093 ± 0.00081 

Case 6 1.08577 ± 0.00090 1.00117 ± 0.00090 0.92048 ± 0.00082 

Case 7 1.08543 ± 0.00093 1.00139 ± 0.00084 0.92201 ± 0.00088 

Basis Case 1.08578 ± 0.00077 1.00068 ± 0.00068 0.92120 ± 0.00058 

ΔK/K  (σ) 0.016%  (0.00057) -0.053%  (0.00104) 0.002%  (0.00110) 
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Table 11: Results for burnup time-dependent variations at 4.5% 

 Enrichment 4.5 wt% 

 10 GWd/MTU 20 GWd/MTU 30 GWd/MTU 

Case 1 1.14531 ± 0.00102 1.06813 ± 0.00095 0.99271 ± 0.00099 

Case 2 1.14502 ± 0.00112 1.06641 ± 0.00089 0.99183 ± 0.00084 

Case 3 1.14462 ± 0.00101 1.06695 ± 0.00094 0.99317 ± 0.00081 

Case 4 1.14576 ± 0.00092 1.06799 ± 0.00104 0.99285 ± 0.00086 

Case 5 1.14449 ± 0.00095 1.06668 ± 0.00088 0.99158 ± 0.00087 

Case 6 1.14504 ± 0.00092 1.06705 ± 0.00093 0.99233 ± 0.00088 

Case 7 1.14434 ± 0.00091 1.06775 ± 0.00095 0.99429 ± 0.00093 

Basis Case 1.14482 ± 0.00091 1.06607 ± 0.00071 0.99371 ± 0.00074 

ΔK/K  (σ) 0.010%  (0.00050) 0.114%  (0.00067) -0.104%  (0.00091) 
 

  

 
    

        

      
    ;     √
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It can be concluded that, in general, when there are specific powers that are above average during the five 

last cycles of fuel element, higher kef are obtained, whenever the effect of the actinides is greater than that 

of the fission products, which is consistent with the analysis carried out in the previous section. Therefore, 

eliminating both effects will depend on the specific power and the burnup history. 

However, when considering that 5% of the decrease in the effective multiplication constant corresponding 

to the burnup under study has been viewed as an unknown value, (5 % of kef (fresh) - kef-maximum (spent)), the 

one closer to reality will be taken as the simple operational history. Thus, a downtime, or stopping time, 

between cycles, which is equal to 15 days and a final cooling time of 6.25 days (150 hours). 

The specific power, in GW by fuel element, once the burnup time has been established within the reactor 

for each fuel element, has been calculated for each burnup case as 
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where validity has been given to the hypothesis of three one-year cycles for each fuel element, before 

being discharged into the pool. The value of 0.482664 is given, since it has been assumed that a fuel 

element has a mass of 482.664 Kg. of Uranium. 
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VI.4 Sensitivity analysis with respect to operational parameters 

 

In this section, one of the operational parameters of the basis case was perturbed, whilst the others 

remained fixed. The basis case parameters are as follow: 

        

         

        

         

Fixing three of them, the other is perturbed, resulting in the following cases: 

- Case 1:                            

- Case 2:                            

- Case 3:                     

- Case 4:                     

- Case 5:                       

- Case 6:                       

- Case 7:                         

- Case 8:                          

The results of this analysis are presented in Table 12 to Table 15. As the previous section, the most 

conservative values are highlighted. 

Table 12: Results for operational parameters variations at 3.0% 

 Enrichment 3.0 wt% 

 10 GWd/MTU 20 GWd/MTU 30 GWd/MTU 

Fuel +50°C 1.03253 ± 0.00087 0.94036 ± 0.00085 0.85745 ± 0.00078 

Clad +100°C 
-0.26% -0.41% -0.80% 

Moderator +100°C 

Fuel -50°C 1.03832 ± 0.00091 0.9507 ± 0.00090 0.87297 ± 0.00086 

Clad -100°C 
0.30% 0.69% 0.99% 

Moderator -100°C 

Fuel +100°C 1.03393 ± 0.00101 0.94685 ± 0.00078 0.86798 ± 0.00085 

Clad = 618K 
-0.13% 0.28% 0.41% 

Moderator = 584K 

Fuel -100°C 1.03242 ± 0.00100 0.94279 ± 0.00083 0.86285 ± 0.00093 

Clad = 618K 
-0.27% -0.15% -0.18% 

Moderator = 584K 

Fuel = 1040K 1.03136 ± 0.00095 0.94235 ± 0.00081 0.86019 ± 0.00085 

Clad +50°C 
-0.38% -0.20% -0.49% 

Moderator +50°C 

Fuel = 1040K 1.03686 ± 0.00087 0.94750 ± 0.00084 0.86979 ± 0.00081 

Clad -50°C 0.16% 0.35% 0.62% 
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Moderator -50°C 

Basis Case 1.03525 ± 0.00081 0.94421 ± 0.00064 0.86440 ± 0.00049 

Power 100% 
-0.0979% 0.0934% 0.0931% 

Conc. Boron = 0 ppm 

 

Table 13: Results for operational parameters variations at 3.6% 

 Enrichment 3.6 wt% 

 10 GWd/MTU 20 GWd/MTU 30 GWd/MTU 

Fuel +50°C 1.08347 ± 0.00098 0.99507 ± 0.00084 0.91495 ± 0.00088 

Clad +100°C 
-0.21% -0.56% -0.68% 

Moderator +100°C 

Fuel -50°C 1.08808 ± 0.00088 1.00618 ± 0.00088 0.92668 ± 0.00081 

Clad -100°C 
0.21% 0.55% 0.59% 

Moderator -100°C 

Fuel +100°C 1.08409 ± 0.00094 1.00031 ± 0.00087 0.92410 ± 0.00082 

Clad = 618K 
-0.16% -0.04% 0.31% 

Moderator = 584K 

Fuel -100°C 1.08468 ± 0.00097 1.00094 ± 0.00090 0.92151 ± 0.00082 

Clad = 618K 
-0.10% 0.03% 0.03% 

Moderator = 584K 

Fuel = 1040K 1.08536 ± 0.00093 0.99887 ± 0.00085 0.91833 ± 0.00082 

Clad +50°C 
-0.04% -0.18% -0.31% 

Moderator +50°C 

Fuel = 1040K 1.08844 ± 0.00097 1.00414 ± 0.00104 0.92504 ± 0.00088 

Clad -50°C 
0.24% 0.35% 0.42% 

Moderator -50°C 

Basis Case 1.08578 ± 0.00077 1.00068 ± 0.00068 0.92120 ± 0.00058 

Power 100% 
-0.0086% 0.0238% 0.0617% 

Conc. Boron = 0 ppm 

 

Table 14: Results for operational parameters variations at 4.5% 

 Enrichment 4.5 wt% 

 10 GWd/MTU 20 GWd/MTU 30 GWd/MTU 

Fuel +50°C 1.14113 ± 0.00098 1.06310 ± 0.00096 0.99028 ± 0.00086 

Clad +100°C 
-0.66% -1.25% -1.43% 

Moderator +100°C 

Fuel -50°C 1.14471 ± 0.00092 1.06992 ± 0.00092 0.99618 ± 0.00085 

Clad -100°C 
-0.34% -0.61% -0.84% 

Moderator -100°C 

Fuel +100°C 1.14387 ± 0.00102 1.06659 ± 0.00092 0.99528 ± 0.00104 

Clad = 618K 
-0.42% -0.92% -0.93% 

Moderator = 584K 

Fuel -100°C 1.14445 ± 0.00102 1.06547 ± 0.00097 0.99205 ± 0.00093 

Clad = 618K 
-0.37% -1.03% -1.25% 

Moderator = 584K 

Fuel = 1040K 1.14326 ± 0.00103 1.06501 ± 0.00090 0.99131 ± 0.00081 
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Clad +50°C 
-0.47% -1.07% -1.33% 

Moderator +50°C 

Fuel = 1040K 1.14563 ± 0.00092 1.06860 ± 0.00087 0.99554 ± 0.00083 

Clad -50°C 
-0.26% -0.74% -0.91% 

Moderator -50°C 

Basis Case 1.14866 ± 0.00101 1.07652 ± 0.00097 1.00465 ± 0.00087 

Power 100% 
-0.4195% -0.9356% -1.1158% 

Conc. Boron = 0 ppm 

 

Table 15: Results for boron variations 

 Enrichment 3.0 wt% 

 10 GWd/MTU 20 GWd/MTU 30 GWd/MTU 

1000 ppm 1.04148 ± 0.00088 0.95768 ± 0.00087 0.88678 ± 0.00078 

500 ppm 1.03765 ± 0.00089 0.95078 ± 0.00093 0.87714 ± 0.00082 

Basis, 0 ppm 1.03525 ± 0.00081 0.94421 ± 0.00064 0.86440 ± 0.00049 

 Enrichment 3.6 wt% 

 10 GWd/MTU 20 GWd/MTU 30 GWd/MTU 

1000 ppm 1.08878 ± 0.00106 1.00632 ± 0.00084 0.93789 ± 0.00096 

500 ppm 1.08819 ± 0.00103 1.00466 ± 0.00086 0.93094 ± 0.00084 

Basis, 0 ppm 1.08578 ± 0.00077 1.00068 ± 0.00068 0.92120 ± 0.00058 

 Enrichment 4.5 wt% 

 10 GWd/MTU 20 GWd/MTU 30 GWd/MTU 

1000 ppm 1.14837 ± 0.00109 1.07148 ± 0.00092 1.00111 ± 0.00090 

500 ppm 1.14574 ± 0.00090 1.06957 ± 0.00089 0.99732 ± 0.00082 

Basis, 0 ppm 1.14482 ± 0.00091 1.06607 ± 0.00071 0.99371 ± 0.00074 

 

As stated above, the fuel elements to be stored may have been exposed to a great variety of operational 

conditions. Besides the specific power and the operational history, there are other important parameters to 

be taken into account: average fuel temperature, average temperature of the moderator and boron 

concentration.  

In general, the kef, varies with the average fuel temperature. This behaviour is expected, since an increase 

in the fuel temperature causes an increase in the Doppler broadening and, therefore, an increased 

absorption of the 238U resonance, resulting in a spectral hardening, and in an increase in the conversion 

238U (plutonium conversion). 

Therefore, it is recommended that a reasonable method is used to determine an upper limit for the 

effective average fuel temperature. 

With regard to the moderator, the kef increases with the moderator temperature, this effect is due to the 

loss of moderation, since the moderator density decreases when temperature is increased, giving rise to 

the hardening of the neutron flux. However, the mean average of the moderator is well known and 
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presents little variation throughout the reactor operation, and therefore, a reasonable estimation of an 

upper limit can be obtained. 

With regard to the boron concentration, it is observed that the kef increases with the boron concentration 

during the burnup process, once again, due to the spectrum hardening, caused by the absorption of 

thermal neutrons in the boron. The burnup of the fuel element is smaller, causing a greater kef. However, 

with greater enrichments, the boron concentrations become increasingly larger at the beginning of the 

cycle, and as such, it will be necessary to carry out calculations with average boron concentrations, 

sufficient to restrict all sorts of burnup fuel elements. 

In the methodology developed, in the isotope analysis, the following parameters have been taken as base 

values: as average fuel temperature, 1040K, as average moderator temperature, 586K, corresponding to 

a specification of 313C, as boron concentration of 1000 ppm (assuming that an average concentration of 

1000 ppm of boron throughout a cycle is considered conservative). The burnup conditions for the isotopic 

calculation can be seen in Table 16. 

 

Table 16: Burnup conditions for the isotopic calculation 

Parameter  

Average moderator temperature  586 K (313 C) 

Average fuel temperature 1040 K (767 C) 

Temperature of the sheath 618 K (345 C) 
Density of the moderator 0.7052 g/cc 
Boron concentration on the moderator 1000 ppm 
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VII. SCALE BURNUP PARAMETERS 

Following the methodology, SCALE parameters were analyzed in order to compare with previous works 

using SAS2H sequence on SCALE5.1. For these calculations a burnup of 39.95 GWd/TU was evaluated 

for a fresh fuel enrichment of 3.7 wt% on U-235. 

Figure 7  shows an isometric view of the PWR simulated in KENO-VI, while Figure 8 depicts an axial view 

of the reactor with its fuel pins and guide tubes configuration, both obtained with KENO3D visualization 

tool. Figure 9 shows a 2D plot obtained with NEWT, along with the computational mesh. 

 

 

Figure 7: Full PWR fuel element on KENO3D 
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Figure 8: Top view of the PWR fuel element on KENO3D  

 

Figure 9: NEWT 2D plot of the PWR fuel element 

Following the burnup calculations, the isotopic concentrations for the nuclides on Table 19 are collected 

and used for the criticality analysis on the spent fuel pool. Figure 9 and Figure 10 show the reference cell 

of the spent fuel storage pool 
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Figure 10: Reference cell of the spent fuel storage pool 

 

Figure 11: Axial view of the reference cell of the spent fuel storage pool 
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Some TRITON parameter blocks for burnup were modified  so to evaluate their influence over the 

burnup calculations: 

VII.1 ADDNUX parameter: 

Adds to all fuel materials trace quantities (1.0E–20 atoms/b-cm) of a set of nuclides that have been 

determined to be important in the characterization of spent fuel. 

TRITON provides user control of the set of nuclides added to a fuel material through the 

parm=(addnux=N) control parameter, where N is an integer value. For N = 0, no nuclides are added, 

which is generally a very poor approximation and should only be used when the ramifications are fully 

understood. For N = 1, a bare minimum set of 15 nuclides (actinides) are added; this will generate 

improved number density estimates for actinides in low-burnup fuels but will not update cross sections for 

fission products of primary importance. Again, use of this option is discouraged unless it addresses special 

modeling needs. For N = 2, the default setting for the TRITON depletion sequences, 94 nuclides are 

added. N = 3 and N = 4 add 230 and 388 nuclides, respectively; this much detail is generally not needed 

for depletion calculations unless one wishes to closely estimate keff near the end of life. At such high 

burnups, these nuclides have little effect on the system spectrum, but taken as a whole, they do contribute 

to the total system reactivity. 

Table 17 through Table 21 list the set of nuclides added in trace quantities for each value of addnux. 

Table 17: ADDNUX=1 (15 additional nuclides are added) 

 234U 235U 236U 238U 237Np 238Pu 239Pu 
240Pu 241Pu 242Pu 241Am 242Am 243Am 242Cm 243Cm 

 

Table 18: ADDNUX=-2 (49 additional nuclides for a total of 64) 

1H 10B 11B 14N 16O 83Kr 93Nb 94Zr 
95Mo 99Tc 103Rh 105Rh 106Ru 109Ag 126Sn 135I 
131Xe 135Xe 133Cs 134Cs 135Cs 137Cs 143Pr 144Ce 
143Nd 145Nd 146Nd 147Nd 147Pm 148Pm 149Pm 148Nd 
147Sm 149Sm 150Sm 151Sm 152Sm 151Eu 153Eu 154Eu 
155Eu 152Gd 154Gd 155Gd 156Gd 157Gd 158Gd 160Gd 
244Cm        

 

Table 19: ADDNUX=2 (30 additional nuclides for a total of 94) 

91Zr 93Zr 95Zr 96Zr 95Nb 97Mo 98Mo 99Mo 
100Mo 101Ru 102Ru 103Ru 104Ru 105Pd 107Pd 108Pd 
113Cd 115In 127I 129I 133Xe 139La 140Ba 141Ce 
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142Ce 143Ce 141Pr 144Nd 153Sm 156Eu   

 

Table 20: ADDNUX=3 (136 additional nuclides for a total of 230) 

72Ge 73Ge 74Ge 76Ge 75As 79Br 76Se 77Se 
78Se 80Se 82Se 81Br 80Kr 82Kr 84Kr 85Kr 
86Kr 85Rb 86Rb 87Rb 84Sr 86Sr 87Sr 88Sr 
89Sr 90Sr 89Y 90Y 91Y 90Zr 92Zr 92Mo 
94Mo 96Mo 94Nb 96Ru 98Ru 99Ru 100Ru 105Ru 
102Pd 104Pd 106Pd 110Pd 107Ag 111Ag 106Cd 108Cd 
110Cd 111Cd 112Cd 114Cd 115mCd 116Cd 140Ce 113In 
140La 112Sn 114Sn 115Sn 116Sn 117Sn 118Sn 119Sn 
120Sn 122Sn 123Sn 124Sn 125Sn 121Sb 123Sb 124Sb 
125Sb 126Sb 120Te 122Te 123Te 124Te 125Te 126Te 
127mTe 128Te 129mTe 130Te 132Te 130I 131I 124Xe 
126Xe 128Xe 129Xe 130Xe 132Xe 134Xe 136Xe 134Ba 
135Ba 136Ba 137Ba 138Ba 136Cs 142Pr 142Nd 150Nd 
151Pm 144Sm 148Sm 154Sm 152Eu 157Eu 232U 233U 
159Tb 160Tb 160Dy 161Dy 162Dy 163Dy 164Dy 165Ho 
166Er 167Er 175Lu 176Lu 181Ta 182W 183W 184W 
186W 185Re 187Re 197Au 231Pa 233Pa 230Th 232Th 

 

Table 21: ADDNUX=4 (158 additional nuclides for a total of 388) 

2H 3H 3He 4He 6Li 7Li 7Be 9Be 
15N 17O 19F 23Na 24Mg 25Mg 26Mg 27Al 
28Si 29Si 30Si 31P 32S 33S 34S 36S 
35Cl 37Cl 36Ar 38Ar 40Ar 39K 40K 41K 
40Ca 42Ca 43Ca 44Ca 46Ca 48Ca 45Sc 46Ti 
47Ti 48Ti 49Ti 50Ti 50Cr 52Cr 53Cr 54Cr 
55Mn 54Fe 56Fe 57Fe 58Fe 58Co 58mCo 59Co 
58Ni 59Ni 60Ni 61Ni 62Ni 64Ni 63Cu 65Cu 
70Ge 69Ga 71Ga 74As 74Se 79Se 78Kr 110mAg 
113Sn 123Xe 130Ba 132Ba 133Ba 136Ce 138Ce 139Ce 
138La 148mPm 153Gd 156Dy 158Dy 166mHo 162Er 164Er 
168Er 170Er 174Hf 176Hf 177Hf 178Hf 179Hf 180Hf 
182Ta 191Ir 193Ir 196Hg 198Hg 199Hg 200Hg 201Hg 
202Hg 204Hg 204Pb 206Pb 207Pb 208Pb 209Bi 223Ra 
224Ra 225Ra 225Ac 226Ac 227Ac 226Ra 227Th 228Th 
229Th 233Th 234Th 232Pa 235Np 236Np 238Np 239Np 
237U 239U 240U 241U 236Pu 237U 243Pu 244Pu 
246Pu 242mAm 244Am 244mAm 241Cm 245Cm 246Cm 247Cm 
248Cm 249Cm 250Cm 249Bk 250Bk 249Cf 250Cf 251Cf 
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252Cf 253Cf 254Cf 253Es 254Es 255Es   

Burnup calculations were performed for all of the six possible cases. Results in terms of keff are shown in 

Table 22 and are plotted on Figure 11. 

Table 22: kef variation with ADDNUX parameters 

Step Number addnux=0 addnux=1 addnux=-2 addnux=2 addnux=3 addnux=4 

0 1.24661 1.24635 1.24556 1.24556 1.24612 1.24612 

1 1.22804 1.23621 1.18385 1.18373 1.18291 1.18247 

2 1.18933 1.20412 1.13843 1.13699 1.13717 1.13669 

3 1.14683 1.17426 1.09819 1.09554 1.09383 1.09267 

4 1.09668 1.14574 1.06155 1.05727 1.05522 1.05488 

5 1.03823 1.11888 1.02733 1.02068 1.02057 1.01947 

6 0.97279 1.09105 0.99525 0.98837 0.98814 0.98633 

7 0.89764 1.06465 0.9652 0.95765 0.95558 0.95444 

8 0.81068 1.04089 0.93724 0.93013 0.92863 0.92663 

9 0.71169 1.01571 0.91046 0.90215 0.90167 0.90022 

There is one step for each cross-section processing on the burnup calculations on TRITON. Because 

three libraries for each burnup cycle were created, nine calculation steps are performed. Step number 

zero is the first cross-section processing and is performed at the burnup time equal zero, i.e. beginning of 

life. 

 

Figure 12: kef variation with ADDNUX parameters 
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VII.2 TIMETABLE Block 

This block allows modification of material properties such as temperature and density during a depletion 

calculation. In this specific case, soluble boron dissolution on the moderator is to be taken into account. At 

each time step, the boron concentration in the moderator is modified by a multiplication factor and 

TRITON applies linear interpolation between each pair (step, density multiplier). The user-specified density 

multipliers were obtained from previous works using the SAS2H burnup sequence on SCALE5.1, which 

also worked as motivation and comparison basis of such calculations. Table 23 provides the data used for 

specifying the applied density multipliers along with the time steps, in days, on which these factors were 

applied. On Figure 12 the concentration values on TRITON and SAS2H for the isotope b-10 are plotted. 

Table 23: Boron letdown timetable applied to the calculations 

Time Step 
Number 

Time Step 
[Days] 

Density 
Multiplier 

0 0 1.75 

1 61 1.6 

2 183 1 

3 304 0.4 

4 441 1.6 

5 563 1 

6 684 0.4 

7 821 1.6 

8 943 1 

9 1064 0.4 

 

Figure 13: Boron letdown curve applied to the calculations 
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VII.3 TIMETABLE and ADDNUX Analysis 

Taking into account both of the previous analyses, calculations using the boron letdown curve from 

SAS2H and the ADDNUX cases were carried out. The results for KENO-VI and NEWT are shown on 

Table 25 and Table 26, and plotted on Figure 13 and Figure 15. On these charts, addnux=N stands for the 

ADDNUX set used (N=0, 1, -2, 2, 3, 4), while sas2h are the results for the case run by SAS2H on 

SCALE5.1. Because SAS2H automatically adds a set of nuclides in the neutron transport calculations, as 

depicted on Table 24, another set of nuclides was manually included on TRITON calculations, using 

addnux=0 and specified as part of the fuel composition at trace quantities (1.0E–20 atoms/b-cm) so as to 

match the nuclides included by SAS2H. This case is labeled atoms and follows in Table 25, Table 26, 

Figure 14 and Figure 15 as well. 

Table 24: List of fuel nuclides automatically included by SAS2H in neutron transport 

calculation 

Xe-135 Pu-240 Cs-133 Pu-241 U-234 Pu-242 

U-235 Am-241 U-236 Am-242m U-238 Am-243 

Np-237 Cm-242 Pu-238 Cm-243 Pu-239 Cm-244 

 

Table 25: kef variation for ADDNUX cases with boron letdown with KENO-VI 

Step sas2h addnux=0 addnux=1 addnux=-2 addnux=2 addnux=3 addnux=4 atoms 

0 1.1738 1.16905 1.17 1.16907 1.16907 1.17047 1.16866 1.16962 

1 1.149 1.1645 1.17689 1.13067 1.12833 1.12796 1.12747 1.14345 

2 1.1792 1.18909 1.20726 1.14006 1.13732 1.13795 1.13617 1.16992 

3 1.2114 1.22896 1.23898 1.15292 1.14785 1.14958 1.1464 1.19704 

4 1.0645 1.01975 1.09035 1.01509 1.01084 1.00992 1.00848 1.06028 

5 1.0945 1.03994 1.11966 1.02866 1.02303 1.02192 1.02063 1.0845 

6 1.1281 1.07478 1.15391 1.04473 1.03701 1.03648 1.03553 1.11572 

7 0.9854 0.81506 1.0112 0.91985 0.91545 0.91482 0.91374 0.98316 

8 1.0171 0.81209 1.04321 0.93923 0.93099 0.93061 0.92713 1.01352 

9 1.0518 0.81646 1.07722 0.95846 0.94783 0.94733 0.94534 1.04447 

 

Table 26: kef variation for ADDNUX cases with boron letdown with NEWT 

Step sas2h addnux=0 addnux=1 addnux=-2 addnux=2 addnux=3 addnux=4 atoms 

0 1.1738 1.16903226 1.16903226 1.16898883 1.16898883 1.16902082 1.16902082 1.16902506 

1 1.149 1.16327576 1.17622196 1.12856301 1.12762808 1.12748105 1.12729322 1.14318741 

2 1.1792 1.18880893 1.20647047 1.13968718 1.13748727 1.137396 1.13635958 1.16994937 

3 1.2114 1.22948941 1.23824729 1.15279661 1.14921763 1.14891842 1.1473277 1.19782099 

4 1.0645 1.01992009 1.08855119 1.01381778 1.00978741 1.00938198 1.00779951 1.05896905 

5 1.0945 1.03918419 1.11959408 1.02794796 1.02262386 1.02192783 1.02001667 1.08560343 

6 1.1281 1.07277066 1.15380981 1.04502006 1.03827685 1.03731281 1.03519194 1.11611967 

7 0.9854 0.81501232 1.00898428 0.92131243 0.9147382 0.91360215 0.91212162 0.98319424 

8 1.0171 0.81165139 1.042596 0.93882438 0.93093432 0.92963771 0.92782854 1.01239853 

9 1.0518 0.8155127 1.07828142 0.95801608 0.94863821 0.94716444 0.94522407 1.04440638 
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Figure 14: kef variation for ADDNUX cases with boron letdown using KENO-VI 

 

Figure 15: kef variation for ADDNUX cases with boron letdown using NEWT 
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addnux=0 0.76012 ± 0.00068 0.75991 ± 0.00089 
addnux=1 0.86618 ± 0.00095 0.86448 ± 0.00089 
addnux=-2 0.89210 ± 0.00085 0.89096 ± 0.00079 
addnux=2 0.89265 ± 0.00080 0.89062 ± 0.00078 
addnux=3 0.89205 ± 0.00083 0.89306 ± 0.00080 
addnux=4 0.89324 ± 0.00083 0.89174 ± 0.00079 

atoms 0.87517 ± 0.00080 0.87365 ± 0.00078 

sas2h 0.86955 ± 0.00076  0.86955 ± 0.00076 

 

Figure 16: Criticality analysis for the region II of the spent fuel storage pool (TRITON/KENO-VI 

depletion sequence) 

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

sas2h addnux=0 addnux=1 addnux=-2 addnux=2 addnux=3 addnux=4 atoms

N
e

u
tr

o
n

ic
 M

u
lt

ip
lic

at
io

n
 F

ac
to

r 

Cases 

CSAS6 criticality analysis - ADDNUX cases with boron 
letdown with TRITON/KENO-VI depletion 

k-effective



38 

 

 

Figure 17: Criticality analysis for the region II of the spent fuel storage pool (TRITON/NEWT 

depletion sequence) 
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The depletion calculations were carried out using the TRITON/KENO-VI code. The results are shown in 

Table 27 and plotted in Figure 15. 

Table 28: kef variation with CENTRM parameters 

Step C01 C02 C03 C04 C05 C06 C07 

0 1.24454 1.24516 1.24374 1.24593 1.24695 1.24695 1.25344 

1 1.18208 1.18175 1.18164 1.1838 1.18268 1.18268 1.18775 

2 1.13496 1.1343 1.13577 1.13705 1.13721 1.13721 1.14302 

3 1.09268 1.09428 1.09461 1.09577 1.09451 1.09451 1.09609 

4 1.05641 1.05577 1.05351 1.05444 1.05592 1.05592 1.0603 

5 1.02035 1.0201 1.02038 1.02062 1.02105 1.02105 1.02475 

6 0.98674 0.98715 0.98733 0.98891 0.98849 0.98849 0.99159 

7 0.95828 0.95804 0.95685 0.95709 0.95721 0.95721 0.96016 

8 0.92819 0.9278 0.92954 0.92863 0.92964 0.92964 0.93091 

9 0.90078 0.90297 0.90183 0.90059 0.9019 0.9019 0.90348 

 

 

 

Figure 18: kef variation with CENTRM parameters 
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VIII. AXIAL BURNUP CREDIT METHODOLOGY 

VIII.1 Introduction 

 

When a fuel element is introduced in a PWR reactor, the quasi-sine wave flux will carry out a greater 

burnup of the element in the central section than in the ends. The quasi-sinusoidal form of the flux is a 

consequence of many factors, such as the leakages at the extremes and the concentration of fission 

products in the central part of the element. 

When a uniform axial isotopic distribution is assumed, the most reactive region of the element is the mean 

axial plane. The neutron flux is smaller in the extremes than in the core, since the leakages are greater at 

the element edges. However, the most reactive area of the spent fuel is at the ends, where there is 

equilibrium between the reactivity due to low burnup and the increase of neutron loss in the fuel element 

end. 

At low average burnups, of around 20 GWd/TU, the maximum rate of fissions occurs in the axial core or 

nearby. The approximation to the uniform axial burnup uniformly distributes the burnup throughout the 

length of the element. Thus, the decrease of reactivity in the central section is artificially compensated by 

an increase at the ends, and a more reactive configuration, and as such, is more conservative than the 

real profile results. 

However, as the average burnup increases, the equilibrium obtained between the central section and the 

ends disappears, and therefore the hypothesis of uniform burnup is no longer conservative. This is the 

End Effect, an increase in reactivity at the ends of a fuel element caused by a decrease in the neutron 

flux, due to leakages. 

The End Effect gives a characteristic axial burnup distribution, with a plateau in the central area of the 

element and two slopes with lower burnup at the ends 

In order to obtain a numerical approximation of the axial isotopic variation, it is necessary to discretize the 

profile of axial burnup by areas, assuming a constant burnup in each area. The mean point of each area is 

defined as a node. 

The isotopic concentrations can be estimated using just one decay calculation with SAS2H for each axial 

node burnup. The number and size of the required axial zones to appropriately deal with the axial burnup 

variations must be determined by a parametric study, which is always a function of the database of the 

actual existing profiles. For the present methodology, as a result of the data available, it was considered 

that each profile could be divided into 32 nodes. 
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In figure 5 a typical profile of the axial burnup in a PWR fuel element with 32 nodes can be seen, where 

node B1 represents the lower end of the element and node B32 the upper end. 

As can be observed in Figure 16, the burnup of the lower nodes is slightly superior to the burnup of the 

lower nodes (usually with the exception of the first inferior node, which usually has lower burnup due to the 

axial profile of the neutron flux). This is because the water that is exposed to each node presents varying 

densities. The lower end reacts with colder water (greater density), resulting in greater reactivity, and, 

therefore, the burnup is greater than at the upper end. Water reaches the upper area of the fuel at a higher 

temperature (lower density) due to the warming produced by the fission heat, which involves lower 

reactivity and, therefore, a lower burnup. 

 

 
Figure 19: Axial burnup distribution for a fuel element in a PWR reactor 

 

 

When a uniform average axial burnup of a fuel element is assumed, infinity is imposed on the axial 

direction. That is, under this hypothesis, the k, effective product constant, is calculated, without taking 

into account the leakages, that is, with infinite geometry in X, Y and Z directions. 

However, as stated above, it is possible that this approximation is not conservative, since the effect of the 

axial burnup distribution can cause the kef to be greater than the k calculated with a uniform burnup. 

Under these circumstances, the geometric model that will be used will not be axially infinite, but real in the 

Z direction, when using a water reflector of 30 cm. both above the surface and beneath it. The outcome of 

considering different geometric configurations suggests that the average burnup hypothesis is 
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conservative up to a certain level of average burnup and, that, for greater burnups, the axial distribution 

effect correction would be more conservative. 

VIII.2 Objective of the methodology 

 

The objective of the present methodology is to secure a , which, being more conservative than the uniform 

burnup profile for high burnups and high enrichments can be modelled according to the actual physical 

burnup. This profile will be used in the design of the Equivalent Reactivity Curve (ERC) for the discharge 

of fuel elements in region II of the spent fuel pool at the PWR power plant. 

First of all, a validation of the code system SCALE6.1 is conducted, in order to obtain the upper subcritical 

limit (USL), which will be the limit acquired by the effective product constant in safe conditions.  

Since the fuel elements of region II are spent fuel elements, the burnup of the element will be modelled 

using its isotopic content, previously simulated in a case with TRITON (ORIGEN-S). 

In order to obtain the most conservative hypothetical profile, it will be necessary to check that for the same 

burnup and enrichment conditions, any real profile is less critical than the stated profile. For this, different 

samples of real profiles will be extracted and simulated, to obtain the normalised real profile with the most 

critical burnup, and to compare this with the hypothetical profiles. 

Once the most conservative profile is calculated, the calculations for acquiring the loading curve will 

provide the criterion for determining whether a fuel element should be stored in region I or in region II, 

using the value of the previously obtained, upper subcritical limit (USL). Figure 17 that follows shows an 

outline of the process carried out. 

 

 
Figure 20: Outline representing the most important points developed in the methodology. 

 

 

VIII.3 Axial profile correction 
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Figure 21: Description of Wilks methodology in order to obtain the most critical burnup profile 

 

Thus, since the axial burnup profile notably influences the criticality calculations, it will be necessary to 

obtain a hypothetical profile, which is able to provide a conservative representation of a fuel element of 

average burnup and specific enrichment. 

For this, and taking into account that the application is made for region II of the PWR spent fuel elements 

pool, the database of axial profiles is available, supplied by the PWR, and reconstructed by the processing 

computer. From it, the axial profiles have been grouped accordingly to the initial enrichment of the fuel 

element (1.9%, 2.5%, 3.3%, 3.5%, 3.7%, 3.85%, 3.95%, 4.35% and 4.5%). Following this, they are 

grouped in burnup ranks, independent from the initial enrichment. The maximum width of each interval has 

been fixed at 2 GWd/TU, in order to obtain the maximum number of profiles per rank, and so that the 

previously mentioned profiles, once normalised can be representative of it. That is, by stating the rank 

[39,41] GWd/TU centred around the mean value of 40 GWd/TU, it can be assumed that the normalised 

axial profile corresponding to a fuel element with average burnup, for instance of 39.5 GWd/TU is very 

similar to that of another fuel element with an average burnup within the same rank. 

In addition, it must also be taken into account that, as the average burnup increases, the normalised 

burnup at the ends will also increase, with the result that if we were to choose higher ranks for the study of 

the average burnup (>40 GWd/TU), the kef would be sensibly lower. However, there is a commitment to 
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apply the methodology, which, on one hand, uses the maximum number of profiles, and on the other hand 

the minimum possible burnup interval band. The width of the established band satisfies both criteria. 

In order to analyse different profiles with average burnup, for instance, of 40 GWd/TU, a burnup band 

between 39 and 41 GWd/TU is determined. Then, the corresponding burnup of each axial node (Bi,j) is 

divided by the average burnup relative to that profile (Bj), and is multiplied by the average burnup under 

study (
analysis

B ), 

analysis

j

jinormalised

ji
B

B

B
B .

,

,
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i, axial node,  j, number of profile. 
 

In contrast with the criticality analyses which take the fresh fuel elements as a starting point, burnup credit 

needs to consider the operational history of the fuel element, including the axial burnup distribution. 

VIII.4 Criticality analysis of real profiles 

 

Wilks [12] establishes that the maximum value of an average sample of a magnitude measured from a 

sample of N elements is the single-sided upper tolerance limit, with a  probability and a level of 

reliability, of the values of this magnitude. A diagram of Wilks' methodology is shown in the Figure 18. 

According to Wilks, for non-parametric tolerance limits (only at one end), such that with probability, at 

least  per one of the population does not exceed the maximum sampling value, a sample of the following 

size must be taken: 
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For  equal to 0.95 and  equal to 0.95, the sampling size must be approximately 58. For each rank of 

average burnups of Wilks’ sampling, the maximum possible number of profiles has been chosen, so that 

the sampling sizes are always around this value. 

For our example, the magnitude measured using Wilks' method, is the value of the kef of a normalised real 

burnup profiles sampling. If we obtain for different average burnup ranks [27,29], [33,35], and [39,41] a 

GWd/TU with average burnups of 28, 34 and 40 GWd/TU, respectively for each rank, a sample of n=58 

fuel elements, the maximum value among all the profiles of the kef sample would be the upper tolerance 

limit, UL1, which secures a probability and a level of reliability at 95/95. These burnup ranks have been 

chosen because they are of interest when studying the effect of the axial profiles. 
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The normalised real profile, that has an upper tolerance limit UL1 in the value of the kef for an average 

burnup analysis is defined as the most critical axial burnup profile. 
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Figure 22: Model with KENO3D of a burnup node ni of the fuel pellet. The number of burnup 

nodes (n) is 32. 

 

An axial burnup node of the fuel pellet where the different materials, the maximum active length of the 

node and the pellet passage are shown in Figure 19 whereas in Figure 20, the stack of the different axial 

nodes to form the complete model of the fuel pellet is given. For all the models, 32 axial burnup nodes 

have been used. The active length of the pellet was calculated after considering the nominal length of the 

pellet plus the maximum core fabrication tolerance (341.5 cm.). 
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Figure 23: Model with KENO3D of a fuel pellet of n nodes of 341.5 cm. of maximum active length. 

The number of burnup nodes is 32. 

 

Due to the unfeasibility of obtaining a sample of 58 fuel elements with the same average burnup, at least 

58 axial profiles were extracted from the database within the burnup rank with a maximum band of 2 

GWd/TU, for all the given enrichments. 

This part of the work is still to be implemented, with the use of available profiles from the PWR in question. 

The simplified process to obtain a conservative axial burnup profile would be as follows: 

 

The chart depicts the basic steps to find the bounding axial burnup profiles from real profiles as descripted 

above. 
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IX. CONCLUSIONS AND FUTURE WORKS 
 

A burnup credit methodology under development has been studied. Once a conservative bias and its 

uncertainty is established, the USL was determined, which is the safety limit for a spent fuel storage pool. 

The recommendations for giving burnup credit to a certain system, specifies that axial burnup is to be 

considered at high burnup levels. This is a step still in progress and should be analyzed nevertheless. 

With the USL and axial profile burnup analysis, it will be possible to obtain the loading curve which 

determines whether a fuel element will be stored in the region I or II. 

Using the codes TRITON/KENO-VI and CSAS6, different types of PWR operational histories were 

analyzed. The codes are vastly validated with experimental data and give reliable and accurate nuclear 

data for this criticality analysis. This study allowed obtaining the closest to reality operational history that 

remains conservative in terms of criticality. 

NRC research efforts are currently directed toward developing the technical basis and information for 

revising ISG8R2 to allow credit for fission products. The goal is to develop and establish a technically 

sound validation approach (both depletion and criticality) for SNF criticality safety evaluations based on 

best-available data and methods, to demonstrate the approach and applicability, and to provide reference 

bias results. Specifically, for isotopic validation, the planned approach is to use a best estimate Monte 

Carlo-based method to determine burnup-dependent reactivity bias and bias uncertainty in isotopic 

predictions via comparisons of isotopic composition predictions and measured isotopic compositions from 

destructive radiochemical assay, utilizing as much assay data as is available [13]. 

Future works must include the axial burnup evaluation with nodes discretization with real burnup profiles. 

Finding the most conservative simulated axial profile for which all of the real profiles are considered safe is 

a needed step on the progress of this work. Also, assuming ISG8R3 will contemplate the full burnup credit 

recommendations, the issuance of this guide will allow more details for giving validation and consequent 

use for this methodology. 



48 

 

X. REFERENCES 

 

1. U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 – Revision 2, ‘Burnup Credit in the 

Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks’. Nuclear Regulatory 

Commission. 2002 

2. J.C. Wagner, M.D. DeHart, ‘Review of Axial Burnup Distribution Considerations for Burnup Credit 

Calculations’. Oak Ridge National Laboratory. March 2000. 

3. A. Machiels, ‘Burnup Credit Methodology - Spent Nuclear Fuel Transportation Applications’. Electric 

Power Research Institute (EPRI). Report. 2010. 

4. C.V. Parks, et. al., ‘Full Burnup Credit in Transport and Storage Casks: Benefits and Implementation’. 

American Nuclear Society 2006 International High-Level Radioactive Waste Management Conference. 

April 30 – May 4, 2006. Las Vegas, Nevada. 

5. 10 CFR 50.68, ‘Criticality Accident Requirements’. U.S. Nuclear Regulatory Commission 

6. NRC memorandum from L. I. Kopp to T. Collins, ‘Guidance on the Regulatory Requirements for 

Criticality Safety Analysis of the Fuel Storage at Light-Water Reactor Plants’, U. S. Nuclear Regulatory 

Commission. Agosto 1998. 

7. C.V. Parks. ‘Recommendations for PWR Storage and Transportation Casks That Use Burnup Credit’. 

2003 International High-Level Radioactive Waste Management Conference, “Progress Through 

Cooperation”. March 30 – April 2, 2003. Las Vegas, Nevada. 

8. M.D. DeHart, S.M. Bowman, ‘Reactor Physics Methods and Analysis Capabilities in SCALE’. Oak 

Ridge National Laboratory, Nuclear Science and Technology Division. September, 2010. 

9. Oak Ridge National Laboratory. ‘SCALE6.1 Electronic Manual'. ORNL/TM. June 2011.. 

10. J. J. Lichtenwalter, S. M. Bowman, M. D. DeHart, C. M. Hopper ‘Criticality Benchmark Guide for Light-

Water Reactor Fuel in Transportation and Storage Packages’, NUREG/CR-6361, ORNL/TM-13211. 

Oak Ridge National Laboratory, March 1997. 

11. UNE 73-501-92. ‘Requisitos de Criticidad para el Diseño de Bastidores de Almacenamiento en Piscinas 

de Combustible’. 

12. M. D. DeHart, S. M. Bowman, ‘Validation of the SCALE Broad Structure 44-Group ENDF/B-V Cross-

Section Library for Use in Criticality Safety Analyses’, NUREG/CR-6102, ORNL/TM-12460. 



49 

 

13. I.C. Gauld, ‘Strategies for Application of Isotopic Uncertainties in Burnup Credit’. Prepared for Division 

of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research. U.S. Nuclear 

Regulatory Commission 

14. S. S. Wilks, ‘Collected papers: Contributions to mathematical statistics’, Ed. John Wiley, 1967. 

15. C.V. Parks, et. al., ‘Development of Technical Basis for Burnup Credit Regulatory Guidance in the 

United States’. 16th International Symposium on the Packaging and Transport of Radioactive Materials, 

London, 3 - 8 October 2010. 

 

http://www.patram2010.org/
http://www.patram2010.org/

