Document downloaded from:

http://hdl.handle.net/10251/178907
This paper must be cited as:

Marti Gimeno, P.; Jordan, J.; Palanca Camara, J.; Julian Inglada, VJ. (2020). Load
Generators for Automatic Simulation of Urban Fleets. Springer. 394-405.
https://doi.org/10.1007/978-3-030-51999-5_33

The final publication is available at

https://doi.org/10.1007/978-3-030-51999-5_33

Copyright gpringer

Additional Information

Load Generators for Automatic Simulation of
Urban Fleets

0000—0003—0400—9136 :
I, Javier

1[0000—0002—2743—6037]

Pasqual Marti!, Jaume Jorddn®!
Palanca!0000-0002-6209-9603] " a1q Vicente Julian

Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat
Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain.
pasmargi@inf.upv.es,{jjordan, jpalanca,vinglada}@dsic.upv.es

http://vrain.upv.es/

Abstract. To ensure cities sustainability, we must deal with, among
other challenges, traffic congestion, and its associated carbon emissions.
‘We can approach such a problem from two perspectives: the transition to
electric vehicles, which implies the need for charging station infrastruc-
ture, and the optimization of traffic flow. However, cities are complex
systems, so it is helpful to test changes on them in controlled environ-
ments like the ones provided by simulators. In our work, we use Sim-
Fleet, an agent-based fleet simulator. Nevertheless, SimFleet does not
provide tools for easily setting up big experiments, neither to simulate
the realistic movement of its agents inside a city. Aiming to solve that,
we enhanced SimFleet introducing two fully configurable generators that
automatize the creation of experiments. First, the charging stations gen-
erator, which allocates a given amount of charging stations following a
certain distribution, enabling to simulate how transports would charge
and compare distributions. Second, the load generator, which populates
the experiment with a given number of agents of a given type, introducing
them dynamically in the simulation, and assigns them a movement that
can be either random or based on real city data. The generators proved
to be useful for comparing different distributions of charging stations as
well as different agent behaviors over the same complex setup.

Keywords: multi-agent system - simulation - transportation - electric
vehicle - smart city - urban fleets

1 Introduction

With more than half of the world’s population living in cities, the list of chal-
lenges for keeping them sustainable has grown. “A smart sustainable city is an
innovative city that uses ICTs (Information and Communication Technologies)
to improve quality of life, the efficiency of urban operations and services and
competitiveness while ensuring that it meets the needs of present and future gen-
erations concerning economic, social, environmental and cultural aspects’ﬂ In

! This definition was provided by the International Telecommunication Union (ITU)
and United Nations Economic Commission for Europe (UNECE) in 2015

http://vrain.upv.es/

2 P. Marti et al.

this paper, we focus on one of these challenges, traffic congestion (and its associ-
ated carbon emissions), from two different approaches. The first is the transition
to electric vehicles (EV), which would greatly reduce the carbon emissions gen-
erated by cities. The main problem that users encounter to switch to EV is the
insecurity they feel towards access to EV charging stations [6l2]. The allocation
and installation of EV charging stations inside a city is not a trivial problem and
it entails a great disbursement of money for municipalities. As for the second
approach, it is based on traffic flow optimization. Improving this requires accu-
rate data. One way of researching how to deal with such challenges is through
the use of simulators [4]. With them, we can see the effect some of the changes
would have over the city after defining them. However, cities are very complex
systems, so it is necessary to have a complete simulator that allows experimen-
tation with big, complex configurations for both charging station allocation and
traffic inside the city. The more realistic the simulator, the more accurate and
useful experiments would be for real-world applications.

In this work, we use SimFleet simulator [B], which is able to place different
varieties of agents with custom behaviors over real-world cities to develop and
test any type of strategies. Nevertheless, there is an important flaw in SimFleet
to prepare simulations with a significant number of agents, and also to have an
appropriate representation of the traffic of a city. Therefore, in this paper, we
propose a significant improvement for SimFleet: the inclusion of two generators at
different levels. On the one hand, a charging stations generator to create several
distributions of these infrastructures, and to be able to make comparisons and
simulations with well-informed charging stations emplacing systems such as the
one in [3], which uses several data sources to feed a genetic algorithm that obtains
solutions. On the other hand, a load generator of agents on the move in a city
such as urban fleets of taxis, private vehicles, delivery transports, buses, etc.; and
customers of taxis or packages. Furthermore, this load generator can consider
real data of the city, which implies a more informed approach to generate the
real traffic of a city to be used in dynamic simulations.

These generators will allow SimFleet users to create realistic scenarios easily
without having to write long configuration files, and more importantly, to gener-
ate load representing real traffic of the specific city by using available data such
as population, traffic, and tweets, from open data portalsﬂ or gathered with
other tools such as [7].

The rest of this paper is structured as follows. Section [2| presents the fleet
simulator SimFleet, in which this work is built upon, and its main flaw. Then,
Section (3] explains the two main generators proposed in this work, that is, the
charging stations simulator and the load generator of urban fleets. Section []
presents some experimental results using the generators in SimFleet. Finally, the
conclusions of this work are presented in Section

2 http://gobiernoabierto.valencia.es/en/data/

http://gobiernoabierto.valencia.es/en/data/

Load Generators for Automatic Simulation of Urban Fleets 3

2 SimFleet Description

SimFleet [5] is an agent-based fleet simulator to test strategies. Each simulation
counts with a series of customers, transports and a fleet manager. Customer
agents represent people (or packages) that need to be transported from their
origin location to their destination in the city. For doing so, each Customer agent
requests a single transport service, provided by a Transport agent. Finally, the
FleetManager agent is responsible for putting in contact the customers in need
of a transport service, and the transports that may be available to offer these
services. In short, the FleetManager agent acts like a transport call center or
directory facilitator [I], accepting the incoming requests from customers and
forwarding these requests to the appropriate transports.

For the movement of Transport agents around the city, SimFleet makes use of
OSRMEl, a routing engine for finding shortest paths in road networks. Querying
an OSRM server specifying the service route and passing origin and destination
points returns the shortest route between those two points.

The behavior of each agent and the way they get to agreements is determined
by its strategy. In our work, however, we set aside the aspect of implementation
and testing of strategies to focus on the creation of simulations, a feature in
which SimFleet has weaknesses.

2.1 The SimFleet flaw

To understand the weaknesses SimFleet presents in relation to simulation cre-
ation we must first explain how the experiments are described. SimFleet uses a
configuration file in JSON format to load the agents of a simulation. The agents
and their features are the relevant part of the configuration for our line of work.
There are four types of agents: fleets, transports, customers and stations. Each
agent, depending on its type, has a certain amount of attributes that must be
indicated for their creation.

Currently, the only way of filling the configuration file is to manually create
each agent, giving values to their attributes. This is inconvenient to create sce-
narios with a great number of vehicles, customers or packages. Besides that, it is
likely that users employ SimFleet for reproducing the mobility around a city in
a simulated environment. This task involves the dynamic input of agents in the
simulation as well as their informed movement around the environment based
on real data from the city. Additionally, the introduction of randomly generated
agents that interfere with the main simulated task could be useful for building
a more realistic trial as well as testing different distributions of charging sta-
tions or simply evaluating new strategies. Our work aims to fulfill those needs
by the introduction of Generators that automatize the creation of simulation
configurations.

3 http://project-osrm.org/

http://project-osrm.org/

4 P. Marti et al.

3 Generators

We will now introduce our work, which consists of generators to facilitate the
setup of bigger and more realistic simulations with SimFleet. It includes a charg-
ing stations generator, which populates the simulation area with a given number
of charging stations following a determined pattern; and a load generator, which
populates the simulation space with different types of agents with an associated
movement that can be pseudo-random or informed (provided we have access to
real-world data). Besides that, fully random versions of both generators were
also implemented so as to compare informed versions against them.

A simulation on SimFleet is defined by its configuration file. To automatically
create experiments means to generate new configuration files or fill a previous
one with data according to some parameters. For this, all generators include
the option to get as input a configuration file and they are prepared to leave
the present objects of such file unchanged while including the ones generated.
Besides that, each generator works with a GeoJSON file that defines the area
of the real world where our simulation will take place and thus they have to
populate. We will call this file the city map, since, usually, simulations are per-
formed within the borders of a city. Since it represents a real-world location, all
geometries defined in the city map are indicated with latitude-longitude points;
to manipulate them we will use the Python Shapely libraryﬂ

3.1 Charging stations generator

The charging stations generator is used in order to test different distributions
of charging (or petrol) stations of any kind over an area. The generator has
many parameters; we will only present the relevant ones: n charging stations to
distribute; p charging poles of the distribution; and distribution type, {random,
uniform, radial}, that affects how stations are positioned inside the area.

Each station may have several charging poles. The allocation of charging
poles between stations will be discussed further on. The generator outputs a file
in GeoJSON format which indicates the type and position of each station. Such
a position, however, can not be any point inside the city map but rather a valid
point: a point belonging to a street or road. For obtaining valid positions, we
make use of the function getValidPoint, which given a point returns the nearest
valid point to it. This function uses the service nearest of OSRM, which returns
the nearest point belonging to a street or road with respect to the specified
coordinates.

Random distribution. In this type of distribution, n valid points are generated
within the city map. Each of the points indicates the position of a charging
station. For the generation of points, the bounds of the polygon that defines the
city map are used: Tmin, Ymin, Tmaz, Ymaz- UsSIing these values, random x and
y coordinates are generated for each point. Then, the corresponding valid point

*https://pypi.org/project/Shapely/

https://pypi.org/project/Shapely/

Load Generators for Automatic Simulation of Urban Fleets 5

is obtained. If the point is contained in the city map, it is stored as a station
location; otherwise, it is discarded. This process is repeated until there are as
many stored points as the number of stations.

A random distribution is interesting from the experimentation perspective
to compare other more informed distributions against it.

Uniform distribution. This distribution divides uniformlyﬂ the city map (see
Figure into equal size cells, generally with rectangular shape. To do so, it
creates a wider working area, the grid (Figure , defined from the bounds of
the polygon representing the city map. If such bounds are Tin, Ymin, Tmaz,
Ymaz, the grid is the four vertex polygon defined by the points {(Zmin, Ymin),
(xminv ymaw)7 (xmaa:a yma:c)7 (xmaa:a ymln)}

The number of rows and columns of the grid is determined by the number of
stations (n) and its width and height, following the criteria shown in Equation
. If the number of stations is a perfect square, i.e., its square root is a positive
integer, the grid will have the same amount of rows and columns, obtaining
exactly n cells. However, in general, the number of rows and columns will depend
on whether the grid is wider or higher, having one more column than the number
of rows (or vice versa) accordingly.

rows = cols = \/n n is perfect square
rows = |\/n], cols = [/n] height < width (1)
rows = [v/n], cols = |/n] otherwise

Once the grid is split, we trim each of the cells against the city map, which
causes cells outside of it to disappear and those laying over its borders to get
an irregular shape (see Figure . These final cells are stored in a list of valid
polygons where stations can be placed.

Next, an iterative process begins to allocate every station. The list of valid
polygons is traversed and a station is placed in the closest valid point (using the
getValidPoint function) to the centroid of the polygon. This process finishes once
every polygon has one station in it or all stations have been allocated. After this,
if there were still stations to allocate, the rest are positioned in a random valid
point of a randomly chosen valid polygon (Figure [1d|shows a possible outcome).

Besides this, we also implemented a random version of this distribution in
which the city map is divided in the same way emplacing, however, each station
in a random valid point within a randomly selected cell.

Radial distribution. This distribution was inspired by the radial distribution
of activity within certain cities, which presents a higher rate towards its core and
decreases as it gets closer to the peripheries. It requires an additional parameter
¢, which indicates the number of circles that will be used to divide the city map.

5 The name “Uniform distribution” does not refer to a probability distribution but to
how stations are divided in the city map.

6 P. Marti et al.

(b) Working area or (¢) Grid trimmed (d) Cells populated
Grid against city map with stations

(a) City map
Fig. 1. Uniform distribution of stations process

The division process begins by defining two copies of a wider working area,
created as described for the uniform distribution. One of those copies will be
divided into a series of triangles, 8 by default as can be seen in Figure 2a] by
joining every vertex and sides’ middle point with the centroid of the original
city map. As for the other, it will be divided by ¢ concentric circles with an
initial radius r calculated taking into account the map dimensions. To avoid
circle overlap, each circle is trimmed against the one created before it, starting
by the last (and biggest) created. This obtains an area with a middle circle and
many rings around it, as can be seen in Figure 2b] Take into account that from
now on when we mention circles we will also be referring to the rings. Next, the
two aforementioned areas are intersected with each other, dividing each circle
into 8 polygons, and trimmed against the city map, obtaining a division of it as
shown in Figure

(a) Triangle division (b) 5 circle division (c) Final city map (d) 20 stations be-
of working area of working area division tween 5 circles

Fig. 2. Radial city map division

Each station is then allocated in the closest valid point to the centroid of one
of the polygons. The number of stations per circle (n/c), as well as the amount of
polygons a circle has, is taken into account to allocate the stations as uniformly
as possible within the city map and each circle. The algorithm populates each
triangle starting from the inner circle and moving towards the outer. Once all
polygons of a triangle have a station assigned, the algorithm will select the next

Load Generators for Automatic Simulation of Urban Fleets 7

triangle according to the number of stations and the total number of polygons
to divide the stations uniformly within a circle. The final distribution can be
seen in Figure

The number of stations may be greater than the number of polygons since
the number of circles is determined by the user. The algorithm described above
places only one station in each polygon. In this case, the rest of the stations are
assigned a random position by randomly choosing a polygon and a valid point
within it.

We also implemented a fully random version of this distribution that divides
the city map in the same way, takes into account the number of stations per
circle, but chooses randomly the polygons within a circle as well as a valid point
within them.

Charging poles allocation. The amount of charging poles (spots for a vehicle
to charge) we want in our configuration is one of the parameters of the station
generator. There must be at least one charging pole in each station. After this, if
there are more charging poles to be distributed they will be allocated according
to one of the following methods:

The first one distributes the points evenly by traversing the list of stations,
adding one point to each until all points have been allocated. Then, the list of
stations is shuffled, so as not to benefit stations that are traversed first. In this
way, the stations will have either p/n or p/n — 1 charging poles.

The alternative is a pseudo-random distribution of the remaining points that
works choosing a random amount of points and a random station to which assign
them. To avoid a too uneven distribution of poles, such a random amount can
be limited by a parameter that indicates the maximum percentage of the total
charging poles that a single station can have. For instance, using a maximum
percentage of 30%, we ensure that no station will have more than 0.3-p charging
poles.

3.2 Load generator of movements in a city

The load generator is used to create either a random or informed load on the
simulation. Such load can be adapted to any of the agent types that SimFleet
offers: electric vehicles, taxi fleets, customers for taxis, delivery vehicles, pack-
ages, etc. The relevant parameters of this generator are: agent type ¢; amount
of agents n; minimum distance min_dist in meters; starting delay d in seconds;
amount of agents per batch agents_per_batch.

The generator aims to create a movement of at least min_dist meters of n
agents of ¢ type within the borders of a given city map. The delay parameter
d determines at what time of the simulation the generated agents will start
running; by default, it is 0. The amount of agents per batch is introduced to
give different delays to sets of agents_per_batch agents, which will begin its
execution at the same time. This may be useful when generating a large number
of agents. If indicated, the first batch of agents will have a delay of d; the second,

8 P. Marti et al.

a delay of 2d, and so on. As we mentioned above, all generators are prepared to
receive an existing SimFleet configuration file as input and fill it with agent data.
This enables the use of the load generator to introduce, in the same simulation,
different types of agents in various amounts, with different delays and batch
sizes, to create a complex system.

Random movement generator. The random load is created by choosing a
random route (random origin and destination points) for the agent to perform.
Both random origin and destination points must be valid points of the area, and
they must be at least min_dist apart from one another. This process is repeated
to create n agents of type ¢. The origin point will determine where in the area the
agent will spawn, whereas the destination point indicates where it will finish its
execution. If the agent type is customer or package, the movement is performed
by the corresponding transport vehicle that carries it after it gets picked up.

Informed movement generator. The informed version of the load generator
aims to reproduce more realistic movements around the city map. For this, it is
necessary to provide the generator with relevant data from which to ground the
routes of the agents. This data can be obtained from diverse sources; often open
data platforms that the government of a city or country makes accessible for its
citizens. For our generator, we used the following data:

— Population information: It shows the amount of people that live in dif-
ferent zones of a city. The population information (P) is defined as: P =
{(C1,p1),(Ca,p2),...,(Cn,pn)}, where C; is a closed polygon representing
a zone in the city together with its population p;.

— Traffic information: It shows the number of vehicles moving around a
certain area. The traffic information (T') is defined as: T' = {(R1,t1), (Rs, t2),
ooy (Rn,tn)}, where R; is a polyline that follows a street or road indicating
the volume of traffic ¢;.

— Twitter activity: Information about the amount of geo-located tweets,
from the social network Twitter, tweeted from a certain location. This infor-
mation can be used to determine where a representative percentage of the
population is spending their time. The Twitter activity (A) is defined as:
A={(Q1,a1),(Q2,a2),...,(Qn,a,)}, where Q; is a point represented as a
latitude-longitude tuple and a; the number of tweets in such coordinates.

The information is used to create a probability distribution among the avail-
able points of the area. The selection of the origin and destination points will
be performed according to such distribution. For this, we begin by creating
a set of available points. The city map (M) is divided as if it was a grid
similarly as explained in Section for the uniform distribution, obtaining
M = {(G1,01),(G2,05),...,(Gn,0n)}; where G; is a closed polygon and O;
the nearest valid point to the centroid of G;. The number of rows and columns
of the grid is a configurable parameter and it determines the granularity of the

Load Generators for Automatic Simulation of Urban Fleets 9

system. A higher amount implies more cells in the grid which directly translates
into more available points, as it can be seen in Figure 3] The more points, the
more distributed will be the probability.

aaaaaaa

(a) 10 rows and cols (b) 20 rows and cols (¢) 30 rows and cols

Fig. 3. Number of available points according to map division granularity

By merging the city data with M, we join, for every polygon G;, the pop-
ulation, traffic and Twitter activity amounts that take place within its area:
M = {(Gla 017 {plv t17 a’l})v (G27 OQ) {p27 t2a G/Q})a sy (G’n7 On; {pn7 tna an})} and
calculate the probability associated to each point O; as in Equation (2)):

prob(0;) = wy-]51 +w; - w,-]\?Z ; with wp+w+w, =1 (2)

N
Zj:l by Zj:l tj Zj:l aj

where w,, w; and w, are weights that control the influence of each of the
factors over the probability. Finally, the generator takes into account the set
of available points (S) and their corresponding probability: S = {(O1,p(01)),
(O2,p(02)),...,(0n,p(0,))} to generate the routes.

Once every point in S has its probability assigned, a process to create the
n routes begins (see examples of Figure E[) This process is very similar to the
one used in the random load generator, but this time the origin and destination
points are chosen from S according to the probability distribution and ensuring
the min_dist between both points.

4 Experimental Results

To present experimental results for our generators, we define and set up a sim-
ulation and then execute it in SimFleet with two different strategies.
4.1 Setup

The experiment defined takes place over the main area of the city of Valencia,
Spain. We generated 20 electric charging stations distributed uniformly in the

10 P. Marti et al.

=~ fi=n
Aboraiar =t

Alboraya

Alboraiar]

Alboraya

Paiporta

J s
bl B Alfafar /] Tiforn

(a) 10x10 map (b) 30x30 map

Fig. 4. 100 routes examples

area. As for the load, we used the informed load generator to create a fleet of 30
electric taxis and 30 customers with a granularity of 30. Taxis were created with
random values for their autonomy so that some of the taxis would be forced to
charge in one of the stations. For the customers, the weights of Equation
were wp, = 5/12, w; = 1/4, w, = 1/3, increasing the impact of population and
Twitter activity. The routes of the customers were defined by points that were
at least 700 meters apart. For the taxis creation, the weights of Equation (2))
were w, = 1/3, w, = 5/12, w, = 1/4, giving more importance to traffic and
population. Figure [5] shows the described experiment in SimFleet.

) R “hj’ Y

nnnnnnnn

(a) Experiment setup (b) Experiment running

Fig. 5. Experiment shown in SimFleet

We executed this setup using two different strategies for the FleetManager
and Transport agents. The first strategy is the default one provided by SimFleet:

Load Generators for Automatic Simulation of Urban Fleets 11

All customers send their transport service requests to the FleetManager which,
in turn, forwards them to every taxi in the fleet, ignoring their state. Taxi agents,
if available, will accept the request of a random customer, taking into account
that it may have already another taxi assigned. As for charging, taxis choose a
random available station. In contrast, the modified, more informed strategy works
in the following way: Customers still send their requests to the FleetManager but
the latter will just inform the nearest taxi to the customer among the available
taxis. Taxis will then attend requests of the customers closer to them, which will
reduce the customers’ waiting time. Also, if the taxi needed to charge, it would
not go to a random station but the closest one to it.

4.2 Results

The metrics that SimFleet offers to evaluate simulations are the average waiting
time of the customers until their assigned transport picks them up, the average
total time the customer waits for their transport service to be completed, and
the simulation time. Since the modified strategy aims to reduce customer waiting
time and total time, we will use them as the metrics to improve.

Strategy HAvg. waiting time[Avg. total time[Avg. simulation time
Default 21.06 25.28 50.38
Modified 11.50 15.72 43.14
Improvement 45.39% 37.82% 14.37%

Table 1. Time (seconds) for the tested strategies

The results presented in Table [I] are an average of 5 different executions,
since the agent behavior is not deterministic for neither of the strategies. As
can be seen, the modified strategy achieves an average waiting time of 11.50,
which implies an improvement of 45.39% over the time achieved by the default
strategy. The generators achieve their objective of facilitating the configuration
of experiments and the comparison of agent strategies in different simulations.
Some video demonstrations of the generator setups in SimFleet are available
online: strategy comparisorEl, delay start and batchesﬂ and ecar ﬂeetﬂ

5 Conclusions

In this work, we have identified the need for enhancing SimFleet simulation po-
tential and presented two tools to do so: the charging stations generator and the
load generator. Knowing that one of SimFleet’s purposes is the implementation

5 https://viewsync.net/watch?v=XNRLQTU1L- Y&t=0&v=QesxSMAEFLI&t=0
" https://youtu.be/90gU0Vmz4co
8 https://youtu.be/EokHXBAz1L4

https://viewsync.net/watch?v=XNRLQTUlL-Y&t=0&v=QesxSMdEFLI&t=0
https://youtu.be/90gUOVmz4co
https://youtu.be/EokHXBAzlL4
https://viewsync.net/watch?v=XNRLQTUlL-Y&t=0&v=QesxSMdEFLI&t=0
https://youtu.be/90gUOVmz4co
https://youtu.be/EokHXBAzlL4

12 P. Marti et al.

and comparison of agent strategies, the generators are effective to help in the
research of solutions for traffic congestion or any other type of challenge derived
from city sustainability. Provided we have access to city data, with the use of
the informed load generator, we can test different driver behaviors over realistic
settings to identify problem sources and look for appropriate solutions.

As for the EV charging stations infrastructure, thanks to both generators
we can simulate different distributions over a city and, using its real city data,
recreate movement within it to analyze the performance of each distribution.
This information can be of use for municipalities or other entities in charge of
infrastructure creation.

The placement of a charging station should take into account current traffic
trends but one must keep in mind that it may as well have an impact on traffic
once the station is working. In future work, we aim to develop coordination
strategies among transport and station agents in order to find ways of optimizing
traffic and achieving a maximum global utility. Such strategies may be the basis
for autonomous EV in the smart cities of the future.

Acknowledgments

This work was partially supported by MINECO/FEDER RTI12018-095390-B-
C31 project of the Spanish government. Pasqual Mart{ and Jaume Jordan are
funded by UPV PAID-06-18 project. Jaume Jordan is also funded by grant
APOSTD/2018/010 of Generalitat Valenciana - Fondo Social Europeo.

References

1. Campo, C.: Directory facilitator and service discovery agent. FIPA Document
Repository (2002)

2. Dong, J., Liu, C., Lin, Z.: Charging infrastructure planning for promoting battery
electric vehicles: An activity-based approach using multiday travel data. Transporta-
tion Research Part C: Emerging Technologies 38, 44-55 (2014)

3. Jordédn, J., Palanca, J., Del Val, E., Julian, V., Botti, V.: A multi-agent system
for the dynamic emplacement of electric vehicle charging stations. Applied Sciences
8(2), 313 (2018)

4. Noori, H.: Realistic urban traffic simulation as vehicular ad-hoc network (vanet)
via veins framework. In: 2012 12th Conference of Open Innovations Association
(FRUCT). pp. 1-7. IEEE (2012)

5. Palanca, J., Terrasa, A., Carrascosa, C., Julian, V.: Simfleet: A new transport fleet
simulator based on mas. In: International Conference on Practical Applications of
Agents and Multi-Agent Systems. pp. 257-264. Springer (2019)

6. Skippon, S., Garwood, M.: Responses to battery electric vehicles: Uk consumer at-
titudes and attributions of symbolic meaning following direct experience to reduce
psychological distance. Transportation Research Part D: Transport and Environ-
ment 16(7), 525-531 (2011)

7. del Val, E., Palanca, J., Rebollo, M.: U-tool: A urban-toolkit for enhancing city maps
through citizens’ activity. In: International Conference on Practical Applications of
Agents and Multi-Agent Systems. pp. 243-246. Springer (2016)

