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Abstract
Epigenetic alterations have an important role in the development of several types of cancer. Epigenetic studies generate a

large amount of data, which makes it essential to develop novel models capable of dealing with large-scale data. In this

work, we propose a deep embedded refined clustering method for breast cancer differentiation based on DNA methylation.

In concrete, the deep learning system presented here uses the levels of CpG island methylation between 0 and 1. The

proposed approach is composed of two main stages. The first stage consists in the dimensionality reduction of the

methylation data based on an autoencoder. The second stage is a clustering algorithm based on the soft assignment of the

latent space provided by the autoencoder. The whole method is optimized through a weighted loss function composed of

two terms: reconstruction and classification terms. To the best of the authors’ knowledge, no previous studies have focused

on the dimensionality reduction algorithms linked to classification trained end-to-end for DNA methylation analysis. The

proposed method achieves an unsupervised clustering accuracy of 0.9927 and an error rate (%) of 0.73 on 137 breast tissue

samples. After a second test of the deep-learning-based method using a different methylation database, an accuracy of

0.9343 and an error rate (%) of 6.57 on 45 breast tissue samples are obtained. Based on these results, the proposed

algorithm outperforms other state-of-the-art methods evaluated under the same conditions for breast cancer classification

based on DNA methylation data.
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1 Introduction

Epigenetic mechanisms are crucial for the normal devel-

opment and maintenance of tissue-specific gene expression

profiles in mammals. Recent advances in the field of cancer

epigenetics have shown extensive reprogramming of every

component of the epigenetic machinery including DNA

methylation, histone modifications, nucleosome position-

ing and noncoding RNAs [24]. In concrete, several studies

demonstrate that DNA methylation (DNAm) plays a cru-

cial role in the tumorigenesis process [1, 34].

In mammalian cells, DNA methylation is based on the

selective addition of a methyl group to the cytosine

nucleotide under the action of DNA methyltransferases

[30], as shown in Fig. 1. Specifically, DNAm takes place in

cytosines that precede guanines, known as CpG dinu-

cleotides [8].

CpG sites are not randomly distributed throughout the

genome, but there are CpG-rich areas known as CpG

islands often located in the gene promoting regions. CpG

islands are usually largely unmethylated in normal cells.

The methylation of these CpG sites silences the promoter

activity and correlates negatively with the gene expression.

The methylation of the promoter regions in some vital

genes, such as tumor suppressor genes, and therefore their

inactivation, has been firmly established as one of the most

common mechanisms for cancer development [6, 19].

Because the methylation patterns can be observed in the

early stages of cancer [24], DNA methylation analysis

& Rocı́o del Amor

madeam2@upvnet.upv.es

1 Instituto de Investigación e Innovación en Bioingenierı́a, I3B,
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becomes a powerful tool in the early diagnosis, treatment

and prognosis of cancer.

The DNA methylation analysis has experienced a rev-

olution during the last decade, especially due to the adap-

tation of microarray technology to the study of methylation

and the emergence of next-generation sequencing (NGS)

[4, 21]. These technological advances combined with the

development of techniques such as reduced representation

bisulfite sequencing (RRBS), which is an efficient and

high-throughput approach for analyzing the genome-wide

methylation profiles, have allowed the DNA methylation

analysis at the molecular level [18]. This is the reason why

current methylation studies generate a large amount of

data. Additionally, since the study of DNA methylation is

still a bit expensive, the number of available samples is

relatively low. The extremely high dimensions of the

methylation data compared to the generally small number

of available samples leads to the so-called curse of

dimensionality problem, the main limitation in the devel-

opment of appropriate methods for DNAm data analysis.

The curse of dimensionality (COD) was introduced by

Belman in 1957 [3] and refers to the difficulty of finding

hidden structures when the number of variables is large.

The high data dimensionality has different adverse effects:

increased computational effort, large waste of space,

overfitting and poor visualization [31]. In most cases, a

dimensional increase has no significant benefit, since a

lower data dimensionality might contain more relevant

information. In machine learning problems, a small

increase in data dimensionality requires a large increase in

data volume to maintain a similar level of performance on

tasks such as clustering and regression. A well-established

settlement to mitigate the curse of dimensionality is to

transform the data from a higher-dimensional space to a

more useful lower-dimensional space [31]. There are dif-

ferent types of dimensionality reduction algorithms. Some

of them, such as principal component analysis (PCA) or

manifold learning, use linear or nonlinear combinations of

existing features to create new features. Others, such as

forward selection or random forests, only keep the most

important features in the dataset and remove redundant

ones.

More recently, several state-of-the-art approaches based

on high-dimensional data clustering have been proposed to

deal with the curse of dimensionality problem. Among

these approaches, stand out the methods based on divisive

hierarchical clustering [14, 27] and subspace clustering

algorithms [2, 5]. Tasoulis et al. introduced a new approach

to divisive hierarchical clustering identifying clusters in

nonlinear manifolds. This approach uses the isometric

mapping (Isomap) to recursively embed subsets of data in

one dimension and then perform a binary partition

designed to avoid the splitting of clusters [27]. In [14], the

authors proposed a new divisive hierarchical clustering

method, in which each partition in the hierarchy is induced

by a hyperplane separator. Subspace clustering splits the

data samples into groups such that each group contains

only data samples lying in the same low-dimensional

subspace of the given high-dimensional feature space. In

[5], the author proposed a local extension of the well-

known iterative subspace clustering algorithms in which

the entire cluster is approximated with a single linear/affine

subspace. Araújo et al. introduced a soft-subspace clus-

tering algorithm, a self-organizing map (SOM) with a time-

Fig. 1 DNA methylation process. Methylation at 5’ position of the cytosine catalyzed by DNMT (DNA methyltransferases) in the presence of

S-adenosyl methionine (SAM)
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varying structure, to cluster data without any prior

knowledge of the number of categories or of the neural

network topology, both determined during the training

process [2].

To mitigate the curse of dimensionality problem existing

in the DNAm data, a dimensionality reduction is necessary

before implementing any algorithm that identifies the

presence of cancer using methylation profiles [33]. In this

context, Yuvaraj et al. presented different algorithms for

dimensionality reduction based on PCA and Fisher crite-

rion [33]. However, the DNA methylation datasets cannot

be efficiently described by these dimensionality reduction

methods due to its non-Gaussian character. Jazayer et al.

used a nonnegative matrix factorization (NMF) for the

dimensionality reduction of breast methylation data fol-

lowing by ELM and SVM classifiers for cancer identifi-

cation. However, with the NMF algorithm, it is not possible

to directly transfer the input to a smaller dimensional space

than the number of samples because this method transfers

the data to an output space with a dimension equal to the

minimum of {samples, DNAm dimension}. That is the

reason why, in this study, the authors use a column-split-

ting method to overcome the curse of the dimensionality

problem [16].

Recent advances in the field of artificial intelligence

have allowed the development of deep learning algorithms

that perform an embedding of CpG methylation states to

extract biologically significant lower-dimensional features

[17, 25, 29]. Zhongwei et al. presented a stack of random

Boltzmann machine (RBM) layers with the aim of reducing

the dimensionality of a breast DNAm set composed of

cancer and non-cancer samples. The proposed model first

selected the best 5000 features based on variance from over

27,000 features and subsequently used four RBM layers to

reduce the number of features to 30. After reducing the

data dimensionality, they carried out a binary classification

of the generated features using unsupervised methods [25].

Khwaja et al. proposed a deep autoencoder system for

differentiation of several cancer types (breast cancer, lung

carcinoma, lymphoblastic leukemia and urological tumors)

based on the DNA methylation states. After a statistical

analysis, in which the features providing non-useful

information for differentiation between cancer classes are

eliminated, the authors used a deep belief network for

dimensionality reduction with a posterior supervised clas-

sification [17]. Titus et al. proposed an unsupervised deep

learning framework with variational autoencoders (VAEs)

to learn latent representations of the DNA methylation

from three independent breast tumor datasets. They

demonstrate the feasibility of VAEs to track representative

differential methylation patterns among clinical subtypes

of breast tumors, but they do not perform any classification

with the extracted characteristics [29].

Several state-of-the-art methods propose different

unsupervised and supervised classification algorithms for

cancer identification after performing a dimensionality

reduction of the DNA methylation data [16, 17, 19, 25].

However, to the best of the author’s knowledge, no pre-

vious studies have been focused on the development of

both tasks simultaneously. Novel deep learning algorithms

have emerged optimizing the dimensionality reduction

with unsupervised classification at the same time. These

methods, called deep clustering algorithms, have outper-

formed the state-of-the-art results for different tasks as

image classification [11, 12, 32], image segmentation [7],

speech separation [13, 23] or RNA sequencing [28].

Therefore, our hypothesis is that since these algorithms

perform well with high-dimensional data, they are likely to

perform well for methylation data.

For all of the above, in this work, we proposed a deep

embedded refined clustering to distinguish cancer thought

DNA methylation data. In concrete, this work is developed

using two public databases containing DNAm data from

breast tissues with and without cancer. The proposed

method is composed of an autoencoder to carry out the

dimensionality reduction followed by a soft-assignment

algorithm to perform an unsupervised classification. This

algorithm is end-to-end trained to accomplish the data

classification while optimizing the dimensionality reduc-

tion. As the main novelty, the method is optimized through

a weighted loss function. This loss function is composed of

two terms: (1) a reconstruction term in charge of opti-

mizing the latent features provided by the autoencoder

algorithm and (2) a clustering term used to improve the

classification based on the latent features of the autoen-

coder. To the best of the authors’ knowledge, no previous

studies have addressed the distinction of cancer based on

DNAm using an end-to-end trained dimensionality reduc-

tion and classification method. The proposed method is

widely validated and compared to the use of autoencoder

and variational autoencoder for dimensionality reduction

with a subsequent unsupervised classification.

The rest of the paper is organized as follows: In Sect. 2,

we introduce the databases used in this work, DNAm sets

containing the methylation level (between 0 and 1) of

different CpG region related to cancer. In Sect. 3, we

describe the methodology. In particular, Sect. 3.1 describes

the statistical analysis performed on the DNAm data, Sect.

3.2 presents the dimensionality reduction algorithms used

in this work, conventional and variational autoencoder, and

Sect. 3.3 describes the details of the proposed deep clus-

tering method. In Sect. 4, we describe the performed

experiments in order to validate our method and in Sect. 5

we discuss the results obtained. Finally, Sect. 6 summarizes

the conclusions extracted with the carried out experiments.
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2 Materials

For this study, we used two methylation datasets obtained

from Gene Expression Omnibus (GEO) website [10]. GEO

is a public functional genomics data repository supporting

MIAME-compliant data submissions. Specifically, we used

the GSE32393 and the GSE57285 series to evaluate the

proposed method. Note that the methodology proposed in

this work was applied on the first series. The second series

was used as an external database to perform an additional

test and demonstrate the robustness of the proposed

methodology. The GSE50220 series is composed of breast

tissue samples from 114 breast cancers and 23 non-neo-

plastic breast tissues. The breast cancer tissue samples

come from women (mean age 59.4) who were diagnosed

with breast cancer. Among the cancers, 33 were at stage 1

and 81 at stage 2/3/4. All 23 non-neoplastic samples are

from healthy women (mean age 47.6). The GSE50220

series is composed of breast tissue samples from 39 breast

cancer and 9 normal control. Among the breast cancer, 20

were non-irradiated breast cancer and the rest were irra-

diated tumors. In all cases, to obtain the methylation data,

the Illumina Infinium 27k Human DNA methylation

Beadchip v1.2 was used at approximately 27,000 CpGs

from women with and without breast cancer. For each

sample, 27,578 DNA methylation profiles were obtained.

The methylation status of each CpG site varies from 0 to 1.

Under ideal conditions, a value of 0 means the CpG site is

completely unmethylated and the value of 1 indicates the

site is fully methylated.

3 Methodology

3.1 Statistical analysis

To conduct the prescreening procedure and obtain the

methylation sites with the most differential methylation

expression, a previous statistical analysis of the CpG

methylation data was carried out. First, a hypothesis con-

trast to analyze the level of independence between pairs of

variables was performed. For this purpose, the correlation

coefficient q and the p-value of the correlation matrix were

calculated to remove those variables that meet both p-value

� a and jqj � 0.90, being a the level of significance with

a value of 0.05 for this application. After that, we per-

formed different contrasting hypotheses to analyze the

discriminatory ability of each variable regarding the class.

Depending on if the variables fit a normal distribution or

not, the hypothesis test performed was the t-student or the

Wilcoxon rank sum, respectively. After the statistical

analysis, we reduced the 27,578 DNA methylation features

of the GSE32393 series to 10,153. These features were the

input for the following stage.

3.2 Dimensionality reduction

In order to explore the well-known non-supervised algo-

rithms to reduce the data dimensionality based on deep

learning techniques, the conventional and the variational

autoencoder were tested. In this section, we detail the

characteristics of both algorithms and their main

differences.

3.2.1 Conventional autoencoder

Autoencoder (AE) is one of the most significant algorithms

in unsupervised data representation. The objective of this

method is to train a mapping function to ensure the mini-

mum reconstruction error between input and output [22].

As it can be observed in Fig. 2, the conventional autoen-

coder architecture is composed mainly of two stages: the

encoder and the decoder stages. The encoder step is in

charge of transforming the input data X into a latent rep-

resentation Z through a nonlinear mapping function,

Z ¼ f/ðXÞ, where / are the learnable parameters of the

encoder architecture. The dimensionality of the latent

space Z is much smaller than the corresponding input data

to avoid the curse of dimensionality [32]. Since the latent

space is a nonlinear combination of the input data with

smaller dimensionality, it can represent the most salient

features of the data. The decoder stage produces the

reconstruction of the data based on the features embedded

in the latent space, R ¼ ghðZÞ. The reconstructed repre-

sentation R is required to be as similar to X as possible.

Therefore, given a set of data samples X ¼ xi; :::; xnf g,
being n the number of available samples, the autoencoder

model is optimized with the following formula:

Fig. 2 Architecture of the proposed conventional autoencoder used

for the non-supervised dimensionality reduction

Neural Computing and Applications

123



min
h;/

Lrec ¼ min
1

n

Xn

i¼1

jjxi � ghðf/ðxiÞÞjj2 ð1Þ

where h and / denote the parameters of encoder and

decoder, respectively.

The autoencoder architecture can vary between a simple

multilayer perceptron (MLP), a long short-term memory

(LSTM) network or a convolutional neural network

(CNN), depending on the use case. In case the input data

are 1-D and unrelated in time, both the encoder and

decoder are usually constructed by a multilayer perceptron.

3.2.2 Variational autoencoder

Variational autoencoder (VAE) is an unsupervised

approach composed also of an encoder-decoder architec-

ture like the conventional autoencoder aforementioned

[29]. However, the main difference between a conventional

and a variational autoencoder lies in the fact that the VAE

introduces a regularization into the latent space to improve

its properties. With a VAE, the input data are coded as a

normal multivariate distribution p(z|x) around a point in the

latent space. In this way, the encoder part is optimized to

obtain the mean and covariance matrix of a normal mul-

tivariate distribution: see Fig. 3.

The VAE algorithm assumes that there is no correlation

between any latent space dimensions and, therefore, the

covariance matrix is diagonal. In this way, the encoder only

needs to assign each input sample to a mean and a variance

vectors. In addition, the logarithm of the variance is

assigned, as this can take any real number in the range

ð�1;1Þ, matching the natural output range from a neural

network, whereas that variance values are always positive;

see Fig. 4.

In order to provide continuity and completeness to the

latent space, it is necessary to regularize both the logarithm

of the variance and the mean of the distributions returned

by the encoder. This regularization is achieved by match-

ing the encoder output distribution to the standard normal

distribution (l ¼ 0 and r ¼ 1).

After obtaining and optimizing the parameters of mean

and variance of the latent distributions, it is necessary to

take samples of the learned representations to reconstruct

the original input data. Samples of the encoder output

distribution are obtained as follows:

Z � pðzjxÞ ¼ lþ r � � ð2Þ

where � is randomly sampled from a standard normal dis-

tribution and r ¼ exp
logðr2Þ

2

� �
.

The minimized loss function in a variational autoen-

coder is composed of two terms: (1) a reconstruction term

that compares the reconstructed data to the original input in

order to get as effective encoding–decoding as possible and

(2) a regularization term in charge of regularizing the latent

space organization, as shown in Fig. 4. The regularization

term is expressed as the Kullback–Leibler (KL) divergence

that measures the difference between the predicted latent

probability distribution of the data and the standard normal

distribution in terms of mean and variance of the two

distributions [9]:

DKL½Nðl; rÞjjNð0; 1Þ� ¼
1

2

X
ð1þ logðr2Þ � l2 � r2Þ

ð3Þ

The Kullback–Leibler function is minimized to 0 if l ¼ 0

and logðr2Þ ¼ 0 for all dimensions. As these two terms

begin to differ from 0, the variational autoencoder loss

increases. The compensation between the reconstruction

Fig. 3 Main differences

between a conventional and a

variational autoencoder. Instead

of just learning a function

representing the data (a

compressed representation) like

conventional autoencoders,

variational autoencoders learn

the parameters of a probability

distribution representing the

input data
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error and the KL divergence is a hyperparameter to be

adjusted in this type of architecture.

3.3 Proposed method: deep embedded refined
clustering

Once the data dimensionality is reduced, we classify the

samples in cancerous and non-cancerous. Reducing the

data dimensionality without information about the different

subjacent data distributions weakens the representativeness

of the embedded features concerning the class. and thereby,

the performance of the subsequent classification worsens.

For this reason, we consider that dimensionality reduction

and classification should be optimized at the same time. In

this context, we propose a deep embedded refined clus-

tering (DERC) approach for classifying the DNA methy-

lation data (see Fig. 5). It is composed of an autoencoder in

charge of the dimensionality reduction and a cluster

assignment corresponding to the unsupervised classifica-

tion stage (clustering layer in Fig. 5). This approach is

trained end-to-end optimizing the dimensionality reduction

and the unsupervised classification in the same step and not

in two different steps as all the algorithms proposed for

DNA methylation analysis in the literature.

During the training process, the encoder and decoder

weights of the autoencoder, W and W 0, respectively, are
updated in each iteration in order to refine the latent fea-

tures of the encoder output Z. The proposed clustering

layer (linked to the encoder output) obtains the soft-as-

signment probabilities qi;j between the embedded points zi

and the cluster centroids lj
� �k

j¼1
every T iterations, being k

the number of cluster centroids. The soft-assignment

probabilities (qi;j) are obtained with the Student’s t-distri-

bution proposed in [32]. Using qi;j, the target probabilities

pi;j are updated (see Algorithm 1). These target probabili-

ties allow the refinement of the cluster centroids by

learning from the current high-confidence assignments. To

take into account the refinement of the latent space carried

out by autoencoder while the samples are classified in one

of the two clusters (cancer and non-cancer), the proposed

model is trained end-to-end minimizing both reconstruc-

tion Lrec and clustering loss Lcluster terms:

L ¼ Lcluster þ bLrec ð4Þ

where b balances the importance of the losses due to the

reconstruction of the data. The term Lrec was defined in

Eq. (1), and it is minimized to obtain the maximum simi-

larity between the input and the output data improving the

representation of the latent space. Lcluster is defined by the

Kullback–Leibler (KL) divergence loss between the soft-

assignments and the target probabilities, qi;j and pi;j,

respectively:

Lcluster ¼
X

i

X

j

pi;jlog
pi;j
qi;j

ð5Þ

The clustering term is minimized to achieve the soft-as-

signments qi;j and the target pi;j probabilities to be as

similar as possible. In this way, the centroids are refined

and the latent space obtained by the autoencoder is regu-

larized to achieve a correct distinction between breast

cancer and non-breast cancer samples. As discussed above,

the hyperparameter b balances the importance of losses due

to the data reconstruction. If b is high, the data recon-

struction term will predominate and the classification

between cancerous and non-cancerous samples will wor-

sen. Otherwise, if this term is too low, the reconstruction

losses will be marginal and the features of the latent space

will not be optimized correctly. Consequently, the latent

Fig. 4 Architecture of a

variational autoencoder. The

proposed algorithm is optimized

by minimizing two loss

functions. One of them

corresponding to the latent

space regularization and the

other one corresponding to the

input data reconstruction
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features will be very different from the input data,

decreasing the accuracy of the unsupervised classification.

Therefore, b is a hyperparameter that needs to be properly

adjusted. In Step 2 of Algorithm 1, the methodology used

to optimize the proposed DERC algorithm is detailed.

Note that to train the proposed method, a previous ini-

tialization of the centroids with latent characteristics is

necessary (Step 1 of the Algorithm 1). In the experimental

section, we present an experiment (Sect. 4.1.1) aimed at

determining which of the dimensionality reduction models

is optimal for this initialization.

4 Experimental results

As we mentioned in Sect. 2, the DNA methylation data-

bases used were obtained from the Gene Expression

Omnibus (GEO) website. In this section, we used the

dataset GSE32393 to evaluate the dimensionality reduction

and the unsupervised deep clustering performance. The

dataset GSE50220 was used as an external validation to

demonstrate that the proposed method can generalize to

other breast methylation databases. It should be noticed

that all experiments were performed on an Intel i7 @ 3.10

GHz of 16 GB of RAM with a Titan V GPU of 12 GB of

RAM. The proposed methods were executed in Python 3.5

using TensorFlow 2.0.

4.1 GSE32393 series: performance evaluation

4.1.1 Dimensionality reduction and unsupervised
classification separately

As mentioned above, an initial latent space with a lower

dimensionality than the input data for the cluster centroid

initialization is necessary. In this section, we detail a

comparison between the latent space obtained using the

conventional and the variational autoencoder and the

unsupervised classification results after applying the

K-means algorithm on each latent space. In this way, it will

be demonstrated which algorithm is the most suitable for

dimensionality reduction in the end-to-end proposed

method.

Ablation experiment. The 10,153 CpG sites obtained

after statistical analysis of the raw methylation data were

the input of the proposed dimensionality reduction algo-

rithms, conventional and variational autoencoders. In both

cases, the dimensionality reduction was carried out using

an architecture composed of 4 stacks. The number of

neurons (input, output) of the 3 top layers was set to

{(10153, 2000), (2000, 500), (500, 70)}, respectively (see

Fig. 6). These layers were composed of a dense layer with

ReLU as activation function except for the last decoder

layer that was constituted of the sigmoid function in order

to obtain an output value between 0 and 1, range of the

methylation data values. The kernel weights were initial-

ized with random numbers drawn from a uniform distri-

bution within ½�l; l�, where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � s=ninput

p
, being s ¼ 1

3

and ninput the number of input units. The top layer output

(latent space dimension) was set to {10, 20, 30}. Note that,

these settings were obtained from empirical evaluations

with a wide range of settings and we use only the best

parameters here. After intense experiments, the optimal

dimension of the latent space for both algorithms turned

out to be 10 neurons.

To show the performance of AE and VAE and to

demonstrate that they are not over-adjusted to the data, a

first experiment was performed using 10% of the

GSE32393 database as a validation set and the rest 90% as

a training set. Subsequently, both algorithms were trained

using the whole database (Entire prediction). The optimal

hyperparameters combination was achieved by training

both algorithms during 300 epochs, using the stochastic

gradient descent (SGD) optimizer with a learning rate of 1

and a batch-size of 8. Regarding the loss function, in the

case of the conventional autoencoder, the mean square

error (MSE) was used. However, the variational
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autoencoder loss function was composed of two terms:

MSE weighted by 0.8 and Kullback–Leibler (KL)

divergence.

After training the dimensional reduction algorithms with

the entire GSE32393 series and obtaining the features in

the embedding space (encoder output), the classification

results were obtained using K-means. To achieve this

unsupervised classification, we ran K-means with 80

restarts and selected the best solution.

Qualitative and quantitative results. After training the

proposed dimensionality reduction algorithms, the results

in terms of reconstruction error for both autoencoders are

shown in Table 1.

In order to visualize in a qualitative way the effect of the

tested dimensionality reduction methods (AE and VAE)

over the data distribution, we used the t-distributed

stochastic neighbor embedding (t-SNE) method to repre-

sent the latent space into a two-dimensional space. T-SNE

is a nonlinear dimensionality reduction technique that

embeds high-dimensional data into a space of two or three

dimensions, which can then be visualized by a scatter plot

[20]. In Fig. 7, we show the representation of the data

(latent space of the pre-trained variational autoencoder

(a) and latent space of the pre-trained conventional

autoencoder (b)) in a two-dimensional space.

To quantitatively evaluate the performance of the clus-

tering assignments, several metrics were computed: the

unsupervised clustering accuracy (ACC) [22], the error rate

(ER), the false positive (FP) and the false negative (FN)

ratios, the adjusted rand index (ARI) [15] and the nor-

malized mutual information (NMI) [26]. The ACC metric

is defined as follows:

ACC ¼ maxm

Pn
i¼1 1 yi ¼ mðciÞf g

n

� �
ð6Þ

where yi is the ground-truth label, ci is the cluster assign-

ment generated by the algorithm, m is a mapping function

which ranges over all possible one-to-one mappings

between assignments and labels and n is the total number

of samples. The error rate (%) is calculated according to

the following formula:

ER ð%Þ ¼ ð1� ACCÞ � 100 ð7Þ

The adjusted rand index is defined as follows:

ARI ¼ RI� E½RI�
maxðRIÞ � E½RI� ð8Þ

where RI ¼ TPþTN
TPþFNþTNþFP

, TP and TN are true positive and

true negative ratios and E[RI] is the expected index. The

ARI can yield negative values if index (RI) is less than

expected index E[RI].

The normalized mutual information is defined by the

following formula:

NMI ¼
Pk

i¼1

Pk
j¼1 ni;jlog

ni;j
ni�n̂jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Pk

i¼1 nilog
ni
nÞð

Pk
j¼1 n̂jlog

n̂j
nÞ

q ð9Þ

where ni;j denotes the number of data points which are in

the intersection between cluster ci and class yi, ni is the

number of data points in cluster ci and n̂j is the number of

data points in class yj.

In Table 2, the abovementioned metrics were calculated

for the input data ? K-means clustering, the latent space of

the pre-trained autoencoder (AE) ? K-means and the

Fig. 5 Architecture of the

proposed method (DERC) to

detect breast cancer using DNA

methylation data. The proposed

algorithm is trained minimizing

both, clustering and

reconstruction loss
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latent space of the pre-trained variational autoencoder

(VAE)? K-means. Note that the input data are referred to

the 10,153 features extracted after the statistical analysis.

4.1.2 Dimensionality reduction and unsupervised
classification jointly (DERC)

After initializing the centroids using the algorithm with the

lowest losses and the better prediction when K-means was

used, in this case the conventional autoencoder, the deep

embedded refined clustering algorithm was trained. As we

explained in Sect. 3.3, the b value, which weights the terms

that composed the loss function of the DERC algorithm, is

an important parameter to adjust. For this reason, we

develop in this section a comparison between different b
values exposing their influence on the clustering

assignment.

Ablation experiment. After pre-training the conventional

autoencoder model (with the parameters detailed in Sect.

4.1.1), we added the clustering layer to the output of the

autoencoder latent space (see Table 3) for the layer layout

in the final architecture.

In order to evaluate the b value on the performance of

the clustering algorithm, we kept the rest of the hyperpa-

rameters constant during the different experiments. In

particular, the entire deep embedding clustering method

was optimized by stochastic gradient descent (SGD) with a

learning rate of 0.01 and a momentum of 0.9. The proposed

method was trained during 50 epochs using a batch-size of

8 samples and the target distribution of the clustering layer

was updated every 10 iterations. Note that these hyperpa-

rameters were obtained from empirical evaluations with a

wide range of settings. b was a variable parameter and

various experiments were conducted by setting its value

with f0:95; 0:85; 0:75; 0:65g.
Quantitative results. In this case, we show the unsu-

pervised classification results provided by the proposed

deep embedded refined clustering (DERC) method

depending on the b value (see Table 4).

4.2 GSE50220 series: generalization ability
of the DERC algorithm

In this section, we expose the results for the prediction of

an external test set (see Table 5). The goal of this section is

to demonstrate that the proposed DERC method could be

valid to perform the feature extraction and unsupervised

classification from methylation data. Therefore, we made

use of the GSE50220 series as an external test set to check

the behaviour of the proposed methods with new breast

cancer samples.

4.3 Comparison with the state of the art

In order to provide the superiority of the proposed method

for DNAm analysis, we compared our approach with well-

known methods for high-dimensional clustering. In con-

crete, we use the divisive hierarchical clustering methods

based on isometric mapping using the maximum distance

between consecutive one-dimensional embeddings and the

Fig. 6 Final dimensionality reduction architectures. a Conventional

autoencoder architecture composed of 4 stacks. b Variational autoen-

coder architecture composed of 4 stacks. Note that with the

variational autoencoder algorithm, the latent space is obtained in

two stages, two dense layers of 10 neurons representing the mean and

the logarithm of the variance of the latent distribution and a sampling

layer to obtain the points of the latent space

Table 1 Reconstruction error of the proposed dimensionality reduc-

tion algorithms

Method Reconstruction loss

Training Validation Entire prediction

AE 0.0062 0.0054 0.0057

VAE 0.0082 0.0074 0.0082

Conventional autoencoder (AE) and variational autoencoder (VAE)

The bold values point out the method that has obtained the best results
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global minimum of the corresponding density estimator (i-

DivClu-M and i-DivClu-D, respectively) [27] and the

subspace methods based on local affine and convex hull [5]

(LSC-aff. hull and LSC-conv. hull, respectively); see

Table 6.

5 Discussion

In this work, we present a deep embedded refined clus-

tering approach to automatically detect patients suffering

for cancer using DNA methylation data. In concrete, the

proposed algorithm was evaluated using two breast

methylation datasets.

As it can be observed in Table 2, an optimal data

dimensionality reduction is essential to improve the clas-

sification results when working with high-dimensional

data. Using the K-means algorithm as non-supervised

classifier, the dimensionality reduction carried out by the

pre-trained AE on the input data (DNAm profiles obtained

after statistical analysis) improves the ACC results from

0.6715 to 0.9343. However, with the VAE algorithm, the

ACC results do not improve, obtaining a value of 0.5693.

Fig. 7 Latent space of the dimensionality reduction algorithms.

a Visualization of 10-dimensional features extracted by the latent

space of the pre-trained variational autoencoder. b Visualization of

10-dimensional features extracted by the latent space of the pre-

trained conventional autoencoder

Table 2 Comparison of the

K-means clustering effect based

on different feature extraction

Method ACC ER(%) FN FP ARI NMI

Input Data ? K-means 0.6715 32.85 45 0 0.1140 0.2355

AE ? K-means 0.9343 6.57 9 0 0.7184 0.6300

VAE ? K-means 0.5693 43.07 50 9 0.0133 0.0142

Proposed method 0.9927 0.73 1 0 0.9643 0.9212

Table 3 Architecture of the proposed deep embedded refined clus-

tering model

Layer name Output shape Connected to

Input_layer 10153 N/A

Encoder_0 2000 Input_layer

Encoder_1 500 Encoder_0

Encoder_2 70 Encoder_1

Encoder_3 10 Encoder_2

Decoder_3 70 Encoder_3

Decoder_2 500 Decoder_3

Decoder_1 2000 Decoder_2

Clustering_layer 2 Encoder_3

Decoder_0 10153 Decoder_1

Table 4 Comparison of the clustering effect of the proposed DERC

based on different b values

Method ACC ER(%) FN FP ARI NMI

DERC (b ¼ 0:95) 0.9708 2.92 4 0 0.8643 0.7796

DERC (b ¼ 0:85) 0.9781 2.19 3 0 0.8965 0.8198

DERC (b ¼ 0:75) 0.9927 0.73 1 0 0.9643 0.9212

DERC (b ¼ 0:65) 0.9854 1.4600 2 0 0.9298 0.8659

The bold values point out the method that has obtained the best results
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As it can be seen in Fig. 7, the latent space of the VAE is

centered around 0 due to the regularization effect. This fact

makes it impossible to distinguish between the different

classes. Additionally, the reconstruction losses obtained by

the VAE are higher than those reached by the AE (see

Table 1). Therefore, it can be concluded that the conven-

tional autoencoder is the most suitable algorithm to reduce

the DNAm dimensionality.

Moreover, regarding the comparison between classify-

ing separately and jointly to the dimensionality reduction,

ACC results show an improvement from 0.9343 to 0.9927

when the dimensionality reduction and the unsupervised

classification are optimized all at once. In Table 4, it can be

observed the effect of the b value on the unsupervised

classification results. In this way, it can be demonstrated

that when the contribution of the reconstruction losses is

too low (low b) or too high (high b), the ACC results are

worse compared to a more balanced contribution. How-

ever, all the accuracy results shown in Table 4, joint

optimization, are higher than those obtained when applying

K-means in the autoencoder latent space, separate opti-

mization. Therefore, it is proven that when the classifica-

tion is carried out at the same time as the dimensionality

reduction is optimized, the best results are obtained.

This fact can also be demonstrated when the results of

the proposed method are compared to those obtained in the

literature [16, 25]. As discussed in Sect. 1, in [25], the

authors proposed a dimensionality reduction algorithm

followed by several unsupervised classification algorithms.

They applied their methods to the same breast cancer

database used in this paper (GSE32393 series). Note that

they obtained an error rate of 2.94 using a deep neural

network (DNN) following a self-organizing feature map

(SOM) compared to 0.73 obtained by the proposed method.

Furthermore, their algorithm predicted 4 cancer examples

as healthy, while our method only misclassifies one cancer

sample. Therefore, it confirms that the proposed deep

embedded refined clustering algorithm improves the results

when it is applied to DNA methylation data. Additionally,

the algorithm proposed in [16] used the same breast cancer

database (GSE32393 series). In this case, they used a

nonnegative matrix factorization (NMF) for dimensionality

reduction following by supervised algorithms for classifi-

cation. Their main limitation is that, according to the

authors, the NMF algorithm cannot directly reduce the

number of features (27,578) to a lower dimension than the

number of samples (137). Therefore, they used a method

called column-splitting in which they separated the original

data into different matrices. They could not reduce the

original data to a single latent space because they had to

reduce each data matrix independently. In this way, the

overall information of all original features is not taken into

account. They used a K-fold for the algorithm validation

and obtaining a 100 % of accuracy when they used 900 and

2700 CpG sites. However, both resulting models were

overfitted as it is demonstrated when they reduced the

number of features to 540 and the accuracy dropped to

97.85 %, lower than achieved with the proposed method.

Table 5 Results obtained over

the external dataset
Method ACC ER(%) FN FP ARI NMI

Input Data ? K-means 0.6042 39.58 18 0 0.0445 0.2133

AE ? K-means 0.8542 14.57 7 0 0.4727 0.4541

DERC (b ¼ 0:75) 0.9375 6.25 3 0 0.7374 0.6554

Note that in this case, the input data corresponds to the GSE50220 series after selecting the CpG sites

extracted with the statistical analysis in the GSE32393 series

The bold values point out the method that has obtained the best results

Table 6 Results reached by the state-of-the-art approaches in comparison with the proposed method when predicting the DNAm databases. Note

that S1 refers to the primary set (GSE32393 series) and S2 to the external database (GSE50220 series)

ACC ER (%) FN FP ARI NMI

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

i-DivClu-D [27] 0.7600 0.6700 24.00 33.00 33 16 0 0 0.2546 0.1000 0.3113 0.2422

i-DivClu-M [27] 0.8832 0.7917 11.68 20.83 11 10 5 0 0.5149 0.3203 0.3391 0.3618

LSC-aff. hull [5] 0.8248 0.5208 17.52 47.92 24 23 0 0 0.3934 -0.0560 0.3921 0.1545

LSC-conv. hull

[5]

0.8248 0.5625 17.52 43.75 24 21 0 0 0.3934 -0.0210 0.3921 0.1700

Proposed 0.9927 0.9375 0.73 6.25 1 3 0 0 0.9643 0.7374 0.9212 0.6554

The bold values point out the method that has obtained the best results
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Additionally, the authors of [16] claimed that it is impor-

tant to reduce the number of features to a smaller space

than the total number of examples. However, they were

only able to reduce the features to 540 (due to NMF

restrictions) which is about 5 times the number of examples

they used to train their models.

The results obtained by our proposed method on the

external database (GSE50220 series) reported closely

similar values to those reached in the primary set

(GSE32393 series). This fact indicates that the proposed

deep clustering model is perfectly applicable to other breast

tissue databases (see Table 5).

Furthermore, to objectively contrast the proposed

method with other state-of-the-art high-dimensional clus-

tering approaches, we replicated the experiments per-

formed by [5, 27] with the two DNAm databases proposed

in this paper (see Table 6). The results obtained show a

clear outperformance of the proposed method with respect

to the rest of the state-of-the-art models for all metrics. The

methods based on convex hull clustering do not achieve

satisfactory results on the DNAm databases due to their

strong dependence on initialization. Both methodologies,

isometric mapping for divisive clustering (i-Div) and local

subspace clustering (LSC), show a decrease in the perfor-

mance when tested on the external database (S2), demon-

strating that they are not scalable for the classification of

methylation data, especially when the number of samples is

limited.

6 Conclusion

In this paper, a deep embedded refined clustering based on

breast cancer classification using DNA methylation data

has been presented. To the best of the authors’ knowledge,

no previous studies using DNA methylation are based on

algorithms that can optimize the dimensionality reduction

and the classification of the data at the same time. As

demonstrated throughout the manuscript, the method pro-

posed in this paper improves the results of algorithms using

dimensionality reduction and subsequent classification.

The proposed method allows the breast cancer classifi-

cation using a latent space of only 10 features, which

means a reduction in the dimensionality of 99.9637%. The

technology used in this study for data acquisition is the

Illumina Infinium 27k Human DNA methylation Beadchip

v1.2 which uses probes on the 27k array target regions of

the human genome to measure methylation levels at 27,578

CpG dinucleotides in 14,495 genes. As verified through

this work, many of the CpG sites obtained in the DNA

methylation analysis are not relevant in the breast cancer

classification. After ensuring model viability with a larger

breast cancer database, the CpG sites from which the level

of methylation is obtained could be reduced decreasing the

cost and time of methylation analysis. Therefore, this work

could contribute to a faster and more effective diagnosis of

breast cancer, improving cancer care and advancing the

future of breast cancer research technologies.

From a technical perspective, future lines of work will

focus on adapting and applying the proposed method to

identify and appropriately classify other challenging dis-

orders, such as melanocytic tumors. In this way, the general

applicability of the model for the detection of different

types of cancer could be demonstrated.
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