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A Decentralized Multi-Agent Coordination Method for
Dynamic and Constrained Production Planning

Extended Abstract

ABSTRACT
In the capacitated production planning problem, quantities of prod-
ucts need to be determined at consecutive periods within a given
time horizon when product demands, costs, and production capac-
ities vary through time. We focus on a general formulation of this
problem where each product is produced in one step and setup cost
is paid at each period of production. Additionally, products can be
anticipated or backordered in respect to the demand period. We pro-
pose a computationally efficient decentralized approach based on the
spillover effect relating to the accumulation of production costs of
each product demand through time. The performance of the spillover
algorithm is compared against the state-of-the-art mixed integer
programming branch-and-bound solver CPLEX 12.8 considering
optimality gap and computational time.
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1 INTRODUCTION
Production planning considers the best use of resources to satisfy
the production demand over a time horizon while guaranteeing
service quality and minimizing production and inventory costs. In
contexts of a production demand that varies through time and scarcity
of resources to satisfy the demand, the dynamic capacitated lot-
sizing problem (CLSP) addresses questions like when and how much
to produce of each product such that overall production costs are
minimised [2, 11]. In this paper, we focus on deterministic, single-
level, multi-item CLSP with backorders and independent setup costs
(MCLSP-BO). That is, we address the problem of producing multiple
items from raw material with no intermediate subassemblies using
backordering [16] (possibility of satisfying the demand of the current
period in future periods).
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Anticipating or delaying production planning is crucial in contexts
of a very high demand [15, 21]. The main question in MCLSP-BO
is which items to backorder, which ones to produce at the time of
demand release, and which ones beforehand [6, 10]. This is an NP-
hard problem [1] which has been mostly addressed with heuristic
approximations like the improvement heuristics, which start from an
initial (often infeasible) solution for the complete planning horizon
and then try to enforce feasibility conditions by shifting lots from
period to period at minimal extra cost [2, 13]. There also exist meta-
heuristic approaches based on the linear programming relaxation
of a shortest path formulation of the same problem, tabu search
algorithms [12], heuristic algorithms based on local optima [4] that
examine the Lagrangean relaxation and design heuristics to generate
upper bounds within a subgradient optimization procedure [19],
or genetic algorithms that use fix-and-optimize heuristic and other
mathematical programming techniques [20].

Existing approaches to MCLSP-BO are centralized solutions that
apply to only one decision maker. As such, they are not adaptable
to address intrinsically decentralized scenarios like those in supply
chain management, surgical scheduling of patients to a network of
private hospitals, aircraft arrival planning, or telecommunications
packet scheduling. We propose a decentralized multi-agent algorithm
based on the spillover effect, which is defined as a situation that starts
in one place and expands or has an effect elsewhere [18]. Particularly,
the spillover effect attempts to find the best allocation of resources
to each item demand and time period based on the ordering of
accumulated costs, and spreads the non-allocated demand over the
time horizon. We leverage the spillover effect to design, to the best of
our knowledge, the first decentralized algorithmic solution approach
to the MCLSP-BO problem.

2 PROBLEM FORMULATION
The MCLSP-BO belongs to the class of deterministic dynamic lot-
sizing problems well known in the inventory management literature
[2, 10, 11, 14, 16, 17]. The objective is to find a production schedule
for a set 𝐼 of items minimizing the total backorder, holding inventory,
production, and independent setup costs over a finite time horizon
𝑇 = {1, . . . , |𝑇 |} subject to demand and capacity constraints. Incom-
ing orders are demands 𝑑𝑖𝑡 for item 𝑖 ∈ 𝐼 at each time period 𝑡 ∈ 𝑇 .
The number of resources available at the beginning of period 𝑡 is
given by 𝑅𝑡 . We assume a time-varying setup cost 𝑠𝑖𝑡 and a linear
production cost 𝑐𝑖𝑡 for item 𝑖 produced at time 𝑡 . Demand 𝑑𝑖𝑡 can be
anticipated or delayed in regards to the requested time 𝑡 . If antici-
pated, it is at the expense of a linear holding cost ℎ𝑖𝑡 ′, 𝑡 ′ < 𝑡 , accrued
per each anticipated time unit; if delayed, a linear backorder cost
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𝑏𝑖𝑡 ′, 𝑡
′ > 𝑡 , is accrued for every delayed time unit. There is a buffer

associated to each combination item-time such that the content of
the buffer is increased by production quantity 𝑢𝑖𝑡 and reduced by
demand 𝑑𝑖𝑡 . Hence, if 𝑢𝑖𝑡 = 𝑑𝑖𝑡 , there is no stock nor backorder of
𝑖 at 𝑡 ; if 𝑢𝑖𝑡 > 𝑑𝑖𝑡 there is stock of 𝑖 at 𝑡 ; and if 𝑢𝑖𝑡 < 𝑑𝑖𝑡 there is
a backorder of demands of item 𝑖 at time 𝑡 . We represent the stock
level as 𝑥+

𝑖𝑡
and the backorder level as 𝑥−

𝑖𝑡
and note that 𝑥+

𝑖𝑡
· 𝑥−

𝑖𝑡
= 0

since no stock and backorder can coexist at the same time.
The single CLSP is NP-hard for many special cases [1, 7] and the

MCLSP is proved to be strongly NP-hard [3]. Unlike the MCLSP
model presented in [1], which does not feature integrality constraints
for variables 𝑢𝑖𝑡 , 𝑥+𝑖𝑡 , 𝑥

−
𝑖𝑡

, we assume non-negative integer values for
these variables, thus leading to a generally NP-complete integer
programming problem.

3 THE SPILLOVER ALGORITHM
The spillover algorithm builds upon an iterative auction model. The
demand of item 𝑖 at time 𝑡 is represented by an autonomous liquid
agent 𝑎 = (𝑖, 𝑡) that solves a single-item CLSP and bids for the
allocation of demand 𝑑𝑎 . Unlike models that use a single resource
allocating agent [8, 9], we propose a decentralized approach with
multiple time container agents, one per each period 𝑘 ∈ 𝑇 con-
strained by available resources (capacity) 𝑅𝑘 . Hence, each one of
|𝐴| = |𝐼 | · |𝑇 | liquid agents bids for allocation of its own demand
𝑑𝑎 in periods 𝑘 ∈ 𝑇 with locally minimum cost. Each container
agent 𝑘 ∈ 𝑇 allocates its available resources to bidders ensuring that∑
𝑎 𝑢𝑎𝑘 ≤ 𝑅𝑘 ; i.e., the sum of allocated demands remains bounded

by its capacity 𝑅𝑘 . A liquid agent (𝑖, 𝑡) is thus regarded as having
a chamber chamber𝑖

𝑘
at each container 𝑘 whose volume 𝑢𝑎𝑘 ≥ 0

is dependent of the volumes of other liquid agents allocated to the
container and upper-bounded by the container’s capacity 𝑅𝑘 .

Liquid agent 𝑎 iteratively requests resource allocation in container
agents 𝑘 ∈ 𝑇 until its demand 𝑑𝑎 doesn’t get completely allocated,
i.e.,

∑
𝑘∈𝑇 𝑢𝑎𝑘 = 𝑑𝑎 or it hasn’t bid for all 𝑘 ∈ 𝑇 . Initially, this

demand is released at container 𝑘 = 𝑡 , which is modelled as a
rational collaborative agent that controls the 𝑎’s demand through
valve 𝑐𝑎

𝑘
(production 𝑢𝑎𝑘 ). Depending on how much liquid of 𝑑𝑎

is produced at 𝑡 , agent 𝑎 negotiates advancing or postponing the
demand with the containers before or after 𝑡 through two types of
valves, a valve to control the flow of demand of 𝑎 to the posterior
time periods 𝑘 ∈ {𝑡 + 1, . . . , |𝑇 |} and a valve to control the flow of
liquid agent (𝑖, 𝑡) to time periods prior 𝑡 ; i.e., 𝑘 ∈ {𝑡 − 1, . . . , 1}.
Figure 1 shows the flow of demand of a particular item 𝑖 = 1 at
container 𝑡 , across subsequent containers 𝑡 + 1, 𝑡 + 2, . . ., and prior
containers 𝑡 − 1, 𝑡 − 2, etc.

The anytime spillover algorithm iteratively runs multiple auction-
based negotiations between liquid and container agents. Containers
announce their available resources and liquid agents bid for available
containers with locally lowest cost. Then containers assign the de-
mand of liquid agents that locally maximize their social welfare. It is
essentially a decentralized heuristic approach that spills the demand
𝑑𝑖𝑡 of liquid agent (𝑖, 𝑡) over neighbouring containers due to limited
capacity of container 𝑡 to satisfy such demand; and this applies to
every item 𝑖 at every time period 𝑡 . Generally speaking, given a
liquid agent 𝑎 = (𝑖, 𝑡), the direction and quantity of spillage depends
on: (1) accumulated unit production cost (𝑈𝑃𝐶𝑎𝑘 ) for time period

Figure 1: Flow of demand of a liquid agent (1, 𝑡)

𝑘: Eq. (1) (set up cost and production cost at 𝑘 plus accumulated
holding and backorder costs if any); and (b) estimated accumulated
cost (𝐸𝐴𝐶𝑎): Eq. (2), where Γ𝑎 ⊂ 𝑇 is the set of available containers
that have capacity to produce at least one unit of their product.

𝑈𝑃𝐶𝑎𝑘 =


𝑐𝑖𝑘 + 𝑠𝑖𝑘 +∑𝑡−1

𝑚=𝑘
ℎ𝑖𝑚, ∀𝑘 ∈ 𝑇 |𝑘 < 𝑡

𝑐𝑖𝑘 + 𝑠𝑖𝑘 , for 𝑘 = 𝑡

𝑐𝑖𝑘 + 𝑠𝑖𝑘 +∑𝑘
𝑚=𝑡+1 𝑏𝑖𝑚, ∀𝑘 ∈ 𝑇 |𝑘 > 𝑡

𝑀 ·∑𝑘
𝑚=𝑡+1 𝑏𝑖𝑚, for 𝑘 = |𝑇 | + 1

(1)

𝐸𝐴𝐶𝑎 =
∑

𝑘∈Γ𝑎∪{ |𝑇 |+1}
𝑈𝑃𝐶𝑎𝑘 (2)

4 EXPERIMENTS AND RESULTS
We compared the performance of our spillover algorithm, the first
decentralized approach to the MCLSP-BO – to the best of our knowl-
edge –, with a centralized and optimal CPLEX solution over ran-
domly generated and diversified problem set for large-scale capaci-
tated lot-sizing. The experiment parameters are generated similarly
to [5] and [9]. Table 1 shows the optimality gap in relation to the
centralized solution found by CPLEX and the computational time
of the Spillover algorithm. The average optimality gap is 25% and
we can observe it is not generally dependent on the number of items.
The computational time of the algorithm is less than 0.1 in all ex-
periments, which contrasts with the exponentially increasing time
of CPLEX. Besides the significant results of the algorithm, we also
highlight other benefits of decentralizing MLCSP-BO such as keep-
ing the minimum possible exposition of private agent information.

Table 1: Summary of the computational results

# items 50 60 70 80 90 100 110 120 130 140 150

Avg. Gap (%) 28 28 30 16 16 28 27 28 27 27 27
CPU time (ms) 11 12 18 16 18 19 23 24 27 28 30
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