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Abstract

The main goal of this thesis is the study of heat transfer in turbulent channels to obtain a better knowledge
about the phenomenon of turbulence. For this, a study has been carried out from the point of view of
computational fluid mechanics, specifically, the technique of direct numerical simulations (DNS) has been
used. This type of simulation is very computationally expensive, but the results they provide are highly
accurate and faithful to reality, as long as the discretization schemes are correct. The main idea of the
simulations conducted has been to expand the current state of the art, regarding the two main parameters
that characterize the flow: the friction Reynolds number, Reτ and the Prandtl number, Pr . Two flow
configurations have been used: Poiseuille flow and Couette flow, the former being the main focus of the
study. Regarding the temperature field, a mixed boundary condition has been used and it has been
considered as a passive scalar.

Thus, the simulated friction Reynolds numbers for a Poisuille flow have been Reτ = 500, 1000 and
2000, for Prandtl numbers ranging from 0.007 (molten metals) up to 10 (water) , passing through 0.71
which is the most used value since this is the Prandtl number of the air. Also, a simulation has been
performed with Reτ = 5000 and Pr = 0.71, which is the thermal DNS with the highest friction Reynolds
number up to date. A first distinction of heat flux can be made for Prandtl numbers less or greater than
Pr = 0.3. When the Prandtl number is less than 0.3, the conductive region extends above the logarithmic
layer, and even penetrates to the central region of the channel, forming a practically laminar thermal
field, for the lowest Prandtl numbers. For thermal fields where the logarithmic layer begins to emerge,
the value of the von Kármán thermal constant, κt tends to a constant value of approximately κt = 0.44 as
the Reynolds number tends to infinity, and that value is independent of the Prandtl number. Regarding
the variance of the temperature, θ′+ and the turbulent heat flow in the direction of the current, u+θ+,
the collapse in the outer region is determined by the friction Péclet number, Peτ = ReτPr, instead of the
Reynolds or Prandtl number. Furthermore, it has been observed that for the highest Prandtl numbers,
the maximum value of the variance of the temperature is constant. This has a significant impact on
the scaling of the θ′+ budget terms. Specifically, the dissipation and viscous diffusion, which scale with
much greater precision near the wall for high Prandtl numbers. This is an important result, since many
models of the energy equation are based on these budget equations, so obtaining good scaling for different
parameters means greater reliability of the models. Finally, it should be noted that new correlations have
been presented for the Nusselt number, Nu, valid for the ranges of Reτ and Pr studied.

Finally, with regard to Poiseuille flow simulations, the isothermal case has been studied with Reτ =
10000, which is also the largest DNS of a turbulent channel. It should be noted that, for the first time
in a DNS, a perfectly developed logarithmic layer has been observed in the velocity field, with a value of
the von Kármán constant of κ = 0.394.

A theoretical study has been carried out in parallel to the simulations. The objective of this study,
based on Lie symmetries, was the generation of scaling laws of velocity and temperature field and high
order moments of both. Although this theory had been applied to the velocity field, it is the first time
that it has been applied to the temperature field and to high order moments of velocity and temperature.
The result is that for sufficiently high Reynolds numbers, and moderate Prandtl numbers, the velocity,
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temperature, and high order moment of both scale as defect laws of power functions of the distance from
the wall in the center of the channel. The main advantages of these scaling laws are that they have
been obtained from first principles, that is, they have been directly derived from the Navier-Stokes and
energy equations, and that it is enough to calculate the scaling of the first two velocity and temperature
moments to know the exponent of the scaling of any higher order moment. In the same way, a scaling of
the velocity in the logarithmic layer has been obtained for the case of Reτ = 10000, obtaining the classical
logarithmic function for the average velocity and a potential function for the moments of higher orders.
The validation of these scaling laws has been carried out using the data obtained in the simulation. The
result is an excellent precision by scaling laws to represent DNS values.

Finally, a Couette flow simulations have been performed with the Prandtl number of air, Pr = 0.71,
and friction Reynolds numbers of values Reτ = 180, 250 and 500. The main objective was the study of the
coherent structures that are formed in these Couette flows, which extend along the streamwise direction.
These structures had already been studied for the velocity field and the first detailed study of temperature
structures has been presented in this work. Specifically, it has been seen that structures affect turbulent
intensities and that is why the width of the computational domain is key in Couette flow simulations. A
minimum width of 6πh is required for the statistics to be independent of the computational domain.

A last series of simulations has been performed considering stratified flow, that is, the thermal field
is an active scalar. The objective is to study whether Couette structures persist in this type of flow. For
this, the Couette flow and a constant temperature difference between both walls have been taken as the
boundary conditions. Thus, for a Reτ = 500 and the Prandtl number of air, Pr = 0.71, the values of the
friction Richardson number have been varied according to, Riτ = 0.5, 1.65 and 2.90, for each simulation.
For the two cases with the highest friction Richardson number, the Couette flow structures have been
observed to weaken to the point of being almost non-existent.

The principal statistics of the simulations are available in the database of the research group, which
is open to the scientific community in the following link

http://personales.upv.es/serhocal/
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Resumen

El principal objetivo de esta tesis es el estudio de flujos térmicos turbulentos en canales para obtener
un mayor conocimiento sobre el fenómeno de la turbulencia. Para ello, se ha realizado un estudio desde
el punto de vista de la mecánica de fluidos computacional, en concreto, se ha utilizado la técnica de
las simulaciones numéricas directas (DNS de sus siglas en inglés). Este tipo de simulaciones tienen un
alto coste computacional, pero los resultados que proporcionan son de una gran exactitud y fieles a
la realidad, siempre y cuando los esquemas de discretización sean correctos. La idea principal de las
simulaciones realizadas ha sido ampliar el estado del arte actual, en lo referente a los dos parámetros
principales que caracterizan el flujo: el número de Reynolds de fricción, Reτ , y el número de Prandtl,
Pr. Dos configuraciones del flujo han sido utilizadas: flujo de Poiseuille y flujo de Couette, siendo la
primera el principal foco del estudio. En cuanto al campo de temperaturas, se ha utilizado una condición
de contorno mixta y se ha considerado como un escalar pasivo.

Aśı pues, los números de Reynolds de fricción simulados para un flujo de Poisuille han sido Reτ = 500,
1000 y 2000, para números de Prandtl que vaŕıan desde 0.007 (metales fundidos) hasta 10 (agua), pasando
por 0.71 que es el valor más utilizado por ser éste el número de Prandtl del aire. Además, se ha realizado
una simulación con Reτ = 5000 y Pr = 0.71, la cual es la DNS térmica con el número de Reynolds de
fricción más alto hasta la fecha. Una primera distinción del flujo térmico puede hacerse para números
de Prandtl menores o mayores a Pr = 0.3. Cuando el número de Prandtl es menor que 0.3, la región
conductiva se extiende por encima de la capa logaŕıtmica, e incluso penetra hasta la zona central del
canal, formando un campo térmico prácticamente laminar, para los números de Prandtl más bajos. Para
los campos térmicos donde la capa logaŕıtmica empieza a emerger, el valor de la constante térmica de
von Kármán, κt tiende a un valor constante de aproximadamente κt = 0.44 conforme el número de
Reynolds tiende a infinito, y ese valor es independiente del número de Prandtl. Respecto a la varianza
de la temperatura, θ′+ y el flujo térmico turbulento en la dirección de la corriente, u+θ+, el colapso en
la zona exterior está determinado por el número de Péclet de fricción, Peτ = ReτPr, en vez del número
de Reynolds o de Prandtl. Además, se ha observado que para los números de Prandtl más altos, el valor
máximo de la varianza de la temperatura es constante. Esto tiene una importante repercusión en el
escalado de los términos del balance de enerǵıa de θ′+. En concreto la disipación y la difusión viscosa,
los cuales escalan con mucha más precisión cerca de la pared para los casos de un número de Prandtl
altos. Este es un importante resultado, pues muchos modelos de la ecuación de la enerǵıa se basan en
estas ecuaciones de balances, por lo que obtener un buen escalado para diferentes parámetros significa
una mayor precisión de los modelos. Finalmente, destacar que se han presentado nuevas correlaciones
para el número de Nusselt, Nu, válidas para los rangos de Reτ y Pr estudiados.

Por último en lo referente a simulaciones de flujos de Poiseuille, se ha estudiado el caso isotérmico
con Reτ = 10000, la cual es también la mayor DNS de un canal turbulento. Cabe destacar que, por
primera vez en una DNS, se ha observado una capa logaŕıtmica perfectamente desarrollada en el campo
de velocidades, con un valor de la constante de von Kármán de κ = 0.394.

Un estudio teórico ha sido llevado a cabo en paralelo a las simulaciones. Este estudio, basado en las
simetŕıas de Lie, ha tenido como objetivo la generación de leyes de escaldo del campo de velocidades,
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temperatura y momentos de altos órdenes de ambos campos. Si bien esta teoŕıa hab́ıa sido aplicada al
campo de velocidades, es la primera vez que se aplica al campo de temperaturas y a los momentos de
velocidad-temperatura de altos órdenes. El resultado es que para números de Reynolds suficientemente
altos, y números de Prandtl moderados, los campos de velocidad, temperatura y momentos de altos
órdenes de ambos, escalan como leyes de defecto de funciones de potencia de la distancia de la pared en
el centro del canal. Las principales ventajas de estas leyes de escalado son que han sido obtenidas de
primeros principios, es decir, han sido directamente derivadas de las ecuaciones de Navier-Stokes y de la
enerǵıa, y que basta con conocer el escalado de los dos primeros momentos de velocidad y temperatura
para conocer el exponente del escalado de cualquier momento superior. De la misma forma, se ha
obtenido un escalado de la velocidad en la capa logaŕıtmica para el caso de Reτ = 10000, obteniendo
la clásica función logaŕıtmica para la velocidad media y una función potencial para los momentos de
órdenes superiores. La validación de estas leyes de escalado ha sido llevada a cabo utilizando los datos
obtenidos en la simulación. El resultado es de una precisión excelente por parte de las leyes de escalado
para representar los valores de las DNS.

Por último, se han realizado una simulaciones de flujo de Couette con el número de Prandtl de aire,
Pr = 0.71, y números de Reynolds de fricción de valores Reτ = 180, 250 y 500. El principal objetivo era
el estudio de las estructuras coherentes que se forman en estos flujos de Couette, que se prolongan a lo
largo de la dirección del flujo. Estas estructuras, se hab́ıan estudiado ya para el campo de velocidades
y se ha presentado en este trabajo el primer estudio detallado de las estructuras de temperatura. En
concreto, se ha visto que las estructuras afectan a las intensidades turbulentas y es por ello que la anchura
del dominio computacional es clave en las simulaciones de flujos de Couette. Se necesita como mı́nimo
una anchura de 6πh para que las estad́ısticas sean independientes del dominio computacional.

Una última serie de simulaciones ha sido llevada a cabo considerando flujo estratificado, es decir, el
campo térmico es un escalar activo. El objetivo es estudiar si las estructuras de Couette persisten en
este tipo de flujos. Para ello, se han tomado las condiciones de contorno de flujo de Couette y de una
diferencia de temperatura constante entre ambas paredes. Aśı pues, para un Reτ = 500 y el número de
Prandtl de aire, Pr = 0.71, se han tomado valores del número de Richardson de fricción, Riτ = 0.5, 1.65
y 2.90. Para los dos casos con el número de Richardson de fricción más alto, se ha observado que las
estructuras del flujo de Couette se debilitan hasta el punto de ser casi inexistentes.

Las principales estad́ısticas de las simulaciones se encuentran disponibles en la base de datos del grupo
de investigación, la cual está abierta a la comunidad cient́ıfica y se puede acceder desde el siguiente enlace

http://personales.upv.es/serhocal/
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Resum

El principal objectiu d’aquesta tesi és l’estudi de fluxos tèrmics turbulents en canals per obtenir un major
coneixement sobre el fenomen de la turbulència. Per a això, s’ha realitzat un estudi des del punt de vista
de la mecànica de fluids computacional, en concret, s’ha utilitzat la tècnica de les simulacions numèriques
directes (DNS de les seues sigles en anglès). Aquest tipus de simulacions tenen un alt cost computacional,
però els resultats que proporcionen són d’una gran exactitud i fidels a la realitat, sempre que els esquemes
de discretizació siguen correctes. La idea principal de les simulacions realitzades ha sigut la de ampliar
l’estat de l’art actual, en el referent als dos paràmetres principals que caracteritzen el flux: el número de
Reynolds de fricció, Reτ i el número de Prandtl, Pr. Dos configuracions del flux han sigut utilitzades:
flux de Poiseuille i flux de Couette, sent la primera el principal focus de l’estudi. Pel que fa a el camp de
temperatures, s’ha utilitzat una condició de contorn mixta i s’ha considerat com un escalar passiu.

Aix́ı doncs, els números de Reynolds de fricció simulats per a un flux de Poisuille han sigut Reτ = 500,
1000 i 2000, per a números de Prandtl que varien des de 0.007 (metalls fosos) fins 10 (aigua), passant
per 0.71 que és el valor més utilitzat per ser aquest el número de Prandtl de l’aire. A més, s’ha realitzat
una simulació amb Reτ = 5000 i Pr = 0.71, la qual és la DNS tèrmica amb el número de Reynolds
de fricció més alt fins a la data. Una primera distinció del flux tèrmic pot fer-se per a números de
Prandtl menors o majors a Pr = 0.3. Quan en número de Prandtl és menor que 0.3, la regió conductiva
s’estén sobre de la capa logaŕıtmica, i arriba a penetrar fins a la zona central del canal, formant un
camp tèrmic pràcticament laminar, per als números de Prandtl més baixos. Per als camps tèrmics on
la capa logaŕıtmica comença a emergir, el valor de la constant tèrmica de von Kármán, κθ tendeix a un
valor constant d’aproximadament κθ = 0.44 per a números de Reynolds que tendeixen a infinit, i aquest
valor és independent del número de Prandtl. Pel que fa a la variància de la temperatura, θ′+ i el flux
tèrmic turbulent en la direcció del corrent, u+θ+, el col·lapse a la zona exterior està determinat per el
número de Péclet de fricció, Peτ = ReτPr, en comptes del número de Reynolds o de Prandtl. A més,
s’ha observat que per als números de Prandtl més alts, el valor màxim de la variància de la temperatura
és constant. Això té una important repercussió en l’escalat dels termes del balanç d’energia de θ′+. En
concret la dissipació i la difusió viscosa, els quals escalen amb molta més precisió a prop de la paret per
als casos d’un número de Prandtl alts. Aquest és un important resultat, ja que molts models de l’equació
de l’energia es basen en aquestes equacions de balanços, de manera que obtenir un bon escalat per a
diferents paràmetres significa una major precisió dels models. Finalment, destacar que s’han presentat
noves correlacions per al número de Nusselt, Nu, vàlides per als rangs de Reτ i Pr estudiats.

Finalment pel que fa a simulacions de fluxos de Poiseuille, s’ha estudiat el cas isotèrmic amb Reτ =
10000, la qual és també la major DNS d’un canal turbulent. Cal destacar que, per primera vegada en
una DNS, s’ha observat una capa logaŕıtmica perfectament desenvolupada en el camp de velocitats, amb
un valor de la constant de von Kármán de κ = 0394.

Un estudi teòric ha sigut dut a terme en paral·lel a les simulacions. Aquest estudi, basat en les simetries
de Lie, ha tingut com a objectiu la generació de lleis de escalat del camp de velocitats, temperatura i
moments d’alts ordres de tots dos camps. Si bé aquesta teoria havia estat aplicada a el camp de velocitats,
és la primera vegada que s’aplica a el camp de temperatures i als moments de velocitat-temperatura d’alts
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ordres. El resultat és que per a números de Reynolds suficientment alts, i números de Prandtl moderats,
els camps de velocitat, temperatura i moments d’alts ordres de tots dos, escalen com a lleis de defecte de
funcions de potència de la distància de la paret al centre del canal. Els principals avantatges d’aquestes
lleis d’escalat són que han sigut obtingudes de primers principis, és a dir, han estat directament derivades
de les equacions de Navier-Stokes i de l’energia, i que n’hi ha prou amb conèixer l’escalat dels dos primers
moments de velocitat i temperatura per conèixer l’exponent de l’escalat de qualsevol moment superior.
De la mateixa manera, s’ha obtingut un escalat de la velocitat a la capa logaŕıtmica per al cas de
Reτ = 10000, obtenint la clàssica funció logaŕıtmica per la velocitat mitjana i una funció potencial per
als moments d’ordres superiors. La validació d’aquestes lleis d’escalat ha estat portada a terme utilitzant
les dades obtingudes en la simulació. El resultat és d’una precisió excel·lent per part de les lleis d’escalat
per representar els valors de les DNS.

Finalment, s’han realitzat unes simulacions de flux de Couette amb el número de Prandtl de l’aire,
Pr = 0.71, i números de Reynolds de fricció de valors Reτ = 180, 250 i 500. El principal objectiu era
l’estudi de les estructures coherents que es formen en aquests fluxos de Couette, que es perllonguen al llarg
de la direcció del flux. Aquestes estructures, s’havien estudiat ja per al camp de velocitats i s’ha presentat
en aquest treball el primer estudi detallat de les estructures de temperatura. En concret, s’ha vist que
les estructures afecten les intensitats turbulentes i és per això que l’amplada del domini computacional
és clau en les simulacions de fluxos de Couette. Es necessita com a mı́nim una amplada de 6πh perquè
les estad́ıstiques siguin independents del domini computacional.

Una última sèrie de simulacions ha estat portada a terme considerant flux estratificat, és a dir, el
camp tèrmic és un escalar actiu. L’objectiu és estudiar si les estructures de Couette persisteixen en
aquest tipus de fluxos. Per a això, s’han pres les condicions de contorn de flux de Couette i d’una
diferència de temperatura constant entre les dues parets. Aix́ı doncs, per a un Reτ = 500 i el número de
Prandtl d’aire, Pr = 0.71, s’han pres valors del número de Richardson de fricció, Riτ = 0.5, 1.65 i 2.90.
Per als dos casos amb el número de Richardson de fricció més alt, s’ha observat que les estructures del
flux de Couette es debiliten fins al punt de ser pràcticament inexistents.

Les principals estad́ıstiques de les simulacions es troben disponibles en la base de dades del grup
d’investigació, la qual està oberta a la comunitat cient́ıfica i es pot accedir des del següent enllaç

http://personales.upv.es/serhocal/
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Chapter 1

Introduction

This work presents an analysis of wall turbulence, with a special focus on thermal flows. Although an
exact definition of turbulence does not exist, it is quite intuitive to detect when a flow is turbulent. A
turbulent flow is characterized by a chaotic and random movement of its particles.

Turbulent flows are the most usual type of flow in nature and our everyday life. From examples at
very small scales, like the mixing of fuel with air in the combustion chamber of an engine, up to examples
at big scales, as the oceanic or air currents (figure 1.1), all are cases of turbulent flows. Almost any flow
one can think of in an engineering problem, except for lubrication problems, is a turbulent flow, which
makes it extremely important to understand their behavior. For this reason, turbulent flows have been
extensively studied in the past, with still a considerable amount of open questions to be solved.

Two main approaches are used to study the dynamics of turbulent flows: experimental analysis and
numerical simulations. The focus of this study will be on the last one, also known as Computational
Fluid Dynamics (CFD). Inside the field of CFD, there are several ways of treating the equations that
describe the flow motion to numerically solve them. Direct Numerical Simulation (DNS) is a technique
characterized by its high precision and fidelity to the reality of the results obtained. It is the ideal tool
to obtain answers about the behavior of turbulence.

Despite DNS are a powerful method from the theoretical point of view, for practical purposes, their
computational cost is extremely expensive. Even today the simulation of the flow around a plane would
cost hundreds of thousands of years using the most powerful supercomputer on Earth. The trend has
been to create models that considerably simplify the physics of the flow. In many cases, only mean
quantities are considered. However, these models must be based on reliable data, and therefore, the role
of DNS is crucial. Regarding the models used, the most common method at the industry level is the
Reynolds-averaged Navier–Stokes (RANS) equations (explained in more detail in section §2.1). After
averaging the governing equations of turbulence, an extra term appear and the system of equations has
more unknowns than equations. This extra term, known as the Reynolds stress tensor is approximated
by models such as k − ε, k − ω, Spalart–Allmaras,... each one being more or less accurate in different
types of flows.

Regarding the search for better turbulence models, a relatively new mathematical theory in the sense of
when it started to be applied to turbulence, is the Lie symmetry theory. Symmetry analysis is a powerful
mathematical method to obtain an invariant solutions of a partial derivative system of equations. The use
of Lie symmetries has proven to be very useful in the field of turbulence, where these invariant solutions
are known as scaling laws. Therefore, using Lie symmetries one can obtain, from first principles, scaling
laws that describe universal behaviors of turbulent flows.

In this study, we try to answer some of these questions, or at least to advance towards a possible
theory for a better understanding of the turbulence phenomena, using DNS as the main tool of work.
The focus of the analysis will be the thermal field. After that, Lie symmetries will be used to obtain
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1.1. INTRODUCTION TO TURBULENCE

Figure 1.1: Air currents from the north-east on its way through the Canary Islands. The emerging islands
induce turbulent structures downstream, known as the Kármán vortex street. Image courtesy of ESA.

scaling laws of the moments of the velocity and temperature field.

1.1 Introduction to turbulence

The etymological origin of the word turbulence is, from Latin, turbulentia, referring to the quality of
being turbid and agitated. Its lexical components are turbo (rapid circular movement) and the suffixes
-ulentus (indicates that it has the nature of) and -ia (quality). Although the knowledge of the quality of
turbulence is very old, it was not until the XIX century, when the turbulent flows started to be studied
as a concept.

The first important work about turbulence was done by Osborne Reynolds in 1883 [1], where dif-
ferentiation between laminar and turbulent flows was made. In his experiment, Reynolds observed the
flow of water through a tube. At the beginning of this tube, some ink drops were injected to observe
the path of the drop particles. At low velocities, the drop formed a perfectly straight line through the
tube. This is the main characteristic of laminar flows, the opposite of turbulent flows. In laminar flows,
the particles move in an orderly fashion and changes occur smoothly. In laminar flows, one can perfectly
follow the path that a particle travels through the flow, which is called a pathline. When the velocity
of the water was increased up to a certain speed, at some point in the tube, the ink started to disperse
and mix with the surrounding water, filling the rest of the downstream tube with a mass of the ink. The
faster the velocity was, the sooner the dispersion of the ink drops started. When this feature occurs in
the flow, it is said to be a turbulent flow. In contrast to laminar flows, in a turbulent flow, one could not
predict the pathlines of the particles. The fast mixing of the ink with the water is also a very important
property of turbulent flows, which is its capacity to break gradients. Turbulent flows are very good at
mixing. For example, the fuel and the air in a combustion chamber or the hot air coming from a stove
with the cold air in a room. If the flow were laminar, no combustion would be possible in a reasonable
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CHAPTER 1. INTRODUCTION

Figure 1.2: Exemplification of the Reynolds decomposition. Black line is the instantaneous value, Φ(t,x);
red line is the average part, Φ(x); and green line is the fluctuating part, φ(t,x).

time, and it would take hours, or days, for the stove to warm up a room. Reynolds could approximately
determine when a flow went from being laminar to turbulent with the famous dimensionless Reynolds
number, defined as

Re =
hU

ν
, (1.1)

where h is a characteristic length of the problem, in the case of the experiment carried out in [1], the
diameter of the tube; U is the mean velocity of the flow, and ν is the kinematic viscosity of the fluid.
The Reynolds number can be seen as the ratio between the inertial and the viscous forces on the flow.

The critical value of Re that divided laminar and turbulent flows was of the order of 103. However,
the transition from the laminar to the turbulent regime was not obtained at a specific Re value, but a
gradual progression was observed. Actually, there is not a specific value to determine when a flow is
laminar or turbulent and a transitory regime exists. Furthermore, it also depends on the geometry of the
problem and the surface roughness. Nevertheless, in almost all flows of interest in engineering, except in
lubrication problems, the Reynolds numbers of these problems are orders of magnitude above the critical
value. Hence, the importance of studying turbulent flows. Another important characteristic of turbulent
flows is that they are not stationary, and they forget, in small scales of time, about the previous conditions
of the flow. This generates big differences in the final state of the flow under very small changes of the
initial conditions.

In the next decade, Osborne Reynolds proposed what is known as the Reynolds decomposition [2].
For statistically steady flows, he stated that any instantaneous variable of the flow, such as velocity,
density, pressure, temperature,..., can be divided into a mean part, independent of time, and the temporal
fluctuating part

Φ(t,x) = Φ(x) + φ(t,x), (1.2)

where Φ is the instantaneous value of any variable of the flow (velocity, density, pressure, temperature,...);
the overline, •, represents average in time of the variable; and lower case states for the temporal fluctuating
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1.1. INTRODUCTION TO TURBULENCE

part. The averaged variable is defined as

Φ(x) = lim
T→∞

1

T

∫ T
0

Φ(t,x)dt, (1.3)

where t is the time and T is a period of time, which should be large enough, compared with the char-
acteristic time of the fluctuations, so that Φ is independent of t. Figure 1.2 shows an example of the
Reynolds decomposition for a variable Φ. Two important properties are obtained from (1.2) and (1.3),
and can be easily observed in figure 1.2. The average in time of an average is the average itself, and the
average in time of a fluctuation is 0. These and some additional properties can be written as

Φ = Φ, φ = 0

Φ Φ = Φ Φ, Φφ = 0, φ(t,x)φ(t,x) = φφ(x).
(1.4)

In the last relation, note that the average of the product of two fluctuating parts is not 0 and the time
and space dependencies have been explicitly written to remark the fact that the resulting of the average
is treated as a single variable that does not depend on time. The Reynolds decomposition has been the
basis of one of the principal techniques to numerically solve the governing equations that describe the
motion of fluids. These equations are the famous Navier-Stokes equations, which are composed of the
continuity and momentum equations. For constant properties Newtonian fluids, they are written as

C(x) ≡ ∂Ui(t,x)

∂xi
= 0, (1.5)

Mi(x) ≡ ∂Ui(t,x)

∂t
+ Uj(t,x)

∂Ui(t,x)

∂xj
= −1

ρ

∂P (t,x)

∂xi
+ ν

∂2Ui(t,x)

∂xj∂xj
. (1.6)

In these equations, x are the spatial coordinates, and ρ and ν are the density and kinematic viscosity,
respectively, which are considered constants, and P is the pressure. It is also of special interest due to
engineering applications, the governing equation of the temperature field, known as the energy equation

E(x) ≡ ∂T (t,x)

∂t
+ Uj(t,x)

∂T (t,x)

∂xj
= α

∂2T (t,x)

∂xj∂xj
, (1.7)

where T is the temperature and α is the thermal diffusion coefficient, which is considered constant. Here,
we only present the energy equation and further analysis will be done in section §1.1.2.

Introducing the Reynolds decomposition (1.2) into the the continuity equation (1.5), taking the aver-
age, and considering relations from (1.4), results in

∂U i(x)

∂xi
= 0, (1.8)

which indicates that the mean variables also fulfill the continuity condition. If the same procedure is
done for the momentum equations (1.6), it is obtained

=0︷ ︸︸ ︷(
∂U i(x)

∂t

)
+U j(x)

∂U i(x)

∂xj
= −1

ρ

∂P (x)

∂xi
+

∂

∂xj

(
ν
∂U i(x)

∂xj
− uiuj(x)

)
. (1.9)

Equations (1.8) and (1.9) are the denominated Reynolds Averaged Navier-Stokes (RANS) equations.
The last term on the right-hand side of the averaged momentum equation (1.9) comes from the nonlinear-
ity of the Navier-Stokes equations. This extra term is known as the Reynolds stress tensor, also written
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CHAPTER 1. INTRODUCTION

as τij = −uiuj , and each component of the tensor is treated as an extra unknown. RANS equations
are composed of four equations: one continuity and three momentum equations; with ten unknowns:
pressure, three velocities and six components of the Reynolds stress tensor (note that this tensor is sym-
metric). If one looks for extra equations for the components of the Reynolds stress tensor, more unknowns
of the type uiujuk will appear, making it impossible to achieve a determinate system of equations. This
is known as the closure problem of the Navier-Stokes equations. Although analytical solutions of the
Navier-Stokes equations have been obtained for very concrete cases, a general analytical solution is still
unknown, and the proof of existence, uniqueness, and smoothness of this solution is one of the seven
mathematical problems of the millennium.

During the first decades of the 20th century, different authors presented models of the Reynolds stress
tensor to solve the closure problem [3, 4, 5]. These models are equations that estimate τij from the
analogy between eddies in a turbulent flow and the molecules in a gas, as proposed by Boussinesq in 1877
[6].

A new theory arose in 1920 developed by Richardson [7]. He introduced the concept of the energy
cascade to explain how energy is transferred in the flow. First, the biggest eddies of the flow receive the
energy from external forces and due to the dynamics of the flow, these eddies break into smaller eddies.
This process is repeated until the eddies are small enough and can be dissipated by viscosity.

In the 40s, Kolmogorov quantified the energy transferred and the length scales of the eddies that
formed the energy cascade [8, 9]. The energy injected in the flow from the external forces to the largest
structures is u3

L/LL. Here, LL is the length scale of the biggest structures on the flow, which is of the same
order of magnitude as the domain of the problem; and uL are the velocity variations of these structures.
Their associated Reynolds number, ReL is big enough so the viscosity has no effect. Therefore, no energy
is dissipated and all the energy from the external forces must be transferred to smaller structures. This
procedure reaches a point where the small structures have forgotten the origin of the external forces
and, thus, turbulence is homogeneous and isotropic for these and smaller scales. In the equilibrium, the
energy transferred should be constant and equal to the dissipation, ε, since viscosity is not effective in
dissipating energy at this level. Therefore, the velocity variations, ul, and length scales, l of these eddies
should scale as

ul ∼
(
u3
Ll

LL

)1/3

∼ (εl)1/3, (1.10)

with an associated Reynolds number that scales as

Rel ∼
ull

ν
∼
(
εl4

ν3

)1/3

. (1.11)

After several jumps in the energy cascade, the Reynolds number of the eddies reaches the order of
the unity, and viscosity is then important and dissipates the energy. Doing a dimensional analysis, it is
obtained that the length and velocity scales of the eddies for this to occur must be

η =

(
ν3

ε

)1/4

, uη = (νε)1/4. (1.12)

The length scale, η, and velocity scale uη are known as the Kolmogorov scales. The range where the
scale of the eddies is of the order of the Kolmogorov scales, i.e., l ∼ η, is called dissipative range since
it is where the energy is dissipated. On the other hand, in the range where the eddies are smaller than
the integral scales but bigger than the Kolmogorov scales, i.e., η � l � LL, relation (1.10) holds and it
called inertial range because the inertial terms of the momentum equations are dominant in the dynamics
of the flow.
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Figure 1.3: Sketch of the three main domains of wall bounded turbulence. Boundary layer (top left),
pipe flows (top right) and channels with parallel walls (bottom).

1.1.1 Wall turbulence

The model described in the previous section is for homogeneous turbulence. However, in almost every
practical case, there is a boundary that delimits the domain and breaks the homogeneity. This boundary
is usually a wall and hence, these types of problems are known as wall bounded turbulence. Because of
its importance in engineering problems, wall bounded turbulence has been extensively studied since the
19th century. However, a great number of questions are still open.

The most studied cases of wall turbulence are the canonical geometries of boundary layers, pipe flows,
and channels with parallel walls, this last one being the focus of this work. A sketch of each one can be
seen in figure 1.3. A classical theory of wall turbulence has been developed during the last 150 years and
it is collected in classic textbooks such as Tennekes and Lumley 1972 [10], Townsend 1976 [11] and Pope
2000 [12], among others.

For channels with parallel walls, also known as turbulent channel flows, the x axis goes in the direction
of the movement of the flow, the streamwise direction. Then, the y coordinate is normal to the walls
of the channel and the z coordinate is transversal to the direction of the flow, the spanwise direction,
forming an orthogonal system of reference. The domain has infinite dimensions in the homogeneous
directions x and z and dimensions of 2h in the y direction, being h the channel half height and the origin
of the reference system being in the lower wall of the channel, i.e., the walls are at y = 0 and 2h. The
instantaneous velocities of the flow are U , V , and W in each direction x, y, and z, respectively. This
notation is completely equivalent to x1 ≡ x, x2 ≡ y, x3 ≡ z, U1 ≡ U , U2 ≡ V and U3 ≡ W , which will
also be used when working with index notation. The velocities can be decomposed using the Reynolds
decomposition (1.2) as Ui = U i + ui. At this point, turbulent channel flows can be divided into two
main categories: flows that are driven by a pressure difference, known as Poiseuille flows; and flows that
are moved due to the difference in movement between both walls, known as Couette flows. The former
will be used to explain the classical theory of wall turbulence since it is the main type of flow studied
in this work (nevertheless, a specific section §5.2.1 is dedicated to present results of Couette flows). A
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statistically steady flow fully developed is considered, so that the derivatives of the mean variables in the
wall parallel directions x and z are equal to 0, i.e., ∂xΦ = ∂zΦ = 0, where Φ is any mean variable and the
subscript indicates the direction of the derivative. The only exception in the case of a Poiseuille flow is
∂xP 6= 0 since this pressure difference is what moves the flow. Besides, the mean velocity in the spanwise
direction is W = 0 by definition. Considering this, the continuity equation (1.8) results in

dV

dy
= 0. (1.13)

Integrating, it is obtained that V must be a constant. Since the value at the wall is V w = 0, the
value of the constant should be 0, and in all the domain V = 0. Therefore, the nonlinear term in (1.9),
U j(x)∂U i(x)/∂xj , should be zero for each i = 1, 2 and 3 and j = 1, 2 and 3. Then, the momentum
equations (1.9) can be written as

x−moment :
duv(y)

dy
= −1

ρ

∂P (x, y)

∂x
+ ν

d2U(y)

dy2
, (1.14a)

y −moment :
dv2(y)

dy
= −1

ρ

∂P (x, y)

∂y
, (1.14b)

z−moment :
dvw(y)

dy
= 0. (1.14c)

Integrating (1.14c), it is obtained that vw(y) should be equal to 0 because that is its value at the
wall. Integrating now (1.14b), results in

P (x, y) = −ρv2(y) + P0(x), (1.15)

where P0 is the integrating constant with respect to y. Introducing (1.15) into (1.14a), the pressure term
is only a function of x and then, it can be directly integrated, obtaining

uv(y) = −y
ρ

dP0(x)

dx
+ ν

dU(y)

dy
+ C. (1.16)

Evaluating the last result at the wall

0 = ν
dU(y)

dy

∣∣∣∣
y=0

+ C. (1.17)

The first term can be identified as the shear stress at the wall, τw. It has units of velocity square and
it is also written as u2

τ , which is known as the friction velocity square. Therefore, C = −u2
τ . The value

of P0(x) can be obtained evaluating (1.16) at the center of the channel, y = h, where the first and third
term must be 0 due to statistical symmetry in the channel. Therefore

dP0(x)

dx
=
ρ

h
u2
τ . (1.18)

Now, the final equation of the total shear stress at the channel can be written as

τ = ν
dU(y)

dy
− uv(y) = u2

τ (1− y/h). (1.19)

Dimensionless variables are introduced at this point: τ/u2
τ = τ/τw = τ+, u+v+ = uv/u2

τ , U
+

=
U/uτ and y∗ = y/h. The coordinate y∗ is also known as the outer coordinate, because it is used for
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non-dimensionalization magnitudes in the center of the channel and far from the wall. The relation
Reτ = uτh/ν is known as the friction Reynolds number. Thus, the dimensionless form of (1.19) in outer
coordinates is

τ+ =
1

Reτ

dU
+

(y∗)

dy∗
− u+v+(y∗) = (1− y∗). (1.20)

The total shear stress, τ+, decreases linearly from value 1 at the wall to 0 at the center of the channel.
For Reτ →∞, the viscous term is negligible and the total shear stress corresponds to the turbulent shear,
−uv. However, −uv at the wall is 0 and the total shear stress, which is equal to 1, must be dominated
by the viscous term. A second non-dimensionalization is used to analyze the near-wall region, where
the dimensionless coordinate y+ = uτy/ν is introduced. The coordinate y+ receives the name of inner
coordinates. Therefore, the dimensionless shear stress equation can be written as

τ+ =
dU

+
(y+)

dy+
− u+v+(y+) = 1− y+

Reτ
. (1.21)

The total shear stress near the wall is constant and equal to 1 when Reτ →∞. This is true in what
is called the viscous sublayer, where the viscous effects are dominant and the turbulent shear stress is
negligible. The viscous sublayer reaches approximately y+ ≈ 5. In this near-wall region, considering
Reτ →∞, the total shear stress equation (1.21) can be easily integrated, obtaining that

dU
+

(y+)

dy+
= 1→ U

+
(y+) = y+. (1.22)

This relation is known as the law of the wall and it indicates that the velocity increases linearly in
the viscous sublayer. The importance of this law is that it is universal for every wall-bounded flow, and
not only for Poiseuille flows.

For the value of U(y) at the central region of the channel, relation (1.20) gives no information about
it, since the mean velocity appears in the viscous term, which is neglected for Reτ → ∞. Nevertheless,
in 1930, von Kármán [5] proposed the following relation which is valid on the center of the channel and
it is based on h and uτ , the characteristic length and velocity scales, respectively

U
+

(y∗)− U+

c = f(y∗), (1.23)

where the subscript c denotes the value at the center of the channel and f(y) is a function with value 0
in the center of the channel. This relation is known as the defect law. Despite the function f(y) is not
universal for every flow geometry and for different boundary conditions, relation (1.23) holds.

In between these two regions, there is a transition with special characteristics. We consider that the
mean velocity has the following form

U
+

(y∗) = f1(y∗), U
+

(y+) = f2(y+). (1.24)

Therefore, using the chain rule and the definitions of y∗ and y+, it is obtained that

dU
+

(y∗)

dy
=

dy∗

dy

df1(y∗)

dy∗
=

1

h

df1(y∗)

dy∗
, (1.25a)

dU
+

(y+)

dy
=

dy+

dy

df2(y+)

dy+
=
uτ
ν

df2(y+)

dy+
. (1.25b)

In the limit of y∗ → 0 and y+ → ∞, both (1.25a) and (1.25b) should be equal. Multiplying by y, it
is obtained

y∗
df1(y∗)

dy∗
= y+ df2(y+)

dy+
(1.26)
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Integrating, the solutions obtained are

f1(y∗) = A ln(y∗) +B1, f2(y+) = A ln(y+) +B2. (1.27)

Obtaining the final result

U(y+) =
1

κ
ln(y+) +B, (1.28)

where 1/κ = A is the classical nomenclature and κ is the von Kármán constant. This region of the
flow, where the mean profile has a logarithmic behavior, is called the logarithmic region. It was first
deduced by von Kármán in 1930 [5] using dimensional analysis.

Regarding the tangential stress, u+v+, according to dimensionless shear equation in outer coordinates
(1.20), u+v+ → −1 when y∗ → 0 and Reτ → ∞. On the other hand, taking the dimensionless shear

equation in inner coordinates (1.21), and introducing the value of U
+

in the logarithmic region (1.28), it
is obtained that u+v+ = 1/(κy+) − 1. Therefore, u+v+ → −1 when y+ → ∞, and, in the logarithmic
region, a constant tangential shear stress is obtained, with u+v+ = −1, which agrees with Townsend’s
hypothesis [11].

1.1.2 The thermal field

In the previous section, a theoretical description of the flow field of a Poiseuille flow has been developed.
However, in many practical applications, the temperature in the domain of study is different from the
surrounding temperature, and heat is transported creating gradients of temperature. For this reason,
the study of the temperature field is crucial for real live applications. This was also stated in a recent
study of NASA, where Slotnick et al. [13] remarked the importance of thermal flows in aeronautical
applications. For example, the performance of the high-pressure turbines of engines is limited by the
maximum temperature that a blade can support without deforming. Therefore, a good treatment of the
temperature field will improve its performance, with a direct reduction in the emissions of the engine.
The numbers of examples are countless and it is one of the main focuses of this work to get a better
understanding of heat transfer in turbulent flows.

The equation that describes the temperature field is the energy equation (1.7), previously presented.
That is the most general way of describing the temperature field in homogeneous turbulence. However,
as mentioned before, in practical applications the flow is often bounded by walls and different sources of
heat can be treated with. It is important to mention that the temperature will be considered as a passive
scalar (although a specific section §5.2.2 is dedicated to present results of active scalar fields), which
means that it has no influence in the velocity field and does not appear in the momentum equations. As
for the flow field, the analysis of the energy equation will be done for channel flows. In the same way that
the momentum can be introduced in the flow through a pressure difference or a difference in movement
between the walls, heat can be introduced from an internal heat source, from a difference in temperature
between both walls, or from the application of uniform heat flux at the wall, among others. The last
one is the case that will be used in this work. This thermal boundary condition is known as the Mixed
Boundary Condition (MBC).

In the MBC, both walls of the channel are heated with an averaged constant uniform heat flux.
Therefore, the average temperature at the walls is independent of time and, due to the global heat
balance obtained for constant heat flux, it increases linearly in the streamwise direction. Due to reasons
related to the numerical resolution of the equations, which will be explained in chapter §2, the averaged
temperature field should be constant in the computational domain. For this reason, it is introduced the
so-called transformed temperature

T (t,x) = 〈Tw〉z(x)−Θ(t,x), (1.29)
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where 〈Tw〉z is the temperature at the walls averaged in time and in the z direction. In such a way, 〈Tw〉z
is carrying the linear increase of T along the streamwise direction and the wall-normal dependence is
carried by Θ. Introducing transformation (1.29) into the energy equation (1.7) (and multiplying by −1),
it is obtained that

∂Θ(t,x)

∂t
+ Uj(t,x)

∂Θ(t,x)

∂xj
− U(t,x)

∂〈Tw〉z(x)

∂x
= α

∂2Θ(t,x)

∂xj∂xj
− α∂

2〈Tw〉z(x)

∂x2
. (1.30)

If the Reynolds decomposition is used and the average is taken, using relations (1.4), results in

U j(x)
∂Θ(x)

∂xj
+
∂ujθ(x)

∂xj
− U(x)

d〈Tw〉z(x)

dx
= α

∂2Θ(x)

∂xj∂xj
− α∂

2〈Tw〉z(x)

∂xj∂xj
, (1.31)

As mentioned before, due to the global heat balance, when a constant heat flux is imposed at the
walls, the value of 〈Tw〉z increases linearly with x. Therefore, the diffusive term (the last term of the
equation), where a second derivative appears, should be 0. Furthermore, the value of d〈Tw〉z/dx can be
determined as

d〈Tw〉z(x)

dx
= K 1

Ub
, (1.32)

where K is a constant with units K/s and Ub is the bulk velocity, which is the average of the velocity in
the entire domain, i.e., the integral of U(t, x, y, z) in time and the three directions of the space. For fully
developed and statistically steady flows, Ub is directly obtained as

Ub =
1

2h

∫ 2h

0

U(y)dy. (1.33)

If the conditions of fully developed flow and the definition (1.32) are introduced in equation (1.31),
the following equation results

α
d2Θ(y)

dy2
− dvθ(y)

dy
= − K

Ub
U(y). (1.34)

This equation can be integrated with respect to y, obtaining

α
dΘ(y)

dy
− vθ(y) = C − K

Ub

∫ y

0

U(ŷ)dŷ, (1.35)

where C is the constant of integration and ŷ is the integration variable. Applying this result at the wall
it is obtained that

α
dΘ(y)

dy

∣∣∣∣
y=0

= C = uτθτ . (1.36)

The integral term is 0 because the value of U at the wall is linear in y, as obtained in previous section
in equation (1.22). In analogy with the velocity field, and because the first term has units of velocity
times temperature, C = uτθτ , where θτ is the friction temperature. To define θτ , the last equation can
be multiplied by a reference density, ρ0, and the heat capacity at constant pressure, cp, to obtain the
wall heat flux in the first term

q̇w = ρcpα
dΘ(y)

dy

∣∣∣∣
y=0

= ρcpC = ρcpuτθτ . (1.37)

Then, the definition of θτ is

θτ =
q̇w

ρcpuτ
=

α

uτ

dΘ(y)

dy

∣∣∣∣
y=0

. (1.38)
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The final result of the integration of the energy equation (1.35) is

α
dΘ(y)

dy
− vθ(y) = uτθτ −

K
Ub

∫ y

0

U(ŷ)dŷ. (1.39)

The dimensionless equation can now be written in outer coordinates, where Θ+ = Θ/θτ and K =
uτθτ/h, obtaining as a result

q̇+ =
1

PrReτ

dΘ
+

(y∗)

dy∗
− u+θ+(y∗) = 1− 1

U+
b

∫ y∗

0

U
+

(ŷ∗)dŷ∗, (1.40)

where Pr is the Prandtl number, defined as ν/α. The Prandtl number represents the ratio between the
momentum diffusivity and the thermal diffusivity. The product of the Prandtl and friction Reynolds
numbers is defined as the friction Péclet number: Peτ = ReτPr. This equation represents the balance of
the heat transfer, and it is analogous to equation (1.20), which represented the balance of shear stresses.
In the same way that τ+ decreases from 1 at the wall to 0 at the center of the channel, q̇+ follows the
same tendency, although not in a linear manner. Also, for Reτ → ∞ the wall-normal heat flux, vθ, is
dominant over the diffusive heat flux.

Again, as for the shear stress equation, to analyze the heat fluxes near the wall, dimensionless form
with inner coordinates should be adopted obtaining as a result

q̇+ =
1

Pr

dΘ
+

(y+)

dy+
− u+θ+(y+) = 1− 1

ReτU
+
b

∫ y+

0

U
+

(ŷ+)dŷ+. (1.41)

An analogous result to the shear stress is obtained here. Near the wall u+θ+ is negligible, and when
Reτ → ∞, the integral term tends to 0 and the total heat flux tends to be constant with value 1. This
is only true in a very small sublayer equivalent to the viscous sublayer, but for the temperature field,
named diffusive sublayer. When the Prandtl number is of order 1, the diffusive sublayer is of the same
order as the viscous sublayer. Under these conditions, equation (1.41) can be easily integrated, obtaining

Θ
+

= Pr y+. (1.42)

This result is completely equivalent to the law of the wall (1.22) of the velocity field, and it is a
universal law valid for any boundary condition and any geometry.

Based on the length and temperature scales in the center of the channel, h and θτ , respectively, the
same defect law as for the mean velocity (1.23), can be proposed for the mean temperature, so that

Θ
+

(y∗)−Θ
+

c = g(y∗), (1.43)

Regarding the logarithmic region that was obtained for the mean velocity, the same procedure can be
done for the mean temperature, obtaining that when y+ →∞ and y∗ → 0 a logarithmic behavior of the
mean temperature is obtained

Θ
+

=
1

κt
ln(y+) + C, (1.44)

where κt is the von Kármán constant for the mean temperature and C is a constant that varies with the
Prandtl number.

Analogous to the tangential shear stress, is the wall-normal heat flux. According to the heat balance
equation in outer coordinates (1.40), when y∗ → 0 and Reτ → ∞, u+θ+ → −1. Regarding the heat
balance equation in inner coordinates (1.41), if the logarithmic profile of the mean temperature (1.44) is
introduced, for Reτ →∞, it is obtained that 1/(Pr κty

+)−u+θ+ = 1. Therefore, in the limit of y →∞,
it is also obtained that u+θ+ → −1. This result means that the wall-normal heat transfer is constant
and equal to −1 in the logarithmic region for Reτ →∞, which is an analogous result to the Townsend’s
hypothesis for the velocity field [11].
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1.2. LIE SYMMETRIES

1.2 Lie symmetries

Lie symmetries are a powerful mathematical theory to develop scaling laws of turbulent flows. The origin
of the Lie symmetries method dates back to the end of the 19th century when the mathematician Sophus
Lie proposed it for obtaining solutions of ordinary differential equations (ODE). Obviously, the method
can also be used to obtain solutions of partial differential equations (PDE) and, most important, is also
applicable to systems of PDE, such as the Navier-Stokes equations. The basis of the method consists in
finding the symmetries of the system of PDE. A symmetry refers to a variable transformation that leads
to an identical system of PDE, i.e. the transformed system of PDE has the same solution as the original
one. With these symmetries, one can formulate a characteristic system. Details about how to obtain
the characteristic system and its properties will be given in chapter §3. Solving the characteristic system
leads to what is known as invariant solutions, which in turbulence are also known as scaling laws.

For a concrete application, Lie symmetries possess a number of advantageous properties. First,
symmetries can be obtained using computer algebra methods such as Maple. Second, symmetries give
fundamental insight into the physics of the problem. And third, the scaling laws obtained are solutions
to the moment equations and, hence, are based on first principles, and not just pure curve fits. For these
reasons, Lie symmetries could be one of the most powerful tools to obtain scaling laws of turbulent flows.

The method has been widely studied by Oberlack and co-workers in several papers. Starting with
[14], scaling laws for the three regions of wall-parallel shear flows (viscous sub-layer, logarithmic law, and
deficit law in the center of the channel) were obtained. Classical mechanical symmetries of the Navier-
Stokes equations were used, but the key to the analysis was to employ the Multi-Point Correlation (MPC)
equations. Two additional symmetries, not visible in the Navier-Stokes equations and called statistical
symmetries, were used to derive the scaling laws that describe the flow statistics even for high moments.
More details about the MPC equations will be given in chapter §3. After this successful application of Lie
symmetries to turbulent flows several more works have been done with different geometries or boundary
conditions [15, 16, 17, 18, 19, 20].

In this work, the Lie symmetries theory will be used to derive new scaling laws of the temperature,
velocity, and high order moments of both. In order to achieve this, symmetries of the energy equation
and the MPC equations of the energy and heat fluxes equations are obtained, from which the new scaling
laws are formulated. This new scaling laws will be validated in subsection §5.1.5 using the DNS data
presented in previous subsections of section §5.1.
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Chapter 2

Computational methods

In the previous sections, a theoretical approach to turbulence was revised. However, only partial solu-
tions, in specific regions of the channel and under specific conditions, were obtained. Other methods to
study turbulence are needed. Two main approaches have been historically considered: experimental and
computational.

Experimental results are always the most representative of the actual behaviour of the flow since direct
information of the statistics of the flow is obtained. However, it requires specific installations to properly
carry out the experiment, which can be very expensive. For example, in the design of an aircraft, it is
extremely expensive to experiment in a wind tunnel with a full-size model. For this reason, from the
industrial point of view, experimental analysis is the best tool in the late stages of a design process. From
the theoretical point of view, experiments have been historically used as the main approach to understand
the dynamics of turbulent flows, especially until the end of the 20th century, when computational power
was not as advanced as nowadays. In a basic installation, like a pipe or a channel, it is easy to recover
the actual statistics of the flow. An obvious advantage is that the only errors that are obtained are those
introduced by the measuring devices, which should be small.

On the other hand, computational methods, consist of solving numerically the governing equations of
the flow, i.e. the Navier-Stokes (1.5)-(1.6) and energy (1.7) equations. This branch of fluid dynamics is
known as Computational Fluid Dynamics (CFD) and with the increase of computational power, they have
been gaining importance in the study of turbulence. The main issue of CFD compared with experiments
is that numerical errors are introduced due to the discretization of the domain or due to the introduction
of models that describe turbulence in an approximated manner. However, they are much cheaper than
experiments. Following the example of aircraft design, creating a virtual model of a plane and analysing
it with CFD software is much cheaper than the experimental analysis. Also, fast modifications and
parametric analyses can be performed easily. For this reason, CFD is the main tool for the early stages
of a design.

Regarding theoretical turbulence, a big advantage arises with the computational methods. In wall
turbulence, it is very important to understand how turbulence behaves in the boundary layer of the flow,
where the flow goes from zero to velocities of the order of the free-stream velocity. Another important
factor of the boundary layer is that almost the entire losses by drag are produced in this region. The
boundary layer is composed of the viscous, logarithmic, and buffer sublayers, being this last one the
transition sublayer between the viscous and the logarithmic sublayers (previously described in subsection
§1.1.1). Although this very important phenomena, named before, occur in the boundary layer, it is
very thin. Thus, in an experiment, the number of measuring points that can be placed in the boundary
layer is extremely limited due to physical constraints. However, in CFD, one can put as many points as
are needed to properly discretize the domain in these regions and to obtain valuable data. Information
about the mechanism of energy transfer in the boundary layer is crucial to understand turbulence, and
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2.1. REYNOLDS AVERAGED NAVIER-STOKES EQUATIONS

numerical methods play a key role in this point.
Different approaches are also considered inside the branch of CFD. Following the usual classification

of lower to higher approximation to the actual behaviour of the flow, there are three main techniques:
Reynolds averaged Navier-Stokes equations (RANS), Large Eddy Simulation (LES), and Direct Numerical
Simulation (DNS).

2.1 Reynolds averaged Navier-Stokes equations

The Reynolds averaged Navier-Stokes equations (RANS) were briefly introduced in section §1.1. They
are derived by introducing the Reynolds decomposition (1.2) to the instantaneous equations (1.5)-(1.7),
and taking the average of the resulting equations, obtaining the RANS equations (1.8), (1.9) and (1.31).
As mentioned before, an extra term is obtained due to the nonlinearity of the equations. For the case of
the momentum equation, this extra term is known as the Reynolds stress tensor, τij = −uiuj . This term
plays a similar role in the equation as the viscous term does, although its nature is completely different.
To solve the closure problem that arises from the viscous stress tensor, modeling of this term is needed.
To do so, typically the isotropic and anisotropic parts of this tensor are split. The turbulent kinetic
energy, i.e. the isotropic component, is defined as

k = uiui =
1

2
u2 + v2 + w2. (2.1)

Now, the anisotropic stress tensor can be defined as

aij = uiuj −
2

3
kδij , (2.2)

where δij is the Kronecker delta with value 1 when i = j and value 0 otherwise. The viscous turbulent
hypothesis was introduced in 1877 by Boussinesq,

ρaij = ρνT

(
∂U i
∂xj

+
∂U j
∂xi

)
, (2.3)

relating aij to the deformation tensor, defined as

Sij =
1

2

(
∂U i
∂xj

+
∂U j
∂xj

)
. (2.4)

In these equations, Boussinesq introduced a new constant, νT , as the turbulent viscosity. However,
νT is actually not a viscosity and it is not constant. It receives that name due to unit consistency.

Introducing these definitions into the RANS equations (1.9), the following relation is obtained after
rearranging the terms

=0︷ ︸︸ ︷(
∂U i(x)

∂t

)
+U j(x)

∂U i(x)

∂xj
=

1

ρ

∂

∂xi

(
P (x) +

2

3
k(x)

)
+

∂

∂xj

 νeff︷ ︸︸ ︷
(ν + νT )

∂U i(x)

∂xj

 . (2.5)

The new viscosity is defined as νeff = ν+νT . One of the main sources of errors of the RANS methods
is that νT strongly depends on the space coordinate and also on time and type of problem. The value
of νT is modelled in different manners depending on the RANS model that is being used. The choice
of the correct RANS model for a specific problem is crucial to obtain reliable results. The basis of the
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RANS models states that this turbulent viscosity must be modelled with a characteristic velocity and a
characteristic length, i.e.

νT = u∗`∗. (2.6)

These parameters must be determined for each problem. However, when using a two-equation model,
in the sense that two turbulent parameters are modelled, one can form a length scale, a time scale, etc,
derived from the two turbulent quantities modelled. Therefore, no characteristic velocity and length
must be specified for this type of model. The most common RANS method, named the k− ε model, will
be explained as an example. It happens that the k − ε model is a two-equation model. The turbulent
magnitudes k and ε are modelled and the turbulent viscosity can be calculated directly as

νT = Cµ
k2

ε
, (2.7)

where Cµ is a constant with a usual value of 0.09. The first turbulent quantity, k is modelled with the
transport equation which has the form of (dependencies of the functions have been omitted for the sake
of brevity)

Dk

Dt
=
∂k

∂t
+ U j

∂k

∂xj
= P + T − ε = 0, (2.8)

where D/DT = ∂/∂t + U j∂/∂xj is the total derivative, which should be 0. The right-hand side of the
equation is composed of the three terms that can modify the kinematic viscosity, i.e. a production term,
P , a transport term, T , and a dissipative term, ε. While the production term is defined by gradients of
mean velocities, i.e. it does not introduces new unknowns, the transport and dissipation terms must be
modelled, since terms of the form uiujuj appear, which introduced new unknowns. The transport term
is modelled as

T =
∂

∂xj

(
νT
σk

∂k

∂xj

)
, (2.9)

where σk is a constant of the model with typical value of 1. Finally, the dissipation term is modelled
with the second transport equation of the k− ε model, which has a very similar form to the one of the k
(2.8):

Dε

Dt
=
∂ε

∂t
+ U j

∂ε

∂xj
= Cε1

Pε
k

+
∂

∂xj

(
νT
σε

∂ε

∂xj

)
− Cε2

ε2

k
= 0, (2.10)

where the three terms on the right-hand side of the equation are the transport, production, and dissipation
terms, respectively. They are modelled with the constants Cε1, σε and Cε2, whose values are typically
1.44, 1.3 and 1.92, respectively. The values of the five constants of the k − ε model are taken from a
fitting to the results of a vast number of experiments for different turbulent flows. Nevertheless, this is a
simplification of the resolution of the Navier-Stokes equations, which introduces an error. The k−ε model
is the most accurate RANS method to calculate turbulent flows in channels and pipe flows. Numerous
methods have been developed with more precision for different types of flows, such as Spalart-Allmaras,
which is often used for open flows; or k − ω, which is a variation of the k − ε model, where the vorticity
ω is modelled instead of the dissipation.

In general, RANS methods are much faster than LES and DNS methods but they present the worst
accuracy among the three of them. Due to their fastness, they are widely used, especially in the early
stages of a design process, where a large number of parametric studies can be carried out and more
realistic precision can be left out for the latest stages of the design with experimental analysis. In these
practical applications, a point in favor of the RANS methods is that the turbulent fluctuations are not
simulated but modelled, so that the mesh used to discretize the domain only depends on the geometry
of the problem. It has a weak dependence with the Reynolds number. Although a slightly more precise
mesh is required for higher Reynolds numbers, specially near the walls, the increase of the computational
cost is usually negligible compared with the requirements of the mesh to adapt to complex geometries of
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the flow. Therefore, any practical Reynolds number can be studied with RANS methods. LES and DNS
present a problem here, and it is that the computational power required to simulate Reynolds numbers
of the order of the ones appearing in most practical applications is no achievable nowadays.

In conclusion, the RANS methods can be considered as interpolation schemes obtained from a wide
number of experiments. They are very powerful in industrial applications since different methods can
provide an accurate solution for specific problems. However, the constants used to model the flow are set
from the fitting of numerous experiments, which introduces an error in the results obtained. Regarding
theoretical turbulence, which is the aim of this work, there is no space for RANS methods, since they do
no simulate the turbulence of the flow. And here is where LES and DNS play a role.

2.2 Large Eddy Simulation

The Large Eddy Simulations (LES) is the intermediate method between RANS and DNS regarding
precision and computational cost. As the name indicates, this method is based on the simulation of the
large eddies of the flow, which are dependent on the flow geometry, and the modelling of the smaller
scales of the flow, which, according to Kolmogorov’s theory, are universal for every flow.

To achieve this, the variables of the flow are filtered by a low-pass filter. To do so, the convolution
product must be applied

f(t,x) =

∫ ∫
K(t− τ,x− s)f(t,x)dsdτ, (2.11)

where K is the filter kernel, f is any variable and • here represents the filtered variable. Note that the
filter can be understood as a time and space averaging, but both t and x dependencies are kept in the
filtered variable. Since a low-pass filter is used, the high frequencies in the Fourier space are ignored,
removing from the simulation all the small scales of time and space. These small scales, of course, have
their influence in the governing equations, but that influence is modelled. After introducing the filtered
variables into the governing equations, it is obtained

∂U i
∂t

+
∂uiuj
∂xj

= −1

ρ

∂P

∂xi
+ ν

∂

∂xj

2Sij︷ ︸︸ ︷(
∂U i
xj

+
∂U j
xi

)
. (2.12)

According to [21], the filtered Reynolds shear stress term can be separated as uiuj = τ ij + uiuj .
Finally obtaining

∂U i
∂t

+
∂uiuj
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj

(
2νSij − τ ij

)
. (2.13)

At this point, the filtered shear stress term, τ ij , introduces new unknowns, and the closure problem
arises again. Therefore, models should be implemented to estimate the value of τ ij . A typical trend is
to decompose this term as

τ ij = T ij +
1

3
δijτkk. (2.14)

Here, τkk is the isotropic component, which can be introduced in the pressure term, obtaining an
effective pressure, P eff , which does not need further models, unless the pressure term, P , need to be
explicitly known. Only the shear component, T ij , needs to be modelled now. We cite here one of the
most iconic models of LES methods because it was the first used in an LES simulation in [22]; it is the
model proposed by Smagorinsky [23]

T ij = −2νtSij . (2.15)

Reaching a very similar equation to that obtained in the RANS model (2.5). Extensive research
has been done in LES models, reaching very accurate results, especially for isotropic and homogeneous
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turbulence. LES have proven to be very precise in spray flows, for example. A good point on the LES
methods is that filters are applied so that scales below L/10 are ignored, where L is the characteristic
length of the problem. This value is independent of the Reynolds number, so LES are valid to study
practical engineering problems, where Re > 106.

However, for heterogeneous or anisotropic flows, like wall turbulence, still some inaccuracies in the
results are obtained. Furthermore, the closer to the wall, the more anisotropic a flow is, obtaining bigger
errors in this region. A more precise technique is needed to properly study the turbulence behaviour of
wall-bounded turbulence, which is the last method presented here, DNS.

2.3 Direct Numerical Simulations

Direct Numerical Simulations (DNS), are the most precise computational method to study turbulence. In
contrast to RANS and LES methods, DNS does not model any scale of the flow, and all of them must be
resolved. To achieve this, the mesh used to discretize the problem must capture the smallest spatial scales
of the flow, as defined by the Kolmogorov scales (1.12), when Pr < 1. If the Prandtl number is higher
than 1, then the smallest thermal structures are smaller than those of the velocity. Thermal structures
are defined by the Batchelor length scale as ηθ = ηPr−1/2. Furthermore, no symmetry property can be
applied like in RANS methods, where the averaged variables are used and only half of the domain is
calculated. In DNS, as in LES, the entire domain must be used, since the instantaneous variables are not
symmetric in turbulent problems. Regarding the time step of the simulation, it must be smaller than the
time that a particle takes to cross a cell of the mesh. In addition, a DNS must be run for several cycles,
once the flow is in a statistically steady-state, to recover a big amount of valid statistics.

With all this, the number of mesh points and the number of time steps are huge compared with RANS
and LES, which makes DNS extremely expensive computationally speaking. Only simple geometries can
be simulated. Furthermore, in contrast to RANS and LES, the mesh resolution in a DNS depends on the
Reynolds number. The number of mesh points grows very fast with Re, and it can be estimated as Re9/4.
Therefore, Reynolds numbers of practical applications are far from being possible to simulate. For these
reasons, DNS must be run in the biggest supercomputers, with very efficient and optimized codes that
use parallelization techniques.

Despite these disadvantages, DNS present several points in their favour. The most important one is
that the results obtained are indistinguishable from those of the experiments, with the advantage that
the amount of information obtained is much bigger and easier to work with. For example, in a simulation
of a turbulent channel with Re = 5 · 104 approximately 109 points are needed in the mesh and each point
can be understood as a pitot tube, able to register heat too. Also, since no model of the flow is used,
crucial information about the mechanisms of energy transfer can be directly obtained to understanding
how turbulence behaves at every scale, which is the principal aim of this study.

Finally, an important point on DNS is the boundary and initial conditions. While in turbulent
boundary layers this can be problematic, see [24], in channel flows periodic conditions can be imposed in
the homogeneous directions, i.e. the boundaries in the streamwise and spanwise directions; while no-slip
conditions are imposed in the boundaries of the wall-normal direction. Regarding the initial conditions,
a file with a similar field to that of the solution should be used. This file is called the initial file. It should
be taken from another DNS with similar geometry, boundary conditions, and dimensionless number. For
example, if a DNS of a Poiseuille channel flow is going to be run for Reτ = 2000 and Pr = 2 it would be
ideal to use a file from a simulation of a Poiseuille channel for Reτ = 2000 and Pr = 1 or Reτ = 1000
and Pr = 2 (if it is possible). If the initial file is not chosen correctly, the transition from the conditions
of the initial file until the simulation has reached a statistically steady state in the final conditions can
be as long as the simulation itself.

In conclusion, despite its impossible application in practical problems due to computational limits,
DNS should be the base to create new and more accurate models for both, RANS and LES. Regarding
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the theoretical part, DNS is the only valid method in CFD to recover reliable statistics and to investigate
the physical properties of flows which are little understood. Since the aim of this work is to gain a better
understanding of turbulence, DNS is thus the perfect tool to work with. For this reason, DNS has been
chosen as the main work tool of this project. Deeper information about DNS are given in Appendix §7.1,
where the code used for this work, named LISO, is described. In such a way, specific details of DNS will
be addressed with a specific example, getting a clearer explanation.

2.3.1 State of the art of DNS

As it was explained in the previous section, the main problem of DNS is the computational cost of the
simulations. This makes DNS go hand in hand with state-of-the-art supercomputers. Then, the increase
of the computational power allows more complex DNS. For such a reason, it was not until the late 80s,
when the first DNS was performed for a Poiseuille isothermal flow by Kim et al. in 1987 [25]. In this first
work, statistics of the velocity field were obtained and compared with experimental data from different
works [26, 27, 28, 29]. The main result of this work was the validation of DNS to obtain accurate data
flow. The law of the wall (1.22), as well as the deficit law in the center of the channel (1.23), were
perfectly fulfilled. The logarithmic region, though, was not observed due to the small Reynolds number
and the high viscous effects. Several correlations of the statistics were compared finding great accuracy
of the DNS. In addition, new statistical correlations were reported for the first time. Also in this work, it
was given a brief explanation of the code used and how they solved the equations. This method, which
consists of solving two evolution equations of the Navier-Stokes equations, is the one adopted in the
present work, and it is extensively explained in the appendix §7.1.

Later in the same year, Kim and Moin [30] conducted the first DNS of a turbulent thermal flow, which
is the main interest of this work. They treated the thermal field as a passive scalar and the velocity field
was the same as in [25]. The friction Reynolds number used was Reτ = 180, while three Prandtl numbers
were considered, Pr = 0.1, 0.71 and 2. It is important to note that Pr = 0.71 corresponds to the
Prandtl number of air. This is one of the reasons why this value of the Prandtl number is the most used
historically. The boundary condition for the thermal field consisted of an internal heat generation, and
this heat was removed from both isothermal walls. This work also served as a validation of the DNS
for the thermal field. Experimental results obtained in [31, 32, 33] were compared with the ones of that
work, obtaining a very good agreement between the main statistics of the thermal field, such as the mean
temperature, temperature fluctuations, and heat fluxes. Also, the law of the wall for the thermal field
(1.42), and the deficit law for the temperature profile in the center of the channel (1.43) were perfectly
fulfilled. The thermal logarithmic region was not observed due to the small Reynolds number used and
the high conductive effects. The turbulent Prandtl number, Prt, which represents the ratio between the
momentum eddy diffusivity and the heat transfer eddy diffusivity, was calculated. Values of Prt ≈ 1 at
the wall were obtained, as was expected from experimental data. The most important result was the
high correlation between the temperature fluctuations and the streamwise velocity fluctuations in the
near-wall region when the Prandtl number is close to 1. A value of the velocity-temperature correlation,
Ruθ ≈ 0.95, was obtained near the wall. Also, several images of the structures of these statistics at
y+ = 5, i.e. the viscous and diffusive sublayer, showed that regions of negative or positive streamwise
velocity fluctuations coincided with a region of negative or positive temperature fluctuation, respectively.
This important result was further validated with the joint probability distribution and the two-point
correlation function. This high correlation near the wall indicates that both fields, streamwise velocity,
and temperature, are linked, suggesting that it is possible to model the scalar fluxes in the same way as
the momentum fluxes. Finally, some instantaneous visualizations were shown, demonstrating that in the
near-wall region, the same streaky structure of the velocity field was obtained for the thermal field.

In an extension of the work [30], Antonia and Kim performed a deep analysis of the turbulent Prandtl
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number in [34]. The exact definition of Prt is

Prt =
u+v+

v+θ+

dΘ
+

dy+

dU
+

dy+

. (2.16)

In [34], a Taylor expansion of the different velocity and temperature statistics was done near the wall,
so that

U
+

= y+ +O(y+2

), (2.17a)

Θ
+

= Pry+ +O(y+2

), (2.17b)

u′+ = b1y
+ + c1y

+2

+O(y+3

), (2.17c)

v′+ = c2y
+2

+ d2y
+3

+O(y+4

), (2.17d)

w′+ = b3y
+ + c3y

+2

+O(y+3

), (2.17e)

θ′+ = Pr
(
bθy

+ + cθy
+2

+O(y+3

)
)
, (2.17f)

u+v+ = d12y
+3

+ e12y
+4

+O(y+5

), (2.17g)

u+θ+ = Pr
(
c1θy

+2

+ d1θy
+3

+O(y+4

)
)
, (2.17h)

−v+θ+ = Pr
(
d2θy

+3

+ e2θy
+4

+O(y+5

)
)
, (2.17i)

where the apostrophe, φ′, indicates the root-mean-square of a variable φ, i.e. φ′ =
√
φφ. Therefore, the

value of Prt near the wall can be calculated as

Prt|y+→0 =
d12

d2θ
. (2.18)

For the values of Pr used in [34], which were the same than in [30] (Pr = 0.1, 1 and 2), the values
of the first coefficients of the Taylor expansion were approximately constant, and the ratio d12/d2θ gave
approximately Prt = 1.1 at the wall independently of the molecular Prandtl number, in great accordance
with the experimental results obtained. Nevertheless, for much lower and much higher values of Pr,
Antonia and Kim [34] speculated higher values of Prt, since the temperature is not that well organized
in positive and negative streaks as for Pr ≈ 1. This result will be confirmed in future DNS.

In 1991, Lyons, Hanratty, and McLaughlin performed a DNS whose results were published in [35] for
the velocity field and [36] for the thermal field. In this last work, a Poiseuille flow at Reτ = 150 was
simulated for Pr = 1. The boundary condition for the temperature field consisted of a heated lower wall
and a cooling upper wall with the same heat flux rate so the temperature difference between the walls was
fixed constant. Obviously, this boundary condition created an antisymmetric temperature field analogous
to that of the velocity field when a Couette flow is imposed. Therefore, several differences between the
velocity and temperature field arose in the center of the channel. Nevertheless, a high correlation of
both fields was obtained in the near-wall region. Correlations between the velocity and temperature field
and Prt were calculated, obtaining similar results to those from [30]. In addition, the dimensionless
Nusselt number, Nu, which represents the ratio between the convective and conductive heat transfer,
was computed, with similar results to those of experiments and classical correlations. Finally, the energy
transfer equations or budget equations for the mean temperature and temperature fluctuations were
obtained. These energy equations were compared with the ones of the mean velocity, and fluctuating
velocity, obtaining remarkable similarities in the near-wall region. The difference in the center of the
channel was due to the different boundary conditions for each field.

A third important DNS of a thermal channel flow was performed by Kasagi et al. in 1992 [37].
As in [36], the friction Reynolds number simulated was Reτ = 150, while the Prandtl number of air,
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Pr = 0.71, was used. Regarding the boundary condition, a more realistic one than that of [30] was
used, the MBC, which was already introduced in section §1.1.2. Remember that the MBC is the thermal
boundary condition used in this work. Similar to the two previous studies, the main thermal statistics
were analysed and compared with experimental data and with the result from Kim and Moin [30]. The
result was a high accuracy from the DNS when comparing the mean and fluctuating temperature, the
Nusselt and turbulent Prandtl number, and several correlation coefficients. A study of the logarithmic
layer was carried out. However, a perfect logarithmic behaviour was not observed due to the strong
viscous and conductive effects for such a low Reynolds number. Nevertheless, the tendency of the main
temperature may indicate a possible logarithmic region for higher Reynolds numbers. With this in mind,
Kasagi et al. [37] computed the value of the theoretical von Kármán constant for the thermal field,
defined in section §1.1.2, obtaining a value of κt = 0.36. As noted by the authors of the paper, that value
was considerably smaller than the generally accepted value of 0.47, obtained in experiments for higher
Reynolds numbers. Finally, a deep analysis of the turbulent budgets was performed. Balance equations
of the temperature variance, kθ, its dissipation rate, εθ, and both heat fluxes, streamwise, uθ, and wall-
normal, vθ, were presented together with the values of each budget term. These budget equations are
now presented to facilitate the understanding of the discussion. The transport equation of kθ is obtained
after multiplying the equation (1.7) by θ and taking the average. In dimensionless inner coordinates, it
is given by

Dk+
θ

Dt+
= P+

θ + T+
θ + V +

θ + ε+
θ . (2.19)

The different terms on the right hand side are referred to as production, turbulent diffusion, viscous
or molecular diffusion and dissipation. They are respectively defined according to

P+
θ = −u+

j θ
+
∂Θ

+

∂x+
j

, (2.20a)

T+
θ = −1

2

u+
j θ

+θ+

∂x+
j

, (2.20b)

V +
θ =

1

2Pr

θ+θ+

∂x+
j ∂x

+
j

, (2.20c)

ε+
θ = − 1

Pr

∂θ+

∂x+
j

∂θ+

∂x+
j

, (2.20d)

and for the specific case of a statistically steady thermal channel flows:

P+
θ = −v+θ+

∂Θ
+

∂y+
, (2.21a)

T+
θ = −1

2

v+θ+θ+

∂y+
, (2.21b)

V +
θ =

1

2Pr

θ+θ+

∂y+∂y+
, (2.21c)

ε+
θ = − 1

Pr

∂θ+

∂y+

∂θ+

∂y+
. (2.21d)

The transport equation for εθ is obtained after deriving equation (1.7) with respect to xl, multiplying
the result by (2/Pr)∂θ/∂xl and taking the average. In dimensionless inner coordinates, it is given by

Dε+
θ

Dt
= P+

εθ,m
+ P+

εθ,mg
+ P+

εθ,g
+ P+

εθ,t
+ T+

εθ
+ V +

εθ
+ ε+

εθ
. (2.22)
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In this case, the terms are named mixed production, mean gradient production, gradient production,
turbulent production, turbulent transport, molecular diffusion and dissipation. They are defined as
follows:

P+
εθ,m

= − 2

Pr

∂u+
j

∂x+
l

∂θ+

∂x+
l

∂Θ
+

∂x+
j

, (2.23a)

P+
εθ,mg

= − 2

Pr

∂θ+

∂x+
j

∂θ+

∂x+
l

∂Uj
+

∂x+
l

, (2.23b)

P+
εθ,g

= − 2

Pr
u+
j

∂θ+

∂x+
l

∂2Θ
+

∂x+
j ∂x

+
l

, (2.23c)

P+
εθ,t

= − 2

Pr

∂θ+

∂x+
j

∂θ+

∂x+
l

∂u+
j

∂x+
l

, (2.23d)

T+
εθ

= − 1

Pr

∂

∂x+
j

(
u+
j

∂θ+

∂x+
l

∂θ+

∂x+
l

)
, (2.23e)

V +
εθ

=
1

Pr2

∂2

∂x+
j ∂x

+
l

(
∂θ+

∂x+
l

∂θ+

∂x+
l

)
, (2.23f)

ε+
εθ

= − 2

Pr2

∂2θ+

∂x+
j ∂x

+
l

∂2θ+

∂x+
j ∂x

+
l

, (2.23g)

which for the case of statistically averaged thermal channel flows reduce to

P+
εθ,m

= − 2

Pr

∂v+

∂x+
l

∂θ+

∂x+
l

∂Θ
+

∂y+
, (2.24a)

P+
εθ,mg

= − 2

Pr

∂θ+

∂x+

∂θ+

∂y+

∂U
+

∂y+
, (2.24b)

P+
εθ,g

= − 2

Pr
v+

∂θ+

∂y+

∂2Θ
+

∂y+∂y+
, (2.24c)

P+
εθ,t

= − 2

Pr

∂θ+

∂x+
j

∂θ+

∂x+
l

∂u+
j

∂x+
l

, (2.24d)

T+
εθ

= − 1

Pr

∂

∂y+

(
v+

∂θ+

∂x+
l

∂θ+

∂x+
l

)
, (2.24e)

V +
εθ

=
1

Pr2

∂2

∂y+∂y+

(
∂θ+

∂y+

∂θ+

∂y+

)
, (2.24f)

ε+
εθ

= − 2

Pr2

∂2θ+

∂x+
j ∂x

+
l

∂2θ+

∂x+
j ∂x

+
l

. (2.24g)

Finally, the budget equation for the turbulent heat fluxes, uiθ, is derived after taking the average of
the following expression: (1.5)θ++(1.7)ui. After simplifications, it is obtained, for dimensionless inner
coordinates:

Du+
i θ

+

Dt
= P+

iθ + T+
iθ + V +

iθ + Πs+

iθ + Πd+

iθ + ε+
iθ, (2.25)
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The different terms on the right hand side are referred to as production, turbulent diffusion, viscous or
molecular diffusion, pressure-temperature gradient correlation, pressure diffusion and dissipation. Each
term is defined as

P+
iθ = −u+

j θ
+
∂Ui

+

∂x+
j

− u+
i u

+
j

∂Θ
+

∂x+
j

, (2.26a)

T+
iθ = −

∂u+
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+
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+

∂x+
j

, (2.26b)
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j
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1
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i
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j

)
, (2.26c)

Πs+

iθ = p+
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∂u+

i

∂x+
j

∂θ+

∂x+
j

. (2.26f)

The specific terms of the streamwise heat flux for statistically steady thermal channel flows are

P+
uθ = −v+θ+

∂U
+

∂y+
− u+v+

∂Θ
+

∂y+
, (2.27a)

T+
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and for the wall-normal heat flux

P+
vθ = −v+v+

∂Θ
+

∂y+
, (2.28a)

T+
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+v+θ+
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The splitting of the pressure in two different terms, Πs+

iθ and Πd+

iθ is not unique, but this one offers
more information [38]. However, in the work of Kasagi et al. [37], the summation of both terms, named
temperature pressure-gradient correlation, is considered in their analysis. Coming back to the results of
the turbulent budgets obtained in [37], as in the previous works, big similarities were found between the
budget terms of k+

θ and the ones of the streamwise velocity, due to the high correlation between both
fields. For the case of k+

θ and ε+
θ , a balance of the production term with the dissipation was obtained in

the entire channel. Regarding u+θ+, the dissipation and the temperature pressure-gradient correlation
acted as sink terms to compensate for production. Except in the balance equation, this temperature
pressure-gradient correlation is predominantly effective and compensated by the production term. It was
also noted that the molecular and turbulent diffusion was only appreciable in the near-wall region.

These three works constitute the basis for the rest of the DNS of thermal channel flows performed in
the sense that these are the most used boundary conditions for the thermal field. After them, one of the
main ideas has been to perform simulations at higher Reynolds numbers, with the problem of a higher
computational cost. For this reason, the maximum Reynolds number simulated has been growing slowly
over the years, as the supercomputers have been improving. The other tendency has been to simulate a
broader range of Prandtl numbers, reaching low Prandtl numbers like 0.025, which is the Prandtl number
of the liquid mercury, or high Prandtl numbers like 10, which is approximately the Prandtl number of
water. As it was explained in previous section (§2.3), simulating Prandtl numbers higher than the unity
requires the use of a finer mesh to capture the smallest thermal structures, determined by the Batchelor
length scale, ηθ. For this reason, it is more often to see works with lower Prandtl numbers than higher
ones.

In 1993, Kasagi and Ohtsubo [39] published a complementary study to the one published the previous
year [37], but for a low Prandtl number of 0.025. The objective was to examine the differences in the
thermal field between both cases, i.e. Pr = 0.71 from [37] and Pr = 0.025 from [39]. The same friction
Reynolds number of value 150 and the MBC were used. The first important difference was that, for
such a small Prandtl number, the conductive sublayer gets thicker and the logarithmic region completely
disappears. Regarding the turbulent fluctuations, θ′+, u+θ+ and v+θ+, their values decrease for smaller
Prandtl numbers and their peak value moves away from the wall. The turbulent Prandtl number was
observed to increase its value at the wall, up to Prt ≈ 3, far from the typical value 1 obtained for
molecular Prandtl numbers close to 1, confirming the speculations of Antonia and Kim [34]. A significant
decrease of the velocity-temperature correlation coefficient was obtained down to values of Ruθ ≈ 0.6.
Also, the one-dimensional energy spectra were examined. Again, big similarities were observed between
the velocity, and temperature spectra when Pr = 0.71, but a lower spectra was obtained for Pr = 0.025,
indicating a less energetic thermal field. The same turbulent budgets as in [37] were calculated. The main
difference was that for low Prandtl numbers the production term was always balanced by the dissipation
term, except in the wall, where the molecular diffusion is compensated by dissipation. An important
difference is that the turbulent diffusion and the temperature pressure-gradient correlation terms in
u+θ+ and v+θ+ were negligible in the entire channel. Finally, several instantaneous images of velocity
and temperature structures were presented. First, it was obtained that the streaky structures in the
near-wall region were thicker and less elongated than those of Pr = 0.71. And second, it was noticed that
in the low-pressure regions of the flow, streamwise vortical structures appear. In addition, the production
and destruction mechanisms of turbulent stresses and heat fluxes always appeared associated with those
vortical structures. This occurs for both Prandtl numbers, although for Pr = 0.025, the molecular
diffusion was the sink term near the wall, instead of the temperature pressure-gradient correlation.

The next important DNS of a thermal channel flow was done by Kawamura et al. in 1998 [40]. Here,
a wide range of Prandtl numbers, from 0.025 up to 5, were simulated for Reτ = 180 using the MBC.
In this work, the same Taylor expansion decomposition as in [34] (equations (2.17a)-(2.17i)) was used to
analyse Prt. It was observed that (see coefficients from equation (2.18)), while the coefficient d12 was
constant for every Pr (which is trivial since a passive scalar is considered), the coefficient d2θ drastically
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decreases for Pr ≤ 0.1. This supposes an increase in the value of Prt, confirming again the speculation
of [34]. On the other hand, for the case of Pr = 5, no change in the limiting value of Prt was observed.
However, in future DNS, it will be obtained an increase of Prt for such high Prandtl numbers. The
reason why it was not obtained in the work of Kawamura et al. [40] may be associated with a low mesh
resolution near the wall. All this supported the fact that, in modelling of heat transfer, a constant value
of Prt is used for Pr close to 1. Finally, budgets of the turbulent heat flux and the temperature variance
were obtained. An important result was that the production term in the temperature variance reaches
thermal equilibrium at a certain wall distance location, being its maximum determined by P+

θ,max = Pr/4

and the wall coordinate scaling with Pr1/3. This equilibrium was reached for Pr > 0.1.

One year later, in 1999, Kawamura et al. [41], extended the study of the previous year, simulating,
for the first time a flow at Reτ = 395. The MBC condition was imposed and the Prandtl numbers used
were Pr = 0.025, 0.2 and 0.71. In that sense, only the effects of Reτ were analyzed for medium and
low Prandtl numbers. For the mean temperature, a region closer to a properly developed logarithmic
behaviour was obtained. In fact, a value of κt = 0.43 was obtained for Reτ = 395. With respect to the
value obtained in [30], κt = 0.39 for Reτ = 180, the new value was much closer to the experimental one
of κt = 0.47 obtained for higher Reynolds numbers by Kader [31]. Regarding the turbulent fluctuations,
θ′+, u+θ+ and v+θ+, weaker dependencies on Reτ were observed for higher Pr. Another important
conclusion was that the higher the Reynolds is, the wider the range of Prandtl where a collapsing of
the statistics occurs. For example, the coefficient of the Taylor expansions of the statistics (2.17a)-
(2.17i) perfectly collapse for Pr = 0.71 and Pr = 0.2 with Reτ = 395. However, small variations were
obtained for Reτ = 180. Similarly, the peak in the production budget of the temperature variance reached
the theoretical maximum of Pr/4 obtained in [40] for lower Prandtl numbers as the Reynolds number
increases. As another example, Prt, whose value increases at the wall for low Pr, tends towards a value of
1 for higher Reτ . An analysis of the budget terms of the wall-normal heat flux was done. The dominant
budget terms were found to relatively increase with the Reynolds number more than the non-dominant
terms. Also, for Pr = 0.2, where the dissipation and the temperature pressure-gradient correlation are
competitive in the destruction of thermal energy, an increase of Reτ contributes to an increase of the
temperature pressure-gradient correlation, but no increase of the dissipation is obtained. Finally, flow
visualizations were presented. A special focus was given to the near-wall streaks of the velocity and
temperature field. While both fields are very similar for Pr = 0.71, longer and slender structures are
obtained for Reτ = 395 than those obtained at Reτ = 180.

Using the data from [41], Kawamura et al. [42] compared the velocity and thermal flow under four
combinations of boundary conditions: a Poiseuille flow with the MBC, i.e. the flow from [41]; and with
a temperature wall difference; and a Couette flow with the MBC and a temperature wall difference.
The main difference between Poiseuille and Couette velocity fields is that higher intensities are obtained
for Couette flows in the center of the channel. These higher velocity fluctuations come from the higher
production of turbulent energy due to the non-zero gradient of the velocity in the center of the channel.
When the MBC is applied, the Couette flow produces a more flattened temperature profile in the center
of the channel because a large thermal diffusion is caused by the much larger turbulent intensities.
Therefore, lower temperature fluctuations appear in the central region of the channel and all budget
terms are lower due to the decrease of the temperature gradient. In conclusion, similar thermal fields are
obtained near the wall for different boundary conditions. However, differences appear in the central region
of the channel, which comes from the zero or non-zero gradient of the mean velocity and temperature.

Regarding high Prandtl numbers, Na and coworkers published in two different articles [43, 44] the
results of a simulation at Reτ = 150 and Pr = 1, 3 and 10, aiming to study the effects of high Prandtl
numbers on the thermal field. The same thermal boundary condition used in Lyons et al. [36] was
employed, i.e. a temperature difference between the lower and upper walls of the channel. An important
result obtained was that the conductive sublayer thickness, ∆θ scales as ∆θ ∼ Pr−1/2, so it gets thinner
with increasing Prandtl number. Also, the correlations of the temperature and velocity fields, Ruθ and
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Rvθ, decrease for high Prandtl numbers. To understand the decrease of Rvθ, the cumulative co-spectral
density function of v+θ+ and θ′+

2

were calculated at y+ = 25, i.e. in the near-wall region. It was observed

that the high wavenumbers of the co-spectra contribute more significantly to θ′+
2

than to v′+
2

at large

Pr. Therefore, the correlation Rvθ = v+θ+/
(√

θ′+2
√
v′+2

)
decrease with Pr. A direct consequence of

this high contribution of high wavenumbers to θ′+
2

is that the analogy between the velocity and thermal
field is no longer accurate to model the thermal diffusivity for high Prandtl numbers. This fact is studied
in the works of Na and coworkers, finding a decrease of the thermal diffusivity kt with increasing Prandtl
number. As a result, the turbulent Prandtl number, Prt increases its value, as it was speculated in [34].

It was not until 2004 when the maximum friction Reynolds number simulated in a DNS of heat transfer
reached Reτ = 1000. Abe et al. [45] performed several DNSs for Reτ = 180, 395, 640 and 1020, with
Prandtl numbers of air Pr = 0.71 and liquid mercury Pr = 0.025. Effects of the Reynolds and Prandtl
numbers on the surface heat flux, q̇w, were examined. First, it was obtained that the root-mean-square
(rms) of q̇w increased with Reτ , with higher values for the case of Pr = 0.71. However, the rate of
increase with Reτ was higher for the lower Prandtl number of 0.025, due to the increasing conductive
effect, expecting larger values of the rms of q̇w for Pr = 0.025 with Reτ � 1000. Also, instantaneous
visualizations of the surface heat flux were provided. Inspection of the interaction of the outer and inner
layers showed that the large-scale motions of positive and negative temperature fluctuations in the outer
region have an influence in the inner scale, where corresponding positive and negative rms of q̇w appear.
This, confirms the results of [30] for Reτ up to 1000 and low Prandtl numbers of value Pr = 0.025.

Chronologically, two important works regarding high Prandtl numbers were published in the following
years. First, Schwertfirm and Manhart in 2007 [46], conducted several simulations for Reτ = 180 and
Pr = 3, 10, 25 and 49, which is the highest Prandtl number ever simulated in a DNS. The thermal
boundary condition was a temperature difference between both walls. Several temperature statistics,
such as mean and fluctuating temperature, heat fluxes, and budgets of the temperature variances were
calculated, obtaining an extrapolation of the results presented in [40, 43, 44]. Schwertfirm and Manhart
[46] also calculated the turbulent Prandtl number, with the same trend as previously mentioned, increasing
Prt for high Pr. Specifically, a value of Prt = 2.15 was obtained for Pr = 49. Finally, the conductive
sublayer was calculated, obtaining that it scales as ∆θ ∼ Pr−0.29. This absolute value of the exponent
was lower than all precedent predictions, which may be due to the different boundary conditions or to
the different definition of the conductive sublayer depth.

Later, Kozuka et al. in 2009 [47], performed a huge parametric study of high Prandtl numbers for
Reτ = 180 and 395 and Pr = 0.71, 1, 2, 5, 7 and 10. A decrease of the mean temperature was obtained
at the center channel with increasing Reτ if Pr > 1. This indicates that turbulence can mix heat in a
more efficient way when Pr is higher. Thus, the thermal field becomes more homogeneous due to a higher
convective effect. Mean temperature profiles of different heat transfer models [31, 48, 49] were compared,
concluding that better precision is needed from the models for high Pr. Regarding the turbulent Prandtl
number, a lower Reτ dependence in the near-wall region was observed for high Pr, since heat conduction
is more dominant than convection, and thus the effect of Reτ is small. A constant value of Prt = 0.8
independent of Pr was obtained in the outer region. A comparison of the budget terms of ε+

θ and ε+ was
done, obtaining a lot of similarities for Pr = 1. This indicates that models for ε+

θ can be constructed in
a similar way to that of ε+. Small differences were obtained only in the dissipation term near the wall,
which was explained using the Taylor decomposition (2.17a)-(2.17i). A comparison of existing models of
ε+
θ with the DNS data was performed. The conclusions were that some models give reasonable results near

the wall with Pr ≈ 1. However, with increasing Pr, none of the existing models can predict the correct

near-wall behavior of the budget terms of ε+
θ . Finally, an analysis of the u+

i θ
+ budget was presented,

with a special focus on the ε+
iθ term. For the u+θ+ budgets, with increasing Pr, ε+

1θ and the viscous

diffusion term, become more effective in the viscous sublayer. For the u+θ+ budgets, with increasing Pr,
the effect of ε+

2θ becomes noticeable in the near-wall region.
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The last remarkable work of a thermal Poiseuille flow was performed in 2016 by Pirozzoli et al. [50].
In this work, Reynolds numbers of values Reτ = 550, 1000, 2000 and 4000 were simulated for Pr = 0.2,
0.71 and 1. The thermal boundary condition applied was a uniform heat generation as in [30]. Mean
temperature profiles were presented, showing a good agreement with Kader’s correlation [31]. A deep
analysis of the logarithmic layer is carried out, obtaining a von kármán constant of value κt = 0.46, very
close to the value of κt = 0.47 from experiments. However, a plateau is still not perfectly observed for
Reτ = 4000, and a linear dependence with Reτ is obtained. This matches the analogous suppositions
for the velocity field of Jiménez and Moser [51], where a linear dependence of the logarithmic layer with
Reτ was also supposed. This linear dependence tends to 0 for increasing Reτ . The correlation coefficient
of the streamwise velocity and temperature is reduced in the center of the channel due to the reduced
effectiveness of ejection events. Finally, Nu and Prt are calculated, obtaining good agreement with
proposed correlations and following the same trend as lower Reynolds number studies.

As mentioned, the work of Pirozzoli et al. [50] simulated the higher Reτ in a DNS of a thermal
channel flow. On the other hand, the highest Reτ simulated using the MBC condition was performed
by Lluesma-Rodŕıguez et al. [52], where a value of Reτ = 2000 was used. In this work, a validation of a
computational box of dimensions 2πh× 2h×πh in the streamwise, wall-normal, and spanwise directions,
respectively, is demonstrated for first- and second-order statistics.

The second type of flow analyzed in this work is the Couette flow, where the flow is moved by
a difference in the velocity of the walls. Until very recently, Couette flows have been simulated at a
relatively small Reynolds number [53, 54, 55, 56, 57]. This is due to the existence of very large-scale
roll-like motions extending along with the domain, which were found experimentally [58, 59, 60]. In the
latter, Kitoh and Umeki used an experimental apparatus with a size of 5120× 27× 880 mm with a lower
wall moving belt. They performed several experiments at Re = Uwh/ν = 3750, where Uw was half of the
velocity of the moving belt, using a hot-wire probe to measure flow statistics. To reduce the randomness of
the appearance of the structures in the experiment, they used a vortex generator in the core region of the
channel. The streamwise rolls that appeared downstream this vortex generator became quasistationary
without a noticeable decay. To properly capture these rolls in numerical simulations, long and wide
computational boxes are needed. In isothermal flows, these rolls are defined as coherent regions of either
positive or negative streamwise velocity fluctuations. They appear in pairs, creating a structure in the
velocity field composed of a couple of counter-rotating vortices aligned with the streamwise direction
[54, 61]. There is not a clear criterion to identify these structures. They are mostly identified through
visualization employing some filtering [54, 55]. As it is shown later, there is a clear organization of the
velocity and thermal rolls in larger structures, with two clear symmetries. As these rolls and structures
have not received a name, the generic term CTFS (Couette Thermal Flow Superstructure) will be used
to identify not only one particular velocity or thermal roll, but the set composed of several of them.

There exists a rich bibliography about the problem of heat transfer in Poiseuille flows, as previously
presented. However, only a few works address the problem of heat transfer for Couette flows [42, 64, 65].
These works were a challenge in their times, but unfortunately in most of them, either the computational
box used is too narrow and short to properly describe the CTFS or the Reynolds number used is low. In
fact, in the work of Debusschere and Rutland [64] it is explicitly stated that they are using a narrow box
to remove the effects of the velocity rolls. These authors affirm that these rolls are not probably present
in real-life devices. However, as it is said before, the rolls have been found experimentally [58, 59, 60].
They are very long and could be even infinite in length [55]. The rolls are also stable even to transversal
flows [63] and they affect the flow as secondary flows in ducts do [66]. Moreover, as it is stated in this
work, CTFS do affect both the statistics of the flow and the thermal field, as it is composed of rolls of
both fields. This appears to be an effect of Couette boundary conditions. Gand́ıa-Barberá et al. [56]
linked the existence of the rolls to only negative values on the one-point statistics of Reynolds stress
in transitional Couette-Poiseuille flows. Table 2.1 shows the parameters of the previous Couette flows
simulations, such as Reτ , computational box size, and mesh resolution. In the case of Poiseuille flow, a
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Work Reτ Lx/π Lz/π

Tsukahara et al. [53]
52
126

14 4

126 20 2
Avsarkisov et al. [54] 125− 550 20 6
Pirozzoli et al. [62] 171− 986 18 8

Lee and Moser [55]
93− 501 100 5

547 60 6
Kraheberger et al. [63] 250− 1000 8 3

Gand́ıa-Barberá et al. [56] 132 128 6
Komminaho et al. [57] 52 28 8

Kawamura et al. [42] 180, 395 2 1
Debusschere and Rutland [64] 160 3.8 0.6

Tsukahara et al. [65] 52, 126 28.5 4
Present work 180− 500 16 6

Table 2.1: Parameters of previous Couette flow simulations. Works in bold denotes that the thermal field
has also been simulated. Third and fourth column show the maximum computational domain used in each
work in x and z, respectively. Second column shows the ranges of Reτ simulated at the corresponding
computational boxes.

relatively small computational box of a stream- and span-wise sizes of only 2πh × πh can satisfactorily
recover the one- and two-point statistics of the flow, as previously mentioned from [52]. However, the
proper box dimensions in Couette flow are not that clear, as can be seen from table 2.1. The existence
and characterization of the CTFS and its influence in the one-point statistics are addressed for the first
time in this work.

Finally, the last type of flow analysed in this work is the stratified flow. The main idea of using
stratified flows is to destabilize the counter-rotating rolls from Couette flows, introducing an active
thermal field, which causes a density stratification in the flow. The effect of stratification on rolls in the
plane Couette flow is relatively less studied. There are some indications that even in the weakly stratified
plane Couette flow at high Reτ , coherent structures, and the near-wall turbulence regeneration cycle may
be affected by the vertical stratification [67, 68]. Perhaps, one candidate for this phenomenon could be
a rare cloud formation called the Morning Glory cloud, [69]. However, due to certain limitations in the
atmospheric measurements techniques and spatial coverage, this comparison requires more observational
and numerical efforts. Anyway, the results of the present analysis are relevant to the stratified turbulence
in the atmosphere, as it is found at a large variety of stratification rates and Reynolds numbers [70].
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Chapter 3

Lie symmetries

3.1 Governing equations

As mentioned in chapter §1, Lie symmetries are a powerful method to obtain invariant solutions of systems
of PDEs, which in turbulence are also known as scaling laws. In the case of turbulence, the Lie symmetries
method is used to obtain symmetries of the equations that describe the behaviour of turbulent flows, i.e.
the continuity (1.5), momentum (1.6) and energy (1.7) equations. These equations can also be written in
the average form, obtaining (1.8), (1.9) and (1.31), respectively. If the averaged equations are subtracted
from the instantaneous equations, it is obtained the fluctuating equations. For the case of the continuity
equation, subtracting (1.5)-(1.8) the following is obtained (for the sake of readability, the temporal and
spatial dependencies will be omitted if uniqueness allows to do so):

∂ui
∂xi

= 0, (3.1)

which indicates that the fluctuating variables also fulfill the continuity condition. Equivalently, for the
momentum equation, it is obtained that

∂ui
∂t

+ Uk
∂ui
∂xk

+ uk
∂U i
∂xk

+
∂uiuk
∂xk

− ∂uiuk
∂xk

= − ∂p

∂xi
+ ν

∂2ui
∂x2

k

. (3.2)

For the generic case of the energy equation (no boundary condition is included), if Θ represents the
temperature, the fluctuating energy equation is written as

∂θ

∂t
+ Uk

∂θ

∂xk
+ uk

∂Θ

∂xk
+
∂θuk
∂xk

− ∂θuk
∂xk

= α
∂2θ

∂x2
k

. (3.3)

In the latter equations, one-point quantities have been used. In addition, it can be defined the two-
point correlation functions, or two-point moments, which based on the fluctuating velocity can be written
as

Rij(x, r) = ui(x)uj(x+ r), R0
ij(x) = lim

r→0
Rij(x, r) = ui(x)uj(x). (3.4)

Employing an equivalent definition based on the instantaneous variables, reads

Hij(x, r) = Ui(x)Uj(x+ r), H0
ij(x) = lim

r→0
Hij(x, r) = Ui(x)Uj(x), (3.5)

and a relation between the two correlation functions Rij and Hij reads as follows

Rij(x, r) = Hij(x, r)− U i(x)U j(x+ r). (3.6)
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This two-point concept can be extended for any number of points and ultimately forms the basis of the
following analysis as well as the resulting scaling laws. Hence, it is introduced the Multi-Point Correlation
(MPC) equations (see e.g. [17, 18, 19, 20]). For high-order moments of velocity and temperature, they
give additional information that is not provided in the one-point statistic equations, such as length scales.
Also, when deriving higher order moment equations, only one unclosed function arises. As observed in
equation (3.4), from the two-point statistics one can obtain every one-point statistic. Finally, regarding
Lie symmetries, two extra symmetries are obtained from the MPC equations, which are the key for
determining the new scaling laws of the high-order moments.

Equations (3.4) and (3.5) are the basis of the two different approaches that can be used to obtain
the MPC equations: the fluctuating approach or the instantaneous approach, where the MPC equations
are derived from the fluctuating equations (3.1), (3.2) and (3.3). On one hand, the fluctuating approach
has some advantages such as a straightforward relation to the Reynolds stress tensor or the turbulent
heat fluxes. However, as noted in [71], a non-linear system of equations is obtained. Furthermore, all
moment equations are coupled to the mean velocity or temperature, and equations of the third moment
or higher, are coupled to the second moment. All this complicates the symmetry analysis that will be
done below and, therefore, the derivation of the MPC equations from the fluctuating approach will not
be contemplated here. On the other hand, the instantaneous approach results in a linear system of MPC
equations with an equivalent but much simpler symmetry analysis. For this reason, the instantaneous
approach is the one used in this work. Before presenting the MPC equations, some notation must be
clarified. The correlation functions for the velocity are defined as

Hi{n} = Hi(1)i(2)...i(n)
= Ui(1)

(x(1))Ui(2)
(x(2))...Ui(n)

(x(n)) =

n∏
a=1

Ui(a)
(x(a)), (3.7)

which for n = 2, x(1) = x and x(2) = x+r yields to (3.5), while for n = 1 the mean velocity, Hi(1)
= U i(x)

is obtained. The definition for the temperature correlation is

HΘ{m} = HΘ(1)Θ(2)...Θ(m)
= Θ(x(1))Θ(x(2))...Θ(x(m)) =

m∏
b=1

Θ(x(b)). (3.8)

In the same way, HΘ(1)
represents the mean temperature Θ(x). Mixed moments of velocity and

temperature, which in the limit of only one temperature and one velocity reduces to the turbulent heat
fluxes, reads

Hi{n}Θ{m} = Hi(1)i(2)...i(n)Θ(n+1)Θ(n+2)...Θ(n+m)
=

Ui(1)
(x(1))Ui(2)

(x(2))...Ui(n)
(x(n))Θ(x(n+1))Θ(x(n+2))...Θ(x(n+m)) =

n∏
a=1

Ui(a)
(x(a))

n+m∏
b=n+1

Θ(x(b)). (3.9)

Note that (3.7) and (3.8) are just particular cases of (3.9) for m and n equal to 0, respectively, but
for the sake of readability they are presented separately. When pressure is involved in the correlation,
the notation, in the general form, is

Ii{n−1}[l]PΘ{m} = Hi(1)...i(l−1)Pi(l+1)...i(n)Θ(n+1)Θ(n+2)...Θ(n+m)
=

Ui(1)
(x(1))...P (x(l))...Ui(n)

(x(n))Θ(x(n+1))...Θ(x(n+m)) =

P (x(l))

n∏
a=1,a6=l

Ui(a)
(x(a))

n+m∏
b=n+1

Θ(x(b)), (3.10)
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where the subindex [l]P indicates that the l-th term is replaced by pressure, with 1 ≤ l ≤ n. Finally, the
following notation

Hi{n}Θ{m}[i(l)→k](x(l) → x(p)) =

Ui(1)
(x(1))...Ui(l−1)

(x(l−1))Uk(x(p))Ui(l+1)
(x(l+1))...Ui(n)

(x(n))Θ(x(n+1))...Θ(x(n+m))

(3.11)

is used to indicate a change in the correlation function of velocity direction, i(l), to k and/or the coordinate
where the variable is applied, x(l), to x(p). With these definitions, the MPC equations of velocity and
temperature mixed moments of order n + m can be derived, which is the more general case. The
derivation of the MPC equations of the momentum and energy are just two specific cases of the velocity
and temperature mixed moments MPC equation.

The simplest case of the MPC are the Two-Point Correlation (TPC) equations. Three equations can
be derived, one for the velocity, one for the velocity and temperature mixed moments and one for the
temperature. The following operations, using equations (1.6) and (1.7), must be applied in order to derive
them

Mi(1)
(x(1))Ui(2)

(x(2)) + Ui(1)
(x(1))Mi(2)

(x(2)) = 0, (3.12a)

Mi(1)
(x(1))Θ(x(2)) + Ui(1)

(x(1))E(x(2)) = 0, (3.12b)

E(x(1))Θ(x(2)) + Θ(x(1))E(x(2)) = 0, (3.12c)

respectively. The general case, the MPC equations, are an extension of the TPC equations. The derivation
of the MPC equations of order n+m starts from the following equation:

Mi(1)
(x(1))Ui(2)

(x(2))...Ui(n)
(x(n))Θ(x(n+1))...Θ(x(n+m))

+Ui(1)
(x(1))Mi(2)

(x(2))Ui(3)
(x(3))...Ui(n)

(x(n))Θ(x(n+1))...Θ(x(n+m))

+ ...

+Ui(1)
(x(1))...Ui(n−1)

(x(n−1))Mi(n)
(x(n))Θ(x(n+1))...Θ(x(n+m))

+Ui(1)
(x(1))...Ui(n)

(x(n))E(x(n+1))Θ(x(n+2))...Θ(x(n+m))

+Ui(1)
(x(1))...Ui(n)

(x(n))Θ(x(n+1))E(x(n+2))Θ(x(n+3))...Θ(x(n+m))

+ ...

+Ui(1)
(x(1))...Ui(n)

(x(n))Θ(x(n+1))...Θ(x(n+m−1))E(x(n+m)) =

=

n∑
a=1

Mi(a)
(x(a))

n∏
c=1,c6=a

Ui(c)(x(c))

n+m∏
d=n+1

Θ(x(d))

+

n+m∑
b=n+1

E(x(b))

n∏
c=1

Ui(c)(x(c))

n+m∏
d=n+1,d 6=c

Θ(x(d)) = 0, (3.13)

where Ui(l) and x(l) are the velocity directions and the different points where the equations and the
variables are applied, for i(l) = 1, 2, 3; and l = 1, 2,...,n+m (l can be a or b). Note that for n = 2, 1 and
0, and for m = 0, 1 and 2, respectively, the TPC equations (3.12a), (3.12b) and (3.12c), respectively, are
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obtained. Introducing the momentum (1.6) and energy (1.7) equations, into (3.13), it is obtained that

n∑
a=1

∂Ui(a)
(x(a))

∂t

n∏
c=1,c 6=a

Ui(c)(x(c))

n+m∏
d=n+1

Θ(x(d))

+

n∑
a=1

Uk(x(a))
∂Ui(a)

(x(a))

∂xk(a)

n∏
c=1,c 6=a

Ui(c)(x(c))

n+m∏
d=n+1

Θ(x(d))

+

n∑
a=1

∂P (x(a))

∂xi(a)

n∏
c=1,c 6=a

Ui(c)(x(c))

n+m∏
d=n+1

Θ(x(d))

− 1

Reτ

n∑
a=1

∂2Ui(a)
(x(a))

∂xk(a)
∂xk(a)

n∏
c=1,c6=a

Ui(c)(x(c))

n+m∏
d=n+1

Θ(x(d))

+

n+m∑
b=n+1

∂Θ(x(b))

∂t

n∏
c=1

Ui(c)(x(c))

n+m∏
d=n+1,d 6=c

Θ(x(d)),

+

n+m∑
b=n+1

Uk(x(b))
∂Θ(x(b))

∂xk(b)

n∏
c=1

Ui(c)(x(c))

n+m∏
d=n+1,d 6=c

Θ(x(d)),

− 1

Peτ

n+m∑
b=n+1

∂2Θ(x(b))

∂xk(b)
∂xk(b)

n∏
c=1

Ui(c)(x(c))

n+m∏
d=n+1,d 6=c

Θ(x(d)) = 0. (3.14)

At this point, the continuity equation (1.5) should be applied to introduce the terms Uk(xl) inside the
derivatives with respect to xk(l)

in the second and sixth lines of equation (3.14). Also, the product terms
can be introduced in the derivatives with respect to the spacial coordinates, since the points x(a) and
x(b) are excluded from the product series. Regarding the terms with temporal derivatives in the first and
fifth lines of (3.14), the chain rule is applied to reduce it to a single term. Finally, using definitions (3.9),
(3.10) and (3.11) one can obtain the MPC equation of the velocity and temperature mixed moments of
order n+m:

∂Hi{n}Θ{m}

∂t
+

n∑
a=1

(
∂Hi{n+1}Θ{m}[i(n+m+1)→k](x(n+m+1) → x(a))

∂xk(a)

+
∂Ii{n−1}Θ{m}[a]P

∂xi(a)

− ν
∂2Hi{n}Θ{m}

∂xk(a)
∂xk(a)

)

+

n+m∑
b=n+1

(
∂Hi{n+1}Θ{m}[i(n+m+1)→k](x(n+m+1) → x(b))

∂xk(b)

− α
∂2Hi{n}Θ{m}

∂xk(b)
∂xk(b)

)
= 0. (3.15)

As mentioned before, the MPC equations of the velocity arises if m = 0 in (3.15). Similarly, one can
obtain the MPC equations of the temperature by setting n = 0 in (3.15). Additionally, the continuity
equations read

∂Hi{n}Θ{m}[i(l)→k]

∂xk(l)

= 0 for l = 1, 2, ..., n, (3.16a)

∂Ii{n−1}Θ{m}[a]P [i(l)→k]

∂xk(l)

= 0 for a, l = 1, 2, ..., n, a 6= l, and n ≥ 2. (3.16b)

32



CHAPTER 3. LIE SYMMETRIES

Note that pure temperature correlations and mixed moments of velocity and temperature correlations
with l > n do not admit continuity equations, since they would have been originated from ∂Θ(x)/∂xk,
which is not a continuity equation.

For the case of a statistically steady turbulent channel flow, the MPC equations (3.15) can be reduced
to

n∑
a=1

(
∂Hi{n+1}Θ{m}[i(n+m+1)→2](x(n+m+1) → x(a))

∂x2(a)

+
∂Ii{n−1}Θ{m}[a]P

∂xi(a)

− ν
∂2Hi{n}Θ{m}

∂x2(a)
∂x2(a)

)

+

n+m∑
b=n+1

(
∂Hi{n+1}Θ{m}[i(n+m+1)→2](x(n+m+1) → x(b))

∂x2(b)

− α
∂2Hi{n}Θ{m}

∂x2(b)
∂x2(b)

)
= 0. (3.17)

As was previously noted, the system of the MPC equations (3.15), or (3.17) for turbulent channel
flows is linear. Moreover, the dependent variables H and I appear inside spatial or temporal derivatives.
As will be seen in the following section, this is the key to obtain two important statistical Lie symmetries
necessary to derive the scaling laws.

As an example, and to make the notation easier to understand, the TPC equations for the velocity,
heat fluxes, and temperature are presented, which can be obtained by setting in equation (3.15) n = 2,
1, 0 and m = 0, 1, 2, respectively.

∂Hi(1)i(2)
(x(1),x(2))

∂t
+
∂Hi(1)i(2)k(x(1),x(2),x(1))

∂xk(1)

+
∂Hi(1)i(2)k(x(1),x(2),x(2))

∂xk(2)

+
∂IPi(2)

(x(1),x(2))

∂xi(1)

+
∂Ii(1)P (x(1),x(2))

∂xi(2)

−ν
∂2Hi(1)i(2)

(x(1),x(2))

∂xk(1)
∂xk(1)

− ν
∂2Hi(1)i(2)

(x(1),x(2))

∂xk(2)
∂xk(2)

= 0, (3.18a)

∂Hi(1)Θ(x(1),x(2))

∂t
+
∂Hi(1)Θk(x(1),x(2),x(1))

∂xk(1)

+
∂Hi(1)Θk(x(1),x(2),x(2))

∂xk(2)

+
∂IPΘ(x(1),x(2))

∂xi(1)

−ν
∂2Hi(1)Θ(x(1),x(2))

∂xk(1)
∂xk(1)

− α
∂2Hi(1)Θ(x(1),x(2))

∂xk(2)
∂xk(2)

= 0, (3.18b)

∂HΘΘ(x(1),x(2))

∂t
+
∂HΘΘk(x(1),x(2),x(1))

∂xk(1)

+
∂HΘΘk(x(1),x(2),x(2))

∂xk(2)

−α
∂2HΘΘ(x(1),x(2))

∂xk(1)
∂xk(1)

− α
∂2HΘΘ(x(1),x(2))

∂xk(2)
∂xk(2)

= 0. (3.18c)

Note that developing equations (3.12a), (3.12b) and (3.12c), with the momentum (1.6) and energy
(1.7) equations, would lead to the same TPC equations.

To conclude the presentation of the governing equations of turbulence, first the Lie symmetries theory
will be applied to the continuity (1.5), momentum (1.6) and energy (1.7) equations, which provide the
classical mechanical symmetries. Then, it will be applied to the MPC equations (3.15), which provide
two extra Lie symmetries that are the key to derive the scaling laws. All this will be discussed in section
§5.1.5.
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3.2 Lie Symmetries theory

In this section, the mathematical theory of Lie symmetries will be developed. Definitions and theorems
presented in this section are taken from the book Bluman and Anco 2002 [72].

3.2.1 Lie group of transformations

A Lie symmetry or Lie transformation is a group of transformations with certain properties. Therefore,
it is convenient to start by defining a group from a mathematical point of view

Definition 3.2.1-1

A group G is a set of elements with a law of composition φ between elements satisfying the following
conditions:

• Closure property. For any elements a and b of G, φ(a, b) is an element of G. For example: G
can be all integer numbers, then, a and b will be integers and φ can represent summation of a and
b. Then, a+ b will be an integer, i.e. a+ b will belong to G.

• Associative property. For any elements a, b, c of G: φ(a, φ(b, c)) = φ(φ(a, b), c). For example:
if φ represents summation, then, a+ (b+ c) = (a+ b) + c.

• Identity element. There exists a unique identity element e of G such that for any element a of G:
φ(a, e) = φ(e, a) = a. For example: if φ represents summation, then, e = 0 is the identity element:
a+ 0 = a.

• Inverse element. For any element a of G there exists a unique inverse element a−1 in G such that
φ(a, a−1) = φ(a−1, a) = e. For example: if φ represents summation, then e = 0, and the inverse
element would be −a, since a+ (−a) = 0 = e.

Once the definition of a group is clear, the next step is to define the transformation group of one
coordinate system into another one. For this transformation to be a group, the following conditions must
be satisfied

Definition 3.2.1-2

Let x(x1, x2, ..., xn) lie in region D ⊂ Rn. The set of transformations

x∗ = X(x; ε), (3.19)

defined for each x in D and parameter ε in set S ⊂ R, with φ(ε, δ) defining a law of composition of
parameters ε and δ in S, forms a one-parameter group of transformations on D if the following
hold:

• For each ε in S the transformations are one-to-one onto D. Hence, x∗ lies in D.

• S, with the law of composition φ, forms a group G.

• For each x in D, x∗ = x when ε = ε0 corresponds to the identity e, i.e., X(x; ε0) = x.

• If x∗ = X(x; ε), x∗∗ = X(x∗; δ), then

x∗∗ = X(x;φ(ε, δ)).

Finally, a group of transformations must fulfill the following conditions for it to be a Lie group of
transformations.
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Definition 3.2.1-3

A one-parameter group of transformations defines a one-parameter Lie group of transformations
if, in addition to satisfying axioms in definition 3.2.1-2, the following hold:

• ε is a continuous parameter, i.e., S is an interval in R. Without loss of generality, ε = 0 corresponds
to the identity element e.

• X is infinitely differentiable with respect to x in D and an analytic function of ε in S.

• φ(ε, δ) is an analytic function of ε and δ, ε ∈ S, δ ∈ S.

Examples of one-parameter Lie group of transformations

The followings are the most basic one-parameter Lie group of transformations

1. Group of translations:

x∗ = x+ ε,

y∗ = y, ε ∈ R,
(3.20)

with law of composition φ(ε, δ) = ε+ δ and identity element: ε = 0.

This group represents a translation parallel to the x axis.

2. Group of scalings:

x∗ = αx,

y∗ = α2y, 0 < α <∞,
(3.21)

with law of composition φ(α, β) = αβ and identity element: α = 1. Since the identity element is
not 0 it is not a one-parameter Lie group of transformation. In order to make it a one-parameter
Lie group of transformation the following reparametrization must be used, ε = α− 1:

x∗ = (1 + ε)x,

y∗ = (1 + ε)2y,−1 < ε <∞,

with law of composition φ(ε, δ) = ε+ δ + εδ, and, identity element: ε = 0.

This group represents a scaling of the variables in the x and y axes.

3.2.2 Infinitesimal transformations

Consider a one-parameter Lie group of transformations

x∗ = X(x; ε), (3.22)

with the identity ε = 0 and law of composition φ. Using Taylor series of (3.22) about ε = 0, one can
write

x∗ = x+ ε

(
∂X(x; ε)

∂ε

∣∣∣∣
ε=0

)
+

1

2
ε2

(
∂2X(x; ε)

∂ε2

∣∣∣∣
ε=0

)
+ ...

= x+ ε

(
∂X(x; ε)

∂ε

∣∣∣∣
ε=0

)
+O(ε2).

(3.23)

From this expansion, the following definition can be presented
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Definition 3.2.2-1

The infinitesimal of the one-parameter Lie group of transformation (3.22) is denoted by ξ(x) and
defined as

ξ(x) =
∂X(x; ε)

∂ε

∣∣∣∣
ε=0

. (3.24)

Also, the transformation
x∗ = x+ εξ(x), (3.25)

is called infinitesimal transformation of the one-parameter Lie group of transformation (3.22).
With these definitions, the First Fundamental Theorem of Lie can be presented

Theorem 3.2.2-1: First Fundamental Theorem of Lie

If a one-parameter Lie group of transformation can be parameterized so that its law of composition is
φ(a, b) = a + b, and its identity element is τ−1 = −τ , then the Lie group of transformations (3.22) is
equivalent to the solution of an initial value problem for a system of first-order ODEs given by

dx∗

dτ
= ξ(x∗), (3.26)

with
x∗ = x, when τ = 0. (3.27)

The new group parameter τ is defined as

τ(ε) =

∫ ε

0

Γ(ε′)dε′, (3.28)

where Γ is a function of the law of composition

Γ(ε) =
∂φ(a, b)

∂b

∣∣∣∣
(a,b)=(ε−1,ε)

, (3.29)

and
Γ(0) = 1. (3.30)

The proof of the theorem can be seen in the book from Bluman and Anco [72].
From the First Fundamental Theorem of Lie, it is deduced that the essential information determining

a one-parameter Lie group of transformation (3.22) is contained on its infinitesimal (3.24).

Examples of the First Fundamental Theorem of Lie

The following examples will illustrate the First Fundamental Theorem of Lie. The same groups of
transformations, (3.20) and (3.21), will be used

1. Group of translations:

The group of translations is given by

x∗ = x+ ε,

y∗ = y,
(3.31)

with law of composition φ(a, b) = a + b, and ε−1 = −ε. Then, ∂φ(a, b)/∂b = 1, and Γ(ε) = 1.
Notice that no further parametrization is needed, since (3.28) will directly give τ = ε.
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Let x = (x, y). Then, the group (3.31) becomes X(x; ε) = (x+ ε, y) and the infinitesimal (3.24) is

ξ(x) =
∂X(x; ε)

∂ε

∣∣∣∣
ε=0

= (1, 0). (3.32)

Given the following initial value problem (3.26):

dx∗

dε
= 1,

dy∗

dε
= 0,

with x∗ = x, y∗ = y, at ε = 0.
(3.33)

By the First Fundamental Theorem of Lie, the group of transformations (3.31) is the solution of
the initial value problem (3.33).

2. Group of scalings:

The group of scalings is given by

x∗ = (1 + ε)x,

y∗ = (1 + ε)2y, −1 < ε <∞,
(3.34)

with law of composition: φ(a, b) = a + b + ab, and, ε−1 = −ε/(1 + ε). Then, ∂φ(a, b)/∂b = 1 + a.
Hence,

Γ(ε) =
∂φ(a, b)

∂b

∣∣∣∣
(a,b)=(ε−1,ε)

= 1 + ε−1 =
1

1 + ε
.

A new parametrization is needed so the law of composition is given by φ(a, b) = a + b, and the
identity element is τ = τ−1. Using (3.28), it is obtained that

τ =

∫ ε

0

Γ(ε′)dε′ =

∫ ε

0

1

1 + ε′
dε′ = log(1 + ε)→ ε+ 1 = eτ . (3.35)

Then, the group of scalings (3.34) becomes

x∗ = eτx,

y∗ = e2τy, −∞ < τ <∞,
(3.36)

with law of composition φ(a, b) = a+ b, and identity element τ = τ−1.

Let x = (x, y). Then, the new group of scalings (3.36) becomes X(x; τ) = (eτx, e2τy), and the
infinitesimal (3.24) is given by

ξ(x) =
∂X(x; τ)

∂τ

∣∣∣∣
τ=0

= (x, 2y). (3.37)

Then, by the First Fundamental Theorem of Lie (3.26), the group of scalings (3.36) is the solution
of the following initial value problem

dx∗

dτ
= x∗,

dy∗

dτ
= 2y∗,

with x∗ = x, y∗ = y at τ = 0.
(3.38)

One final definition is needed in the theory of the Lie groups of transformations.
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Definition 3.2.2-2

The operator

X = X(x) = ξ(x) · ∇ =

n∑
i=1

ξi(x)
∂

∂xi
, (3.39)

is defined as the infinitesimal generator of the one-parameter Lie group of transformation (3.22). ∇
is the gradient operator.

∇ =

(
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn

)
. (3.40)

The application of the infinitesimal generator for any differentiable function F (x) = F (x1, x2, ..., xn)
is

XF (x) = ξ(x) · ∇F (x) =

n∑
i=1

ξi(x)
∂F (x)

∂xi
. (3.41)

Note that the application of the infinitesimal generator to x leads to Xx = ξ(x).
A one-parameter Lie group of transformation (3.22) can be written equivalently by using the in-

finitesimal generator (3.39). This is shown in the following theorem, which determines how to obtain the
infinitesimal generator (3.39) from a given transformation group of the form (3.22).

Theorem 3.2.2-2

The one-parameter Lie group of transformations (3.22) is equivalent to

x∗ = eεXx = x+ εXx+
1

2
ε2X2x+ ... =

[
1 + εX +

1

2
ε2X2 + ...

]
x =

eεX︷ ︸︸ ︷
∞∑
k=0

εk

k!
Xk x, (3.42)

where the operator X = X(x) is defined by (3.39) and the operator Xk = Xk(x) is given by Xk = XXk−1,
k = 1, 2, ...

A formal proof of the theorem can be found in the book Bluman and Anco [72]. Here, an example
will be used to illustrate the previous theorem.

The scaling group (3.36) will be taken with τ → ε.

x∗ = eεx,

y∗ = e2εy, −∞ < ε <∞,
(3.43)

with infinitesimal (3.24) given by ξ(x) = (x, 2y). Therefore, the infinitesimal generator is given by
equation (3.39) as

X = x
∂

∂x
+ 2y

∂

∂y
. (3.44)

One can easily calculate the terms X2, X3,..., Xn as

X2 =

(
x
∂

∂x
+ x2 ∂

2

∂x2

)
+ 4

(
y
∂

∂y
+ y2 ∂

2

∂y2

)
,

X3 =

(
x
∂

∂x
+ 3x2 ∂

2

∂x2
+ x3 ∂

3

∂x3

)
+ 8

(
y
∂

∂y
+ 3y2 ∂

2

∂y2
+ y3 ∂

3

∂y3

)
,

...

Xn =

(
x
∂

∂x
+O

(
∂2

∂x2

))
+ 2n

(
y
∂

∂y
+O

(
∂2

∂y2

))
.

(3.45)
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Using equation (3.42) from theorem 3.2.2-2, the one parameter Lie group of transformations (3.43)
can be recovered from its infinitesimal generator (3.44):

x∗ = eεXx = x+ εXx+
1

2
ε2X2x+ ...+

εn

n!
Xnx+ ...,

y∗ = eεXy = y + εXy +
1

2
ε2X2y + ...+

εn

n!
Xny + ...

(3.46)

Introducing the values of the infinitesimal generators (3.44) and (3.45), it is obtained

x∗ = x+ εx+
1

2
ε2x+ ...+

εn

n!
x+ ... = eεx

y∗ = y + εy +
1

2
ε22y + ...+

εn

n!
2ny + ... = e2εy,

(3.47)

which corresponds to the scaling transformation (3.43).

Therefore, only the infinitesimal (3.24) determines the coefficient of the O(ε) term of the Taylor series
expansion about ε = 0 of a Lie group of transformations (3.22).

3.2.3 Invariant functions and PDEs

Once all the definitions that will be used from the Lie symmetries theory have been presented, the next
step is to understand how the method is used to obtain the Lie symmetries of a system of PDEs. These
Lie symmetries will then be used to obtain invariants of the system of PDEs of the problem, i.e. the
Navier-Stokes and the energy equation. Before defining an invariant system of PDEs, some basic concepts
about invariant functions are needed.

Definition 3.2.3-1

An infinitely differentiable function F (x) is an invariant function of a Lie group of transformations
(3.22), if and only if, for any group transformation (3.22),

F (x∗) = F (x). (3.48)

If F (x) is an invariant function of (3.22), then F (x) is called an invariant of (3.22) and F (x) is
said to be invariant under (3.22).

In theorem 3.2.2-2, it is presented an equivalent form of defining a Lie group of transformation (3.22)
employing its infinitesimal generator (3.39). In the same manner, the definition of an invariant function
(3.48) can be equivalently represented through the infinitesimal generator (3.39)

Theorem 3.2.3-1

F (x) is invariant under a Lie group of transformations (3.22) if and only if,

XF (x) = 0. (3.49)

The proof of the theorem can be found in Bluman and Anco [72]. A simple example with the scaling
group is given to illustrate the theorem:

The function

F (x, y) =
x2

y
, (3.50)
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is invariant under the scaling group of transformations (3.43). It can be proved using equation (3.48):

F (x∗, y∗) = F (x, y)→ x∗
2

y∗
=
e−2εx2

e−2εy
=
x2

y
. (3.51)

Equivalently, equation (3.49) can be used to proof that (3.50) is invariant under (3.43):

XF (x) =

(
x
∂

∂x
+ 2y

∂

∂y

)
x2

y
= 2

x2

y
− 2

x2

y
= 0. (3.52)

Therefore (3.50) is an invariant of (3.43).
The concept of invariant function can be extended to a system of PDEs. Let x = (x1, x2, ..., xn) be

the n independent variables and u = (u1, u2, ..., um) the m dependent variables of the system of PDEs,
which depend on the independent variables. Note that the superscript does not indicate a power function
but the component of the set of u. Then, the N equations of the system of PDEs can be represented as

Fσ = (x,u, ∂u, ∂2u, ..., ∂ku), σ = 1, 2, ..., N, (3.53)

where k indicates the highest derivative that appears in the PDE and ∂lu represent all possible derivatives
of any ui with respect to any combination of xj . For example, for the first derivatives:

∂u =

(
∂u1

∂x1
,
∂u1

∂x2
, ...,

∂u1

∂xn
,
∂u2

∂x1
,
∂u2

∂x2
, ...,

∂u2

∂xn
, ...,

∂um

∂x1
,
∂um

∂x2
, ...,

∂um

∂xn

)
. (3.54)

Also, the notation uµi1i2...ik represents the k-th derivative of uµ with respect to xi1 , xi2 , ..., and xik ,

uµi1i2...ik =
∂kuµ

∂xi1∂xi2 ...∂xik
,

for µ = 1, 2, ...,m, ij = 1, 2, ..., n, j = 1, 2, ..., k.

(3.55)

If, the infinitesimal notation (3.25) is used to define a Lie group of transformations acting on the
variable of the system of PDEs, it is obtained:

x∗ = X(x,u; ε) = x+ εξ(x,u) +O(ε2),

u∗ = U(x,u; ε) = u+ εη(x,u) +O(ε2),
(3.56)

where ξ(x,u) and η(x,u) are the infinitesimals of the independent and dependent variables, respectively,
and they are defined as in (3.24). The infinitesimal generator is

X = ξi(x,u)
∂

∂xi
+ ηj(x,u)

∂

∂uj
. (3.57)

In the search of Lie symmetries, the derivatives of the dependent variables that appear in the differ-
ential equation are considered as extra dependent variables. Therefore, their transformation has to be
taken into account, and they can be calculated by applying the chain rule

(uµi )∗ = Uµi (x,u, ∂u; ε) =

uµi + εη
(1)µ
i (x,u, ∂u) +O(ε2),

...

(uµi1i2...ik)∗ = Uµi1i2...ik(x,u, ∂u, ..., ∂ku; ε) =

uµi1i2...ik+εη
(k)µ
i1i2...ik

(x,u, ∂u, ..., ∂ku) +O(ε2).

(3.58)
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These transformations of the derivatives of the dependent variables are called extended transforma-

tions. The functions η
(1)µ
i , ..., η

(k)µ
i1i2...ik

are called the k-th extended infinitesimals, where the number in
the parenthesis of the superscript indicates the order of the derivative. The extended infinitesimals can
be calculated as

η
(1)µ
i = Diη

µ − (Diξj)u
µ
j ,

η
(k)µ
i1i2...ik

= Dikη
(k−1)µ
i1i2...ik−1

− (Dikξj)u
µ
i1i2...ik−1j

,
(3.59)

for ij = 1, 2,..., n, and j = 1, 2,..., k, with k ≥ 2. The definition of the extended infinitesimals is
developed in the book of Bluman and Anco [72] in several theorems. The operator Di, in (3.59), is the
total derivative operator, defined as

Di =
∂

∂xi
+ uµi

∂

∂uµ
+ uµij

∂

∂uµj
+ ...+ uµii1i2...ik

∂

∂uµi1i2...ik
+ ... (3.60)

Then, definition 3.2.3-1 can be extended to a system of PDEs as

Definition 3.2.3-2

The one-parameter Lie group of point transformations

x∗ = X(x,u; ε),

u∗ = U(x,u; ε),
(3.61)

leaves invariant the system of PDEs (3.53), i.e. is a point symmetry admitted by (3.53), if and only if
its k−th extension, defined by (3.58), leaves invariant the N surfaces in (x,u, ∂u, ∂2u, ..., ∂ku)-space,
defined by (3.53).

The corresponding k-th extended infinitesimal generator of the Lie group of transformations, composed
by (3.56) and (3.58), is defined as

X(k) =ξi(x,u)
∂

∂xi
+ ηµ(x,u)

∂

∂uµ
+ η

(1)µ
i (x,u, ∂u)

∂

∂uµi
+ ...

+ η
(k)µ
i1i2...ik

(x,u, ∂u, ..., ∂ku)
∂

∂uµi1i2...ik

(3.62)

Again, the development of the definition of equation (3.62) comes in more detail in the book of Bluman
and Anco [72]. While theorem 3.2.3-1 was formulated for a function, an equivalent theorem can be now
formulated for a system of PDEs

Theorem 3.2.3-2

The one-parameter Lie group of point transformations (3.61), with infinitesimal generator (3.57) and
extended infinitesimal generator (3.62), is admitted by the system of PDEs (3.53) if and only if

X(k)Fσ(x,u, ∂u, ∂2u, ..., ∂ku) = 0, (3.63)

when u satisfies (3.53), for each σ = 1, 2,...,N .

The proof of the theorem is given in Bluman and Anco [72]. In other words, the last theorem states
that a system of PDEs (3.53) is invariant under a Lie group of transformation (3.61) if X(k)Fσ = 0.

41



3.2. LIE SYMMETRIES THEORY

3.2.4 Lie algorithm

The advantage of using infinitesimal transformations is that Lie symmetries can be obtained by following
a few steps that conform what is known as the Lie algorithm. To explain the algorithm, an illustrative
example will be used. Instead of a system of PDEs, a single PDE (N = 1) will be used: the heat equation,
which reads

F (t, x, u, ut, ux, utt, utx, uxx) = ut − uxx = 0. (3.64)

For the heat equation (3.64), the number of independent variable is n = 2: t and x; and the number
of dependent variables m = 1: u. Since the second derivative is the higher order of a derivative that
appears in the PDE, k = 2. Now, the first step of the Lie algorithm can be applied

Step 1

Apply the extended infinitesimal generator (3.62) to the PDE (3.64) as stated in theorem
3.2.3-2 (3.63).

For this, the extended infinitesimal generator, X(2), needs to be calculated. Using equation (3.62), it
is obtained that

X(2) =ξt(t, x, u)
∂

∂t
+ ξx(t, x, u)

∂

∂x
+ ηu(t, x, u)

∂

∂u
+

+ η
(1)u
t (t, x, u, ut, ux)

∂

∂ut
+ η(1)u

x (t, x, u, ut, ux)
∂

∂ux
+

+ η
(2)u
tt (t, x, u, ut, ux, utt, utx, utt)

∂

∂utt
+

+ η
(2)u
tx (t, x, u, ut, ux, utt, utx, utt)

∂

∂utx
+

+ η(2)u
xx (t, x, u, ut, ux, utt, utx, utt)

∂

∂uxx

(3.65)

Now, equation (3.63) from theorem 3.2.3-2 can be applied, obtaining:

X(2) F (t, x, u, ut, ux, utt, utx, uxx)|F=0 = 0

X(2) [ut − uxx]|ut=uxx = 0

η
(1)u
t (t, x, u, ut, ux)− η(2)u

xx (t, x, u, ut, ux, utt, utx, utt)
∣∣∣
ut=uxx

= 0

(3.66)

Note that the condition F = 0→ ut = uxx comes from the fact that u must satisfy the PDE (3.64).

Step 2

Derive the necessary extended infinitesimals, given by equations (3.59), using the total
derivative, Di, defined in (3.60).

From equation (3.66), the extended infinitesimals that need to be calculated are η
(1)u
t (t, x, u, ut, ux)

and η
(2)u
xx (t, x, u, ut, ux, utt, utx, utt). For the last, the infinitesimal, η

(1)u
t (t, x, u, ut, ux) must be calculated

previously. For the sake of readability, the dependencies of the infinitesimals will be omitted. Using
equations (3.59) and (3.60), it is obtained

η
(1)u
t = Dtη

u −
(
Dtξ

t
)
ut − (Dtξ

x)ux =

=
∂ηu

∂t
+ ut

∂ηu

∂u
− ut

∂ξt

∂t
− utut

∂ξt

∂u
− ux

∂ξx

∂t
− utux

∂ξx

∂u
=

= ηut + utη
u
u − utξtt − ututξtu − uxξxt − utuxξxu,

(3.67a)
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η(1)u
x = Dxη

u −
(
Dxξ

t
)
ut − (Dxξ

x)ux =

=
∂ηu

∂x
+ ux

∂ηu

∂u
− ut

∂ξt

∂x
− utux

∂ξt

∂u
− ux

∂ξx

∂x
− uxux

∂ξx

∂u
=

= ηux + uxη
u
u − utξtx − utuxξtu − uxξxx − uxuxξxu,

(3.67b)

η(2)u
xx =

(a)︷ ︸︸ ︷
Dxη

(1)u
x −

(b)︷ ︸︸ ︷(
Dxξ

t
)
utx−

(c)︷ ︸︸ ︷
(Dxξ

x)uxx =

=

(a)︷ ︸︸ ︷
∂η

(1)u
x

∂x
+ ux

∂η
(1)u
x

∂u
+ utx

∂η
(1)u
x

∂ut
+ uxx

∂η
(1)u
x

∂ux

−

(b)︷ ︸︸ ︷
utx

∂ξt

∂x
− utxux

∂ξt

∂u
−

(c)︷ ︸︸ ︷
uxx

∂ξx

∂x
− uxxux

∂ξx

∂u
=

=

(a)︷ ︸︸ ︷
∂η

(1)u
x

∂x︸ ︷︷ ︸
(a1)

+ux
∂η

(1)u
x

∂u︸ ︷︷ ︸
(a2)

+utx
∂η

(1)u
x

∂ut︸ ︷︷ ︸
(a3)

+uxx
∂η

(1)u
x

∂ux︸ ︷︷ ︸
(a4)

−

(b)︷ ︸︸ ︷
utx

∂ξt

∂x
− utxux

∂ξt

∂u
−

(c)︷ ︸︸ ︷
uxx

∂ξx

∂x
− uxxux

∂ξx

∂u
=

= a1 + a2 + a3 + a4− utxξtx − utxuxξtu − uxxξxx − uxxuxξxu,

(3.67c)

where:

a1 = ηuxx + uxxη
u
u + uxη

u
xu − utxξtx − utξtxx − utxuxξtu − utuxxξtu − utuxξtxu

−uxxξxx − uxξxxx − 2uxxuxξ
x
u − u2

xξ
x
xu, (3.68a)

a2 = uxη
u
xu + uxuxuη

u
u + u2

xη
u
uu − uxutuξtx − uxutξtxu − utuu2

xξ
t
u − uxutuxuξtu

−utu2
xξ
t
uu − uxuxuξxx − u2

xξ
x
xu − 2uxuu

2
xξ
x
u − u3

xξ
x
uu, (3.68b)

a3 = −utxξtx − utxuxξtu, (3.68c)

a4 = uxxη
u
u − uxxutξtu − uxxξxx − 2uxxuxξ

x
u. (3.68d)

Step 3

Insert the extended infinitesimals in the result obtained on step 1 (3.66) and group the
infinitesimals by the dependent variables and their derivatives. The condition F = 0 should
be introduced in this step.

This results in:

ηut + utη
u
u − utξtt − ututξtu − uxξxt − utuxξxu−

(a1 + a2 + a3 + a4− utxξtx − utxuxξtu −uxxξxx − uxxuxξxu)|ut=uxx = 0.
(3.69)

Grouping the infinitesimals that are multiplied by the same dependent variable and/or their deriva-

43



3.2. LIE SYMMETRIES THEORY

tives:

(ηut − ηuxx) + (ξxxx − 2ηuxu − ξxt )ux + (ηuu − ξtt + ξtxx)ut + (2ξxxu − ηuuu)u2
x + (2ξtxu − ξxu)utux+

+ (ξxuu)u3
x + (ξtuu)utu

2
x + (−ξtu)u2

t + (2ξxx − ηuu) uxx︸︷︷︸
=ut

+(2ξtx)utx + (3ξxu) uxx︸︷︷︸
=ut

ux + (2ξtu)utxux+

+(2ξtu)ut uxx︸︷︷︸
=ut

∣∣∣∣∣∣
ut=uxx

= 0.

(3.70)

Finally, the condition F = 0→ ut = uxx is introduced:

(ηut − ηuxx) + (ξxxx − 2ηuxu − ξxt )ux + (2ξxx − ξtt + ξtxx)ut + (2ξxxu − ηuuu)u2
x+

+ (2ξxu + 2ξtxu)utux + (ξxuu)u3
x + (ξtuu)utu

2
x + (ξtu)u2

t + (2ξtx)utx+

+ (2ξtu)utxux = 0.

(3.71)

The resulting equations are composed of infinitesimals, that depend on t, x, and u, multiplied by
derivatives of u. Since each derivative of u is independent and arbitrary, each of the bracket terms must
be 0 to satisfy the equation. This leads to the next step.

Step 4

Solve the system of differential equations obtained from matching each bracket to 0.
The resulting system of differential equations is

0 = ηut − ηuxx, (3.72a)

0 = ξxxx − 2ηuxu − ξxt , (3.72b)

0 = 2ξxx − ξtt + ξtxx, (3.72c)

0 = 2ξxxu − ηuuu, (3.72d)

0 = ξxu + ξtxu, (3.72e)

0 = ξtu, (3.72f)

0 = ξxuu, (3.72g)

0 = ξtuu, (3.72h)

0 = ξtx, (3.72i)

0 = ξtu. (3.72j)

It should be noted that some equations are a direct result of others, for example, equation (3.72h)
(ξtuu = 0) is a direct result of equation (3.72j) (ξtu = 0). Also, some terms are 0 as a result of other
equations, for example, from equations (3.72i) (ξtx = 0) and (3.72j) (ξtu = 0), one can neglect the last term
in equation (3.72e), ξtxu = 0 and, therefore, (3.72e) results in ξxu = 0. After applying all simplifications
the system of differential equations is reduced to:

0 = ηut − ηuxx, (3.73a)

0 = ξxxx − 2ηuxu − ξxt , (3.73b)

0 = 2ξxx − ξtt , (3.73c)

0 = ηuuu, (3.73d)

0 = ξxu, (3.73e)

0 = ξtx, (3.73f)

0 = ξtu. (3.73g)
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Using equations (3.73d)-(3.73g), the functions have the following form:

ξt = ξt(t), (3.74a)

ξx = ξx(t, x), (3.74b)

ηu = ug̃(t, x) + ĝ(t, x). (3.74c)

Since ξt does not depend on the space, equation (3.73c) can be integrated with respect to x:

0 =

∫
2ξxxdx−

∫
ξttdx,

ξx(t, x) =
1

2
ξtt(t)x+ g(t). (3.75)

Equations (3.74c) and (3.75) can now be introduced into equation (3.73b)

0 =
∂

∂x

(
∂

∂x

(
1

2
ξtt(t)x+ g(t)

))
− 2

∂

∂x

(
∂

∂u
(ug̃(t, x) + ĝ(t, x))

)
− ∂

∂t

(
1

2
ξtt(t)x+ g(t)

)
.

(3.76)

The first term can be neglected, since it is linear in x. Operating and integrating now with respect
to x:

0 =
∫ (
−2 ∂

∂x (g̃(t, x))− 1
2ξ
t
tt(t)x− gt(t)

)
dx,

0 = −2g̃(t, x)− 1
4ξ
t
tt(t)x

2 − gt(t)x+ ǧ(t),

g̃(t, x) = − 1
8ξ
t
tt(t)x

2 − 1
2gt(t)x+ 1

2 ǧ(t). (3.77)

Finally, equation (3.74c) can be introduced into equation (3.73a):

0 = ηut (t, x, u)− ηuxx(t, x, u),

0 = (g̃t(t, x)− g̃xx(t, x))︸ ︷︷ ︸
(a)

u+ (ĝt(t, x)− ĝxx(t, x))︸ ︷︷ ︸
(b)

. (3.78)

Each bracket must be 0 for any value of u. Therefore, introducing (3.77) into the bracket (a) results
in:

0 =

(
−1

8
ξtttt(t)

)
︸ ︷︷ ︸

(a1)

x2 +

(
−1

2
gtt(t)

)
︸ ︷︷ ︸

(a2)

x+

(
1

2
ǧt(t) +

1

4
ξttt(t)

)
︸ ︷︷ ︸

(a3)

. (3.79)

The functions inside the brackets only depend on t. Therefore, all brackets must be 0 for any arbitrary
value of x. Integrating:

a1 → ξt(t) =
1

2
t2ã6 + tã3 + ã2, (3.80a)

a2 → g(t) = tã5 + ã1, (3.80b)

a3 → ǧ(t) = −1

2
tã6 + ã4. (3.80c)

Finally, using (3.75), (3.77) and (3.80a)-(3.80c), the infinitesimals have the following form:

ξt(t) =
1

2
t2ã6 + tã3 + ã2, (3.81a)

ξx(t, x) =
1

2
xtã6 +

1

2
xã3 + tã5 + ã1, (3.81b)

ηu(t, x, u) = −1

8
x2uã6 −

1

4
tuã6 −

1

2
xuã5 +

1

2
uã4 + ĝ(t, x). (3.81c)
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The six parameters and the unknown function ĝ(t, x) will form seven symmetries. It is worth men-
tioning now that the unknown function ĝ(t, x) appears due to the linearity of the differential equation.
Its meaning in the Lie symmetries will be explained in the next step.

Step 5

Formulate the multi-parametric infinitesimal generator of all symmetries and divide them
into one-parametric Lie-point symmetries.

The infinitesimal generator (3.57) can be expressed as:

X =
(
t2a6 + 2ta3 + a2

) ∂
∂t

+ (txa6 + xa3 + ta5 + a1)
∂

∂x

+

(
−1

4
x2ua6 −

1

2
tua6 −

1

2
xua5 + ua4 + f(t, x)

)
∂

∂u
,

(3.82)

with ft− fxx = 0 and the new coefficients are defined as: a1 = ã1, a2 = ã2, a3 = 1
2 ã3, a4 = 1

2 ã4, a5 = ã5,
a6 = 1

2 ã6 and f(t, x) = ĝ(t, x).
Now the seven one-parametric Lie-point symmetries can be obtained by setting one parameter equal

to 1 and the rest equal to 0, obtaining:

X1 =
∂

∂t
, (3.83a)

X2 =
∂

∂x
, (3.83b)

X3 = 2t
∂

∂t
+ x

∂

∂x
, (3.83c)

X4 = u
∂

∂u
, (3.83d)

X5 = t
∂

∂x
− 1

2
xu

∂

∂u
, (3.83e)

X6 = t2
∂

∂t
+ tx

∂

∂x
+

(
−1

4
x2u− 1

2
tu

)
∂

∂u
, (3.83f)

X7 = f(t, x)
∂

∂u
, with ft − fxx = 0. (3.83g)

The two basic symmetries that have been used in several examples so far appear in the heat equation,
i.e. translation in time, X1 (3.83a), and space, X2 (3.83b), and scaling of time and space, X3 (3.83c),
and of the dependent variable, X4 (3.83d). A complex physical meaning states for symmetries X5 (3.83e)
and X6 (3.83f). Finally, symmetry X7 (3.83g) has its roots in the linearity of the heat equation. This
type of symmetry always occurs in linear differential equations. Its meaning is that, if the dependent
variable is transformed by a function f(t, x), which is a solution of the heat equation, the transformed
heat equation will be equivalent to the original one. This, of course, is true for linear equations, since the
summation of two solutions, will also be a solution, due to the linearity.

3.2.5 Invariant Solutions

Once the one-parameter Lie symmetries have been obtained, the last step is to obtain invariant solutions
of the system of PDEs, using the symmetries obtained. In the field of fluid dynamics, these invariant
solutions are the so-called scaling laws.

A definition of invariant solutions should be introduced
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Definition 3.2.5-1

The function u = Θ(x), with components uµ = Θµ(x), µ = 1, 2,...,m, is an invariant of the system of
PDEs (3.53) resulting from an admitted point symmetry with infinitesimal generator (3.57) if and only
if

1. uµ = Θµ(x) is an invariant surface of (3.57) for each µ = 1, 2,..., m.

2. Θµ(x) solves (3.53).

Now, the following theorem can be applied.

Theorem 3.2.5-1

The function u = Θ(x) is an invariant solution of (3.53) if and only if u = Θ(x) satisfies

1. X(uµ −Θµ(x)) = 0, when u = Θ(x), µ = 1, 2,...,m. Developing the infinitesimal generator:

ξi(x,Θ(x))
∂Θµ(x)

∂ξi
= ηµ(x,Θ(x)), µ = 1, 2, ...,m. (3.84)

2. Fσ(x,u, ∂u, ∂2u, ..., ∂ku) = 0, when u = Θ(x), σ = 1, 2,...,N , namely

Fσ(x,Θ(x), ∂Θ(x), ∂2Θ(x), ..., ∂kΘ(x)) = 0, σ = 1, 2, ..., N. (3.85)

Equations (3.84) are the invariant surface conditions for the invariant solutions of the system of PDEs
(3.53) that is invariant under the point symmetries (3.57). Equation (3.85) means that the invariant
solution must be a solution of the system of PDEs (3.53).

Different methods can be used to determine the invariant solutions. Here the invariant form method
will be explained and used. This method consists of solving the invariant surface condition (3.84) by
explicitly solving the characteristic equation given by

∂x1

ξ1(x,u)
=

∂x2

ξ2(x,u)
= ... =

∂xn
ξn(x,u)

=
∂u1

η1(x,u)
=

∂u2

η2(x,u)
= ... =

∂um

ηm(x,u)
. (3.86)

When solving the characteristic system, one can obtain n− 1 invariants resulting from the relation of
the independent variables and m invariants resulting from the dependent variables. These invariants are
called y1, y2, ..., yn−1 for the independent variables and ν1, ν2, ..., νm for the dependent variables. Then,
the general solution u = Θ(x) of the system of PDEs (3.53) can be obtained from the invariant form

νµ(x,u) = Φµ(y1(x,u), y2(x,u), ..., yn−1(x,u)) (3.87)

Finally, the invariants νµ(x,u) should be introduced in the system of PDEs (3.53) to check if the
second condition of theorem 3.2.5-1 (3.85) is fulfilled.

To illustrate how invariant solutions are obtained through the invariant form method, the continuation
of the example of the heat equation will be used.

The first four symmetries, X1 to X4 (3.83a)-(3.83d), provide rather trivial solutions of the heat
equation, such that u can be constant in time and space, or linear in space. The sixth symmetry, X6

(3.83f), will be used, since it leads to a more interesting result that illustrates better the way in which
invariant solutions are obtained. Using X6 (3.83f), the invariant surface condition (3.84) has the following
form:

t2ut + txux = −
(

1

4
x2 +

1

2
t

)
u. (3.88)
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The corresponding characteristic equations (3.86) are given by

dt

t2
=
dx

tx
=

du

−
(

1
4x

2 + 1
2 t
)
u
. (3.89)

Now, n− 1 invariants can be obtained from the relations of the independent variables. For the heat
equation, one invariant, y1 is obtained:

y1(t, x, u) =
x

t
. (3.90)

One invariant is also obtained from the relation of the dependent variable and one independent var

ν1(t, x, u) =
√
te

x2

4t u. (3.91)

Therefore, using equation (3.87), it is obtained the invariant form of the solution of the invariant
surface condition (3.84):

ν1(t, x, u) = Φ(y1(t, x, u)) =
√
te

x2

4t u. (3.92)

Then, u can be solved from the previous equation, obtaining

u = Θ(t, x) =
1√
t
e
−x2

4t Φ(y1(t, x, u)). (3.93)

This result can now be introduce into the heat equation. After simplifications, the following ODE is
obtained:

Φ′′(y1(t, x, u)) = 0. (3.94)

The solution of the ODE is trivial. Substituting the value of the function Φ(y1(t, x, u)), it is obtained
a final solution of the heat equation

u = Θ(t, x) =
1√
t

(
C1 + C2

x

t

)
e
−x2

4t . (3.95)

Introducing this result into the heat equation, where C1 and C2 are constants of integration that
depend on the boundary conditions, one can corroborate that (3.95) is effectively a solution of the heat
equation.

3.3 Conclusions

In the first section of this chapter, the governing equations that describe turbulent flows are presented,
including the MPC equations. In the second section, the theory relevant to the Lie symmetries method
has been introduced. Lie symmetries are a powerful method for calculating invariant solutions of a system
of PDEs, i.e. scaling laws that define universal behaviours of the variables. In section §5.1.5 the theory
is applied to the governing equations of turbulence, i.e. the Navier-Stokes, energy, and MPC equations.
The key to obtaining scaling laws of the velocity and thermal field comes from the Lie symmetries that
result from the MPC equations, which describe turbulent statistics of second order.
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Chapter 4

Methodology

In the present work, several DNS of a turbulent channel are presented. As has been already stated, the
main focus of the study is to analyze heat transfer in these turbulent channels. Specifically, heat transfer
of a passive scalar. The boundary condition for the flow is a pressure gradient (Poiseuille flow), while for
the temperature, the MBC is applied. Configuration of the DNS under these conditions are presented
in section §4.1. Also, a specific subsection, §4.1.2, is dedicated to present the configuration used in a
DNS of an isothermal Poiseuille flow for the highest friction Reynolds number ever simulated in a DNS,
Reτ = 10000. In addition, in section §4.2, the case of heat transfer under the MBC in a Couette flow is
presented. Finally, the configuration of the simulations of stratified flows is shown in section §4.3, where
a scalar difference is imposed between both walls of the channel as the thermal boundary condition. For
all cases, the flow is considered incompressible.

The Navier-Stokes, (1.5) and (1.6), and the energy, (1.7), equations are used to simulate the flow. The
code employed to run the simulations is the LISO code, already validated in several different turbulent
flows, [38, 52, 54, 56, 73, 74]. A detailed description of the code can be found in Appendix §7.1.

4.1 Configuration of the Poiseuille flow simulations

4.1.1 Configuration of heat transfer simulations

For Poiseuille flows with heat transfer, a schematic representation of the lower half of the computational
box can be seen in figure 4.1, where contours of the velocity are shown for the case of Reτ = 5000 and
Pr = 0.71, and the flow moves from left to right. Periodic conditions are imposed in the streamwise and
spanwise boundaries. Four different Reynolds numbers are used, namely Reτ = 500, 1000, 2000 and 5000.
In simulations performed at Reτ = 500, 1000 and 2000, the computational box dimensions are Lx = 2πh,
Ly = 2h and Lz = πh in the streamwise, wall-normal and spanwise directions, respectively. It was stated
in [75] for the flow field, and in [52] for thermal flows, that a computational box with such dimensions
is big enough to accurately represent the first-order statistics of the velocity and temperature fields. In
order to keep the same resolution for the different Reynolds numbers, the number of collocation points
is just multiplied by a factor of 2, as the Reynolds number is. However, the friction Reynolds number
Reτ = 5000 is 2.5 times bigger than the closest case at Reτ = 2000. Increasing the number of collocation
points only by a factor of 2 will lead to a poor quality mesh and the results will not be accurate. In order
to obtain the same mesh resolution as in the lower Reτ simulations, the number of collocation points in
the x and z directions is set to be 4 times higher than the ones in the simulation of Reτ = 2000. In
order to adjust the mesh resolution, the streamwise and spanwise dimensions of the computational box
are multiplied by a factor of 1.6. Therefore, on one hand, the computational cost increases due to the
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Figure 4.1: Schematic representation of the lower half of the computational box. The flow is driven by
a pressure gradient, ∆P , from left to right. A constant heat flux, q̇w, is heating both isothermal walls.
Contours represent a snapshot of the streamwise velocity field for the case of Reτ = 5000 and Pr = 0.71.

high increase in collocation points. But, on the other hand, since the domain is increased in the periodic
directions, the number of statistics obtained every time step also increases. Then, the dimensions of the
computational box for the case of Reτ = 5000 are set to be 3.2πh, 2h and 1.6πh in the streamwise,
wall-normal, and spanwise directions, respectively.

Table 4.1 presents the most important parameters of the simulations. Information about the dimen-
sionless numbers (first to third column), the number of collocation points of the mesh (fourth to sixth
column) and its resolution in every direction (seventh to tenth column), and the time of the simula-
tion in wash-outs (eleventh column column) are shown. A wash-out is defined as the time needed for
an eddy to cross the channel, Lx/Ub. ∆y+

w and ∆y+
cl are the wall-normal mesh resolution in the wall

and in the center-line of the channel, respectively. For this resolution of the mesh in the wall-normal
direction, the spacing between points has been set to be proportional to the local isotropic Kolmogorov

scale η =
(
ν3/ε

)1/4
, for the cases of Pr ≤ 1. The increment in y is set to be ∆y = 1.5η. For the cases

where Pr ≥ 1, the thermal scales are smaller than the velocity scales. Therefore, the mesh resolution in
the wall-normal direction is adapted to satisfy Batchelor length scale, ηθ = ηPr−1/2, when Pr ≥ 1. On
the other hand, the resolution of the mesh in the streamwise and spanwise direction is ∆x+ ∼ 8.18 and
∆z+ ∼ 4.09, respectively, for simulations with Pr ≤ 1. These values are similar to many other trusted
simulations [40, 45, 52, 54, 73]. The mesh resolution in x and z directions has also been adapted for
higher Prandtl numbers. In addition, for medium-high Prandtl numbers a mesh with higher resolution
in x and z and/or y was simulated for a mesh validation. There were no significant differences in the
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Reτ Pr Re Nx Ny Nz ∆x+ ∆y+
w ∆y+

cl ∆z+ yub/Lx

500

0.007

10200
384

251
384 8.18

0.72 5.3
4.09

421
0.01 30
0.02 332
0.05 295
0.1 174
0.3 346
0.5 210
0.71 528

1 143
2 191
4 288
7 351 0.27 3.9 94
10 768 383 768 4.09 0.22 3.6 2.05 120

1000

0.007

22300
768

383
768 8.18

0.44 7.4
4.09

79
0.01 114
0.02 176
0.05 79
0.1 65
0.3 73
0.5 70
0.71 130

1 191
2 119
4 583 0.19 4.9 185
7 1536 633 1536 4.09 0.16 4.5 2.05 86

2000

0.007

48500
1536

633
1536 8.18

0.32 8.8
4.09

21
0.01 28
0.02 29
0.05 36
0.1 36
0.3 36
0.5 35
0.71 47

1 97
2 96
4 1285 0.12 4.3 56
7 3072 1285 3072 4.09 0.12 4.3 2.05 29

5000 0.71 135860 6144 1685 6144 8.18 0.2 8.1 4.09 12

Table 4.1: Parameters of the Poiseuille simulations.
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(a) (b)

(c) (d)

Figure 4.2: Instantaneous visualizations for Reτ = 2000 and (a) velocity field for Pr = 0.71, (b) thermal
field for Pr = 0.71, (c) thermal field for Pr = 0.05 and (d) thermal field for Pr = 0.007. All magnitudes
are normalized in wall units.

first-order statistics between the different meshes simulated.
A good way to observe the size of the turbulent scales is by plotting isocontours of velocity and

temperature fields. They can be seen in figures 4.2 and 4.3, where different instantaneous values of the
velocity and temperature field are presented. In figure 4.2a, the velocity field for Pr = 0.71 is shown.
These turbulent scales are comparable to the ones presented in the thermal field for the same Prandtl
number, figure 4.2b. This result was expected since Pr ∼ 1 and, therefore, Peτ ∼ Reτ . However, the
instantaneous temperature fields shown in figures 4.2c (Pr = 0.05) and 4.2d (Pr = 0.007) are different.
For low Prandtl numbers, the thermal flow becomes less turbulent and, for the smallest Prandtl number
studied, the thermal flow is almost laminar. This confirms once again that by reducing the Prandtl
number, the thermal field is less turbulent, reducing the turbulent heat flux and the heat transferred by
convection.

Regarding high Prandtl numbers, in figures 4.3a and 4.3b, a comparison between both fields, velocity
and temperature for Reτ = 2000 and Pr = 7, is done in a x − y plane. Unlike temperature fields
for Pr = 1, the temperature scales for Pr = 7 are smaller than the velocity ones. This implies that
the temperature field is more turbulent than the velocity one, and, effectively, a finer mesh is needed
to properly capture the smaller scales of the thermal field. In addition, one can easily see how the
boundary layer of the temperature is thinner than the one of the velocity, which implies higher gradients
of temperature in the near-wall region. Remark the fact that both, velocity and temperature structures
detach from the wall with an angle of approximately 25◦.

The middle figures, 4.3c and 4.3d, present the temperature field in a x− z plane located in the center
of the channel for the cases of Pr = 1 and 7, respectively, with Reτ = 2000. Following the same idea
as before, smaller turbulent scales appear for Pr = 7. Finally, a comparison of the temperature scales
has been done, depending on the distance to the wall. Figures 4.3e and 4.3f are instantaneous images of
the temperature field for Pr = 7 and Reτ = 2000 at y+ = 240 and 9, respectively, i.e. the logarithmic
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Instantaneous visualizations for Reτ = 2000. (a) Velocity and (b) temperature fields for the
Pr = 7 case in the x − y plane. Temperature field for (c) Pr = 1 and (d) Pr = 7 in the x − z central
plane of the channel. Temperature field for Pr = 7 in a x− z plane located in (e) the logarithmic region,
y+ = 240, and (f) in the near-wall region, y+ = 9. All magnitudes are normalized in wall units.

and the conductive region, respectively. In the logarithmic region, intermediate scales are obtained, not
as big as in the outer region, but either as small as in the near-wall region. The classical streaks in the
near-wall region are perfectly observed in figure 4.3f. Corresponding streaks for the velocity field are
also obtained (not shown here for brevity), which reflect the strong correlations between the streamwise
velocity and temperature field in the near-wall region. However, it should be noted that this correlation
gets weaker as the Prandtl number increases, as it will be presented in chapter §5.

The procedure to run the simulation starts with an initial file from other simulation with similar
Reynolds and Prandtl numbers. The process when the flow converges towards a statistically stationary
state can be almost as long as the simulation itself. This simulation time is not contemplated in the
rightmost column of table 4.1. After that, the simulation is run and the flow statistics are collected.
As a first rule of thumb, 10 wash-outs are needed for the highest Reynolds numbers simulations to
be statistically converged. After this point, in order to check if the simulation is actually statistically
converged, the balance equations of the momentum (1.21) and energy (1.41) equations are computed,
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(a) (b)

(c) (d)

Figure 4.4: Balance of the moment equation (4.1) for (a) Reτ = 500, (b) Reτ = 1000, (c) Reτ = 2000 and
(d) Reτ = 5000. Green dashed lines represents the total shear stress, blue solid lines are the molecular
shear stress, black dashed-dotted lines are the turbulent shear stress. Red dotted lines are the differences
between the LHS and the RHS of equation (4.1). Different symbols indicate different Prandtl number,
which collapse due to the condition of a passive scalar.

which are presented here again to indicate the nature of each term of the equations:

τ+ =

Molecular︷ ︸︸ ︷
dU

+
(y+)

dy+

Turbulent︷ ︸︸ ︷
−u+v+(y+) =

Total︷ ︸︸ ︷
1− y+

Reτ
, (4.1)

q̇+ =
1

Pr

dΘ
+

(y+)

dy+︸ ︷︷ ︸
Molecular

−v+θ+(y+)︸ ︷︷ ︸
Turbulent

= 1− 1

ReτU
+
b

∫ y+

0

U
+

(ŷ+)dŷ+

︸ ︷︷ ︸
Total

. (4.2)

When the balances in shear stresses and heat fluxes are below 10−3 the simulation is considered
converged. Figure 4.4 shows the balance terms of equation (4.1). The red dotted line is the residual of
the LHS and RHS, which indicates that the simulations are converged. Furthermore, the collapsing of the
curves for different Reynolds numbers indicates that the velocity field is statistically converged. On the
other hand, figure 4.5 shows the balance terms of equation (4.2). In the same way, the red dotted lines
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(a) (b)

(c) (d)

Figure 4.5: Balance of the energy equation (4.2) for (a) Reτ = 500, (b) Reτ = 1000, (c) Reτ = 2000 and
(d) Reτ = 5000. Green dashed lines represents the total heat flux, blue solid lines are the molecular heat
fluxes (lower lines indicate a higher Prandtl number), black dashed-dotted lines are the turbulent heat
fluxes (upper lines indicate a higher Prandtl number). Red dotted lines are the differences between the
LHS and the RHS of equation (4.2). Magenta solid line is formed by the cross points between molecular
and turbulent heat fluxes. Symbols represent the different Prandtl number.

at a value of almost 0 indicate that the simulations are converged. An important result is that turbulent
heat flux decreases for lower Prandtl numbers. This entails a thermal flow that is less turbulent. The
magenta line is formed by the cross points between the molecular and turbulent heat fluxes. For a certain
value of Prandtl, turbulent heat flux is lower than molecular heat flux in the whole channel. This value
of the Prandtl number increases with the Reynolds number since a higher Re entails a more turbulent
flow. Finally, for cases with medium and high Prandtl numbers the y+ coordinate where the molecular
and turbulent heat fluxes cross is independent of Reτ . In terms of the y coordinate, this means that the
viscous layer is smaller when the Reynolds number is increased, as it should. In the central region of the
channel, the turbulent heat flux increases its maximum value when the Reynolds number is increased
and the area below the turbulent heat flux line also increases. All this implies that the thermal flow is
more turbulent for higher Reτ , as was expected.

Finally, in order to validate the code for low Prandtl numbers, a simulation for Reτ = 400 and
Pr = 0.025 has been performed. This Prandtl number is, up to date, the lowest Prandtl number
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(a) (b)

Figure 4.6: (a) Mean temperature profile in inner (bottom, dashed line) and outer (top, pointed line)
scales for Reτ = 400 and Pr = 0.025. (b) Temperature RMS (dashed) and streamwise (dash-pointed)
and wall-normal (pointed) heat fluxes. Black solid lines from Kawamura’s database [45].

Reτ Reb Lx Lz ∆x+ ∆z+ tuτ/h
10000 261000 2πh πh 15.3 7.6 19.8

Table 4.2: Parameters of the Poiseuille isothermal simulation. ∆+
x and ∆+

z are in terms of dealiased
Fourier modes. The last column is the total simulation time without transition in terms of eddy turnovers.

simulated in turbulent channel flows and was done first by Abe et al [45]. The results of the simulation
here presented are compared with the data provided in Kawamura’s database [45]. This comparison is
shown in figure 4.6. Figure 4.6a shows a perfect agreement for the mean temperature in both inner and
outer scales. Also, in figure 4.6b all curves collapse almost perfectly for the temperature variance and
both streamwise and wall-normal heat fluxes. The very small differences can be due to small statistical
uncertainties during the simulation, a slightly different Reynolds number, or a different numerical scheme
employed.

4.1.2 Configuration of Poiseuille isothermal flow simulation

Figure 4.7 is a schematic representation of the computational box of the simulation at a nominal Reτ =
10000, where instantaneous streamwise velocity perturbations are plotted. This simulation has been
performed in a computational box of sizes Lx = 2πh, Ly = 2h and Lz = πh, as the simulations for
Reτ = 500, 1000 and 2000 of heat transfer in Poiseuille flows. A variation of the LISO code, described in
Appendix §7.1, is used. where the energy equation is removed and only the Navier-Stokes equations, (1.5)
and (1.6), are simulated. The wall-normal grid spacing is adjusted to keep the resolution at ∆y = 1.5η,
i.e., approximately constant in terms of the local isotropic Kolmogorov scale. In wall units, ∆y+ varies
from 0.3 at the wall, up to ∆y+ ' 12 at the centerline. The resolution in x and z is similar to the largest
simulations of turbulence [73, 75, 76].

The initial file of this simulation was taken from a smaller Reynolds number simulation. To accelerate
the compilation of statistics, three initial files were prepared and thus three simulations were run at the
same time. In every case, the code was run until some transition phase had passed and the flow had
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Figure 4.7: Instantaneous streamwise velocity perturbation, arbitrary units. The flow goes from the left
to the right. Only the bottom part of the channel is shown. Red lines: log layer. Green lines, outer
region.

adjusted to the new set of parameters. Once the flow was in a statistically steady-state, statistics were
compiled. The running times to compile statistics are shown in terms of eddy-turnovers in the rightmost
column of table 4.2. The transitions until the simulations reached a statistically steady-state, which were
very time-consuming, are not contemplated in this table.

To further validate the statistics of the simulation, figure 4.8 shows the error in the balance of the
momentum equation (4.1). The difference between both sides of this equation is below 2×10−3, similar to
the other tree simulations utilized here. Thus, it has been considered that enough statistical information
was obtained. To further post-process the simulation, a total of 300 temporal images of the velocity field
have been stored, with a size of roughly 90TB.

4.2 Configuration of the Couette flow simulations

For the study of thermal Couette flows, two DNS of a passive thermal flow in a turbulent channel at
Reτ = 250 and 500, and Pr = 0.71 have been conducted within a computational box of Lx = 16πh,
Ly = 2h and Lz = 6πh, with periodicity in the streamwise and spanwise directions. These are the cases
V and VI in table 4.3. In addition, four Couette flow simulations with different size of boxes in x and z
dimensions (4πh× 0.5πh, 2πh× πh, 4πh× 2πh and 16πh× 6πh) were also conducted at Reτ = 180 and
the Prandtl number of air (cases I-IV in table 4.3). In all cases the MBC is applied to the thermal field.
These simulations were performed to check whether or not the size of the box has an influence in the
rolls described in subsection §2.3.1 and, consequently, in the mean and one-point statistics. The upper

57



4.2. CONFIGURATION OF THE COUETTE FLOW SIMULATIONS

Figure 4.8: Error in the computation of momentum equation (1.6). Black solid line is the result of
the simulation of this work at Reτ = 10000. Green dotted-dashed line is from Lee and Moser [76] for
Reτ = 5200. Red dashed line is from Lozano-Durán and Jiménez [75] for Reτ = 4000. Blue dotted line
is from Hoyas and Jiménez [73] for Reτ = 2000.

wall is the moving wall, while the lower one is stationary. The average operator 〈·〉xi is defined as

〈φ〉xi =
1

Lxi(t1 − t0)

∫ t1

t0

∫ Lxi

0

φdxi dt, (4.3)

where the value of 〈φ〉x can be thought as the mean in x of the time-averaged field φ.

A variation of the LISO code, described in appendix §7.1 is used to solve the equations that describe
the flow (1.5), (1.6) and (1.7). This variation introduces a coefficient that imposes a percentage of pressure
difference and a percentage of motion of the wall. Setting the coefficient to 1, the motion of the flow
comes entirely from the motion of the wall, describing a Couette flow. As usual, the wall-normal grid
spacing is adjusted to keep the resolution at ∆y = 1.5η. In wall units, ∆y+ varies from 0.83 at the

Cases Reτ Re Box Nx Ny Nz tuτ/h
I 166 3500 4πh× 0.5πh 384 201 144 57.3
II 177 3500 2πh× πh 192 201 192 79.9
III 176 3500 4πh× 2πh 384 201 384 39.2
IV 178 3500 16πh× 6πh 1536 251 1152 59.1
V 262 5400 16πh× 6πh 1536 251 1152 88.9
VI 476 10500 16πh× 6πh 3072 251 2304 58.1

Table 4.3: Parameters of the simulations. Friction and bulk Reynolds numbers are shown in columns
two and three, respectively. The fourth column shows the box size of each case. Nx, Ny and Nz are
the number of collocation points in each direction. The last column contains the time spent to compile
statistics in terms of eddy-turnovers.
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(a) (b)

Figure 4.9: For Reτ = 250 (thin lines) and 500 (thick lines). (a) Shear stresses: dU
+
/dy+ (blue, solid),

−uv+ (black, dash-doted) (b) Heat fluxes: molecular (blue, solid), turbulent (black, dash-doted) and
total (green, dashed). In both cases, the red pointed line represents the difference between LHS and RHS
of either equations (4.4) or (4.2).

wall, up to ∆y+ ' 2.3 at the center-line. The wall-parallel resolution in physical space for x and z is
∆x+ ' 8.4 and ∆z+ ' 4.3. Simulations are submitted in a similar way to Poiseuille flows.

In order to further validate the database, the balance equations of the shear stresses and heat fluxes in
a Couette flow have been computed and plotted. The balance of heat fluxes is calculated as in equation
(4.2), while the balance equation of shear stresses is slightly different for Couette flows:

τ+ =

Molecular︷ ︸︸ ︷
dU

+
(y+)

dy+

Turbulent︷ ︸︸ ︷
−u+v+(y+) =

Total︷︸︸︷
1 . (4.4)

The results of this validation are shown in figure 4.9, for cases V and VI. It has been considered that
enough statistics were obtained when this error was below 10−3. In figure 4.9a, apart from the small
error, a very good agreement is found between both simulations, as the curves collapse almost perfectly.
Molecular and turbulent heat fluxes are compared with the total flux in figure 4.9b. Again a very small
error is obtained, validating both simulations.

4.3 Configuration of the stratified flow simulations

The study of stratified flows has been done as an extension of the study of the Couette flows. The main
idea is to investigate how the rolls that appear in Couette flows, described in section §2.3.1, are affected
by a change of density in the wall-normal direction. Instantaneous density is denoted by ρt. Because a
capital ρ is indistinguishable to P the subindex t is used, and, thus, ρt = ρ+ ρ.

The governing equations are written under the Boussinesq approximation, so the continuity equation
is identical to equation (1.5) and the momentum equation in the wall-normal direction includes an extra
term to consider buoyancy effects. Their nondimensional form is

∂U+
i (t,x)

∂t
+ U+

j (t,x)
∂U+

i (t,x)

∂x+
j

= −∂P
+(t,x)

∂x+
i

+
1

Reτ

∂2U+
i (t,x)

∂x+
j ∂x

+
j

−Riτρ+
t δi2, (4.5)
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Case Reb Reτ Riτ tuτ/h tUb/Lx
P0 10200 500 0 48.11 34.19
C0 10500 480 0 41.96 33.03
C1 10700 476 0.50 54.74 44.26
C3 11300 483 1.65 34.98 29.43
C6 11480 476 2.90 31.51 27.33

Table 4.4: Parameters of the simulations. Two different Reynolds numbers are given depending on
the bulk velocity, Ub, and uτ . Riτ is given in the fourth column. The last two columns denote the
computational time span while statistics were taken in wash-outs (Ub/Lx) and eddy turn-overs (uτ/h).

and the equation for the scalar field is

∂ρ+
t (t,x)

∂t
+ U+

j (t,x)
∂ρ+

t (t,x)

∂x+
j

=
1

ReτSc

∂2ρ+
t (t,x)

∂x+
j ∂x

+
j

, (4.6)

where the scalar, in this case, is the density ρt. Equation (4.6) is completely analogous to the energy
equation (1.7) but for mass dissipation, where Sc is the Schmidt number, which is defined as the ratio
of momentum diffusivity, ν, and mass diffusivity, D. Sc is analogous to Pr in the case of heat transfer.
In equation (4.5), Riτ is the Richardson friction number, given by Riτ = ∆ρgh/ρ0u

2
τ . This ∆ρ is the

difference in density between the two walls, being the flow denser at the bottom wall. Thus, Dirichlet
boundary conditions are used to model ρt. This boundary condition is completely equivalent to a tem-
perature difference between both walls in a heat transfer problem. g is the gravitational acceleration and
ρ0 is a reference density. Schmidt number of air is used in this study, Sc = 0.71. The way in which
equations are solved is completely equivalent to that of Poiseuille and Couette flows, and it is explained
in detail in Appendix §7.1.

Five new simulations have been made for this work, summarised in table 4.4. The first simulation is
a Poiseuille flow with Riτ = 0. The other four simulations are Couette flows at different small values of
Riτ . In every case, the domain chosen is (8πh×2h×3πh), to completely contain a pair of rolls, described
in subsection §2.3.1. The mesh has a size of (1536× 251× 1152) points which give a resolution of 8.2 and
4.1 wall units in x and z. The wall-normal grid spacing is adjusted to keep the resolution at ∆y = 1.5η,
as for all previous cases. In wall units, ∆y+ varies from 0.83 at the wall, up to ∆y+ ' 2.3 at the center
line. This grid size is similar to the one typically used in channel flows, for both Poiseuille and Couette
flows [73, 54, 52, 55].

The initialization of each case has been done following the same procedure as for Poiseuille and Couette
flow simulations. The code was run until a transition phase was passed and the flow had adjusted to the
new set of parameters. The transition is characterized through, among other variables, the value of the
shear stress in the moving wall. Once this parameter reaches a plateau, statistics are collected. In order
to further validate the database, the total density flux, which is equal to one, has been calculated as the
sum of the turbulent and molecular density fluxes. The following equation comes from the integration of
equation (4.6),

1 = vρ+ − dρt
+

dy+
, (4.7)

This equation is completely equivalent to the shear balance in a Couette flow (4.4). The different
terms are shown in figure 4.10. All fluxes collapse perfectly, and in every case, their sum is one, with an
error below 5× 10−3, validating, therefore, the simulation.
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Figure 4.10: Turbulent (squares), molecular (circles), and total (diamonds) density fluxes for cases C0,
C1, C3 and C6. The collapsing of the different curves is perfect.
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Chapter 5

Results

In this chapter the results of the project will be presented. It is organized as follows:

1. The first section of the chapter §5.1 contains the major focus of the study, i.e. Poiseuille flows in
a turbulent channel under the MBC. This section is separated in several subsections in order to
differentiate the behaviour of different ranges of Reynolds and Prandtl numbers.

• First subsection contains the results for the simulations at Reτ = 500, 1000 and 2000 for low
to medium Prandtl numbers, i.e. Pr ranging from 0.007 up to the Prandtl number of air,
Pr = 0.71.´

• Second subsection contains the results for simulations with the same friction Reynolds numbers,
Reτ = 500, 1000 and 2000, and medium to high Prandtl numbers ranging from Pr = 1 up to
Pr = 10, 7 and 7 for each Reτ , respectively.

• Third subsection collect the results for the highest friction Reynolds number ever simulated in
a turbulent channel flow with heat transfer, Reτ = 5000, with Pr = 0.71.

• Fourth subsection presents the results of the Poiseuille isothermal flow, using the highest
friction Reynolds number ever simulated in a turbulent channel: Reτ = 5000.

• In fifth and last subsection, the Lie symmetries theory is used to obtain scaling laws of the
velocity, temperature and high order moments of both.

2. The second section is dedicated to other type of flows:

• First subsection presents the results of heat transfer in a Couette flow under the MBC for
Reτ = 180, 250 and 500, with the Prandtl number of air, Pr = 0.71.

• In second and final subsection, the results of a stratified flow are shown. The friction Reynolds
number of Reτ = 500 is used with friction Richardson numbers up to 2.9 and the Prandtl
number of air, Pr = 0.71. In this section, the thermal boundary condition is a temperature
difference between both walls.

5.1 Poiseuille flows

In this section, the results obtained from the DNS of Poiseuille flows will be presented. This section
concludes with the use of Lie symmetries to generate scaling laws of the velocity, temperature and high
order moments of both, for the Poiseuille turbulent channel.

In order to distinguish among the different cases, line colours as in table 5.1 will be used to differentiate
each friction Reynolds number in the plots of section §5.1 (unless otherwise specified).
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Reτ 500 1000 2000 5000
Line colour

Table 5.1: Line colours used to represent each simulation throughout pots of section §5.1.

Pr 0.007 0.01 0.02 0.05 0.1 0.3 0.5 0.71
Symbol O 3 2 © � � ? 4

Table 5.2: Symbols used to identify the Prandtl number through all the figures of this subsection.

5.1.1 Medium and low Reynolds and Prandtl numbers

This subsection presents the results for friction Reynolds numbers of values Reτ = 500, 1000 and 2000
with low to medium Prandtl numbers, ranging from Pr = 0.007 up to Pr = 0.71. Symbols in table 5.2
will be used to distinguish lines with different Prandtl numbers in the figures of this subsection (unless
otherwise specified).

Mean temperature profiles

Mean temperature profiles, Θ
+

, are shown in figure 5.1a. Keeping Pr constant, all Θ
+

collapse in the
near-wall and logarithmic region. In the central zone, when Reτ increases, temperature profiles go deeper
and, for the same Pr, the slope of the line slightly decreases.

An important parameter that can be derived from the mean temperature profile is the thermal von
Kármán constant, κt. For sufficiently high Pr numbers, the mean temperature profile can be described
in the logarithmic region with the following relation

Θ
+

=
1

κt
ln
(
y+
)

+B, (5.1)

which was already introduced in section §1.1.2, equation (1.44), and it is written here for the sake of
readability. The classic limits for this logarithmic region for the streamwise velocity are y+ ≈ 70 and
y/h = 0.2, according to Jiménez [77]. The same limits have been used for the thermal flow. Even if a
logarithmic layer is not really present until a higher Reynolds is reached [63, 76, 78], an indicator of this
region is the first minimum of the diagnostic function (see figure 5.1b). This first minimum, and thus an
emerging logarithmic layer, appear for Prandtl numbers greater than approximately 0.3. It is worthy to
stress that all the calculations shown below are a first approximation to the actual value of κt. A truly
logarithmic layer is not expected until at least Reτ ≈ 5000, which will be seen in section §5.1.3.

The values of κt and B are collected in table 5.3. Notice that the value of κt increases slightly with

an increase of the Reτ number. This is caused by a slight reduction of the slope of Θ
+

in the logarithmic
region for the same Pr when Reτ is increased. However, the variation of κt from Reτ = 1000 to 2000
is much smaller than that from Reτ = 500 to 1000, which may indicate that κt converges towards a
constant value for high Reynolds numbers. The values of κt agree with the ones obtained by Abe et al.
[45]. The constant B changes for each Prandtl number. For Pr = 0.71, a value of B ≈ 3 is obtained,
which also agrees with the one obtained by Abe et al [45]. When the Prandtl number is reduced to 0.5
and 0.3, the values of B are reduced to approximately 0.6 and −1.9, respectively.

To further explore this logarithmic region, the thermal diagnostic function, defined as

ΞT = y+∂y+Θ
+
, (5.2)

is used. In figure 5.1b, ΞT is plotted for all cases. It can be seen how for the three greater Prandtl
numbers, there exist two maximum values. The y+ location of the first maximum does not depend on

64



CHAPTER 5. RESULTS

(a) (b)

Figure 5.1: (a) Mean temperature profile. Black lines correspond to the thermal law of the wall. (b)
Thermal diagnostic function. Colours as in table 5.1 and symbols as in table 5.2.

κt
Reτ

500 1000 2000
0.71 0.418 0.436 0.440

Pr 0.5 0.420 0.434 0.436
0.3 0.427 0.438 0.437

B
Reτ

500 1000 2000
0.71 2.89 3.11 3.05

Pr 0.5 0.55 0.70 0.64
0.3 −1.99 −1.87 −2.00

Table 5.3: Thermal von Kármán constant and B values from equation (5.1) for medium Prandtl numbers.

Reτ . However, its value decreases slightly for an increase in the Reynolds number. When the Prandtl
number is decreased below 0.3, this first maximum disappears and, therefore, the logarithmic region. On
the other hand, the y+ coordinate of the second maximum is independent of Pr. In outer coordinates
(not shown), the position of the second maximum is independent of both Reτ and Pr and it is located
at y/h = 0.5. It has been observed that the value of ΞT at this second maximum is constant for
Peτ > 30. When this Péclet number is reduced below 30, the value of the second maximum is then
reduced. Therefore, the behaviour of the second maximum cannot be characterized only by Pr.

Nusselt number

Coming back to figure 5.1a, black lines represent the thermal law of the wall, Θ
+

= Pry+. In the

conduction region of the flow, Θ
+

behaves approximately according to this law. It can be seen that a
decrease in the Pr number entails a bigger conductive region. Therefore, an increase in the heat transfer
by conduction is expected.

The Nusselt number is calculated according to the following definition [40]:

Nu =
Lh

k
=

2ReτPr

〈Θ+〉xyz
=

2Peτ

〈Θ+〉xyz
, (5.3)

where L is a characteristic length, in this case the channel height, 2h; h is the convective heat transfer
coefficient; and k is the thermal conductivity. According to this definition, the minimum Nusselt number
that can be obtained for the present configuration is 4. In such a case, the temperature will behave
following the thermal law of the wall in the entire channel. In Figure 5.2, obtained Nusselt numbers are
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Figure 5.2: Nusselt number. Thin black line from Kawamura et al [40] for Reτ = 180. Colours as in
table 5.1.

plotted as a function of the Prandtl number. Nu was calculated by Kawamura et al [40] for Reτ = 180
and Prandtl numbers from 0.025 to 5. They found that in the range of Prandtl between 0.2 and 1.5, Nu
had a linear logarithmic increment. This agrees with the results obtained here for larger Re numbers.
In addition, it is seen that the range of Prandtl numbers where Nu has a linear logarithmic increment is
larger when Re is increased (at least the lowest limit is reduced). As it was expected, the Nusselt number
decreases with Reτ or Pr numbers. This entails a decrement of the heat transferred by convection.

Temperature and heat fluxes intensities

The root mean square of the temperature variance, θ′+, and the heat fluxes in the streamwise, u+θ+,
and wall-normal, v+θ+, directions are represented in figure 5.3. All Reτ = 2000 cases are plotted as a
function of y/h in figures 5.3a and 5.3c. Meanwhile, in figures 5.3b and 5.3d, the same functions are
plotted for three Reynolds numbers of values Reτ = 500, 1000 and 2000 and for three different Prandtl
numbers: 0.71, 0.3 and 0.02. The tendency of the results of these turbulent intensities agrees perfectly
with the results obtained by Abe et al. [45] and Kawamura et al. [40].

First of all, in figure 5.3a, for Prandtl numbers greater than approximately 0.3, θ′+ tends to collapse
in the outer region, approximately for y/h > 0.3. However, when Reτ is reduced (figure 5.3b), the value
of Pr at which θ′+ collapses increases. It is observed again, that the use of the Péclet number gives a good
approximation to determine which cases collapse in the central region of the channel. For Peτ > 325, θ′+

tends to collapse for y/h > 0.3. The maximum value of θ′+ increases when Reτ increases. The location of
this maximum depends on the Prandtl number. On the one hand, when Pr is greater than approximately
0.3, the y+ coordinate of the maximum is independent of the Reτ number. In such cases, it is located in
the buffer layer or logarithmic region. On the other hand, for Pr lower than 0.3 the morphology of θ′+

changes. Now, its maximum location moves to the outer region. For these cases, the coordinate y+ of
the maximum depends on both Reynolds and Prandtl numbers.

In the same way as θ′+, all the profiles for v+θ+ (figure 5.3a) collapse in the outer region, for y/h > 0.1
and Péclet numbers greater than approximately 225. The minima location of v+θ+ is always in the outer
region. This location depends on both the Reynolds and Prandtl numbers.

Finally, u+θ+ is shown in figures 5.3b and 5.3d. The behaviour of this function is the same as the
previous turbulent intensities. Values collapse from y/h = 0.07 up to the center of the channel when
Peτ > 325. Regarding the location of the function maxima, the analysis is the same as for θ′+, and the
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(a) (b)

(c) (d)

Figure 5.3: Root mean square of the temperature variance and wall-normal heat flux for (a) Reτ = 2000
as a function of y/h and (b) Pr = 0.71, 0.3 and 0.02 as a function of y+. Streamwise heat flux for (c)
Reτ = 2000 as a function of y/h and (d) Pr = 0.71, 0.3 and 0.02 as a function of y+. Colours as in table
5.1 and symbols as in table 5.2.

threshold is again Pr ≈ 0.3. For Prandtl numbers above this threshold, these maxima are located in the
buffer layer or logarithmic region. Their positions are independent of the Reτ number. For the lower
Prandtl numbers, the y+ coordinate of the maxima depends on both Reτ and Pr. These similitudes
between θ′+ and u+θ+ come from the high correlation that exists between the streamwise velocity and
thermal field. However, as the Prandtl number is reduced, this correlation is also reduced, and the
differences between the different profiles are increased.

As a general rule, one can conclude that the location of the maxima does not depend on the Reynolds
number when the maximum is located in the buffer layer or in the logarithmic region. However, for lower
Prandtl numbers, the maxima location moves to the outer region. Here, it does depend on the Reynolds
number.

In every case, the values of the root mean square of the temperature variance and both heat fluxes
decrease when Pr decreases. This means that, for lower Prandtl numbers, turbulent intensities decrease,
in other words, the thermal flow is less turbulent. This confirms the result obtained during the validation
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(a) (b)

(c) (d)

Figure 5.4: Temperature statistics of this work (solid lines) and the ones obtained by Pirozzoli et al. [50]

(dashed lines; black dashed line is for Reτ = 4000). Pr = 0.71 in all cases. (a) Θ
+

, (b) θ′+, (c) u+θ+

and (d) v+θ+. Colours as in table 5.1 and symbols as in table 5.2.

of the simulations when molecular and turbulent heat fluxes were obtained.

Boundary conditions influence

The results obtained for the cases of Pr = 0.71 and Reτ = 1000 and 2000 are now compared with the
ones calculated by Pirozzoli et al. [50], where a different boundary condition to the MBC is used. In
Pirozzoli et al. [50], the uniform heat generation boundary condition was used. Therefore, one cannot
expect to obtain the same results, but the tendencies of the temperature and its intensities would not
differ abruptly.

In figure 5.4, the mean temperature, the root mean square of the temperature variance, and the
streamwise and wall-normal heat fluxes are represented, in figures 5.4a, 5.4b, 5.4c and 5.4d, respectively.
Indeed, all magnitudes increase when the MBC is used, specially in the central region of the channel.
Values for Pr = 0.71 and Reτ = 4000 obtained in [50] are also represented with the dashed black line to
visualize the tendency of the variables when increasing the Reynolds number.
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Nu Present work Pirozzoli et al. [50]
Reτ = 1000 85.0416 86.0682
Reτ = 2000 153.378 159.854

Table 5.4: Comparison of the Nusselt number for Pr = 0.71 and Reτ = 1000 and 2000 with the ones
obtained by Pirozzoli et al. [50].

Figure 5.5: Turbulent Prandtl number. Colours as in table 5.1 and symbols as in table 5.2.

With respect to the Nusselt number, table 5.4 shows a comparison between the Nusselt numbers
obtained for Pr = 0.71 and Reτ = 1000 and 2000 in this work and the ones obtained in [50]. A decrease
in the value of Nu is obtained when the MBC is used. This was expected since the temperature profiles
were slightly greater. Nevertheless, the results are reasonably similar.

Turbulent Prandtl number

Definition of the turbulent Prandtl number, Prt (already defined in section §2.3.1 equation (2.16)),
which represents the ratio between the momentum eddy diffusivity and the heat transfer eddy diffusivity,
is written here again for the sake of readability

Prt =
u+v+

v+θ+

dΘ
+
/dy+

dU
+
/dy+

. (5.4)

Prt is shown, as a function of y+, in figure 5.5. These results reaffirm the well-known law that states
that Prt is approximately constant and equal to 1 for medium molecular Prandtl numbers but it increases
for low Prandtl numbers (Kawamura et al. [40]). It can be seen how for Pr ≤ 0.05 the values of Prt are
higher, not only in the wall vicinity but along the whole channel. In addition, an increase in the Reynolds
number entails a slight decrease in the turbulent Prandtl number. Therefore, new scaling laws for low
Prandtl numbers are needed.

Turbulent budgets

Budgets of the temperature variance, k+
θ (2.19)-(2.21d), the dissipation rate of the temperature vari-

ance, ε+
θ (2.22)-(2.24g), and the turbulent heat fluxes, u+

i θ
+ (2.25)-(2.28f), have been calculated. These

equations are defined in subsection §2.3.1.
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(a) (b)

(c) (d)

Figure 5.6: Budgets of the streamwise heat flux, u+θ+, for Reτ = 2000 and (a) medium Prandtl numbers:
Pr = 0.71, 0.3 and 0.1; (b) low Prandtl numbers: Pr = 0.01 and 0.007. Reτ = 2000, 1000 and 500 for
(c) Pr = 0.1 and (d) Pr = 0.007. Colours here denote budget terms: production (red), turbulent
diffusion (black), viscous diffusion (blue), dissipation (green), pressure-temperature-gradient correlation
(magenta) and pressure diffusion (orange). Line style determines the Reτ number: Reτ = 2000 (solid
line), Reτ = 1000 (dashed line) and Reτ = 500 (pointed line). Symbols as in table 5.2.

The idea of this subsection is to check if the budget terms scale for low values of the Prandtl number.
As an anticipated result, for low Prandtl numbers, scaling failures are amplified.

Budgets for u+θ+ are shown in figure 5.6. Cases for Reτ = 2000 and medium Prandtl numbers
(0.71, 0.3 and 0.1) are plotted in figure 5.6a. For the same Reynolds, the lowest Prandtl numbers (0.01
and 0.007) are selected for figure 5.6b. On the other two subfigures, the analysis is done for a variation
of Reτ . Budget terms for one of the medium Prandtl numbers, 0.1, are plotted for all three Reynolds
numbers in figure 5.6c. Meanwhile, the lowest Prandtl, 0.007, is used, again for all three Reynolds
numbers, in figure 5.6d. For both, medium and low Prandtl numbers, dissipation is compensated by
viscous diffusion near the wall. From the end of the buffer layer up to the center of the channel, the
production term increases and becomes more important than the viscous diffusion. In this part of
the channel, for medium Prandtl numbers (figures 5.6a and 5.6c), dissipation and pressure-temperature
gradient correlation terms are compensated by production. However, for low values of Pr (figures 5.6b
and 5.6d), production compensates dissipation, and the rest of terms are negligible. Regarding the scaling
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(a) (b)

(c) (d)

Figure 5.7: Budgets of the wall-normal heat flux, v+θ+, for Reτ = 2000 and (a) medium Prandtl numbers:
Pr = 0.71, 0.3 and 0.1; (b) low Prandtl numbers: Pr = 0.01 and 0.007. Reτ = 2000, 1000 and 500 for
(c) Pr = 0.1 and (d) Pr = 0.007. Colours here denote budget terms: production (red), turbulent
diffusion (black), viscous diffusion (blue), dissipation (green), pressure-temperature-gradient correlation
(magenta) and pressure diffusion (orange). Line style determines the Reτ number: Reτ = 2000 (solid
line), Reτ = 1000 (dashed line) and Reτ = 500 (pointed line). Symbols as in table 5.2.

of the budget terms, it can be seen that it presents several errors when Pr varies (figures 5.6a and 5.6b).
Not only the magnitudes of all the budget terms change along the entire channel, but also the location
of the maximum changes depending on the Prandtl number. When Pr is kept constant and with a
medium value (figure 5.6c) all terms seem to scale well in the logarithmic layer and in the center of the
channel (difference are due to the difference in Reτ ). However, in the wall vicinity, viscous diffusion and
dissipation present noticeable differences from one case to another. When Pr is reduced (figure 5.6d),
these differences are even larger.

Budgets for v+θ+ are shown in figure 5.7. The arrangement of the subfigures is the same as for the
streamwise heat flux. It can be seen how for medium Prandtl numbers (figures 5.7a and 5.7c) the more
important budget terms are pressure-temperature gradient correlation, pressure diffusion, dissipation and
production. However, when Pr is reduced (figures 5.7b and 5.7d), dissipation becomes more important
than both pressure terms. For the lowest Prandtl numbers, these pressure terms become negligible and
production is compensated only by the dissipation term. Dissipation becomes more important for lower
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(a) (b)

(c) (d)

Figure 5.8: Budgets of the temperature variance, k+
θ , for Reτ = 2000 and (a) medium Prandtl numbers:

Pr = 0.71, 0.3 and 0.1; (b) low Prandtl numbers: Pr = 0.01 and 0.007. Reτ = 2000, 1000 and 500
for (c) Pr = 0.1 and (d) Pr = 0.007. Colours here denote budget terms: production (red), turbulent
diffusion (black), viscous diffusion (blue) and dissipation (green). Line style determines the Reτ number:
Reτ = 2000 (solid line), Reτ = 1000 (dashed line) and Reτ = 500 (pointed line). Symbols as in table 5.2.

Prandtl numbers since it occurs in eddies of a larger scale, as it was seen in the visualization of the velocity
and temperature structures in section §4 in figure 4.2. Regarding the scaling of the budget terms, the
same problems as for u+θ+ appear. For a constant Reτ (figures 5.7a and 5.7b), the magnitude of the
budget terms and the location of their maxima do not scale properly. When Pr is kept constant with
value 0.1 (figure 5.7c) all terms seems to scale well except for the pressure terms in the near wall region.
For the lowest Prandtl number (figure 5.7d) scaling failures are seen in the center of the channel for the
production and dissipation terms.

Budget terms for k+
θ are shown in figure 5.8. Again, the sub-figures information is presented in the

same order as in the previous ones. For all cases, dissipation compensates molecular diffusion in the
wall vicinity and production in the center of the channel. The y+ coordinate where the production
term becomes more important than molecular diffusion increases with a decrease of the Prandtl number.
Turbulent diffusion appears to be more noticeable at the end of the buffer layer for medium Prandtl
numbers. The scaling law used for these budget terms presents the same problems as before when a
variation in the Prandtl number is introduced (figures 5.8a and 5.8b). In addition, the problem for the
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(a) (b)

(c) (d)

Figure 5.9: Budgets of the dissipation rate of the temperature variance, ε+
θ , for Reτ = 2000 and (a)

medium Prandtl numbers: Pr = 0.71, 0.3 and 0.1; (b) low Prandtl numbers: Pr = 0.01 and 0.007.
Reτ = 2000, 1000 and 500 for (c) Pr = 0.1 and (d) Pr = 0.007. Colours here denote budget terms:
summation of the four production terms (red), turbulent diffusion (black), viscous diffusion (blue) and
dissipation (green). Line style determines the Reτ number: Reτ = 2000 (solid line), Reτ = 1000 (dashed
line) and Reτ = 500 (pointed line). Symbols as in table 5.2.

dissipation term is even more complex. In the buffer layer, not only the magnitude of this term changes,
but also its morphology. For a variation of Reynolds and Pr = 0.1 (figure 5.8c), the same scaling problem
for dissipation arises again. Molecular and turbulent diffusion also present scaling problems in the buffer
layer. For the lowest Prandtl number (figure 5.8d) a better scaling is needed.

Finally budget terms for ε+
θ are shown in figure 5.9. The cases shown in each sub-figure are the

same as in the previous analysis. Production is mostly compensated by dissipation, except in the wall
vicinity, where viscous diffusion overcomes the production term. For lower Prandtl numbers, the effect of
viscous diffusion close to the wall is more remarkable. The scaling used for ε+

θ presents the same problems
for variations of Prandtl numbers (figures 5.9a and 5.9b). When the Reynolds number is changed and
Pr = 0.1 (figure 5.9c) scaling errors appear in the logarithmic region for production and dissipation
terms. Also, in the buffer layer, the viscous diffusion term does not scales properly. For Pr = 0.007
(figure 5.9d), the differences in the production and dissipation terms are larger.

In general, it is seen that scaling of the budget terms fail for lower Prandtl numbers, especially in
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the near wall region. The most conflicting terms are dissipation and viscous diffusion. Also, remark the
scaling errors in the pressure terms for v+θ+ and the production term for ε+

θ . It has been seen through
all this section that the behaviour of the thermal field changes for low Prandtl numbers. Therefore, one
could have expected these scaling differences. This suggest that the modeling of some of the budget terms
depends on both Reτ and Pr, which makes their modeling a very complex problem.

Conclusions

A new set of Direct Numerical Simulations of turbulent heat transfer in a channel flow are presented.
Uniform heating from both walls is used as the boundary condition. The effects in the thermal flow of
Reτ and medium to low molecular Prandtl numbers is studied for a range of values of: Reτ = 500, 1000
and 2000; and Pr = 0.007− 0.71.

A balance of the heat fluxes is calculated to validate the simulations. It is seen that when Pr is
reduced, molecular heat flux becomes more important than turbulent heat flux. Indeed, for the lowest
Prandtl number, turbulent heat flux is almost negligible except in the central region of the channel.

Mean temperature profiles, the diagnostic function and turbulent intensities (θ′+, u+θ+ and v+θ+)
are shown. The logarithmic region appears only for Prandtl numbers greater than approximately 0.3.
The von Kármán constant has been calculated, obtaining an approximately constant value of κt = 0.43
for Reτ >= 1000. The values of the diagnostic function in the central region of the channel collapse for
Peτ > 30. On the other hand, the morphology of the turbulent intensities change when Pr > 0.3. Also,
in the outer region, their values collapse when the Péclet number is greater than 325 for θ′+ and u+θ+;
and 225 for v+θ+. In addition, the location of the maxima of the functions does not depend on the
Reynolds number when the maximum is located in the buffer layer or in the logarithmic region. However,
for lower Prandtl numbers, the maxima location moves to the outer region and it does depend on the
Reynolds number. The absolute values of all three intensities decrease when Pr is reduced, which means
that, in fact, the thermal flow is less turbulent.

The Nusselt number is derived from the mean temperature profile. It is seen that it can be represented
with a linear logarithmic expression for medium-low to medium Prandtl numbers. This range seems to
increase, at least the lower limit of Pr, when Reτ is increased. However, the upper limit of the linear
behaviour is not captured in this section, since it is greater than 0.71, but it will be studied in next
subsection. Another dimensionless number calculated is the turbulent Prandtl number. As it was known,
for Pr > 0.05, its value is more or less constant and approximately 1 in all the channel. For Pr ≤ 0.05,
the turbulent Prandtl number increases as the molecular Prandtl or Reτ decrease.

A comparison with the results from [50] for the simulations of higher Reynolds and a value of Prandtl
of Pr = 0.71 have been done. For that work a boundary condition different to the MBC and similar
to the one used in [30] was used. Results are not exactly the same but similar. Also, tendencies of the
thermal variables are the same. Thermal values tend to increase when the MBC is used, especially in the
central region of the channel.

Finally, turbulent budgets for heat fluxes, temperature variances and its dissipation rate are presented.
For v+θ+, the pressure terms become negligible when Pr is reduced, and dissipation compensates the
production term. As it was expected, turbulent diffusion is negligible for all low Prandtl number cases.
Also, scalings of the budget terms are analyzed. It is seen that for low Prandtl numbers, any of them
work properly and a deeper study is needed. The most conflicting terms, especially in the near wall
region, are dissipation and viscous diffusion, pressure terms for v+θ+ and production for ε+

θ .

Finally, to help other researchers to test their theories, the statistics of all simulations can be down-
loaded from the following website:

http://personales.upv.es/serhocal/.
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Pr 0.007 0.05 0.3 0.71 1 2 4 7 10
Symbol O � 4 © O 2 © 4 ∗

Table 5.5: Symbols used to identify the Prandtl numbers through all the figures of this subsection.

(a) (b)

Figure 5.10: (a) Θ
+
/Pr. Black line represents the law of the wall, Θ

+
= Pry+. (b) Left axis: solid

and dashed lines represent ∆θ as a function of Pr using and not using a linear interpolation of Θ
+
/Pr

in between two mesh points, respectively. Black empty symbols represent ∆θ according to Shaw and
Hanratty 1977 [79] (squares): ∆θ ∼ Pr−0.3; Kader 1981 [31] (triangle down): ∆θ ∼ Pr−1/3; Na et al.
1999 [43] (triangle up): ∆θ ∼ Pr−0.5; and Schwertfirm and Manhart 2007 [46] (circle): ∆θ ∼ Pr−0.29.

Right axis: circles and triangles represent values of γ with and without the linear interpolation of Θ
+
/Pr,

respectively. Black and orange dashed lines represent the scaling of γ for medium–high and low Prandtl

numbers, respectively, using the linear interpolation of Θ
+
/Pr. Colours as in table 5.1 and symbols as

in table 5.5.

5.1.2 Medium and low Reynolds numbers and high Prandtl numbers

In this subsection, the results of simulations with Pr ≥ 1 will be presented, with Reτ = 500, 1000 and
2000, reaching a Prandtl number of 10, 7 and 7, respectively. Symbols used to distinguish among the
different Prandtl number in figures of this subsection (unless otherwise specified) are collected in table
5.5. Prandtl number lower than 1 will also be used to compare the different behaviours of the thermal
field. These cases where Pr < 1 will be distinguished with dashed lines.

Temperature statistics

The mean temperature, Θ
+

, is presented in figure 5.10a as Θ
+
/Pr. The law of the wall, Θ

+
= Pry+,

is fulfilled for every case close to the wall. The size of this region of the flow, ∆θ, i.e. the conductive

sublayer, is determined here by the value of the y+ coordinate where Θ
+

differs by a 5% with the law of
the wall.

As its name indicates, in this region the heat transferred by conduction is dominant over the turbulent
heat flux. It can be seen how this layer gets thinner as the Prandtl number increases. In figure 5.10b it is
represented ∆θ for every case. Due to the discretization of the problem, there is noise in the value of ∆θ,
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(a) (b)

Figure 5.11: (a) Diagnostic function of Θ
+

. Zoom of the logarithmic layer. (b) Von Kármán constant as
a function of Prandtl number. Colours as in table 5.1 and symbols as in table 5.5.

specially when its value is low, see dashed lines of figure 5.10b. A linear interpolation of Θ
+
/Pr between

the two closest mesh points where Θ
+

differs by a 5% with the law of the wall gives a more realistic result
of where ∆θ is actually located (solid lines of figure 5.10b). The depth of the conductive sublayer ranges
from values of 100 for very low Prandtl numbers down to barely 3 wall units for Pr = 7 and 10. This is a
great indicator that for low Prandtl numbers, the thermal field is dominated by conductive heat transfer,
and as the Prandtl increases, the turbulent heat transfer overcomes the conductive one.

The classical scaling proposed for ∆θ is a power function, such as ∆θ ∼ Pr−0.5, ∆θ ∼ Pr−1/3,
∆θ ∼ Pr−0.3 or ∆θ ∼ Pr−0.29, depending on the range of Prandtl numbers, [43, 31, 79, 46], respectively.
A more precise way to define the scaling of ∆θ is using a power function with a dependence on the
Prandtl number in the exponent, ∆θ ∼ Prγ , where γ = γ(Pr). Thus, the following relation can be used
∆θ = aPrγ , where a must be the value of ∆θ for Pr = 1. Then, the value of γ for every other Prandtl
numbers is calculated as γ = ln(∆θ/a)/ ln(Pr) to fit the data. Note that, for the value of γ at Pr = 1
an indeterminate form of the type 0/0 is obtained. Therefore, limits must be used to obtain this specific
value. As can be seen in figure 5.10b, the value of γ is a linear function of Pr for Pr ≥ 0.5 (x-axis is in
logarithmic scale). Noise on the results arises near Pr = 1, where very small errors entail big discrepancies

in the value of γ, as it is the case for Pr = 0.71. As can be seen, if the interpolation of Θ
+
/Pr is not

done, even higher errors are obtained for γ at Pr near 1 (see triangles of figure 5.10b). This is due to
the sensitivity of the fitting of a power function near values with base 1. The relation for ∆θ obtained is
∆θ = 5.9Pr−0.36+0.004Pr. The value of γ is reasonable comparable to other values given in previous works,
which ranged from −0.3 to −0.5, depending on the Prandtl number. As seen in figure 5.10b, for high
Prandtl numbers, the scaling proposed by Shaw and Hanratty 1977 [79] (squares): ∆θ ∼ Pr−0.3; Kader
1981 [31] (triangle down): ∆θ ∼ Pr−1/3; and Schwertfirm and Manhart 2007 [46] (circle): ∆θ ∼ Pr−0.29,
are very precise for the range of Prandtl between 0.3 to 7. Furthermore, the impact on ∆θ due to the
Prandtl number dependence on the exponent appears to be small in the these range of Prandtl numbers.
On the other hand, the scaling of Na et al. 1999 [43] (triangle up): ∆θ ∼ Pr−0.5 provides a more precise
result for lower Prandtl numbers. Also, remark the small dependence of Pr in the value of γ. Therefore,
considering γ constant in a small range of values of Prandtl would not entail big errors. For low Prandtl
numbers and sufficiently high Reτ , the value of γ is a logarithmic function of Pr. The relation in this
case is ∆θ = 5.9Pr−0.23+0.071 log(Pr).
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(a) (b)

Figure 5.12: (a) Temperature fluctuation, θ′+, and (b) streamwise heat flux, u+θ+. Colours as in table
5.1 and symbols as in table 5.5.

As a remark, the definition of ∆θ could be changed and the limiting value of 5% difference between the

wall law and Θ
+
/Pr could have been increased or reduced. Then, the value of ∆θ would had obviously

changed. However, in the scaling of ∆θ with the Prandtl number, the value of γ will remain the same.
Therefore, as long as the limiting value of the conductive sublayer is reasonable, the value of γ will always
be comparable between different criteria to obtain ∆θ.

The diagnostic function of the mean temperature, ΞT , is represented in figure 5.11a. If the flow
presents a logarithmic layer, then ΞT must be constant in the region approximately between y+ = 70
and y/h = 0.2 [77]. In the work done by Jiménez and Moser 2007 [51] it was stated that the diagnostic
function of the velocity field presents a linear dependence with y+. This dependence tends to 0 as Reτ
goes to infinity. The same occurs for the diagnostic function of Θ

+
. This linear dependence with y+,

although small, still exists for Reτ = 2000. One can see in the zoom of figure 5.11a that in the logarithmic
region, where the diagnostic function must be a plateau, there is still a small increment. For cases with the
lowest Prandtl numbers, ΞT does not even collapse in the outer region. As the Prandtl number increases,
ΞT starts to collapse in the outer region, then in the logarithmic region, and, for the highest Prandtl
numbers, also in the buffer layer. Therefore, for medium–high Prandtl numbers, whether a logarithmic
region appears or not for the mean temperature profile will only depend on the Reynolds number.

The previous statement can be confirmed calculating the von Kármán constant, κt. As in previous

section, the logarithmic equation (5.1) is fitted to the value of Θ
+

. Again, the limits of the logarithmic
layer where the fitting is done are set to be y+ = 70 for the lower limit and y/h = 0.2Reτ for the upper
limit, as in [77]. In figure 5.11b, κt is represented for the three Reynolds numbers and Pr ≥ 0.71. It can
be seen how κt is approximately constant for a constant Reτ . The small variation (smaller than 2%) can
be due to numerical discrepancies. When the Reynolds number is increased, κt slightly increases. Also,
differences of κt were expected, since for these values of Reynolds number, the logarithmic layer is not
perfectly developed. Nevertheless, the value of κt seems to converge with the Reynolds number towards
a value of roughly 0.45 or slightly above. This result is very close to to the one provided in the work
of Pirozzoli et al. [50], where a value of κt = 0.46 is obtained for Reτ = 4000 and a thermal boundary
condition that consisted in a thermal heat generation. Regarding the work of Abe and Antonia [80],
where the MBC was also used, a value of κt = 0.43 was obtained for Reτ = 1000, which agrees with the
one presented here.
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Figure 5.13: Correlation coefficient, u+θ+/(u′+θ′+). Colours as in table 5.1 and symbols as in table 5.5.

Information of the turbulent intensities such as the transformed temperature fluctuation, θ′+, the
streamwise heat flux, u+θ+, the correlation coefficient, u+θ+/(u′+θ′+), the wall-normal heat flux, v+θ+,
and a quadrant analysis of v+θ+, have been calculated. They are represented in figures 5.12, 5.13 and
5.14. One of the main differences between θ′+ and u+θ+, is that, at the highest Prandtl numbers, or more
precisely, highest friction Péclet numbers, the maximum of θ′+ does not grow with the Reynolds number
(see figure 5.12a). Analogously, this feature is observed in Couette flows for the velocity fluctuation,
u′+, when the Reynolds number is high enough [62]. However, this is the first time that this feature is
reported for a thermal Poiseuille flow. This scaling of the maximum of θ′+ have more benefits in the
scaling of some turbulent budgets, as will be seen later.

As reported in section §2.3.1, near the wall, the streamwise velocity and the temperature fields are
highly correlated, specially for Prandtl numbers close to 1. But as as the Prandtl number moves away
from 1 this correlation is weaker. In figure 5.13, the correlation coefficient is shown for all cases with
Pr ≥ 1. The same tendencies were obtained by Abe et al. [81] for cases with lower Reynolds numbers
and Prandtl close to 1. Note that some noise appears at the center due to small values of u+θ+, u′+

and θ′+. Nevertheless, the important result is obtained at y+ ≈ 10, where, effectively, the correlation
coefficient decreases from 0.95 for Pr = 1, down to 0.8 for Pr = 7.

The wall-normal heat flux, v+θ+, is represented in figure 5.14a. For higher Peτ , v+θ+ approaches
to its bound value of −1 in a wider region of y. This is in accordance with Townsend’s hypothesis [11],
applied to the temperature field. Additionally, a quadrant analysis like in [82] has been performed to
study the generation mechanism of v+θ+ compared with the one of u+v+ (figures 5.14b, 5.14c and 5.14d).
On one hand, events on the first quadrant, Q1 (θ, u > 0 and v > 0), and third quadrant, Q3 (θ, u < 0
and v < 0), are referred to as outward and inward interactions, respectively. On the other hand, the
second quadrant, Q2 (θ, u < 0 and v > 0), and fourth quadrant, (θ, u > 0 and v < 0), represent ejection
and sweep events, respectively. A good scaling in the Reynolds number is observed from figures 5.14c and
5.14d, with indeed similar tendencies for both v+θ+ and u+v+. Dominant contributions from the sweep
events (Q4) appear very close to the wall. At a certain y+ coordinate, the ejection events (Q2) become
the most important. Obviously, this y+ coordinate is constant for different Reynolds numbers, since the
generation mechanism scales with Reτ . However, the y+ coordinate where the alternation of the dominant
event occurs moves closer to the wall as the Prandtl number increases, going from y+ = 16 for Pr = 1
(similar to the y+ = 17 for Pr = 0.71 obtained in [82]) to y+ = 8 for Pr = 7 (see figure 5.14b). Related
with the constant maximum of θ′+ for different Reynolds numbers, one can see how the maximums of
Q1, Q2 and Q3 events also scale for v+θ+, in contrast to u+v+, where all maximums increase with the
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(a) (b)

(c) (d)

Figure 5.14: (a) v+θ+. Colours as in table 5.1 and symbols as in table 5.5. Quadrant analysis of v+θ+ for
(b) Reτ = 2000 and Pr = 1 (dotted lines), Pr = 4 (dashed lines) and Pr = 7 (solid lines) and (c) Pr = 7
and Reτ = 500 (dotted lines), Reτ = 1000 (dashed lines) and Reτ = 2000 (solid lines). (d) Quadrant
analysis of u+v+ for Pr = 7 and Reτ = 500 (dotted lines), Reτ = 1000 (dashed lines) and Reτ = 2000
(solid lines). In (b), (c) and (d) colour blue is for events of Q1, magenta for Q2, green for Q3 and red for
Q4.

Reynolds number, as in u+θ+. Regarding the scaling in the outer region, a good similarity is observed for
the cases at Reτ = 2000 and Pr = 4 and 7 in figure 5.14b. However, if the Reynolds or Prandtl number
are decreased, some discrepancies appear, specially in the region below y/h < 0.3 (see figure 5.14c). The
same result was obtained by [82] for a low Prandtl number of 0.025 and Reynolds numbers ranging from
180 up to 1020.

The dimensionless numbers Nu and Prt, defined in equations (5.3) and (5.4), respectively, have been
calculated. In figure 5.15, Nu is presented as a function of Pr. As shown in previous section, Nu is a
power function of Pr for Peτ ≤ 20. Also, in [40], it was noted that, for Reτ = 180, the increment of Nu
begins to reduce for Prandtl numbers greater than 1. This feature is also observed here for medium–high
Prandtl numbers at Reτ up to 2000. However, it is not Pr that determines when Nu is no longer a
power function of Pr, but Peτ . As a conclusion, Nu is a power function of Pr in the specific range of
the friction Péclet number, 20 ≤ Peτ ≤ 1500. Fitting a power function to the data, it is obtained:

79



5.1. POISEUILLE FLOWS

Figure 5.15: Nu as a function of Pr. Squares are the values from the DNS. Solid lines represent cor-
relations from this work (5.5a)-(5.5c). Dotted lines represent Dittus and Boelter correlation (5.6), and,
dashed lines represent Kays et al. correlation (5.7). Colours as in table 5.1.

Nu = 53.1Pr0.560, for Reτ = 500 (5.5a)

Nu = 103.7Pr0.638, for Reτ = 1000 (5.5b)

Nu = 192.9Pr0.689, for Reτ = 2000 (5.5c)

for 20 ≤ Peτ ≤ 1500. Two more correlations are also included in figure 5.15. On one hand, the correlation
obtained by Dittus and Boelter 1930 [83] for turbulent pipe flows

Nu = 0.023Re0.8
D Prn, (5.6)

where ReD is the Reynolds number based on the diameter of the pipe and n = 0.4 since the flow is being
heated. On the other hand, the correlation obtained by Kays et al. 1980 [48] for constant temperature
walls, which reads

Nu = 0.021Re0.8Pr0.5. (5.7)

The correlations proposed here (5.5a)-(5.5c) are very precise in the range of 20 ≤ Peτ ≤ 1500.
However, as mention before, for Prandtl numbers above 1 the scaling of Nu with Pr changes and, in the
small range obtained here, Dittus and Boelter correlation (5.6) fits well with an exponent of 0.4 in the
Prandtl, while the exponent of 0.5 from the Kays et al. correlation (5.7) seems to be overestimating the
value of Nu. Nevertheless, if the scaling of Nu for higher Prandtl numbers is still a power function of Pr
with exponent approximately 0.4 cannot be determined with the data from this work only. Even higher
Prandtl numbers must be simulated. This, however, is beyond the scope of the study of this work.

With respect to Prt an important change in its value near the wall occurs (see figure 5.16a). For
medium molecular Prandtl numbers, Prt value is approximately 1.1 at the wall, as reported by many
other authors [34, 37, 40, 44, 82]. However, for medium–high Prandtl numbers, Prt in the wall increases.
The reason of this increase can be explained using the decomposition of the fluctuating variables near
the wall proposed by Antonia and Kim [34] and Kawamura et al. [40], which was introduced in section

§2.3.1, equations (2.17a)-(2.17i). Using the definition of Prt, (5.4), where (dΘ
+
/dy+)/(dU

+
/dy+) = Pr

at the wall, and the approximations of v+θ+ and u+v+ near the wall, (2.17i) and (2.17g), respectively,
one gets Prt|y=0 ≈ d12/d2θ.
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(a) (b)

Figure 5.16: (a) Prt focused in the near-wall region. Box: Values of d2θ (solid) and d12 (dashed). (b)
Prt in the core region. Black squares represent the distribution proposed by Abe and Antonia 2009 [81].
Colours as in table 5.1 and symbols as in table 5.5.

The value of these coefficients can be observed in the box inside figure 5.16a. The coefficient d2θ

has a constant value approximately equal to d12 in the range of Prandtl numbers near one. However,
for Pr ≥ 4, d2θ decreases due to the reduction of the normal-wall heat fluxes over the Prandtl number,
i.e. v+θ+/Pr reduces when the Prandtl is increased above Pr ≈ 4. This makes Prt greater than 1 in
the wall. This variation has serious consequences in the modelling of fluids with medium–high Prandtl
number, like water, since Prt is one of the the main parameters for modelling.

In the core region of the channel, Abe and Antonia 2009 [81] proposed a quadratic distribution for
Prt:

Prt = 0.9− 0.3(y/h)2. (5.8)

In figure 5.16b, it is observed how this approximation captures the mean behaviour of Prt, even for
Reynolds and Prandtl numbers up to 2000 and 7, respectively.

Turbulent budgets

Turbulent budgets of the temperature variance, k+
θ (2.19)-(2.21d), the dissipation rate of the temperature

variance, ε+
θ (2.22)-(2.24g), and the streamwise, u+θ+ (2.25)-(2.27f), and wall-normal heat flux, v+θ+

(2.28a)-(2.28f), are analyzed in this subsection. Reader is referred to subsection §2.3.1 for the equations
of the turbulent budgets.

Although it was stated in chapter §4 that the size of the computational box, Lx = 2πh, Ly = 2h
and Lz = πh, was enough to accurately compute first order statistics, it is also big enough to accurately
calculate the turbulent budgets. Figure 5.17 presents the budget terms of k+

θ obtained by the code used
in this work, for Pr = 0.71 and Reτ = 500 (dashed lines) and 1000 (solid lines). These results have been
compared with those obtained by Abe et al. [45] for Pr = 0.71 and Reτ = 640 (dotted lines). The size of
the computational box used by Abe et al. [45] is Lx = 4πh, Ly = 2h and Lz = 2πh. A perfect collapsing
or following of the trends is observed for the budgets of k+

θ . The same results have been obtained for the
budget terms of the heat fluxes, but they are not shown here for brevity. This validates the size of the
computational box used in this work to calculate turbulent budgets.

Figures 5.18a, 5.18b, 5.18c and 5.18d present the results obtained for every budget term. Only
simulations for the three Reynolds numbers, Reτ = 500, 1000 and 2000, with Pr = 2 and 7 are plotted
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Figure 5.17: Budgets of the temperature variance, k+
θ for Pr = 0.71. Here, colours denote budget terms:

production, turbulent diffusion (black), viscous diffusion (blue) and dissipation (green). Here, line style
denotes the Reynolds number: Reτ = 1000 in solid lines and Reτ = 500 in dashed lines. Reτ = 640 in
dotted lines is from Abe et al. [45].

for better visibility. The main result obtained is the better scaling near the wall of the viscous diffusion,
V +
θ , and the dissipation, ε+

θ , in the budget of k+
θ . For Pr = 7, V + varies less than 5% in the wall between

cases at Reτ = 500 and 2000. This is a significant reduction compared with the 16% difference obtained
for Pr = 0.71 in previous section §5.1.1.

The value of V +
θ and ε+

θ at the wall can be calculated as

V +
θ

∣∣
y+=0

=
1

2Pr
∂yyθ′+

2

∣∣∣∣
y+=0

= − ε+
θ

∣∣
y+=0

. (5.9)

Using the approximation of θ′+ near the wall from equation (2.17f), one gets

V +
θ

∣∣
y+=0

= − ε+
θ

∣∣
y+=0

≈ Prb2θ. (5.10)

If the first maximum of θ′+ is constant and it is placed at the same distance to the wall, bθ will be
the same for two cases with the same Prandtl number. It was shown before (figure 5.12a), that this is
fulfilled for medium–high Prandtl numbers. Therefore, since bθ is approximately constant, a good scaling
is obtained in the wall. Note that the scaling of V +

θ

∣∣
y+=0

and ε+
θ

∣∣
y+=0

with bθ is quadratic, so small

differences in bθ will make scaling errors larger. In figure 5.19a the values of bθ for all simulations are
represented (solid lines and left axis). Effectively, when the Prandtl number is increased, the values of
bθ converge among the three different Reynolds numbers. Specifically, bθ seems to converge to a value
between 0.3 and 0.4.

In the ideal case where bθ does not depend neither on Reτ nor Pr, V +
θ /Pr and ε+

θ /Pr will perfectly
scale in the wall for all Reτ and Pr. If, in addition, the wall-normal direction is scaled with Pr1/3, as in
[40], the peaks of the other terms will also scale. The results for the cases of Pr = 2 and 7 are shown
in figure 5.19b. The scaling is almost perfect in the entire channel except in the wall, where the small
differences in bθ are amplified due to this quadratic behaviour. In this context, Abe and Antonia [80]
found that the peak value of the product term reaches a constant maximum of value Pr/4 when the
MBC is used, for Reτ larger than 400. This seems to be convincing with the result obtained here for Reτ
up to 2000.
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(a) (b)

(c) (d)

Figure 5.18: Budgets of (a) k+
θ (b) ε+

θ (c) u+θ+ and (d) v+θ+. Here, colours denote budget terms:
production or sum of productions in (b) (red), turbulent diffusion (black), viscous diffusion (blue), dissi-
pation (green), pressure strain (magenta) and pressure diffusion (orange). Line style denotes the Reynolds
number: Reτ = 2000 in solid lines, Reτ = 1000 in dashed lines and Reτ = 500 in dotted lines. Black line
with value 0 is the summation of all terms. Symbols as in table 5.5.

Following this procedure, the same analysis can be done for the viscous diffusion, V +
uθ, and dissipation,

ε+
uθ, in the budget of u+θ+. Their values at the wall are obtained using the approximation of u+θ+ near

the wall (2.17h), obtaining:

V +
uθ

∣∣
y+=0

= − ε+
uθ

∣∣
y+=0

≈ Pr + 1

Pr
∂yyu+θ+

∣∣∣∣
y+=0

= (Pr + 1)c1θ. (5.11)

Therefore, if the c1θ values are different, V +
uθ and ε+

uθ will not scale in the wall. In figure 5.19a, the
values of c1θ are represented with dashed lines (right axis). Effectively, c1θ is not the same for different
Reynolds numbers and it oscillates for different Prandtl numbers.

Finally, regarding the budgets of ε+
θ , Abe et al. [81] did an analysis focusing of the Reynolds depen-

dence of the production terms of the transport equation of the mean square scalar gradient, whose terms
are analogous to the ones of ε+

θ , defined in equations (2.22)-(2.24g). They found that for Pr = 0.71, with
the increase of the friction Reynolds number, from Reτ = 180 up to 640, the mixed production, mean
gradient production and turbulent production also increased. Meanwhile, the gradient production term
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(a) (b)

Figure 5.19: (a) Values of bθ (solid and left axis) and c1θ (dashed and right axis). Colours as in table
5.1. (b) Budgets of k+

θ /Pr as a function of y+Pr1/3. Cases for Pr = 2 and 7 are represented. Here,
colours denote budget terms: production (red), turbulent diffusion (black), viscous diffusion (blue) and
dissipation (green). Line style denotes the Reynolds number: Reτ = 2000 in solid lines, Reτ = 1000
in dashed lines and Reτ = 500 in dotted lines. Black line with value 0 is the summation of all terms.
Symbols as in table 5.5.

was independent of the Reynolds number. The same tendency can be observed in figure 5.20a, where
the product terms of ε+

θ are shown for Pr = 1 and Reτ = 500, 1000 and 2000. However, an interesting
result is obtained when the Prandtl number is increased to Pr = 7 (figure 5.20b). At this higher Prandtl
number, the mixed and mean gradient production seem to be independent of the Reynolds number when
this is high enough, i.e. Reτ ≥ 1000. Therefore, the only Reynolds dependent term is the turbulent
production. Although not shown here for the sake of brevity, for Pr = 4 a clearer difference was notice
between the mixed and mean gradient production terms at Reτ = 500 and 1000. This suggests that
a thermal equilibrium is achieved depending on a combination of Reτ and Pr, i.e. the friction Péclet
number, Peτ . This thermal equilibrium may be linked with the inner collapsing obtained for the thermal
fluctuations with high Péclet numbers (figure 5.12a).

Conclusions

A new set of DNS in a thermal channel flow at medium and medium–high Prandtl numbers have been
conducted. The MBC has been used as the thermal boundary condition. The mean temperature field
has been studied and a new scaling for the thickness of the conductive sublayer has been proposed for
medium to medium–high Prandtl numbers, ∆θ ∼ Pr−0.36+0.004Pr.

The presence of a logarithmic region in the temperature field is still not perfectly observed at the
ranges of Reτ and Pr simulated, although the Reynolds number dependencies are small. Also, it is
demonstrated that, for medium and medium–high Prandtl numbers, whether or not the logarithmic layer
perfectly appears, depends only on the Reynolds number. Therefore, the values of κt are constant for
different Prandtl numbers, but converges towards a constant value when the Reynolds number tends to
infinity.

Turbulent intensities have been calculated. The main result is that, it is observed for the first time in
Poiseuille thermal channel flows, that the maximum value of θ′+ does not increase when Reτ is increased
for medium–high Prandtl numbers. As a consequence, in the budgets of the temperature variance, the
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(a) (b)

Figure 5.20: Production terms of ε+
θ . (a) Pr = 1 and (b) Pr = 7. Here, colours denote production term:

mixed production (red), mean gradient production (black), gradient production (blue) and turbulent
production (green). Line style denotes the Reynolds number: Reτ = 2000 in solid lines, Reτ = 1000 in
dashed lines and Reτ = 500 in dotted lines. Symbols as in table 5.5.

scaling of the viscous diffusion and dissipation terms is more accurate near the wall. This may also be
the consequence of a Reynolds number independence of the mixed and mean gradient production terms
in the transport equation of ε+

θ . As a conclusion, a thermal equilibrium seems to be achieved in the
near-wall region when the Peτ number is high enough, so that the aforementioned thermal quantities
become constant with the Reynolds number.

Finally, the Nusselt and the turbulent Prandtl numbers have been calculated. It is observed how the
Nu can be written as a power function of Pr in a range of Peτ between 20 and 1500. On the other hand,
Prt is no longer equal to 1 near the wall for medium–high Prandtl numbers. Prt increases due to the
decrease of the wall-normal heat flux near the wall, which entails a lower thermal eddy diffusivity.

Remark, that the Prandtl numbers simulated in this work reach up to the Prandtl number of water
(Pr ≈ 7), and with the Reynolds numbers reached, up to Reτ = 2000, these new features of the thermal
field have been obtained. The tendency has been to observe statistics that become Reynolds independent
when the Reynolds was increased (θ′+, the viscous diffusion and dissipation budgets of k+

θ near the wall,
and the mixed and mean gradient production budget terms of ε+

θ ). Although an extrapolation should
always be made carefully, the Reynolds numbers in practical applications are even well above Reτ = 2000,
which suggest that a perfect scaling with Reτ is achieved for this variables, making thermal models for
water much easier and accurate.

The raw data that support the findings of this study are available in the following website:
http://personales.upv.es/serhocal/.

5.1.3 High Reynolds number for Pr = 0.71

This subsection contains the results of the first simulation of a thermal channel flow for a friction Reynolds
number of value Reτ = 5000 and the Prandtl number of air, Pr = 0.71. Results will be compared with
simulation presented in section §5.1.1 for lower Reynolds numbers and the Prandtl number of air, i.e.
Reτ = 500, 1000 and 2000, and Pr = 0.71. Also, results from the simulation of Pirozzoli et al. 2016 [50]
will be used for comparisons. This simulation used the highest friction Reynolds number in a thermal
channel flow until now, Reτ = 4000, and the thermal boundary condition consisted in an internal and
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(a) (b)

Figure 5.21: (a) Mean temperature. Magenta dashed line is from Pirozzoli et al. [50]. Black thin line
shows the law of the wall. (b) κt as a function of Reτ . Magenta circles represents the data from [50].
Cyan triangles is the data from [45], where the MBC is used. Colours as in table 5.1.

uniform heat generation (UHG) removed from both isothermal walls. Therefore, small differences should
be expected. In all plots of this subsection, magenta dashed line will be used to represent data from
Pirozzoli et al. [50] (unless otherwise specified).

Temperature statistics

The value of the mean temperature, Θ
+

, has been obtained and it is represented in figure 5.21a. As it

was expected, in the viscous layer, all values of Θ
+

collapse with the law of the wall: Θ
+

= Pry+. Even
the values from [50], where a different boundary condition for the thermal field is used, coincide with the
ones obtained in the present work. This shows the universality of turbulence near the wall. However, in

the logarithmic layer and in the central region of the channel, the slope of Θ
+

tends to decrease with an
increasing Reynolds number. For the UHG boundary condition used in [50], the slope is smaller than the
one obtained using the MBC.

The von Kármán constant, κt, has been derived from the mean temperature profile fitting the loga-

rithmic equation (5.1) to the value of Θ
+

in the range of y+ = 70 up to y/h = 0.2Reτ , as suggested in [77].

Therefore, in this range, κt represents the inverse of the slope of Θ
+

. The values of κt are represented in
figure 5.21b. Results at lower Reynolds numbers from the work of [50] have also been added (magenta
circles). In addition, the values of κt obtained in [45], where the MBC was also used, are represented
with cyan triangles. Results are coherent among all different works.

Here, it is seen that κt slightly increases with Reτ , but, asymptotically, tends to a value slightly above
0.44. One may think that κt depends on the Reynolds number. However, the reason of the variations in
the value of κt is that the logarithmic region is not properly developed and it is influenced by the buffer
layer and the outer region. A value of κt = 0.441 is obtained for Reτ = 5000. This value is slightly above
the von Kármán constant of the velocity field, which ranges between 0.38 and 0.4 [75, 76]. With respect

to the UHG, the value of κt increases to 0.455, since the slope of Θ
+

is lower, as it was mentioned before.
Regarding the constant B from equation (5.1), their values are collected in table 5.6. Notice that this
more or less constant value of B ≈ 3 obtained in all simulations is totally different when the Prandtl
number changes, as it was shown in the previous sections.
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Reτ κt B κ∞ α1 κ α2

500 0.418 2.89 – – – –
1000 0.436 3.11 0.4625 150 0.433 1.304
2000 0.440 3.05 0.4635 150 0.448 1.436
5000 0.441 2.96 0.4466 150 0.441 0.756
4000 0.455 3.09 0.4651 150 0.457 0.961

Table 5.6: Values of the parameters of equations (5.1) and (5.12).

(a) (b)

Figure 5.22: (a) Diagnostic function (5.2). Dotted black line represents where the plateau should be for
κt = 0.44. (b) Diagnostic functions, solid, and approximations of equation (5.12), dashed. Colours as in
table 5.1 and magenta dashed line is from Pirozzoli et al. [50].

A visual way of checking how well developed is the logarithmic layer is using the diagnostic function,
ΞT , defined in equation (5.2). If equation (5.1) holds, then the diagnostic function will have a value
of 1/κt in the logarithmic layer. In figure 5.22a, the diagnostic function of the mean temperature is
represented. This logarithmic layer appears between the two peaks of the diagnostic function that are
obtained in the buffer layer and the outer region. Regarding the peak in the buffer layer, its position is
constant at y+ ≈ 12 and its magnitude continues decreasing with the increase of the Reynolds number.
This peak is even lower for the UHG boundary condition. Regarding the peak in the outer region, it
is positioned at a constant value in outer coordinates, y/h ≈ 0.5. In the ideal case where a logarithmic
region appears perfectly developed, the plateau of value 1/κt should be observed approximately between
y+ > 70 and y/h < 0.2. This is not observed in any of the cases, since ΞT increases along the logarithmic
layer. However, it is true that the slope of ΞT tends to 0 as the Reynolds number increases. This indicates
that higher Reynolds numbers must be simulated in order to be able to find a plateau in the logarithmic
layer.

This problem was addressed by Jiménez and Moser [51]. They studied this influence of the Reynolds
number in the slope of the diagnostic function of the velocity, Ξ, on the logarithmic region for the mean
velocity profile, U+. They used a higher-order truncation in which the diagnostic function had the form

Ξ = y+∂y+U
+

=

1/κ︷ ︸︸ ︷(
1

κ∞
+

α1

Reτ

)
+α2

y+

Reτ
, (5.12)
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(a) (b)

Figure 5.23: (a) Nusselt number as a function of Re. (b) Zoom for the lower Reynolds numbers. Black
circles represents the data from this work, magenta squares are the data from [50] and cyan triangles are
the data from [45]. Lines represent correlations: Black solid (5.13), red dotted [83] (5.14), orange dashed
[84] (5.15), green dashed [48] (5.16) and blue dotted-dashed [85] (5.17).

where the Reynolds number dependence is introduced in the term κ and a linear dependence with y/h
is introduced in the term y+/Reτ . This approximation was valid in the range y+ > 300 and y/h < 0.45.

The same analysis has been performed here for Θ
+

. Note that the case Reτ = 500 does not appear in
this analysis since the range where the approximation is valid does not exist. In figure 5.22b, a zoom of
the diagnostic function together with the approximations of equation (5.12) are represented.

Values of the parameters of the approximation are presented in table 5.6. The value of α1 has been
set to 150 as in [51]. While κ and κt seem to be more or less converged, α2 is still larger than the expected
limit value of 0 for very high Reynolds number.

Another parameter that can be derived from the mean thermal field is the Nusselt number, Nu, defined
in equation (5.3). In figure 5.23, the obtained Nusselt numbers, as a function of Re, are presented. In
the range of Reynolds numbers studied, the Nusselt number can be approximated as a power function of
Re

Nu = 0.031Re0.796 for Pr = 0.71, (5.13)

where the coefficient of determination is R2 = 0.99976, for R2 = 1 representing a perfect fit. The
data has been compared with results from [50] at lower Reynolds numbers and from [45]. Also four
correlations have been used to compare them with correlation (5.13). Two of them are correlations for
turbulent flows in pipes: Dittus and Boelter [83]

Nu = 0.023Re0.8
D Prn, (5.14)

and Gnielinski [84]

Nu =
(f/8)(ReD − 1000)Pr

1 + 12.7(f/8)1/2
(
Pr2/3 − 1

) , (5.15)

where ReD is the diameter of the pipe, n is a coefficient of value 0.4 since the fluid is being heated and
f is proportional to the skin friction coefficient, f = (0.79 ln(ReD)− 1.64)

−2
. On the other hand, two

correlations for constant temperature walls are used. The Kays et al. [48] correlation reads

Nu = 0.021Re0.8Pr0.5, (5.16)
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and the Sleicher and Rouse [85] correlation

Nu = 4.8 + 0.0156Re0.85Pr0.93 forPr < 0.1. (5.17)

On one hand, figure 5.23a presents a global image, with all the Reynolds numbers that are being
analyzed in this work, including the ones from [50] and [45] for comparison. Figure 5.23b presents a zoom
in the low Reynolds numbers for a better view of the discrepancies between different boundary conditions
and correlations in this range of Re.

One can see that the Nusselt number obtained in [45] follows the same trend than the ones obtained
in this work, since the MBC is employed in both cases. However, Nu in [50] is slightly higher, since the
magnitude of the mean temperature is lower when the UHG thermal condition is used. In other words,
the convective heat transfer is lower when the MBC is used.

Regarding the correlations, the ones from Dittus and Boelter [83] (5.14) and Sleicher and Rouse [85]
(5.17) overestimate the value of Nu, either because it is for turbulent pipes or because the correlation
is valid for lower Prandtl numbers. Correlations from Gnielinski [84] (5.15) and Kays et al. [48] (5.16)
adjust much better to the results obtained. They perfectly adjust to the result from [50]. Anyway, note
that the exponent of Re from correlations (5.14), (5.16) and (5.17) is (or it is close to) 0.80, which is also
the case for the correlation proposed in this work (5.13).

Turbulent intensities are represented in figure 5.24. The root mean square of the temperature variance,
θ′+, and the wall-normal heat flux, v+θ+, are represented in figures 5.24a and 5.24b as a function of outer
and inner coordinates, respectively. Also, streamwise heat flux, u+θ+, is represented in figures 5.24c and
5.24d as a function of outer and inner coordinates, respectively.

The main result is that a perfect collapse of the statistics is observed in the inner layer, when the
plot is represented in inner coordinates, figures 5.24b and 5.24d. On the other hand, when the statistics
are represented as a function of the outer coordinates, the collapse is observed in the outer region of the
channel.

The maximum values of the turbulent intensities θ′+ and u+θ+ occur in the buffer layer. Their values
can be observed in figures 5.25a and 5.25b. The peaks increase with Reynolds number, which indicates a
more turbulent flow, as it was expected. θ′+ and u+θ+ present a linear increase with respect to log(Reτ ).
Values of the peaks can be obtained with the following correlations

θ′+max = 0.112 log(Reτ ) + 1.82, (5.18)

u+θ+
max = 0.508 log(Reτ ) + 3.06. (5.19)

On the other hand, v+θ+ does not present this linear increase of its absolute value. The peak occurs
in the outer region and its absolute value increases slowly as the Reynolds number increases. Actually,
v+θ+ is bounded by −1 as can be observed from heat fluxes balance equation (1.41). The maximum
value of q̇+ is 1. The turbulent heat flux, has its maximum in the core region of the channel. The higher
the Reynolds number is, the closer to 1 the value of q̇+ will be in this core region. Since in this region
q̇+ ≈ −v+θ+, for very high Reynolds numbers −v+θ+ will be close to 1.

Regarding the UHG case, the peaks of the three intensities have a lower absolute value, which indicates
a less turbulent thermal field than the one obtained using the MBC. Lower Reynolds number cases have
been also represented to see how this feature happens for all simulations, obtaining the same tendency.
Also, data from Abe et al. [45] has been added. This has been done to verify the results, since [45] also
used the MBC. Effectively, the results are very similar, and the small differences (lower than 1%) can be
due to numerical discrepancies or different mesh resolution.

In a similar way that the mean velocity and temperature are studied through the diagnostic function
in the log layer, velocity intensities can be analyzed through the Townsend’s attached eddy hypothesis
[11]. This hypothesis is valid for high Reynolds number flows, in a certain region of y, where the velocity
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(a) (b)

(c) (d)

Figure 5.24: θ′+ and v+θ+ in (a) outer coordinates and (b) inner coordinates. u+θ+ in (c) outer coordi-
nates and (d) inner coordinates. Colours as in table 5.1 and magenta dashed lines are from Pirozzoli et
al. [50].
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(a) (b)

Figure 5.25: Maximum value of (a) θ′+ and (b) u+θ+, both as a function of Reτ . Black line represents
correlation (5.18) in (a) and correlation (5.19) in (b). Black circles: data from this work; magenta squares
are from Pirozzoli et al. [50]; and cyan triangles are from Abe et al. [45].

intensities satisfy

u′+
2

= A1 −B1 log (y/h) , (5.20a)

v′+
2

= A2, (5.20b)

w′+
2

= A3 −B3 log (y/h) , (5.20c)

u+v+ = −1. (5.20d)

Analogously, due to the high correlation between u′+ and θ′+, one may think that the Townsend’s
hypothesis is valid for the thermal field when u′+ is replaced by θ′+. Doing this, the following relations
are obtained

θ′+
2

= A4 −B4 log (y/h) , (5.21a)

u+θ+ = A5 −B6 log (y/h) , (5.21b)

v+θ+ = −1. (5.21c)

It has already been shown that the minimum value of v+θ+ tends to −1 in a wider range of y/h
when the Reynolds number is increased (figures 5.24a and 5.24b). This is in accordance with equation

(5.21c). Regarding θ′+
2

and u+θ+, their diagnostic functions can be observed in figures 5.26a and
5.26b, respectively. If Townsend’s criteria can be applied to the thermal field, there should be a plateau
in y+∂y+θ′+

2
and y+∂y+u+θ+ profiles. For this values of Reτ there are no evidences of this plateau,

although the trends may indicate that for higher Reynolds numbers it may appear in the logarithmic
layer.

The turbulent Prandtl number, Prt, has been calculated. It is defined in equation (5.4). In figure
5.27, Prt is shown as a function of y+. In the viscous layer, it can be seen how Prt is close to 1 and
constant for all values of Reynolds numbers. This confirms the well-know law that states Prt ≈ 1 in
the wall for medium molecular Prandtl numbers [40]. Some differences are observed with respect to the
Prt obtained by Pirozzoli et al. [50]. However, in the buffer layer and logarithmic region, all values of
Prt seem to collapse, including the ones obtained in [50]. In the outer layer, values of Prt decrease. As
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(a) (b)

Figure 5.26: Diagnostic function for (a) θ′+
2

and (b) u+θ+. Colours as in table 5.1.

Figure 5.27: Turbulent Prandtl number. Colours as in table 5.1 and magenta dashed lines are from
Pirozzoli et al. [50].

92



CHAPTER 5. RESULTS

Reτ bθ V +
θ

∣∣
y+=0

Pr · b2θ
500 0.4202 0.1246 0.1254
1000 0.4385 0.1360 0.1365
2000 0.4529 0.1449 0.1456
5000 0.4692 0.1565 0.1563

Table 5.7: First column shows the Reτ of each case. Values of bθ are in second column. Third and
fourth columns show the value of V +

θ

∣∣
y+=0

obtained from the DNS and calculated with equation (5.10),

respectively.

a conclusion, there has not been observed new behaviours of the turbulent Prandtl number for the new
friction Reynolds number Reτ = 5000.

Turbulent budgets

In this section, budgets of the temperature variance, k+
θ (2.19)-(2.21d), the dissipation rate of the tem-

perature variance, ε+
θ (2.22)-(2.24g), and the turbulent heat fluxes, u+θ+ and v+θ+ (2.25)-(2.28f), are

presented (see equations in subsection §2.3.1).
Figure 5.28 shows the different budget terms for all cases that use the MBC with Reτ = 500, 1000,

2000 and 5000. Figure 5.28a represents the budget terms of k+
θ . In figure 5.28b, the budgets of ε+

θ

are represented, where the four production terms of ε+
θ have been added as in the previous subsections.

Finally, figures 5.28c and 5.28d show the budget terms of u+θ+ and v+θ+, respectively.
For k+

θ , figure 5.28a, all terms collapse for y+ > 10. In the buffer layer, the turbulent diffusion terms
present small discrepancies between all cases. Furthermore, in the viscous layer there are big differences
between each viscous diffusion and the dissipation terms. The absolute values of these terms increase
with the Reynolds number.

The reason of the discrepancies in the wall for the viscous diffusion and the dissipation terms can be
understood by using the Taylor series approximation of the turbulent intensities proposed by Antonia and
Kim [34] and Kawamura et al. [40], which were introduced in section §2.3.1, equations (2.17a)-(2.17i).
Near the wall, θ′+ ≈ Prbθy+. In figure 5.29a it is shown how this is true for approximately y+ < 3. The
values of bθ are collected in table 5.7.

On the other hand, one can approximate the value of the viscous diffusion term, V +
θ , with equation

(5.10). The result of the approximation is almost the actual value obtained in the DNS (table 5.7). In all
cases the error is lower than 1%. Therefore, the reason why this term of the turbulent budget does not
scale in the wall comes from the differences in the bθ terms. This term represents the slope of θ′+/Pr
near the wall. Looking at the zoom in figure 5.29a, one can see that, effectively, the lines of θ′+/Pr are
parallel, but they do not collapse. The differences in V +

θ for cases with the same Prandtl is due to the
increase in the slope of θ′+ with the Reynolds number. One may think that this value of bθ converges
for very large Reynolds numbers, as it may look from the trend in table 5.7. However, it was seen in
figure 5.24b that the maximum value of θ′+ always increases with Reτ , at least for Reτ ≤ 5000. Because
the position of the peak was constant in y+, the slope of θ′+ has to be higher for larger Reτ . In other
words, as long as the peak of θ′+ increases with Reτ , bθ will also increase and V +

θ cannot scale at the
wall. It was observed in previous section §5.1.2, that for high Prandtl numbers, the peak value of θ′+

was approximately constant, which yielded an approximately constant value of bθ and, therefore, a much
better scaling of the viscous diffusion term near the wall. Whether this thermal equilibrium depends
only on the Prandtl number or on both, Prandtl and Reynolds number, i.e. the Péclet number cannot
be answered with the data calculated in this work, since a friction Reynolds number of Reτ = 14000
should be calculated with a Prandtl number of Pr = 1 in order to obtain the same friction Péclet number
Peτ = 14000 from the simulation with Reτ = 5000 and Pr = 7 from previous subsection. However, this
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(a) (b)

(c) (d)

Figure 5.28: Budgets of (a) k+
θ , (b) ε+

θ , (c) u+θ+ and (d) v+θ+. Symbols denote budget terms: produc-
tion or sum of productions in (b), (triangle up), turbulent diffusion (circle), viscous diffusion (square),
dissipation (triangle down), pressure strain (star) and pressure diffusion (diamond). Black line with value
0 is the summation of all terms. Colours as in table 5.1.
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(a) (b)

Figure 5.29: (a) θ′+/Pr and (b) u+θ+/Pr in wall coordinates. Zooms of the viscous layer. Colours as in
table 5.1.

Reτ b1θ V +
uθ

∣∣
y+=0

(Pr + 1)b1θ

500 0.1512 0.2562 0.2586
1000 0.1619 0.2717 0.2768
2000 0.1713 0.2853 0.2930
5000 0.1836 0.3138 0.3139

Table 5.8: First column shows the case. Values of b1θ are in second column. Third and fourth columns
show the value of V +

uθ

∣∣
y+=0

obtained from the statistics and calculated with equation (5.11), respectively.

simulation is far beyond the computational possibilities of nowadays supercomputers. The same analysis
can be done for the dissipation term, since, at the wall, V +

θ = −ε+
θ .

In the case of the dissipation rate of the temperature variance, ε+
θ , plotted in figure 5.28b, the scaling

failures appear in the buffer layer for the sum of production terms and the dissipation. This increase of
the production terms was already reported in other works such as [81].

For the budgets of u+θ+ (figure 5.28c), the viscous diffusion, V +
uθ, and dissipation, ε+

uθ, terms do not
scale near the wall, in the same way that for k+

θ . Actually, the phenomenon is very similar and it can
be studied in the same way. V +

uθ, can be calculated at the wall with equation (5.11). The value of c1θ
is obtained from the Taylor series approximation of u+θ+, equation (2.17h), which near the wall reads

u+θ+ ≈ Prc1θy+2
. This approximation is shown for in figure 5.29b and the values of c1θ are collected in

table 5.8. The approximation is very accurate up to y+ < 4. The values of V +
uθ at the wall using equation

(5.11) differ less than a 3% for all cases (table 5.8), proving a good accuracy of the approximation.
Similarly to V +

θ , while the coefficient c1θ increases with the Reynolds number, the value of V +
uθ will also

increase at the wall. This will occur as long as the peak of u+θ+ keeps increasing (figure 5.24d).

As a conclusion, the scaling failure near the wall of V +
θ and V +

uθ are due to the increase of the peak

of θ′+ and u+θ+, respectively.

Regarding the turbulent budgets of v+θ+ (figure 5.28d), small scaling failures appear in the buffer
layer for the production and pressure strain terms. Near the wall, bigger discrepancies appear for the
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(a) (b)

(c) (d)

Figure 5.30: Budgets of (a) y+k+
θ , (b) y+ε+

θ , (c) y+u+θ+ and (d) y+v+θ+. Symbols denote budget terms:
production or sum of productions in (b), (triangle up), turbulent diffusion (circle), viscous diffusion
(square), dissipation (triangle down), pressure strain (star) and pressure diffusion (diamond). Black line
with value 0 is the summation of all terms. Colours as in table 5.1.

pressure strain and pressure diffusion terms. The pressure strain term can be written as

Πs+

vθ = p+∂y+θ+ (5.22)

The reason why Πs+

vθ does not scale in the wall is again because the term p+∂y+θ+ has a peak at a
constant y+ and it continuously increases with the Reynolds number. Not shown here for brevity.

As a general comment, the budgets of k+
θ and u+θ+ are very similar due to the high correlation

between u′+ and θ′+. Near the wall, the energy enters to the thermal flow through viscous diffusion and
it is extracted by dissipation. Also, the peak of the production term is constant for different Reynolds
numbers. For k+

θ , the value of P+
θ is Pr/4, as noted by [80]. On the other hand, there is not a clear

scaling with Pr for the peak of P+
uθ. In the case of the budgets of v+θ+, a similar picture to that of u+v+

is obtained (not shown here for brevity), again, due to the high correlation between u′+ and θ′+. In this
case, the energy is introduced by the pressure strain and it is extracted by the pressure diffusion.

A different picture is obtained above the buffer layer, up to approximately y/h = 0.4. Figure 5.30
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shows the same turbulent budgets as before, pre-multiplied by y+. In a perfectly developed logarithmic
layer, the kinetic energy production scales with 1/y+ [38]. Note that this is approximately true for the
dominant budgets of k+

θ , u+θ+ and v+θ+. Therefore, a much better comparison between the dominant
budget terms above the buffer layer can be done. As in the near-wall region, production is the dominant
budget term of k+

θ , which is compensated by the dissipation term. However, in the case of u+θ+, and

also for v+θ+, it is the pressure strain what compensates the production term.

In the center of the channel (above y/h = 0.4) the velocity and temperature flatten and all production
terms tend to 0, since the velocity and thermal boundary conditions imposed imply a zero gradient in
the velocity and temperature in the center of the channel. Turbulent diffusion becomes the dominant
budget of k+

θ and it is compensated by the dissipation.

As a final comment, there are no noticeable changes in the behaviour of the turbulent budgets with
respect to lower Reynolds number cases.

Conclusions

A Direct Numerical Simulation of a thermal channel flow at Reτ = 5000 has been conducted for the first
time. The Mixed Boundary Condition has been used. The Prandtl number of air, 0.71, was used. The
results obtained are compared with other simulations using the same Prandtl number and lower Reynolds
numbers: Reτ = 500, 1000 and 2000. Also, the simulation with closest Reynolds number, Reτ = 4000, is
used to compare results. In that simulation the Uniform Heat Generation boundary condition was used.
A comparison among both boundary conditions is provided.

The mean temperature is calculated and its diagnostic function still does not show a plateau in the
logarithmic layer. Higher Reynolds number are needed in order to properly study the behaviour of the
thermal field in this logarithmic region. The von Kármán constant presents an asymptotic behaviour with
an increasing Reynolds number and it trends to converge at a value of approximately 0.44. The reason
why κt is not constant is attributed to the influence of the inner and outer regions on the logarithmic
region, since for these Reynolds numbers this logarithmic region is small. This effect of the Reynolds
number on the logarithmic layer is also studied through a slightly different diagnostic function. For this
case, a new term that contemplates the dependence of the Reynolds number is introduced. Effectively,
the value of this term trend towards zero when the Reynolds number is increased.

A new correlation for the Nusselt number is provided. This correlation is valid for turbulent thermal
channel flows, Pr = 0.71, and 500 ≤ Reτ ≤ 5000. It has been compared with classical Nusselt number
correlations. Regarding the turbulent Prandtl number, there are no relevant results at Reτ = 5000 and
the trends of Prt are the same as for lower Reynolds numbers.

Thermal intensities increase with the Reynolds number and the values of the inner peaks increase
logarithmically with Reτ for θ′+ and u+θ+. v+θ+ tends to have a minimum value close to −1 in a wider
range of y+ for high Reynolds numbers. This agrees with the application of Townsend’s hypotheses to
the thermal intensities. However, θ′+

2
and u+θ+ do not present a logarithmic dependence at any region

of y as it indicates Townsend’s hypotheses. A remarkable difference between the MBC and UHF thermal
conditions is observed in the temperature intensities. Magnitudes of this intensities are higher when the
MBC is used, meaning that a more turbulent thermal field is obtained.

Turbulent budgets are presented and scaling failures are analyzed. The most relevant scaling failures
are the ones that occur near the wall for the dissipation and viscous diffusion terms of k+

θ and u+θ+.

These scaling failures are a direct result of the increase of the inner peak of θ′+ and u+θ+, respectively.
In the cases of the budgets of v+θ+, the scaling failures occur in the pressure strain and pressure diffusion
terms. In the same way, this occurs due to the increase of the inner peak of the variable p+∂y+θ+.

The raw data that support the findings of this study are on the following link:

http://personales.upv.es/serhocal/
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Case HJ02 [73] LJ04 [75] LM05 [76] HAKO10
Reτ 2000 4200 5200 10000
Line · · · · · ·

Table 5.9: Friction Reynolds number and line code to distinguish each simulation during the plots of this
subsection.

5.1.4 Poiseuille isothermal flows

This subsection contains the results of the simulation of a Poiseuille turbulent channel flow. For the first
time, a friction Reynolds number of value Reτ = 10000 have been simulated in a DNS. The data has
been compared with other simulations at different Reynolds numbers [73, 75, 76]. Table 5.9 shows the
line colours and styles used to distinguish between each simulation in the different plots of this subsection
(unless otherwise specified).

One point statistics

The mean velocity profile is shown in figure 5.31 in terms of the diagnostic function, Ξ = y+∂y+Ū+. This
function should show a plateau if the classical scaling for the logarithmic layer Ū+ = κ−1 log(y+) + B
holds, where κ is the von Kármán constant. For every case, the first local minimum of Ξ is reached
around y+ ≈ 70, which more or less coincide with the classic starting point of the logarithmic layer [12].
However, the diagnostic function is not really flat until y+ ≈ 400. The logarithmic layer extends to
around y+ ≈ 2500 or y/h = 0.3, above the usual value of y/h = 0.2. To obtain the values of κ and B,
the fitting of the logarithmic function has been restricted to the region where the diagnostic function is
flatter, y+ = 400 to y/h = 0.27, obtaining κ = 0.394 and B = 4.61. This value for κ is only 0.010 and
0.007 units larger than the one given by [76] and [86], respectively.

The intensity of the streamwise velocity, u′+, is shown in figure 5.32a. The well known scaling failure
in the buffer layer is still present [73]. Lee & Moser [76] found that this limit is growing in several DNS
studies of canonical flows, in the range Reτ = 1000 − 5200. This first maximum is still growing, and
its value u′+ = 3.07 is in agreement with [76] and the experimental results of [87]. Notice that several
experimental researchers, [88], have found that this limit is not growing. However, as it is shown later,
this is related to the scaling failure of the dissipation [38].

About the open question of a possible second maximum of u′+ the situation is shown in figure 5.32b.
Notice that the existence of this second maximum could lead to the presence of new phenomena at the
beginning of the logarithmic layer [89]. If it exists, this maximum would be located around y+ ≈ 120.
However, the derivative of u′+ is still not zero. Moreover, if it is plotted the maximum value of dy+u′+

close to y+ ≈ 120 with respect to the Reynolds number, figure 5.32b box, it is not clear that this second
maximum would ever exist. A fitting of these data with a first order polynomial gives a value of only
Reτ ≈ 13000 for the existence of this maximum. This would oppose the results obtained in [87], where
for Reτ = 20000 a second maximum was not present. However, a fitting with a second order polynomial
leads to a never existing second maximum, leaving the question open.

The other three components of the Reynolds stress tensor can be seen in figure 5.32c. As expected,
the scaling of u+v+ and v′+ is almost perfect near the wall. In the case of w′+, the maximum keeps
growing, causing a minor scaling failure in the viscous sub-layer. Pressure, figure 5.32d, is computed as
in [90], growing at the wall logarithmically [51, 91]. The peak is at y+ ≈ 30 for all simulations. It could
be thought that the problem of the scaling is mainly a translation problem, which would seem natural,
as the pressure is defined as an additive constant. However, in the box of figure 5.32d, where the peaks
of cases HJ02, LJ04 and LM05 have been shifted so they coincide in their maximum with the peak of the
present work, it is appreciated that the scaling is not perfect either.
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Figure 5.31: Diagnostic function, showing a log layer in the range y+ = 400− 2500. Lines as in table 5.9.
Horizontal red dashed line represents where the plateau of the logarithmic layer would be for a value of
κ = 0.394.

The spectral energy densities for U+ and V +, φ = kxkzE(kx, kz), at y+ ≈ 15 are given in figure 5.33a.
Here λ = 2π/k is the wavelength and k is the wavenumber. This further confirms that the large and
wide structures at the right corner are inactive in the sense of Townsend [11, 73, 92]. They are present
in U+ spectra but neither in V + or U+V + co-spectra. This situation differs in the logarithmic region.
As can be see in figure 5.33b, a large spectral ridge, containing half of the most energetic eddies of the
flow goes roughly across the extension of the logarithmic layer for V +. This confirms what was hinted in
[73], where only a few points in the logarithmic layer were present. Notice also that the isolines for larger
values of y/h are approximately parallel, suggesting a similar cascade process for both U+ and V +. The
dashed lines of figure 5.33b show the approximate position of the maximum of the 1D z−spectra. These
peaks grow linearly as ymax ≈ λz/6 for U+, and ymax ≈ λz/2.5 for V +. Similar plots can be obtained
for the x−spectra with ymax ≈ λz/2.5 for V + too. It can also be noticed, in both plots, that more than
95% of the energy has been captured in the box, further assuring the validity of the statistics.

Turbulent budgets

The budget equation for the component u+
i u

+
j of the Reynolds-stress tensor is written as in [38, 93]

B+
ij ≡ Du

+
i u

+
j /Dt = P+

ij + ε+
ij + T+

ij + Πs+

ij + Πd+

ij + V +
ij . (5.23)

This equation has been nondimensionalized as B+
ij = Bijν/u

3
τ . The terms in the right hand side of

equation (5.23) are referred to as production, dissipation, turbulent diffusion, viscous diffusion, pressure-
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(a) (b)

(c) (d)

Figure 5.32: (a) u′+. Box: dy+u′+ evaluated at the wall. (b) dy+u′+, close to the possible second

maximum. Box: maximum value of dy+u′+ (c) v′+, w′+ and u+v+. (d) Intensity of total pressure. Box:
shifting of all pressures to the peak of the case of this work. Lines as in table 5.9.
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(a) (b)

Figure 5.33: (a) 2D power spectra at y ≈ 15. (b) 1D z-spectra. In both cases, U+ (black) and V + (red).
The inner isolines represents 90% of the energy. From there, each isoline is half of the energy of the
previous one.

strain, and pressure-diffusion. They are defined by

P+
ij = −u+

i u
+
k ∂kUj

+ − u+
j u

+
k ∂kUi

+
(5.24a)

ε+
ij = −2∂ku

+
i ∂ku

+
j , (5.24b)

T+
ij = ∂ku

+
i u

+
j u

+
k , (5.24c)

V +
ij = ∂kku

+
i u

+
j , (5.24d)

Πs+

ij = p+(∂ju
+
i + ∂ju

+
i ), (5.24e)

Πd+

ij = ∂k

(
p+u+

i δjk + p+u+
j δik

)
. (5.24f)

Finally, in channels B+
ij ≡ 0. In the viscous and buffer layers, budgets should scale in wall units. The

budgets are shown in figure 5.34, using this scale. Except those terms that are identically zero, all are
active. The well-known scaling failure [38] of the dissipation at the wall for B+

11 is still present, figure
5.34a. As expected all terms collapse for y+ > 10. However, below this more or less arbitrary limit, the
absolute values of ε+

11 and V +
11 increase with the Reynolds number. This scaling failure can be linked to

the growing of the first maximum of u′+, as the scaling failure of V +
θ was linked to the growing of the

first maximum of θ′+. At the wall,

V +
11

∣∣
y+=0

= ∂y+y+ u+2
∣∣∣
y+=0

= 2(∂yu+)2|y+=0 = −ε11, (5.25)

as all other terms vanish. Using the Taylor series decomposition (2.17c) proposed in [34] and [40], near
the wall, u′+ ≈ b1y

+, and V +
11 ≈ b21. Thus, the reason why this term of the turbulent budget does

not scale with the Reynolds number in the wall comes from the differences in the b1 terms. This term
represents the slope of u′+ near the wall. Looking at the box in figure 5.32a, one can see that, effectively,
the value of du′+/dy+ at the wall does not collapse, but slightly increases. Apart from the data of this
work, there are also experimental evidences that the peak at y+ ≈ 15 keeps growing with respect to Reτ
[87]. Because the position of the peak is constant in y+, the slope of u′+ has to be higher for larger Reτ .
In other words, as long as the peak of u′+ increases with Reτ , b1 will also increase and V +

11 cannot scale
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(a) (b)

(c) (d)

Figure 5.34: Budgets for Reynolds stresses in wall units. (a) B+
11, (b) B+

12, (c) B+
22, (d) B+

33. Production
�, dissipation �, viscous diffusion ∗, pressure-strain H, pressure diffusion N, turbulent diffusion •. Lines
as in table 5.9.

at the wall. This behaviour is identical to that of V +
uθ observed in sections §5.1.2 and §5.1.3 and V +

θ

observed in section §5.1.3.

The scaling failures of the pressure terms, figures 5.34b and 5.34c, are harder to explain because there
are no good models for them [38]. However, it seems that this scaling failure is decreasing with the
Reynolds number, even if the pressure keeps growing at the wall, as it is shown in 5.32d.

The situation in the center of the channel is better explained using a different nondimensionalization,
B∗ij = yBij/u

3
τ , see figure 5.35. This scaling counteracts the expected decay of these terms far from the

wall, which is roughly as y−1. To avoid numerical noise, the turbulent diffusion has been computed here
using the fact that Bij ≡ 0. Above y/h ≈ 0.2 the scaling is almost perfect. In agreement with previous
results [38, 93], all the budgets above the buffer layer, y/h > 10−3 in this case, are dominated by a few
terms. The streamwise velocity fluctuations introduce the turbulent energy in the flow. This energy is
dissipated by the dissipation and the pressure-strain terms (see figure 5.35a). Notice that P11 ≈ 2ε11 and
that, in the channel center, the turbulent diffusion becomes dominant in the production of energy, as U+

flattens.
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(a) (b)

(c) (d)

Figure 5.35: Premultiplied budgets for Reynolds stresses, B∗ij = yBij/u
3
τ . (a) B∗11, (b) B∗12, (c) B∗22, (d)

B∗33. Production �, dissipation �, viscous diffusion ∗, pressure-strain H, pressure diffusion N, turbulent
diffusion •. Lines as in table 5.9.
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This energy is redistributed by pressure to V + and W+, where it is dissipated by, certainly, the
dissipation (see figures 5.35c and 5.35d). Notice, however, that pressure diffusion plays an important role
in the channel center. Finally, for the Reynolds stress u+v+, figure 5.35b, production and pressure strain
are the dominant terms, but above y/h ≈ 0.5 pressure diffusion and turbulent diffusion are also present.

Conclusions

To conclude, a Poiseuille turbulent channel flow at a friction Reynolds number of Reτ = 10000 has been
simulated. This simulation was made in a small box of size (2πh, 2h, πh), large enough to accurately

compute the statistics of the flow. The profile of U
+

shows a long log layer, extending from y+ ≈ 400 to
y+ ≈ 2500. The value of the von Kármán constant is κ = 0.394. The first maximum of the streamwise
profile u′+ continues growing, which is the cause of the scaling failure of the dissipation at the wall. The
second maximum of u′+ has not appeared yet, and it is not clear if it eventually will. On the other hand,
The turbulent budgets show a perfect scaling in the outer region with B∗ij = yBij/u

3
τ . Finally, the 1D

spectra grow linearly in the logarithmic layer. Near the wall, the spectral analysis reinforces Townsend’s
hypothesis of inactive motions.

The data presented here can be download from the following link:

https://www.fdy.tu-darmstadt.de/fdyresearch/dns/direkte numerische simulation.en.jsp

5.1.5 Scaling laws of velocity, temperature and high order moments with Lie
symmetries

Lie symmetries of the governing equations

In this section, the Lie symmetries of the governing equations (1.5), (1.6) and (1.7) are presented. For
high Reynolds numbers flows, i.e. for Reτ →∞, one can neglect the viscous term for length scales beyond
the Kolmogorov length scales, and the Navier-Stokes equations reduce to the Euler equations (see [94]).
For the case of the Euler equations a 10-parameter symmetry group of transformation is obtained. For a
complete set of the 10-parameter symmetry group, the reader is referred to [17]. Here, only the scaling
groups needed further below to derive the scaling laws are presented

TSx : t∗ = t, x∗ = eaSxx, U∗ = eaSxU , P ∗ = e2aSxP, (5.26)

TSt : t∗ = eaStt, x∗ = x, U∗ = e−aStU , P ∗ = e−2aStP, . (5.27)

The coefficients aSx and aSt are the group parameters of scaling in space and time, respectively.

If the Navier-Stokes equations are considered, i.e. the viscous term is not neglected, the two scaling
symmetries, TSx and TSt, linearly combine into a simple scaling symmetry. This phenomenon, in which
a multi-parameter symmetry group of transformations is reduced after a certain condition is applied is
known as symmetry breaking.

An analogous simplification, as the transition from the Navier-Stokes to the Euler equation, applied
to the energy equation (1.7) can be done by neglecting the diffusive term, i.e. Peτ → ∞. Considering
this, the energy equation admits the following infinite dimensional symmetry

TΘ : t∗ = t, x∗ = x, U∗ = U , P ∗ = P, Θ∗ = f (Θ) . (5.28)

For scaling purposes, and in analogy with the scaling symmetries of the Euler equations, it is consider
the simplification f(Θ) = eaΘΘ, so that TΘ represents a scaling of temperature.

As noted in [71], the symmetries obtained for the Navier-Stokes and energy equations transfer to the
MPC equations (3.15). So, in the limit of zero viscosity and diffusion, the MPC equations (3.15) admit
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the following scaling symmetries:

TSx : t∗ = t, x∗ = eaSxx, H∗i{n}Θ{m} = enaSxHi{n}Θ{m} ,

I∗i{n−1}Θ{m}[a]P
= e(n+1)aSxIi{n−1}Θ{m}[a]P , (5.29)

TSt : t∗ = eaStt, x∗ = x, H∗i{n}Θ{m} = e−naStHi{n}Θ{m} ,

I∗i{n−1}Θ{m}[a]P
= e−(n+1)aStIi{n−1}Θ{m}[a]P , (5.30)

TSΘ : t∗ = t, x∗ = x, H∗i{n}Θ{m} = emaΘHi{n}Θ{m} ,

I∗i{n−1}Θ{m}[a]P
= emaΘIi{n−1}Θ{m}[a]P , (5.31)

which are immediate consequences of (5.26), (5.27) and the scaling version of (5.28).

In addition to the symmetries induced from the Navier-Stokes/Euler and energy equations, the MPC
equations (3.15) admit an extended set of symmetry transformations. These symmetries are called statis-
tical symmetries and they are the key in the process of deriving scaling laws [17] for high order moments
of the velocity and temperature. These symmetries were discovered in [71] and detailed information on
the physical meaning of the statistical symmetries can be found in [95]. First, because of the linearity of
the MPC equations (3.15) a scaling symmetry of the dependent variables is admitted

TSs : t∗ = t, x∗ = x, H∗i{n}Θ{m} = eaSsHi{n}Θ{m} ,

I∗i{n−1}Θ{m}[a]P
= eaSsIi{n−1}Θ{m}[a]P . (5.32)

This symmetry, as proven in [95], represents a measure of intermittency. Moreover, as all dependent
variables in (3.15) appear inside derivatives, a translation symmetry of the moments is also admitted

T tra,H : t∗ = t, x∗ = x, H∗i{n}Θ{m} = Hi{n}Θ{m} + aHi{n}Θ{m} ,

I∗i{n−1}Θ{m}[a]P
= Ii{n−1}Θ{m}[a]P + aIi{n−1}Θ{m}

. (5.33)

Apart from the symmetries presented, it will also be included the classical translation in space sym-
metry

T tra,x : t∗ = t, x∗ = x+ ax, H∗i{n}Θ{m} = Hi{n}Θ{m} ,

I∗i{n−1}Θ{m}[a]P
= Ii{n−1}Θ{m}[a]P . (5.34)

Note that, in contrast to (5.32), where aSs is a single group parameter, symmetries (5.33) and (5.34)
are a condensed way of showing several symmetries. Each component of the vector and tensors aH{n}{m},

aI{n−1}{m} and ax represent the group parameter of different and independent symmetries. Therefore,

infinite symmetries are contained in (5.33), while (5.34) contains three symmetries, one for each spatial
direction.

In summary, six symmetries have been identified, that will be used to derive the scaling laws of high
order moments of the velocity and temperature. One property of the Lie symmetries is that one can
combine different one-parameter Lie symmetries into a multi-parameter Lie symmetry. Following this,
one can obtain the following multi-parameter Lie symmetry group from the symmetries (5.29)-(5.34)

T : t∗ = eaStt, x∗ = eaSxx+ ax,

H∗i{n}Θ{m} = en(aSx−aSt)+maΘ+aSsHi{n}Θ{m} + aHi{n}Θ{m} , (5.35)

I∗i{n−1}Θ{m}[a]P
= e(n+1)(aSx−aSt)+maΘ+aSsIi{n−1}Θ{m}[a]P + aIi{n−1}Θ{m}

.
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A different way of writing the symmetry group (5.35) is using the infinitesimal notation (3.25), from
which one obtains

ξt = aStt, ξx = aSxx+ ax,

ηHi{n}Θ{m} = [n(aSx − aSt) +maΘ + aSs]Hi{n}Θ{m} + aHi{n}Θ{m} , (5.36)

ηIi{n−1}Θ{m}[a]P
= [(n+ 1)(aSx − aSt) +maΘ + aSs] Ii{n−1}Θ{m}[a]P + aIi{n−1}Θ{m}

.

New high order moment scaling laws

Using the symmetries (5.35), or rather its infinitesimal form (5.36), it is possible to compute the invariant
solutions of the equations (3.15), which in turbulence are called the turbulent scaling laws. For this
purpose the infinitesimals (5.36) are inserted into the invariant surface condition (3.86) and it is obtained

dx2

aSxx2 + ax2

=
dH1{1}

[aSx − aSt + aSs]H1{1} + aH1{1}

=
dHΘ{1}

[aΘ + aSs]HΘ{1} + aHΘ{1}

=
dH1{1}Θ{1}

[aSx − aSt + aΘ + aSs]H1{1}Θ{1} + aH1{1}Θ{1}
= ...

=
dH1{n}Θ{m}

[n(aSx − aSt) +maΘ + aSs]H1{n}Θ{m} + aH1{n}Θ{m}
(5.37)

Since a shear flow is considered, which is fully parallel in the statistical mean, all moments in the
one-point limit depend only on x2. Furthermore, the dependencies of the other points for the higher
order tensors would have to be formally considered as well, because this would result in further similarity
variables. However, from now on, the study will be focus on the one-point statistics, so that every point
of application of the variables in (3.15) will be x(1) = x(2) = ... = x(n+m).

For the integration of the characteristic system (5.37), there are two cases to be distinguished and
their solutions correspond to the logarithmic layer and centre region of the channel. The first case
describes the logarithmic law, which was only perfectly observed for the mean velocity in the case of
Reτ = 10000 in subsection §5.1.4. Therefore, the application of Lie symmetries to obtain scaling laws in
the logarithmic layer will only be applied to that case. The key parameter here is the wall shear stress
velocity, uτ =

√
τw/ρ. uτ uniquely determines the only velocity scale in the problem. For a given flow,

this refers to a specific value, which implies that a scaling of the velocities according to infinitesimal
transformation (5.36), with arbitrary parameter aSx, aSt and aSs, is no longer feasible. Hence, in terms
of symmetry theory, uτ is symmetry breaking for the velocity and for the group parameters in (5.36).
This implies that aSx − aSt + aSs = 0. Using this during the integration of the characteristic system
(5.37), it is obtained

U1 =
a1

aSx
ln

(
x2 +

ax2

aSx

)
+ C̃1, (5.38a)

H1{n} = C̃n

(
x2 +

ax2

aSx

)ω(n−1)

−
aH1{n}

(n− 1)(aSx − aSt)
, (5.38b)

with C̃n = ec̃n(n−1)(aSx−aSt), (5.38c)

where C̃1 and c̃n represent integration constants and ω = 1− aSt/aSx. The three central results here are
that in the logarithmic region for the mean velocity (i) the moment n = 1 follows a logarithmic law, (ii) the
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moments n > 1 behave like a power-law, (iii) the exponents for all nth moments are determined by a single
parameter which is the exponent ω for the second moment. For the classical near-wall logarithmic region
for the mean velocity in equation (5.38a), these laws are now to be transformed into wall-coordinates
using ν and uτ to nondimensionalize, obtaining

U
+

1 =
1

κ
ln
(
x+

2

)
+B1, (5.39a)

H+
1{n}

= Cn
(
x+

2

)ω(n−1) −Bn, for n ≥ 2, (5.39b)

Cn = αeβn, Bn = α̃eβ̃n, for n ≥ 2. (5.39c)

where in κ, B1, Bn, Cn, α, β, α̃ and β̃ it is subsumed the various constants appearing in equations (5.38a)
and (5.38b). κ refers to the usual von Kármán constant and equation (5.39a) is identical to the already
introduced equation (1.28) in chapter §1. The shift in x2 by ax2

in equations (5.38a) and (5.38b) has
been set to zero, although there are works, [96], that suggest a non-zero shift. However, the numerical
value is small and thus is negligible for large x+

2 . A value of κ = 0.394 was obtained, as reported in
section §5.1.4, similar to previous simulations at lower Reynolds numbers [73]. Interestingly, the data
below shows that the α and β are essentially independent of n, so Cn results in a simple exponential
function in n. Actually, this also results for α̃ and β̃ in Bn, although the reason for this is unknown.

For the case of integration of the characteristic system (5.37) in the center of the channel, both,
velocity and temperature fields, will be consider to validate the scaling laws. In this case, no a priori
symmetry breaking scale is introduced into the characteristic system, i.e. the factors (aSx − aSt + aΘ +
aSs), . . . , n(aSx − aSt) + maΘ + aSs, are all assumed to be non-zero. This results in power-laws for all
moments n + m, including the first moment n = 1, m = 0 and n = 0, m = 1. After the integration,
it is observed that the parameters aSx, aSt, aΘ and aSs only occur as ratios and hence only three free
parameters exist. If the exponents for the first two moments, σ1, σ2 and σΘ, are given, it is obtained that

H1{n}Θ{m} =C̃ ′1{n}Θ{m}

(
x2 +

ax2

aSx

)n(σ2−σ1)+mσΘ+2σ1−σ2

−
aH1{n}Θ{m}

n(aSx − aSt) +maΘ + aSs
,

(5.40)

where C̃ ′1{n}Θ{m} denote the constants of integration, σ1 = 1−aSt/aSx +aSs/aSx, σ2 = 2(1−aSt/aSx) +

aSs/aSx and σΘ = aΘ/aSx. The choice of parameters in the exponent of (5.40) has been designed so
that the high order moments depend on those of the first and second order. This can be easily seen
by using n = 1 and n = 2 for m = 0 and m = 1 for n = 0. Therefore, σ1 and σ2, which come from
symmetries of the Navier-Stokes equations (1.5) and (1.6), are determined from velocity moments, while
σΘ is determined from the first temperature moment, which is influenced by the velocity. In such a way,
the condition of passive scalar is also extended to the parameters of the scaling law. It is important
to recall that the invariant solution (5.40) has been derived in the limit of vanishing viscosity and heat
conduction. Therefore, this solution, will be only valid in the region where these conditions apply, i.e.
the center of the channel. The invariant solution (5.40) shows that the moments of velocity, temperature
and higher order moments scale as power-laws, whose exponents are determined by the parameters σ1,
σ2 and σΘ.

Analogously to [14], where the scaling law of the mean velocity of a turbulent shear flow was presented
as a deficit law, equation (5.40) can be rewritten to form the final scaling law of the velocity, temperature
and higher order moments of both as

H1{n}Θ{m}cl
−H1{n}Θ{m}

unτ θ
m
τ

= C ′1{n}Θ{m}

(x2

h

)n(σ2−σ1)+mσΘ+2σ1−σ2

, (5.41a)

with C ′1{n}Θ{m} = α′enβ
′
1+mβ′Θ , (5.41b)
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where the subscript cl refers to the value of the moment in the center line, which comes from the last term
on the right hand side of equation (5.40), and similar to equation (5.39c) above, α′, β′1 and β′Θ subsume
various constants and are presumed to be universal. Also note that, in equation (5.41a), the shift in
x2 coordinate has be neglected, since the value of ax2

/aSx can be set to 0 or at least, it is negligible,
as suggested in [96]. Equation (5.41a) is the final scaling law in the center of the channel of velocity,
temperature and high order moments of both.

Validation of the scaling laws with DNS data

The new scaling laws (5.39a), (5.39b) and (5.41a) will be validated by using DNS data presented in the
previous subsections. The moments calculated in the simulations go up to order seven for pure moments
of velocity and temperature and up to order six for mixed moments of velocity and temperature. The
procedure to fit the scaling laws to the DNS data has been done by minimizing the infinite norm of the
relative error between the fit and the value of the DNS data, i.e.

min

(∣∣∣∣∣∣∣∣data(x2)− fit(x2)

data(x2)

∣∣∣∣∣∣∣∣
∞

)
. (5.42)

Using the infinite norm, more accurate results were obtained. With this, the exponent for any high
order moment is know and only the constants of integration must be calculated.

Starting first with the validation of the scaling laws in the logarithmic region, (5.39a) and (5.39b), for
the velocity field, as mentioned in subsection §5.1.4, the logarithmic law is linked to a flat region of the
diagnostic function, Ξ,

Ξ = x+
2 ∂x+

2
U

+

1 , (5.43)

which was indeed nicely observed in figure 5.31 of previous subsection employing the new DNS data in
the region x+

2 = 400− 2500.
Figure 5.36 shows the first central result of the application of Lie symmetries to turbulent flows, which

is the comparison between DNS data for the moments n ≥ 2 and equation (5.39b). A double logarithmic
plotting has been adopted to make the power-laws visible more clearly. The universal numerical value
ω in equation (5.39b) has been chosen to ω = 0.10 to match the DNS data and gives the best fit for all
higher moments up to n = 6.

The two key results in figure 5.36a are (i) a nearly perfect representation of the power law for all
moments solely based on the single parameter ω and (ii) the validity of all moments in the logarithmic
region with range of x+

2 ' 400 . . . 2500.
Looking closely at figure 5.36a one might get the impression that the power-law scaling of equation

(5.39b) continues beyond the domain x+
2 ' 400 . . . 2500, however, it does not, as can be shown with the

definition of a power-law diagnostic function. To extract the exponent in (5.39b) it is defined

Ξn =
x+

2

H+
1{n}

+Bn

dH+
1{n}

dx+
2

= ω(n− 1). (5.44)

DNS data are now inserted into (5.44) and compared with the exact value ω(n− 1) in figure 5.36b. It
can be seen that especially for higher moments the constant range of validity stands out very clearly. The
horizontal lines in figure 5.36b denote the theoretical values ω(n − 1) and even for the highest moment
with n = 6 the deviation is less than 2.1%.

Further, in addition to the validity of wall-distance based scaling properties, it is important to verify
the exponential scaling of Cn and Bn with n, equation (5.39c). Indeed, it is found an almost optimal
agreement of this scaling given in equation (5.39c) with the DNS data shown in figure 5.37 where also the
scaling of C ′1{n}Θ{m} from equation (5.41b) has been included for the case of the velocity withReτ = 10000.

It should be reminded that this is due to the fact that the constants of integration c̃n emerging from the
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(a) (b)

Figure 5.36: Symbols n = 2: �, n = 3: �, n = 4: 4, n = 5: O, and n = 6: ? DNS data; (a): moments
H1{n} ; : equation (5.39b) with coefficients fitted to DNS data. (b): Ξn according to equation (5.44);

: Ξn = ω(n− 1) with ω = 0.10.

integration of the characteristic system (5.37) are essentially independent of n and are all of order one.
The deeper background for this is not fully evident so far.

Regarding the scaling law in the center of the channel, given in equation (5.41a), the results of the fits
of the velocity moments for Reτ = 500 and Pr = 4 can be seen in figure 5.38a, together with the fits of
the velocity moments for Reτ = 2000 and Pr = 7, in figure 5.38b. Also for Reτ = 2000 and Pr = 7, the
fits of the temperature and heat fluxes moments are presented in figures 5.38c and 5.38d, respectively.
Solid lines represent the values from the DNS, while squares are the values obtained from the scaling
law (5.41a). In these figures, the wall and center of the channel are swapped, so the center line is at
x2/h = 0, while the wall is at x2/h = 1. Also, it is important to mention that the range of the center
of the channel where the scaling law has been applied is up to x2/h = 0.75. The most important result
is the high accuracy of the scaling law to fit the data of the DNS for all moments, with highest relative
errors of only 0.2%. Even for the lowest Reynolds numbers of value 500, the accuracy of the fit is almost
as good as for Reτ = 2000, as can be seen in figures 5.38a and 5.38b. In the same way, the scaling law is
validated for the temperature and all high order moments with figures 5.38c and 5.38d, respectively.

On the other hand, a comparison of the scaling between a high Prandtl number of 4 and a very low
one of 0.01 is done in figure 5.39. In the case of the scaling of temperature and its high order moments,
figures 5.39a and 5.39b, for cases of Pr = 4 and 0.01, respectively, there is a noticeable difference. While
for Pr = 4 the scaling presents a high accuracy with errors lower than 0.01%, for the case of Pr = 0.01,
the errors are high and clearly visible in figure 5.39b. The reason of this error comes from the assumption
of zero heat conduction, which, obviously, for Pr = 0.01 is not true. The high diffusivity for very low
Prandtl numbers affects the temperature field in a deeper region away from the wall, and the temperature
moments are no longer parallel for x2/h approximately grater than 0.2. In the same manner, the scaling
of mixed moments is no longer correct for very low Prandtl numbers. While in figure 5.39c, the scaling
is again very accurate for Pr = 4, in figure 5.39d, similar failures appear in the scaling for Pr = 0.01.
Note that in figure 5.39d, only moments for n+m = 2, 4 and 6 are plotted for clarity of the figure.

It is important to analyse the values of the different parameters of the scaling law and see the influence
of each symmetry on the final scaling. As it was shown in equation (5.41a), the exponent of the power-law
is formed by a constant term, 2σ1−σ2, that comes from the scaling symmetry of the moments, TSs (5.32);
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Figure 5.37: Lines refer to coefficients Cn ( ) and Bn ( ) defined in equation (5.39c) with
α = 4.88, β = 2.31, α̃ = 2.23, β̃ = 2.74, and coefficient C ′1{n}Θ{m} ( ) defined in equation (5.41b)

with α′ = 0.21, β′ = 3.64; data points (+), (∗) and (×) are fitted directly to DNS data at Reτ = 10000.

a second term that depends on n, n(σ2−σ1), which comes from the scaling symmetries in space and time,
TSx (5.29) and TSt (5.30), respectively; and a third term that depends on m, mσΘ, which has its roots
in the scaling symmetry of the temperature, TSΘ (5.31). However, as can be clearly seen in figure 5.38,
all moments have a more or less constant slope in the log-log plot, which translates into a non-existent or
very small dependence on n and m. In other words, the values of σ1 and σ2 should be very similar, and
σΘ should be small compared with the value of 2σ1 − σ2. Regarding the scaling symmetries, this means
that scaling in space and time have almost no influence in the center of the channel. On the other hand,
the scaling of moments has to be dominant in the center of the channel, which makes sense, since, as it
was said before, it is a measure of intermittency.

Figure 5.40a presents the values of σ1 and σ2 for all the DNS simulations, while the values of σΘ are
shown in figure 5.40b. The values of σ1 are almost the same than σ2, which confirms that the symmetries
of scaling in space and time have almost no influence in the center of the channel. Similarly, the scaling
symmetry of temperature has barely no influence, since σΘ � 2σ1 − σ2. This latest term, 2σ1 − σ2, is
indeed the only dominant term in the exponent of the scaling law (5.41a), with a value slightly below 2,
confirming that the symmetry of scaling of moments, TSs (5.32), is dominant in the center of the channel.
One last point to be analysed is whether the values of the parameters obtained are constant for every
Reτ and Pr or not, which, according to the scaling law (5.41a), should be. For all the parameters, σ1,
σ2 and σΘ, an almost constant value is obtained in all ranges of the parameters Reτ and Pr used. Small
differences can be due to small numerical errors or small noise in the fitting.

The other part of the scaling law (5.41a) is the constant of integration C ′1{n}Θ{m} . Figure 5.41a shows

the values of C ′1{n}Θ{m} for Reτ = 500 and Pr = 4. An almost perfect plane is observed in a z-log plot,

which suggest that C ′1{n}Θ{m} is an exponential function in n and m, obtaining equation (5.41b).

Note that relation (5.41b) is not obtained from first principles, but just from inspection. In figures
5.41b, 5.41c and 5.41d, the values of α′, β′1 and β′Θ for every simulation are presented, respectively. In
order to calculate them, only the constants of integration of the moments up to order 2 have been used,
i.e. C ′1{1} , C

′
1{2}

, C ′Θ{1} , C
′
Θ{2}

and C ′1{1}Θ{1} . With these five values, a fit of the parameters have been

done minimizing again as in equation (5.42).
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(a) (b)

(c) (d)

Figure 5.38: Moments of velocity, H1{n} , for (a) Reτ = 500 and Pr = 4 and (b) Reτ = 2000 and Pr = 7.
(c) Moments of temperature, HΘ{m} , and (d) mixed moments, H1{n}Θ{m} , for Reτ = 2000 and Pr = 7.
In (a), (b) and (c), velocity and temperature moments are obtained for n and m = 1, 2,..., 7, appearing
in that order from bottom to top of the plot. For (d), mixed moments are shown for n + m = 2, 3,...,
6, appearing in that order from bottom to top of the plot. For mixed moments of the same order, the
lower lines are for m = 0, while the upper lines are for n = 0. Solid lines are the values from the DNS,
while squares represent the values from the scaling law (5.41a). The wall and center of the channel are
swapped, so the center line is at x2/h = 0, while the wall is at x2/h = 1. Colours as in table 5.1.
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(a) (b)

(c) (d)

Figure 5.39: Moments of temperature, HΘ{m} , for (a) Reτ = 500 and Pr = 4 and (b) Reτ = 500 and
Pr = 0.01. Mixed moments, H1{n}Θ{m} , for (c) Reτ = 500 and Pr = 4 and (d) Reτ = 500 and Pr = 0.01.
In (a) and (b), temperature moments are obtained for m = 1, 2,..., 7, appearing in that order from bottom
to top of the plot. In (c), mixed moments are shown for n+m = 2, 3,..., 6, appearing in that order from
bottom to top of the plot. For mixed moments of the same order, the lower lines are for m = 0, while
the upper lines are for n = 0. In (d), mixed moments are shown for n + m = 2, 3 and 6, appearing in
that order from bottom to top of the plot. For mixed moments of the same order, the lower lines are
for n = 0, while the upper lines are for m = 0. Solid lines are the values from the DNS, while squares
represent the values from the scaling law (5.41a). The wall and center of the channel are swapped, so the
center line is at x2/h = 0, while the wall is at x2/h = 1. Colours as in table 5.1.
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(a) (b)

Figure 5.40: Values of (a) σ1, solid lines, and σ2, dashed lines, and (b) σΘ. Colours as in table 5.1. Note
that black points at Pr = 0.71 represent the value for the single simulation at Reτ = 5000.

A first problem arises at this point. The coefficients are not constant for different values of Reτ and
Pr. From the symmetries derived in subsection §5.1.5, there is not dependence of this constant with
respect to Reτ or Pr. However, this dependence goes beyond the scope of the study of this work. Here
the study is limited to confirm that the scaling law (5.41a) can represent the behaviour of the arbitrary
moments obtained from the DNS data, which indeed happens, as it has been proved, and to give the
actual values of C ′1{n}Θ{m} .

Conclusions

A new set of scaling laws for arbitrary moments of the velocity, temperature and high order moments
of both in a turbulent channel flow have been obtained using the Lie symmetries theory. These scaling
laws are for incompressible flows moved by a pressure difference and with a passive scalar. In addition,
the scaling laws are valid for zero viscosity and zero diffusion, i.e. Reτ and Pr → ∞, and two cases are
distinguished: the logarithmic layer and the center of the channel.

In the logarithmic layer, the mean velocity behaves as the well-known logarithmic function, first
derived by von Kármán and derived here from first principles. The high order moments are power
functions that depend on the order of the moment n. No derivation of a scaling law for the temperature
field has been derived in the logarithmic region, since no perfectly plateau was observed in the diagnostic
function of the mean temperature in previous subsections.

On the other hand, in the center of the channel, scaling laws of the arbitrary moments are presented
in deficit form in the wall-normal direction. These scaling laws are represented as power functions, where
the exponent is determined by the order of the moments and three different parameters that come from
different symmetries (σ1, σ2 and σΘ). In order to derive the scaling laws, symmetries of the classical
Navier-Stokes and energy equations have been obtained. However, these symmetries are not enough to
generate a scaling law that to properly represents the arbitrary moments. The use of the MPC equations
is the key to obtain a constant term in the exponent of the power function that can accurately represent
the real data. The usual fluctuation approach to obtain the MPC equations is not used because it yields a
non-linear system of equations. Using the instantaneous approach results in a linear system of equations
with two trivial symmetries, scaling and translation of moments. The scaling of moments represents a
measure of intermittency. Thus, it makes sense that the term in the scaling law, 2σ1 − σ2, which arises
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(a) (b)

(c) (d)

Figure 5.41: (a) Values of C ′1{n}Θ{m} for Reτ = 500 and Pr = 4. Parameters from equation (5.41b): (b)

α′, (c) β′1 and (d) β′Θ. Colours as in table 5.1. Note that black points at Pr = 0.71 in (b), (c) and (d)
represent the values for the single simulation at Reτ = 5000.
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Cases I II III IV V VI
Reτ 166 177 176 178 262 476

Box spawn 4πh 2πh 4πh 16πh 16πh 16πh
Box span 0.5πh πh 2πh 6πh 6πh 6πh

Line

Table 5.10: Lines used through plots of this subsection to identify the different cases.

from this scaling of moments, is the dominant term of the exponent.
The scaling laws have been validated with data obtained from different DNS at different Reynolds

and Prandtl numbers. The accuracy of the the scaling law to represent the data is remarkable, specially
for high Reynolds and Péclet numbers. For cases with low Péclet numbers, no logarithmic region exist
and the center of the channel gets influenced by the viscosity and heat conduction, and the assumption
of Re and Pr →∞ is no longer correct, what entails a wrong scaling of the moments.

An analysis of the parameters of the scaling law at the center of the channel has been done, showing
consistency for the cases where Re and Pr →∞ can be applied. The conclusion regarding the parameters
is clear, and it is that, in the center region of the channel, the symmetry of scaling of moments is dominant
over the symmetry of scaling in time, space and temperature.

Finally, regarding the constant of integration, note that, according to the analysis done in this work, no
relation is obtained between C ′1{n}Θ{m} and the order of the moments n and m. The exponential function

of the constant of integration (5.41b) has been obtained by observation of the values of C ′1{n}Θ{m} .

However, this does not mean that the Lie symmetries theory is limited, but additional symmetries may
be missing. In the same way that extra symmetries have been obtained from the MPC equations, the
Probability Density Function (PDF) contains deeper information about the turbulent behaviour of the
flow. Therefore, it is an idea that the exponential behaviour of C ′1{n}Θ{m} may be found from symmetries

contained in the PDF equations. However, this is only a suggestion and the study of these symmetries
of the PDF equations is beyond the scope of this work, and it is considered as a future work.

5.2 Other flows

5.2.1 Couette flows

In this subsection, the results obtained from the DNS of a thermal Couette flow are presented. Table
5.10 collect the line colours and styles used in this subsection to distinguish among the different cases
(unless otherwise specified).

Temperature statistics

Couette and Poiseuille flows affect in different ways the thermal flow under MBC for these low Reynolds
numbers. A first result is that mean and one-point statistics are no longer symmetric. In figure 5.42a,
it can be seen that temperature profiles are slightly different in both halves of the channel for Couette
flows. On the other hand, the Poiseuille flow thermal profile is perfectly symmetric [52]. A first insight
of the collapse of the statistics depending on the computational box size can be obtained from figure
5.42b. Here, temperature profiles of the bottom part of the channel of cases I-IV are shown. All profiles

of Θ
+

collapse fairly well, except for case I. This case uses a computational box similar to the one in [64].
The collapse error is probably due to the narrowness of the box. Another remarkable difference between
Couette and Poiseuille flows is the presence or absence of a thermal logarithmic layer between the viscous
and the outer layers. For Poiseuille flows, this logarithmic layer appears for Pr ≈ 0.3 and above [97].
However, for Couette flows, it is not present for Pr = 0.71. It is uncertain if this logarithmic layer in
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(a) (b)

Figure 5.42: (a) Θ
+

for cases V (blue dotted) and VI (red solid). Closed symbols, bottom half. Empty

symbols, top half. Black dash-pointed line represents a Poiseuille flow at Reτ = 497. (b) Θ
+

for cases

I-IV at the stationary wall. In both cases, orange solid line: thermal law of the wall, Θ
+

= Pry+. Colours
and line style as in table 5.10.

the temperature field will appear for higher Prandtl numbers in a Couette flow. However, as it is said
before, Couette flows are far more computationally expensive than Poiseuille ones. To see if a thermal
logarithmic layer does exist in Couette flows will still be a challenge for the next decade.

In figure 5.43 turbulent intensities for the three different Reynolds numbers are shown. As a general
result, it is seen that the maximum of all turbulent intensities increases and moves towards the wall
with an increase of the Reynolds number. A difference between Couette and Poiseuille flows appears
in u′+ (see figure 5.43a). A second maximum can be observed for the higher friction Reynolds number,
500. This was already noted in previous simulations [54], and from this work it is confirmed that for
Reτ = 500, u′+ shows a second maximum in the central region of the channel. Also, as it was shown

before for Θ
+

, intensities related with temperature are not totally symmetric or antisymmetric. This can
be seen in figures 5.43b, 5.43c and 5.43d. Another important point is the antisymmetry obtained for the
turbulent intensity u+θ+ (see figure 5.43c). This opposes to the behaviour of u+θ+ in a Poiseuille flow
when the MBC is employed, where a symetric profile is obtained. This is discussed below.

A distinctive feature of Couette flows is the existence of velocity large instantaneous structures in
the flow [56, 57], described in section §2.3.1. Corresponding long and wide structures of the thermal
fluctuation field are also present. These instantaneous structures, figure 5.44, appear in a strip-like
pattern in x − z planes. Isocontours of θ+ (see figure 5.44 middle) show long and wide, coherent three
dimensional thermal structures, that mainly extend along the streamwise direction. Couette Thermal
Flow Superstructures (CTFS) are a consequence of this particular distribution of the values of u+ and
θ+, as they reflect the effect of these instantaneous structures in the time-averaged flow and thermal field.
CTFS are defined as a characteristic of the time-averaged perturbations, which does not need to be zero.
A first proof of the existence of the CTFS appears in the x−averaged fields. The values of 〈u+〉x, 〈v+〉x,
〈w+〉x , and 〈θ+〉x are shown in figure 5.45b. In this figure, white and green lines represent contours of
positive and negative 〈u+〉x, respectively. (〈v+〉x , 〈w+〉x) vector field is represented by arrows. Colours
show contours of 〈θ+〉x. While the u−velocity structures expand across the whole height of the channel,
a pair of hot-cold thermal structures appear for every velocity structure. These thermal structures are
as long as the box itself, Lx = 16πh (figure 5.45c), in the same way as the velocity structures [55].
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(a) (b)

(c) (d)

Figure 5.43: (a) u′+, (b) θ′+, (c) u+θ+ and (d) v+θ+ for cases IV-VI. Colours and line style as in table
5.10.

The black box of figure 5.45b shows the footprint of a CTFS. These structures are made of two velocity
rolls (positive-negative velocity fluctuations) and four thermal ones. They are organized in such a way
that the thermal flux, u+θ+, is positive in the lowest part of the channel and negative in the top one. A
large vortex in 〈v+〉 and 〈w+〉 appears at the center of the CTFS.

In Poiseuille flows, these structures do not exist. In fact, the time averaged of any perturbation field
is simply noise. This is due to the inclination of large-scale structures in the Poiseuille flow. In this
context, Abe et al. [98] recently examined the effects of the streamwise domain size in the Poiseuille flow
for a flow field for Reτ = 395 and 1020. They found out that when the streamwise domain is reduced
to L+

x ≈ 400 for Reτ = 1020, the two-dimensional behavior is indeed established in the Poiseuille flow.
Thus, only trivial symmetries are present. CTFS, on the other hand, exhibit two non-trivial symmetries
never described before. First, there is a translation symmetry of period 2LR. This length is the distance
between the centers of two consecutive rolls. In this case is LR/h = 6π/8 ≈ 2.3. Second, there exists a
symmetry, for 〈θ+〉x, with respect to the origin of every (v+, w+) vortex (see black box of figure 5.45b).

Quantities related to the mean flow seem not to be seriously affected by the CTFS. As an example,
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Figure 5.44: Instantaneous value of θ+ at Reτ = 500. Top: x− z-plane at y = 0.3h. Middle: isocontours
of θ+. Red, hotter than mean; blue, colder than mean. Bottom: mean in the streamwise direction of
u+ (isolines), v+ and w+ (arrows) and θ+ (contours). The black box indicates the region plotted in the
middle figure.

the Nusselt number has been computed using equation (5.3). Table 5.11 summarizes the difference in
Nusselt number for Couette flows, NuC , and Poiseuille flows, NuP . Value of NuP at Reτ = 180 has
been obtained from [40]. In order to obtain NuP at Reτ = 250 a new simulation had to be run.

One can consider the hypothesis of a linear behaviour of the Nusselt number in the range from
Reτ = 180 to 500, as shown in section §5.1. Therefore, precise values of NuP have been extrapolated
to the Reynolds number of the corresponding Couette flow. All simulations I-IV give approximately the
same value (less than a 0.6% deviation) of NuC , regardless of the box size. Thus, short and narrow
boxes do not introduce a big error when calculating the Nusselt number. An interesting property to be
investigated is the difference in Nu between Couette flows and Poiseuille flows. As can be seen in table
5.11, this difference gets reduced with an increase of Reτ .

Reτ NuC NuP ∆ (%)
178 21.60 18.33 17.9
262 29.39 25.35 16.0
476 47.96 42.86 11.9

Table 5.11: Nu for each Reynolds number in a Couette flow, second column, and a Poiseuille flow, third
column. The fourth column shows the relative difference.

However, local Nusselt number can be different to the average one due to the effect of the CTFS. In
figure 5.45a, local Nusselt number for case VI is shown in red and the averaged one, in black. Despite
it looks like hot rolls compensate the cold ones when averaging in the y direction (figure 5.45b), local
Nusselt number shows that the lower thermal rolls are stronger, especially the cold ones. For this reason,
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(a)

(b)

(c)

Figure 5.45: Case VI. (a) Local Nusselt number averaged in x direction (red) and averaged Nusselt number
(black). (b) Contours of 〈θ+〉x. White and green lines represent contours of positive and negative 〈u+〉x,
respectively. (〈v+〉x , 〈w+〉x) vector field is represented by arrows. (c) Isocontours of cold (blue) and hot
(red) 〈θ+〉. The values of the isocontours are 0.4 〈θ+〉min and 0.4 〈θ+〉max for the cold and hot 〈θ+〉,
respectively.
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Figure 5.46: Nusselt number as a function of Reb for Prandtl number of 0.71. Black line represents
correlation of Abe and Antonia [80]. N represent Nu for Couette flows, � are the Nu values for Poiseuille
flows from [80] and � are the Nu values for Poiseuille flows from [97].

〈Nu〉x have greater peaks above the average Nu in the z coordinates where a cold roll is present in the
lower part of the channel. Here, local Nu number differs up to a 3% from the averaged one. Remark
that local Nusselt number shows two frequencies: one that corresponds to the wavelength of the CTFS.
The other, whose amplitude is half of the CTFS one, and whose intensity is lower, corresponds to smaller
structures that cannot be seen in isocontours plots of mean u′+ and θ′+, but that will be observed in the
spectral analysis.

To conclude the analysis of the Nusselt number, a comparison of the results obtained in this work
with the correlation obtained by Abe and Antonia in [80] for Poiseuille flows has been performed. This
correlation expresses the Nusselt number as a function of Reynolds bulk number, Reb, where the entire
height of the channel is considered for its calculation,

Nu = htRebPr, (5.45)

where ht is the heat transfer coefficient, computed as

ht =

√
Cf
2

2.18 ln

(
Reb

√
Cf

2
√

2

)
+ 2.4

, (5.46)

where Cf is the skin friction coefficient, which is obtained form the next expression,

1

Cf
= 1.8 ln

(
Reb

√
Cf

)
− 0.163. (5.47)

Figure 5.46 represents the values of the Nusselt numbers obtained for the Couette flows, N, and the
ones obtained for Poiseuille flows in [80], �, and from subsection §5.1.1, � for Reτ = 500. As it was
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(a) (b)

(c) (d)

Figure 5.47: Quadrant analysis of case VI for a) u+v+, b) u+θ+ and c) v+θ+. Dotted blue line: quadrant
1; dashed green line: quadrant 2; solid red line: quadrant 3; solid black line: quadrant 4. Solid thin
blue line is the sum of the four quadrants. d) 1D coespectral density of u+, θ+ and u+θ+ (red solid), for
Reτ = 500.
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(a) (b)

Figure 5.48: 1D spectral density of u+ (without marks) and θ+ ( ) at Reτ = 250 and 500 for (a) x and
(b) z. y+ = 160. Colours and line style as in table 5.10.

expected, Nu for Couette flows are slightly above the line of the correlation for Poiseuille flows and when
Reb is increased, this difference gets reduced.

A quadrant analysis for case VI, like in subsection §5.1.2 for a Poiseuille flow, has been performed
to see if the large-scale temperature structures are active in generating wall-normal turbulent heat flux.
Also, the generation mechanism of v+θ+ is compared with the one of u+v+ and u+θ+. As a reminder,
for this analysis, the flux is divided in four quadrants. In the case of the wall-normal heat flux, quadrant
1 (v+ > 0 and θ+ > 0) and quadrant 3 (v+ < 0 and θ+ < 0), are referred to as the outward and
inward interactions. While quadrant 2 (v+ > 0 and θ+ < 0) and quadrant 4 (v+ < 0 and θ+ > 0) are
referred to as the ejection and sweep events. In figure 5.47 all three fluxes are plotted together with
the decomposition in the four quadrants. In contrast with the results obtained in Poiseuille flows, the
generation mechanism of u+v+ and v+θ+ are quite different for Couette flow. On the other hand, u+θ+

and v+θ+ generation mechanisms are very similar, although interactions and events occur in the opposite
walls: for u+θ+, outward and inward interactions occur in the stationary wall, while for v+θ+, ejection
and sweep events happen in this wall. The opposite happens in the moving wall. This is perfectly
correlated with the result obtained in the black box of figure 5.45b, i.e. the CTFS. In the black box, it
can be seen how, in the lower part of the channel, hot θ+ are related with positive u+ (quadrant 1) and
negative v+ (quadrant 4) or cold θ+ are related with negative u+ (quadrant 3) and positive v+ (quadrant
2). The contrary occurs in the upper part of the channel.

A spectral analysis has been performed for u+ and θ+. In figure 5.48, 1D spectral density of the two
intensities is shown for Reτ = 250 and 500, for coordinates x and z and a wall distance of y+ = 160. The
most important result is the peak that appears in figure 5.48b at λ+

z ≈ 4.7, which agrees with the one
obtained in [99]. The wavelength of the peak corresponds to the width of the CTFS or, in other words, to
half of the width of the velocity and thermal fluctuation structures shown previously in figure 5.45b, i.e.
2LR ≈ 4.7. In addition, it can be appreciated that the peak increases as the Reynolds number increases,
which means that the structures become more intense for higher Reynolds numbers.

Contour plots are shown in figure 5.49 to visualize the y dependencies of the spectrum. First, mention
that at y+ = 10 there is a concentration of energy corresponding to the small scales of the velocity and
temperature, intrinsic to every turbulent flow. The new feature appears at the previously mentioned
wavelength, λ+

z ≈ 4.7, which corresponds to the CTFS. Here it can be seen how the velocity rolls are
perfectly symmetric, while the temperature ones are more intense in the lower half of the channel. In

122



CHAPTER 5. RESULTS

(a) (b)

Figure 5.49: Contours of a) u+ and b) θ+ spectral density for Reτ = 500 in the Y − Z plane. Central
horizontal line is the center of the channel. Vertical axis is the wall distance to the closest wall.

addition, one can see a small increase of the energy intensity at λ+
z ≈ 2.3, which is the half of the

previously mentioned wavelength. This second harmonic is the one appreciated in the local Nusselt
number (see figure 5.45a).

As it was said before in figure 5.43c, one of the major differences between Poiseuille and Couette
flows, when the same thermal boundary condition is used, is the different behaviour of the streamwise
thermal flux, u+θ+, shown in figure 5.50c. When the MBC is used, this flux is symmetric in the case
of Poiseuille flows and (almost) antisymmetric for Couette flows. This antisymmetry is totally related
to the second symmetry of the rolls explained above. In the lower half of the channel, hot temperature
fluctuations are related to positive velocity fluctuations and vice-versa, causing a positive value of u+θ+.
This situation is inverted in the upper part, where hot temperature fluctuations appear with negative
velocity fluctuations, causing a negative value of u+θ+. Other point of view to explain the antisymmetry
of u+θ+ is the difference in the flow and thermal boundary conditions. In a Couette flow, the flow
boundary conditions is that one wall is moving, while other wall is stationary. This is analogous to a
temperature difference for the thermal boundary condition. However, in this simulations, the MBC is
used for the thermal field. Therefore, both walls are kept at the same temperature, which is analogous
to a Poiseuille boundary condition for the velocity field.

Box size analysis

All intensities related with temperature (figures 5.50b, 5.50c, and 5.50d) are almost symmetric or anti-
symmetric, in contrast with Poiseuille flows, where perfect symmetry or antisymmetry is always present
in both halves of the channel. Values of θ′+ have been compared with other trusted simulations for
Poiseuille flows [40] and pipe flows [100] and tendencies agree fairly well.

As it was shown before, the effect of the box size in the mean flow, both in the mean temperature
or the Nusselt number is small. This is not the case for the statistics of the perturbations. As it can be
seen in figure 5.50, the one-point statistics of the flow for Reτ = 180 in different boxes do not collapse.
The problem is evident in figures 5.50a, 5.50b, and 5.50c, mainly for case I, but not only. However, in
the case of Poiseuille flows, a (2πh, πh) box in x and z, respectively, is enough to accurately compute
every first-order statistics [52, 75]. The collapsing problem here is also not an effect of the mesh size, as
the cell lengths used for cases I-IV are smaller than in many other available DNS.
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(a) (b)

(c) (d)

Figure 5.50: (a) u′+, (b) θ′+, (c) u+θ+ and (d) v+θ+ for cases I-IV. Colours and line styles as in table
5.10.
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Figure 5.51: Top: case I. Middle: case II. Bottom: case III. Contours of 〈θ+〉x. White and green lines
represent contours of positive and negative 〈u+〉x, respectively. (〈v+〉x , 〈w+〉x) vector field is represented
by arrows.
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Thus, the collapse problem has to be related to the CTFS. An analysis of θ+ in cases I-IV shows that
the CTFS are always present (see figure 5.51), even if the box is too small (case I) to obtain accurate
statistics. The width of the CTFS grows with the box until a transition phase, where a new CTFS fits
in the box. For the two smaller computational boxes in the z direction (π/2 and π), only one CTFS
appears (see figure 5.51 top and middle). Therefore, LR/h = 0.78 and 1.57 for cases I and II, respectively.
However, when extending the computational box to 2π in the spanwise direction, a transition phase occurs
(see figure 5.51 bottom). Two velocity vortices and four thermal ones are perfectly visible in the left part
of the channel. In the right side, the same CTFS is starting to be created, but it is still in process. A
slightly wider computational box is needed in order to properly capture 2 CTFS perfectly structured.
This explains the differences in the statistics and the discrepancy about the width of the velocity CTFS
with other works [54, 61, 62]. Accurate statistics, both for the flow and the thermal field, need wide
boxes, with at least four CTFS well represented.

Conclusions

In summary, two simulations of thermal flows at larger numbers of Reynolds and larger boxes than those
previously simulated have been described. The perturbations of the flow field present a well organized
structure in form of positive and negative velocity rolls. These structures leave a trace in the time-averaged
flow field. The superstructure made of two velocity rolls and four thermal ones in the time-averaged field
has been defined as a Couette Thermal Flow Superstructure. This implies that unlike for the Poiseuille
flow, there seems to be less spanwise meandering of large-scale structures in the Couette flow. In this
context, Abe et al. [82] also reported in the Poiseuille flow that when the streamwise domain is reduced
down to Lx ≈ 400 at Reτ = 1020, the two-dimensional behavior is established so that there is a tight
coupling between the near-wall and outer-layer structures. This tight coupling may also be observed in
the present CTFS and will be studied in future works. The CTFS presents two symmetries and their size
and number has been found to depend on the computational box size. Thermal quantities appear to be
not totally symmetric or antisymmetric, in contrast to Poiseuille flows. Using a second set of simulations
at Reτ = 180, it has been seen that the CTFS do not strongly affect neither the mean velocity nor the
mean thermal flow. Moreover, mean-related quantities such as the Nusselt number are also not affected.
On the other hand, the width and numbers of rolls, i.e. the size of the computational box, affect the
value of the first order statistics of the flow. This explains the small differences found in the bibliography
about the width of these rolls. Moreover, this makes the width of the box an essential parameter to
obtain accurate statistics. The statistics of all simulations can be downloaded from the following link:

http://personales.upv.es/serhocal/

5.2.2 Stratified flows

In this last subsection, the results of simulations for stratified flows are presented. Line colours and styles
to distinguish the different cases in the plots of this subsection (unless otherwise specified) are shown in
table 5.12.

Stratification on velocity fields

Isosurfaces of 〈u/Ub〉t are plotted at the channel centre for cases C0 and C6 in figure 5.52. The streamwise
streaks in case C0 are trackers of the large-scale rolls [55, 56]. While these rolls are strong and clearly
defined for C0, their strength and definition is reduced in C6 due to stratification. This can be seen in
figure 5.53, where 〈u(y/h = 1)/Ub〉tx is shown for the four cases. While C0 and C1 present four extrema,
corresponding to the yellow (fast) and blue (slow) streaks of figure 5.52 top, C3 and C6 present six weaker
peaks. The disruption of the self-sustaining mechanism by a stable stratification in channel Couette flows
was predicted by Eaves and Caulfield [68] by observing the laminar to turbulent transition of neutral
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Case Reτ Riτ Line
P0 500 0
C0 480 0 · · · · · ·
C1 476 0.50 – – – –
C3 483 1.65 — · —
C6 476 2.90

Table 5.12: Line colour and style to distinguish the different simulation throughout the figures of this
subsection.

Figure 5.52: X−Z plane at the center of the channel of 〈u/Ub〉t for the cases C0 (top) and C6 (bottom).
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Figure 5.53: 〈u/Ub〉xt at the center of the channel represented along the spanwise direction. Colours and
line style as in table 5.12.

and stratified cases. Stable stratification damps turbulent wall-normal motions by imposing a potential
energy toll [101]. This feature disrupts the well-established self-sustaining mechanism by modifying the
energy input into rolls and consequently reducing the kinetic energy density of the streaks. The level
of disruption increases with the bulk Richardson number, Rib. It is observed that the disruption is
significant at a Richardson bulk number Rib ≥ 3×10−3. In this study, the case C6 has Rib = 1.2×10−2.

More information about the 3D shape of the rolls can be obtained from the spectral density, Φ =
kxkzE(kx, kz), where kx and kz are wave numbers in their sub-index direction and E(kx, kz) is the energy
spectrum of u. They are presented in figure 5.54. The four figures have been plotted using the same scale
to highlight the range in the energy from the largest scales to shorter ones. The black lines correspond
to case P0. The two rolls in C0 and C1 are identified by the energy spectrum peak at λz/h = 3π/2 = 4.7
in the channel center. This is the same wavelength that was identified in [56] for unstratified Couette at
Reτ = 125, which confirms that the width of the rolls is independent of the Reτ . For a box with spanwise
dimension of 3πh, rolls have a width of 3πh/4 ≈ 2.4h. Even if figure 5.53 can give the impression that
the rolls in C6 are present but only in more quantity and less energetic, it can be seen in figure 5.54 that
in C6, they have disappeared for y+ < 100. Additionally, their width has reduced. Near-wall structures
are also identified in figure 5.54 at y+ = 10 at both walls. This region is mainly dominated by coherent
streaks of streamwise velocity with an average spanwise separation of the order λ+

z ≈ 100 [25].

Thus, increasing Riτ causes the break-up of the rms-averaged rolls by weakening the streaks in the
channel center as observed in figure 5.52. However, other quantities such as the turbulent density flux
v+ρ+ and the Reynolds stress u+v+ (not shown here) do not change for the range of stratification achieved
in this work. The reason that both quantities are unaffected can be linked to the close relationship
between the streamwise velocity and the scalar fields. Deusebio et al. [67] indicates that the Reynolds
stress and the turbulent scalar flux decrease proportionally with stratification, so their ratio remains close
to constant. Moreover, Garcia-Villalba [101] shows that a deviation of the Reynolds stress in a stratified
turbulent channel at Reτ = 550 is only appreciable from Riτ ≥ 60. Thus, changes in these averaged
quantities shall not be expected at Riτ < 3.
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Conclusions

Using a database of several Couette flows with active thermal flow, it is observed that the stratification at
Riτ ≈ 3 is enough to weaken the outer streamwise streaks, consequently vanishing the large-scale counter-
rotating rolls, characteristic in neutral turbulent Couette channels. The weakening of the outer streaks is
presumably caused by the well-known restriction on vertical motions imposed by the stratification, which
at low stratification levels is only notorious above the buffer layer. Based on these facts, large-scale rolls
will hardly appear in real-life Couette flows of air with a stable wall-normal gradient of temperature, as
soon as Riτ passes a relatively low threshold.
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Figure 5.54: Contours of u+ spectral density for cases C0, C1, C3 and C6 ((a) to (d), respectively) in
the Y −Z plane. Central horizontal line is the center of the channel. Vertical axis is the wall distance to
the closest wall.
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Conclusions

In this thesis a study of wall turbulence has been performed. The principal focus has been set on
thermal flows driven by a pressure gradient and heated uniformly from both walls. Also Couette and
stratified flows have been analysed. The main tool to carry out the study has been the Direct Numerical
Simulations. A vast database has been generated for very high Reynolds numbers and a wide range of
Prandtl numbers never simulated before. New behaviours of these turbulent flows have been addressed
and deeply analyzed. The second pillar of this work has been the derivation of scaling laws to describe
universal behaviours of turbulence flows. For this purpose, Lie symmetries has been employed.

A extensive review of the previous state of the art bibliography has been presented in section §2.3.1,
summarizing the most important works in the sense of high friction Reynolds numbers and extreme
Prandtl numbers. As mentioned before, in this work, the state of the art have been extended in all
senses: higher friction Reynolds numbers have been simulated, together with a wider range of Prandtl
numbers. Specifically, in figure 6.1, a schematic representation of the previous stated of the art (red) and
the contributions from this work (blue) for thermal Poiseuille flows is shown.

Also, in Couette flows, the maximum friction Reynolds number simulated has been increased from
Reτ = 395 in [42] up to Reτ = 500. As a conclusion, a extensive contribution to the new state of the art
is provided. All the data collected has been upload to the database of the research team. This database
is open to all the scientific community with the aim of validating new codes and data from future research
works. The link to the database is:

http://personales.upv.es/serhocal/
The most relevant results for the mean temperature are that the logarithmic layer only appears for

Pr > 0.3 and for sufficiently high Prandtl numbers, the formation of this logarithmic layer only depends
on the Reynolds number. Therefore, the value of κt tends towards a constant value and it is independent
of Pr for higher Reτ , obtaining a value of κt = 0.44 for the highest friction Reynolds number simulated
at this work, Reτ = 5000. Also, the scaling of the conductive sublayer is found to be a power function of
Pr with a dependence of Pr in the exponent for high Prandtl numbers.

Regarding turbulent intensities, the values of θ′+ and u+θ+ tend to collapse in the outer region
depending on the friction Péclet number. For low and medium Pr, the peaks of these intensities increase
logarithmically with Reτ , but for high Pr, one of the most important results of this thesis is obtained: the
inner peak of θ′+ is constant for different Reτ . This has a direct impact in the scaling the the dissipation
and viscous diffusion terms of the temperature variance budget: the scaling near the wall of these terms
is more accurate. On the other hand, for low Prandtl numbers, the result is the opposite, requiring better
scaling for the dissipation and viscous diffusion terms of the temperature variance and the streamwise
heat flux and the pressure strain and pressure diffusion terms of the wall-normal heat flux budgets.

Dimensionless numbers Nu and Prt have been analysed, with no relevant results for the latter in the
new range of Reτ and Pr simulated. For the former, Nu, new correlations have been proposed in a range
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Figure 6.1: Previous stated of the art (red) and the contributions from this work (blue) for thermal
Poiseuille flows.

of Prτ where Nu behaves as a power function of Pr.
Last comment about Poiseuille flows is that for the case of isothermal flows, it has been obtained for

the first time a perfectly developed logarithmic layer at a friction Reynolds number of Reτ = 10000, with
a value of the von Kármán constant of κ = 0.394.

All the data from Poiseuille flows has been used to validate new scaling laws for turbulent channel
flows. These scaling laws have been derived using the Lie symmetries theory. They describe the velocity,
temperature and high order moments of both in a defect law of power functions of the wall distance. The
strength of these scaling laws is that they are obtained from first principles and that only the first two
moments of the velocity and temperature are needed to obtain the exponent of the scaling law for all
higher moments. Therefore, one can write in an analytical form, a scaling law for arbitrary moments of
order n or m. Also a scaling law for the logarithmic layer of the mean velocity and higher order terms
has been derived. The classical logarithmic function for the mean velocity has obtained and validated
for the case of Reτ = 10000. High order moments are obtained as power functions of the wall distance,
and the exponent of each moment can be determined from the parameter that determines the second
moment. To conclude, the scaling laws derived have proven to describe the turbulence behaviour with
an extreme accuracy.

Finally, the behaviour of Couette flows without and with stratification has been studied. A deep
analysis of the superstructures that appear in Couette flows (CTFS) has been presented. It has been
proved that the dimensions of the computational box directly influence the value of several flow statistics,
as turbulent intensities. Therefore, box dimensions are crucial in Couette flow simulations to obtain results
that accurately represent the actual flow. The effect of the CTFS, which is not influenced by transversal
flows, seem to be dissipated or at least clearly weakened when stratification is presented.

Several future works emerge after this thesis. The use of different canonical domains should be studied
to have a broader view of turbulence. The research team is already working on boundary layers. For this
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purpose, the code has been adapted to be able to simulate this type of problem and simulations will be
run in a near future. The main problem that arise in a DNS of a boundary layer is that, a priori, the
flow is no longer periodic in the streamwise direction. In order to solve this problem, a laminar flow is
introduced. This laminar flow receives a perturbation which makes it turbulent and it starts to develop
into a growing boundary layer. Data is collected in this stage. Then, the flow is made laminar at the
end of the computational domain. In such a way, periodicity in the x-direction is achieved and efficient
Fourier methods can be used in this direction.

Also, a different way of analysing turbulence can be applied. The one used in this work is based on
the Reynolds decomposition, and it focus on the stochastic nature of the flow. The second one, which
focus on the turbulent structures that appear on the flow, should also be considered as an alternative to
understand turbulence. This point of view was deeply studied by del Álamo et al. in [102, 103] and it
has been already addressed by the research team of the author of this thesis in [104].

Regarding Lie symmetries, the results obtained in this thesis have central implications for turbulence
model development. More precisely, the statistical symmetries developed in this work should be incor-
porated into turbulence models to make them reproduce the derived scaling laws. This was recently
published by the research team in [105]. It was shown how the statistical symmetries can be considered
and a first base-model was developed. Furthermore, it implies that model equations need only to be
used up to the second moment to reproduce the scaling exponent for all higher moments as well. In
addition, further research and finding of new statistical symmetries seem to be essential for the further
development of this theory. Symmetries of the PDF equations and for the wall-normal and spanwise
velocity fluctuations are still to be derived.
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Appendix

7.1 Appendix A: a DNS code

In this appendix, the code used to run the simulations will be explained in detail. Simultaneously,
different point about a DNS will be addressed. The original code, named LISO, has been previously used
in several DNS described in section §2.3.1. Several types of flows can be simulated by the LISO code:
Poiseuille, Couette or a mix of both for isothermal flows and, a new version of the code allows to run
thermal flows with passive or active scalar. Nevertheless, in order to explain the code in this appendix,
the case of a Poiseuille channel flow with a passive scalar will be used, since it is the main flow described
in this thesis.

The properties of the computational box, i.e. the domain of the problem, are given in section §4, where
the length of the box, the spatial coordinates, the velocity components and temperature are defined. In
addition, it should be introduced two important terms: the vorticity, Ω = ∇ × U ; and the helicity,
H = U × Ω. Developing these terms, their definition based on the velocities and their derivatives are
for the vorticity

Ω =

Ωx
Ωy
Ωz

 =


∂W
∂y −

∂V
∂z

∂U
∂z −

∂W
∂x

∂V
∂x −

∂U
∂y

 . (7.1)

And for the helicity

H =

H1

H2

H3

 =


V Ωz −WΩy

WΩx − UΩz

UΩy − V Ωx

 =


V
(
∂V
∂x −

∂U
∂y

)
−W

(
∂U
∂z −

∂W
∂x

)
W
(
∂W
∂y −

∂V
∂z

)
− U

(
∂V
∂x −

∂U
∂y

)
U
(
∂U
∂z −

∂W
∂x

)
− V

(
∂W
∂y −

∂V
∂z

)
 . (7.2)

At this point, the equations solved by the code are going to be derived. These, for the velocity field,
are the second component of the evolution equations derived from the Navier-Stokes equations (1.5) and
(1.6), together with the energy equation (1.7). This method of resolution was first introduced by [25] in
what is the seminal DNS work. It is important to note that, from now on, regular vector notation will be
used instead of index notation to facilitate the comprehension. In addition, the dimensionless variables
in inner coordinates will be presented, but the superscript will be omitted for readability reasons. If the
curl (∇×) of the momentum equation (1.6) is taken, it is directly obtained that the vorticity appears
inside the derivatives of the linear terms and the pressure term dissapears. Regarding the nonlinear term,
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(U ·∇) ·U , the following operation must be calculated

H = ∇× ((u ·∇) · u). (7.3)

Developing this term, the second component of the resulting vector is

H2 =
∂U

∂z

∂U

∂x
+ U

∂2U

∂x∂z
+
∂V

∂z

∂U

∂y
+ V

∂2U

∂y∂z
+
∂W

∂z

∂U

∂z
+W

∂2U

∂z2

−∂U
∂x

∂W

∂x
− U ∂

2W

∂x2
− ∂V

∂x

∂W

∂y
− V ∂2W

∂x∂y
− ∂W

∂x

∂W

∂z
−W ∂2W

∂x∂z
.

(7.4)

If the terms ±(∂V/∂x)(∂V/∂z) and ±V ∂2V/(∂x∂z) are introduced, one can identify the derivatives
of the first and third component of the helicity (7.2), with respect to z and x, respectively. Therefore,
the final result of the second component of the curl of the nonlinear term is

∂H3

∂x
− ∂H1

∂z
. (7.5)

A second evolution equation must be taken, which is obtaining after calculating the second curl of the
momentum equation. In the linear terms, the laplacian of the velocity, ∇2U , is directly obtained, while
the pressure term does not need to be calculated after being 0 with the first curl. For the nonlinear term,
it must be calculated

∇×
a︷ ︸︸ ︷

(∇× ((u ·∇) · u)) . (7.6)

The terms in the parenthesis (a) are known from the previous calculation,

∇× ((u ·∇) · u) =


∂H2

∂z −
∂H3

∂y

∂H3

∂x −
∂H1

∂z

∂H1

∂y −
∂H2

∂x

 , (7.7)

where the first and third component have been obtained in an equivalent way to that of the second
component. Therefore, the second component of the second curl of the momentum equation is

− ∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
+

(
∂2

∂x2
+

∂2

∂z2

)
H2. (7.8)

With this, the evolution equations that are solved in the DNS code are the second component of the
derived equations

∂∇2V

∂t
= hv +

1

Reτ
∇4V, (7.9a)

∂Ωy
∂t

= hg +
1

Reτ
∇2Ωy, (7.9b)

where hv and hg resume the nonlinear part of the equations, and are given by

hv =
∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
−
(
∂2

∂x2
+

∂2

∂z2

)
H2, (7.10a)

hg =
∂H1

∂z
− ∂H3

∂x
. (7.10b)
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In these equations, ∇2V = φ. An obvious advantage arises for this system, which is that the pressure
term is not present, considerably simplifying the problem. Finally, the energy equation can be equivalently
written as

∂Θ

∂t
= ht +

1

ReτPr
∇2Θ, (7.11)

where ht is the nonlinear term of the energy equation, and it is defined as

ht = −(U ·∇) ·Θ. (7.12)

While only the second component of the velocity and vorticity are calculated in these evolution
equations, (7.9a)-(7.9b), one can easily recover the rest of velocities and vorticities from the definition of
the continuity equation and the vorticity,

∂U

∂x
+
∂W

∂z
= −∂V

∂y
, (7.13a)

∂U

∂z
− ∂W

∂x
= Ωy. (7.13b)

Deriving with respect to x and z, it is obtained

∂(7.13a)

∂x
+
∂(7.13b)

∂z
→
(
∂2

∂x2
+

∂2

∂z2

)
U = − ∂2V

∂x∂y
+
∂Ωy
∂z

, (7.14a)

∂(7.13a)

∂z
− ∂(7.13b)

∂x
→
(
∂2

∂x2
+

∂2

∂z2

)
W = − ∂2V

∂y∂z
− ∂Ωy

∂x
. (7.14b)

As the flow is periodic in both x and z, it is natural to use Fourier methods in these directions. The
Fourier transform of any field φ(x, y, z) is

φ(x, y, z) =
∑
kx

∑
kz

φ̂(y)ei(kxx+kzz), (7.15)

where (•̂) represents the variable in Fourier space in x and z, and kx and kz are the wavenumbers in x
and z, respectively. Therefore, equations (7.14a) and (7.14b) can be trivially solved as the become

Û =
−ikx ∂V̂∂y + ikzΩ̂y

−(k2
x + k2

z)
, (7.16a)

Ŵ =
−ikz ∂V̂∂y − ikzΩ̂y
−(k2

x + k2
z)

. (7.16b)

Notice that this technique cannot be used for the (0, 0)-modes of U and W . For that case, using the
Navier-Stokes equations, one can write

∂Û00

∂t
= −∂P̂

∂x
+ Ĥ1,00 +

1

Reτ

∂2Û00

∂y2
, (7.17a)

∂Ŵ00

∂t
= −∂P̂

∂z
+ Ĥ3,00 +

1

Reτ

∂2Ŵ00

∂y2
. (7.17b)

The pressure gradient in the spanwise direction is negligible. However, the pressure gradient in the
streamwise direction can be used to keep the flow mass constant. Using Fourier transforms, equations
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(7.9a), (7.9b) and (7.11) are transformed into Fourier space in x and z, obtaining three decoupled problems

∂φ̂

∂t
= ĥv +

1

Reτ
∇2φ̂, (7.18a)

∂ω̂y
∂t

= ĥg +
1

Reτ
∇2ω̂y, (7.18b)

∂Θ̂

∂t
= ĥt +

1

ReτPr
∇2Θ̂. (7.18c)

The boundary conditions are

V̂ (y = ±1) = 0,
∂v̂

∂y

∣∣∣∣
y=±1

= 0, (7.19a)

ω̂y(y = ±1) = 0, (7.19b)

Θ̂(y = ±1) = 0. (7.19c)

Problem (7.18a), (7.19a) is usually solved splitting V̂ in three parts,

V̂ = V̂p + aV̂a + bV̂b, (7.20)

where a and b are chosen in order to fulfill the homogeneous Neumann condition.

∂φ̂p
∂t = ĥv − 1

Reτ

(
k2
x + k2

z − ∂2

∂y2

)
φ̂p,

φ̂p(y = ±1) = 0,

−
(
k2
x + k2

z − ∂2

∂y2

)
V̂p = φ̂p,

V̂p(y = ±1) = 0,

(7.21a)



∂φ̂a
∂t = − 1

Reτ

(
k2
x + k2

z − ∂2

∂y2

)
φ̂a,

φ̂a(y = ±1) = 0,

−
(
k2
x + k2

z − ∂2

∂y2

)
V̂a = φ̂a,

V̂a(y = 1) = 1, V̂a(y = −1) = 0,

(7.21b)



∂φ̂b
∂t = − 1

Reτ

(
k2
x + k2

z − ∂2

∂y2

)
φ̂b,

φ̂b(y = ±1) = 0,

−
(
k2
x + k2

z − ∂2

∂y2

)
V̂b = φ̂b,

V̂b(y = 1) = 0, V̂b(y = −1) = 1,

(7.21c)

{
∂ω̂y
∂t = ĥg − 1

Reτ

(
k2
x + k2

z − ∂2

∂y2

)
ω̂y,

ω̂y(y = ±1) = 0,
(7.21d)

 ∂Θ̂
∂t = ĥt − 1

ReτPr

(
k2
x + k2

z − ∂2

∂y2

)
Θ̂,

Θ̂(y = ±1) = 0,
(7.21e)
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although, due to the symmetry of the problem, V̂a(y) = V̂b(−y), so that only systems (7.21a), (7.21b),
(7.21d) and (7.21e) have to be solved.

As it is said in section §4, it is natural and efficient the use of Fast Fourier Transforms (FFT)
techniques in x and z. This, in fact, decouples the problems (7.21a), (7.21b), (7.21d) and (7.21e), and
then, instead of a large Partial Differential Equation (PDE), a large number of individual Ordinary
Differential Equations (ODEs) have to be solved. The numerical technique used for y is thus critical to
obtain an accurate and fast algorithm. These kind of problems had been addressed mostly by spectral
methods [25, 106]. A typical technique used in channels is Chebyshev polynomials, [107]. This has also
been applied to thermoconvective problems [108, 109, 110]. However, in this case it is more efficient
the use of Compact Finite Differences, (CFD). Note that CFD should no be confussed with CFD from
Computational Fluid Dynamics. Nevertheless, both terms will be clearly distinguished by the context.
The CFD method was introduced in a groundbreaking article by Lele in 1992 [111]. Lele’s idea was to
use Finite Difference (FD) to solve problems presenting a range of spatial scales, generalizing some Padé
schemes that had been used early [112, 113]. Lele’s CFD main advantage is that maintaining the freedom
in choosing the mesh points of typical finite difference methods offers a very high precission, comparable
to that of spectral methods. This is critical in turbulent problems, as one tipically needs many more
points close to the wall than in the outer regions of the flow.

Through this part of this work the following notation is going to be used. Let u(x) be a real evaluated
function. Supposing that u(x) is differentiable enough, the first and second derivative of u(x) at the point
xi will be denoted by u′i(x) = u′(xi) and u′′i (x) = u′′(xi), respectively. In the case of a derivative of grade

n, it is expressed as u
(n)
i (x) = dn

dxnu(xi). Here, xi is a point belonging to a certain discretization of the
interval [a, b], where a and b are finite and x0 = a, xn = b. Without loss of generality, the schemes will
be derived for the second derivative. FD schemes aims to compute an approximation of u′′i (x) trough a
linear combination of the values of the function close to xi. CFD, instead, relates a linear combination
of the second derivatives with the values of the function. In order to explain a practical use of CFD
schemes, one specific example will be presented, the scheme used in [114]. In that work, the authors used
a stencil of seven points in the function and five in the second derivative. Let’s assume that the following
relation holds (the x dependence is not shown from now on for the sake of readability)

α−2u
′′
i−2 + α−1u

′′
i−1+α0u

′′
i + α1u

′′
i+1 + α2u

′′
i+2 =

a−3ui−3 + a−2ui−2 + a−1ui−1+a0ui + a1ui+1 + a2ui+2 + a3ui+3,
(7.22)

for some unknowns coefficients, αj and aj . Without loss of generality, it is possible to assume that one
of these coefficients is one, so from now on, α0 = 1. Defining hj = (xi − xi+j), Taylor’s Theorem states
that

u′′i−2 = u′′i +
h−2

1!
u

(3)
i +

h2
−2

2!
u

(4)
i + ...+

hn−2

n!
u

(n+2)
i +O

(
hn+1
−2

)
, (7.23a)

u′′i−1 = u′′i +
h−1

1!
u

(3)
i +

h2
−1

2!
u

(4)
i + ...+

hn−1

n!
u

(n+2)
i +O

(
hn+1
−1

)
, (7.23b)

u′′i = u′′i , (7.23c)

u′′i+1 = u′′i +
h1

1!
u

(3)
i +

h2
1

2!
u

(4)
i + ...+

hn1
n!
u

(n+2)
i +O

(
hn+1

1

)
, (7.23d)

u′′i+2 = u′′i +
h2

1!
u

(3)
i +

h2
2

2!
u

(4)
i + ...+

hn2
n!
u

(n+2)
i +O

(
hn+1

2

)
. (7.23e)
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and

ui−3 = ui +
h−3

1!
u′i +

h2
−3

2!
u′′i + ...+

hn−3

n!
u

(n)
i +O

(
hn+1
−3

)
, (7.24a)

ui−2 = ui +
h−2

1!
u′i +

h2
−2

2!
u′′i + ...+

hn−2

n!
u

(n)
i +O

(
hn+1
−2

)
, (7.24b)

ui−1 = ui +
h−1

1!
u′i +

h2
−1

2!
u′′i + ...+

hn−1

n!
u

(n)
i +O

(
hn+1
−1

)
, (7.24c)

ui = ui, (7.24d)

ui+1 = ui +
h1

1!
u′i +

h2
1

2!
u′′i + ...+

hn1
n!
u

(n)
i +O

(
hn+1

1

)
, (7.24e)

ui+2 = ui +
h2

1!
u′i +

h2
2

2!
u′′i + ...+

hn2
n!
u

(n)
i +O

(
hn+1

2

)
, (7.24f)

ui+3 = ui +
h3

1!
u′i +

h2
3

2!
u′′i + ...+

hn3
n!
u

(n)
i +O

(
hn+1

3

)
, (7.24g)

The relations between the coefficients αi and ai are derived by matching the Taylor series coefficients.
In this case the formal truncation error of the approximation is tenth order. Translating this information
into an algebraic equation leads to the system

0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 h−3 h−2 h−1 0 h1 h2 h3

−1 −1 −1 −1
h2
−3

2!

h2
−2

2!

h2
−1

2! 0
h2

1

2!
h2

2

2!
h2

3

2!

−h−2 −h−1 −h1 −h2
h3
−3

3!

h3
−2

3!

h3
−1

3! 0
h3

1

3!
h3

2

3!
h3

2

3!

−h2
−2 −h2

−1 −h2
1 −h2

2
h4
−3

4·3
h4
−2

4·3
h4
−1

4·3 0
h4

1

4·3
h4

2

4·3
h4

2

4·3

−h3
−2 −h3

−1 −h3
1 −h3

2
h5
−3

5·4
h5
−2

5·4
h5
−1

5·4 0
h5

1

5·4
h5

2

5·4
h5

2

5·4

−h4
−2 −h4

−1 −h4
1 −h4

2
h6
−3

6·5
h6
−2

6·5
h6
−1

6·5 0
h6

1

6·5
h6

2

6·5
h6

2

6·5

−h5
−2 −h5

−1 −h5
1 −h5

2
h7
−3

7·6
h7
−2

7·6
h7
−1

7·6 0
h7

1

7·6
h7

2

7·6
h7

2

7·6

−h6
−2 −h6

−1 −h6
1 −h6

2
h8
−3

8·7
h8
−2

8·7
h8
−1

8·7 0
h8

1

8·7
h8

2

8·7
h8

2

8·7

−h7
−2 −h7

−1 −h7
1 −h7

2
h9
−3

9·8
h9
−2

9·8
h9
−1

9·8 0
h9

1

9·8
h9

2

9·8
h9

2

9·8

−h8
−2 −h8

−1 −h8
1 −h8

2
h10
−3

10·9
h10
−2

10·9
h10
−1

10·9 0
h10

1

10·9
h10

2

10·9
h10

2

10·9





α−2

α−1

α1

α2

a−3

a−2

a−1

a0

a1

a2

a3


=



0
0
1
0
0
0
0
0
0
0
0


. (7.25)

Note that this is the direct matrix coming from matching Taylor’s expansions. Usually this matrix is
bad conditioned, so results can be very inaccurate. A typical procedure to overcome this problem consists
in normalizing each row by its absolute value maximum.

As the mesh can be non-uniform, it is necessary to solve this system for each point in the mesh.
When approaching to the boundaries, no ghost points are used but the stencils are adapted, removing
the points which lay outside the interval. This reduces the formal truncation error of the system. Once
the coefficients for every point have been computed, we obtain two sparse matrices, one containing the
ai coefficients, Ayy, and another one made by the αi coefficients, Byy, such that

Byy(u′′0 , ..., u
′′
n)t = Ayy(u0, ..., un)t, (7.26)

where the superscript ()t denotes the transpose. Note that (7.26) can be used in both ways, to derive a
function or to integrate it.
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Regarding the time discretization, in order to get a good accuracy in reasonable computational times,
a third order Runge-Kutta method has been chosen, derived in [115]. For

∂ϕ

∂t
= L(ϕ) +N(ϕ), (7.27)

where L is a linear operator and N is nonlinear, the equation is discretized as follows

(I − β1∆tL)ϕ1 = (I + ∆tα1L)ϕ0 + ∆tγ1N0, (7.28a)

(I − β2∆tL)ϕ2 = (I + ∆tα2L)ϕ1 + ∆t(γ2N1 + ζ1N0), (7.28b)

(I − β3∆tL)ϕ3 = (I + ∆tα3L)ϕ2 + ∆t(γ3N1 + ζ2N1), (7.28c)

with ϕi = ϕ(ti), for tn = t0, t1, t2, t3 = tn+1. This stepper presents two problems. The first one is
a problem of memory, due to the necessity of saving two nonlinear terms in steps two and three. The
second problem is a possible loss of accuracy near the wall, due to the explicit computation of the linear
operator in the right hand,

Ltiϕ0 = (I + ∆tαiL)ϕ0. (7.29)

Both problems are solved in the algorithm, using a little bit of algebra. Suppose that (7.28a) is solved,
and ϕ2 is to be computed. Let

Rh1 = (I + ∆tα1L)ϕ0 + ∆tγ1N0, (7.30)

then

Lϕ1 =
ϕ1 −Rh1

β1∆t
, (7.31)

and it can be computed and stored in a single buffer the right hand side of (7.28b) but the nonlinear
term N1. This tactic can be also applied in the computation of ϕ1, but only in the cases where ∆t
does not change. If the time step changes, the derivative of ϕ0 has to be computed explicitly. To
avoid this loss of accuracy it is a good idea to recompute the maximum ∆t every few steps, using the
Courant-Friedichs-Lewy (CFL) condition

max

(
U∆t

∆x
,
V∆t

∆y
,
W∆t

∆z

)
≤ CFL. (7.32)

All simulations made with this code ran with a CFL of 0.7, showing remarkable stability.
Equations (7.28a)-(7.28c) are solved for φ, Ωy and Θ using CFD. The lineal operator is given by

L = Re−1
τ ∇2 for φ and Ωy, and L = (ReτPr)

−1∇2 for Θ. As a practical example, the energy equation
system (7.21e) will be used. Using Fourier transforms, its lineal operator is

L̂ = − 1

ReτPr

(
k2
x + k2

z −
∂2

∂y2

)
. (7.33)

Thus, for each one of the three substeps, the problem becomes

(I − βi∆tL)ϕi = RHS, (7.34)

where RHS summarise the right hand side of the equation. This transforms into(
I + βi∆t

k2
x + k2

z − ∂2

∂y2

ReτPr

)
ϕi = RHS,(

I + βi∆t
k2
x + k2

z

ReτPr

)
︸ ︷︷ ︸

η

ϕi −
βi∆t

ReτPr

∂2ϕi
∂y2

= RHS.
(7.35)
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Now using matrix equation (7.26), and calling η to the first constant of the previous equation, it is
obtained that

ηϕi −
βi∆t

ReτPr

∂2ϕi
∂y2

= RHS,

ηByyϕi −
βi∆t

ReτPr
Byy

∂2ϕi
∂y2

= ByyRHS,

ηByyϕi −
βi∆t

ReτPr
Ayyϕi = ByyRHS,

Mϕi = ByyRHS,

(7.36)

where

M = ηByy −
βi∆t

ReτPr
Ayy. (7.37)

M is the final matrix to solve. Notice that this matrix is banded, which allows low-storage schemes
and the use of very efficient LAPACK routines.

It is also important to mention that as the three problems are decoupled and heat transfer is modelled
as a passive scalar, several Prandtl numbers can be solved at the same moment. It is only necessary to
use two buffers of memory, ϕi and ϕi+1 per Prandtl number. Note that this is true in this case that
Pr < 1, because if not, the mesh size depends on temperature instead of the flow and this would impose
the use of finer meshes for the flow and the other Prandtl numbers.

The most expensive part of the algorithm is the computation of the nonlinear terms hv, hg and ht,
approximatelly the 80% of the time of the simulation. This is because it is necessary to compute these
terms in physical space, due to the aliasing problem [116]. Notice that there are two global operations

1. Direct and inverse Fourier transforms in x and z, as the nonlinear term has to be computed in
physical space.

2. Integration-derivation in y.

As the data is distributed throughout the supercomputer, it is necessary to perform several all-to-all
communications, which are critical and extremely demanding. The code demands a total of 3(9 + 3hp)
global communications per step, where hp is the total number of heat transfer problems studied.

The number of points of the problem, and thus memory, depend on the Reynolds number studied.
Another constrain is the efficiency of the FFT transforms, so tipically numbers of points made up of
powers of 2 and 3 are chosen to increase the velocity of the FFT. Assuming a mesh with mx×my ×mz
points, typically mx is the largest one. It is then natural to start each sub-step of the Runge-Kutta
time-stepper scheme with the data set distributed in y− z planes. To avoid load imbalances, the number
of nodes must be a divisor of the number of complex planes, which is mx/2 after dealiasing. This number
is also the maximum number of nodes that can be used. The maximum number of OpenMP processes
at each node is mx/2/nprocs, where nprocs is the number of processors of the node.

The code to implement the algorithm described above is as follows (schematized in figure 7.1:

1. Calculation of velocity and vorticity in Fourier-Physical-Fourier (F-P-F) space (OpenMP). Trans-
formation of z from Fourier space into physical space (OpenMP). This step requires 15% of the
time step.

2. Move the data set from y − z planes into x−lines using MPI routines. This step requires 30% of
the time step.
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Figure 7.1: Plane-line parallelization scheme of the code.

3. Transformation of the data to physical space in x and computation of nonlinear terms (OpenMP).
Then nonlinear terms are transformed back into x−Fourier space. This step requires 15% of the
time step.

4. Nonlinear terms are moved back into y − z planes, using MPI routines. This step requires 20% of
the time step.

5. Transformation of the nonlinear terms in F-P-F space and solution of the viscous problem, using
OpenMP. This step requires 20% of the time step.

6. Move to step 1.
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[5] von Kármán, T. Mechanische Ähnlichkeit und Turbulenz. En Proceedings Third Int. Congr. Applied
Mechanics, Stockholm,, pages 85–105, 1930.

[6] J. Boussinesq. A review of the bases of predicting heat transfer to gas turbine rotor blades. Mem.
de L’Académie des Sciences, 23(2):209–224, 1877.

[7] L. F. Richardson. The supply of energy from and to atmospheric eddies. Proc. R. Soc. Lond., A
97:354–373, 1920.

[8] A. N. Kolmogorov. Local structure of turbulence in an incompressible fluid at very high reynolds
numbers. Dokl. Akad. Nauk., SSSR (30):9–13, 1941.

[9] A. N. Kolmogorov. Dissipation of energy in isotropic turbulence. Dokl. Akad. Nauk., SSSR (32):19–
21, 1941.

[10] H. Tennekes and J. L. Lumley. A first course on turbulence. MIT Press, 1972.

[11] A.A. Townsend. The Structure of Turbulent Shear Flows, 2nd ed. Cambridge University Press,
New York,, 1976.

[12] S. B. Pope. Turbulent flows. Cambridge University Press, 2000.

[13] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis. ”cfd
vision 2030 study: A path to revolutionary computational aerosciences”. NASA TECHNICAL
REPORT, page 218178, 2014.

[14] M. Oberlack. A unified approach for symmetries in plane parallel turbulent shear flows. Journal of
Fluid Mechanics, 427:299–328, 2001.

[15] V. Avsarkisov, M. Oberlack, and S. Hoyas. New scaling laws for turbulent Poiseuille flow with wall
transpiration. Journal of Fluid Mechanics, 746:99–122, 2014.

145



BIBLIOGRAPHY

[16] Andreas M Rosteck. Scaling laws in turbulence – a theoretical approach using Lie-point symmetries.
PhD thesis, Darmstadt, Technische Universität, 2014.

[17] Martin Oberlack, Marta Wac lawczyk, Andreas Rosteck, and Victor Avsarkisov. Symmetries and
their importance for statistical turbulence theory. Mechanical Engineering Reviews, 2(2):15–00157,
2015.

[18] H. Sadeghi, M. Oberlack, and M. Gauding. On new scaling laws in a temporally evolving turbulent
plane jet using lie symmetry analysis and direct numerical simulation. Journal of Fluid Mechanics,
854:233–260, 2018.

[19] H. Sadeghi and M. Oberlack. New scaling laws of passive scalar with a constant mean gradient in
decaying isotropic turbulence. Journal of Fluid Mechanics, 775:A10, 2020.

[20] H. Sadeghi, M. Oberlack, and M. Gauding. On new scaling laws in a temporally evolving turbulent
plane jet using lie symmetry analysis and direct numerical simulation-corrigendum. Journal of
Fluid Mechanics, 885:E1, 2020.

[21] A. Leonard. Energy cascade in large-eddy simulations of turbulent fluid flows. In F.N. Frenkiel
and R.E. Munn, editors, Turbulent Diffusion in Environmental Pollution, volume 18 of Advances
in Geophysics, pages 237–248. Elsevier, 1975.

[22] James W. Deardorff. A numerical study of three-dimensional turbulent channel flow at large
reynolds numbers. Journal of Fluid Mechanics, 41(2):453–480, 1970.

[23] J. Smagorinsky. General circulation experiments with the primitive equations. Monthly Weather
Review, 91(3):99–164, 1963.

[24] Mark P. Simens, Javier Jimenez, Sergio Hoyas, and Yoshinori Mizuno. A high-resolution code for
turbulent boundary layers. Journal of Computational Physics, 228(11):4218–4231, JUN 20 2009.

[25] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channels flows at low
Reynolds numbers. Journal of Fluid Mechanics, 177:133–166, 1987.

[26] H. Eckelmann. The structure of the viscous sublayer and the adjacent wall region in a turbulent
channel flow. Journal of Fluid Mechanics, 65(3):439–459, 1974.

[27] R. Brodkey, J. Wallace, and H. Eckelmann. Some properties of truncated turbulence signals in
bounded shear flows. Journal of Fluid Mechanics, 63, 1974.

[28] H. P. Kreplin and H. Eckelmann. Behavior of the three fluctuating velocity components in the wall
region of a turbulent channel flow. The Physics of Fluids, 22:1233–1239, 1979.

[29] R. Barlow and J. Johnston. Structure of a turbulent boundary layer on a concave surface. Journal
of Fluid Mechanics, 191:137–176, 1988.

[30] John Kim and Parviz Moin. Transport of passive scalars in a turbulent channel flow. NASA,
1(TM-89463):1–14, 1987.

[31] B.A. Kader. Temperature and concentration profiles in fully turbulent boundary layers. Interna-
tional Journal of Heat and Mass Transfer, 24(9):1541–15441, 1981.

[32] C.S. Subramanian and R.A. Antonia. Effect of reynolds number on a slightly heated turbulent
boundary layer. International Journal of Heat and Mass Transfer, 24(11):1833–1846, 1981.

146



BIBLIOGRAPHY

[33] Y. Iritani, N. Kasagi, and M. Hirata. Heat transfer mechanism and associated turbulence structure
in the near-wall region of a turbulent boundary layer. 4th Symposium on Turbulent Shear Flows,
pages 17.31–17.36, jan 1983.

[34] R. A. Antonia and Kim J. Turbulent Prandtl number in the near-wall region of a turbulent channel
flow. International Journal of Heat and Mass Transfer, 34(7):1905–1908, 1991.

[35] S.L. Lyons, T.J. Hanratty, and J.B. McLaughlin. Turbulence-producing eddies in the viscous wall
region. AlChE Journal, 35(12):1962–1974, 1991.

[36] S.L. Lyons, T.J. Hanratty, and J.B. McLaughlin. Direct numerical simulation of passive heat
transfer in a turbulent channel flow. International Journal of Heat and Mass Transfer, 34(4-
5):1149–1161, 1991.

[37] N. Kasagi, Y. Tomita, and A. Kuroda. Direct numerical simulation of passive scalar field in a
turbulent channel flow. Journal of Heat Transfer, 114(3):598–606, August 1992.
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[52] F. Lluesma-Rodŕıguez, S. Hoyas, and MJ Peréz-Quiles. Influence of the computational domain on
DNS of turbulent heat transfer up to Reτ = 2000 for Pr = 0.71. International Journal of Heat and
Mass Transfer, 122:983–992, 2018.

[53] T. Tsukahara, H. Kawamura, and K. Shingai. Dns of turbulent couette flow with emphasis on the
large-scale structure in the core region. Journal of Turbulence, 7:1–16, 2006.

[54] V. Avsarkisov, S. Hoyas, M. Oberlack, and J.P. Garćıa-Galache. Turbulent plane Couette flow at
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[105] D. Klingenberg, D. Plümacher, and M. Oberlack. Symmetries and turbulence modeling. Phys.
Fluids, 32:025108, 2020.

[106] Claudio Canuto, M Yousuff Hussaini, Alfio Maria Quarteroni, A Thomas Jr, et al. Spectral methods
in fluid dynamics. Springer Science & Business Media, 2012.

[107] R.D. Moser, J. Kim, and N.N. Mansour. Direct numerical simulation of turbulent channel flow up
to Reτ = 590. Physics of Fluids, 11(4):943–945, 1999.

[108] S. Hoyas, H. Herrero, and A.M. Mancho. Bifurcation diversity of dynamic thermocapillary liquid
layers. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary
Topics, 66(5):4, 2002.
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