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Abstract

- Irene Alice Chicchi Giglioli' - Fabrizia Mantovani? - Mariano Alcafiz Raya'

The assessment of autism spectrum disorder (ASD) is based on semi-structured procedures addressed to children and
caregivers. Such methods rely on the evaluation of behavioural symptoms rather than on the objective evaluation of psy-
chophysiological underpinnings. Advances in research provided evidence of modern procedures for the early assessment
of ASD, involving both machine learning (ML) techniques and biomarkers, as eye movements (EM) towards social stimuli.
This systematic review provides a comprehensive discussion of 11 papers regarding the early assessment of ASD based
on ML techniques and children’s social visual attention (SVA). Evidences suggest ML as a relevant technique for the early
assessment of ASD, which might represent a valid biomarker-based procedure to objectively make diagnosis. Limitations

and future directions are discussed.
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Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmen-
tal disorder affecting worldwide 1 in 160 children (WHO,
2019) which emerges in childhood and persists in adulthood.
ASD is defined by the presence of impairments in social
interaction and communication, and repetitive and restrictive
patterns of behaviours and interests (APA, 2013). Several
aspects might contribute to the ASD manifestation, such as
neurobiological, genetic, environmental and cognitive fac-
tors (Currenti, 2010; Klin & Mercadante, 2006). Although
ASD signs may be visible in early childhood (Lord et al.,
2006), ASD diagnosis is usually made 2 or 3 years after
the appearance of symptoms, at the average age of 4 (Gold-
stein & Ozonoff, 2018). The stress on social impairments
and atypical language development in ASD stems from
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its scientific evidence (e.g., Dawson et al., 2004; Mundy
et al., 1986; Naber et al., 2008; Tager-Flusberg et al., 2005;
Wilkinson, 1998), and it might be due to a reduced attention
to both social stimuli (SS) and social interaction (Cheval-
lier et al., 2012; Dawson et al., 2005). ASD social impair-
ments include among others eye contact avoidance, altered
joint attention (JA), difficulties in social and emotional
judgment, social smiling absence, and atypical turn taking
(Tager-Flusberg et al., 2005; Wilkinson, 1998). In particular,
children with ASD tend to show reduced social visual atten-
tion (SVA) to the eyes compared to typical developmental
(TD) children (e.g., Sterling et al., 2008; Tanaka & Sung,
2016), as well as deficit in JA related to following eye gaze,
pointing towards objects or both (e.g., Dawson et al., 2004;
Mundy et al., 1986; Naber et al., 2008), and difficulties in
the social evaluation of interlocutor’s kindness (e.g., Wal-
lace et al., 2010, 2017). They also strive for understand and
follow turn taking in dialogues, resulting in excessive ASD
verbosity (e.g., Chuba et al., 2003; Ghaziuddin & Gerstein,
1996), and they miss social smiling expression in response to
the interlocutor’s smile, which is related to the incapacity of
both orienting eye gaze and showing positive facial expres-
sions (e.g Dawson et al. 1990; Kasari et al. 1993; Swetten-
ham et al. 1998).
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Traditional ASD Assessments of Social Skills
and Diagnosis: Advantages and Limitations

Despite the wide offer of measures to assess ASD, semi-
structured interviews and observations such as the ADOS
(the Autism Diagnostic Observation Schedule, ADOS;
Lord et al., 1999) and the ADI-R (the Autism Diagnostic
Interview-Revised, ADI-R; Lord et al., 1994), are con-
sidered as the gold standard for ASD assessment in clini-
cal settings (Goldstein & Ozonoff, 2018; Kamp-Becker
et al., 2018). ADOS is a sequence of semi-structured
observational tasks in which the examiner evaluates
child’s responses to several familiar and unfamiliar situa-
tions, observing whether ASD-related behaviours occur.
On the other hand, ADI-R is a semi-structured interview
addressed to family caregivers whose aim is to detect
ASD by the interpretation of parents’ reports concerning
children’s daily life. Regarding the assessment of social
skills, ADOS includes many subtasks which objective is
the direct evaluation of social competences, as eye contact,
JA, and social smiling; conversely, ADI-R evaluation is
based on caregiver reports, and therefore not gives the
opportunity to directly observe social behaviours of chil-
dren as in the ADOS-2. An additional measure to assess
ASD is the Child Autism Rating Scale (CARS; Schop-
ler et al., 1980), which is analogous to ADOS since it is
based on the clinician’s evaluation of child’s behaviours,
following two short rating scales. Moreover, ASD social
impairment can be assessed by the Social Communication
Questionnaire (SCQ); Rutter et al., 2003), and the Social
Responsiveness Scale (SRS; Constantino & Gruber, 2005).
Since SCQ and SRS refer to caregivers, they share the
same ADI-R limitation regarding the absence of a direct
observation on child’s social behaviours. SRS and SCQ
have been widely used in research for quick and sharp
diagnosis and less in clinical settings, where traditional
measures received the greatest consensus. Although tradi-
tional measures benefit from good mutual agreement and
reliability (e.g., De Bildt et al., 2004; Le Couteur et al.,
2008), they present some limitations regarding objective
measurement and ecological validity, which arise ques-
tions about their real effectiveness (Alcaiiiz Raya, Chicchi
Giglioli, et al., 2020; Alcafiiz Raya, Giglioli, et al., 2020;
Alcafiiz Raya, Marin-Morales, et al., 2020; Goldstein &
Ozonoff, 2018). Traditional assessment scores rely on the
examiner’s interpretation of respectively child’s behav-
iours and parents’ reports, hence examiner’s strong exper-
tise in the ASD field, as well as clinical training in ASD
assessment procedure, are highly recommended to avoid
the misleading detection and interpretation of symptoms
(Lord et al., 2001; Reaven et al., 2008). However, method-
ological limitations in the ASD traditional assessment rely
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on measured variables as well, and not only on examiner’s
expertise and training. Tapped variables in current ASD
assessment represent the behavioural presence or absence
of explicit symptoms, and not the objective evaluation of
behavioural symptom underpinnings. In addition, social
desirability bias (Paulhus, 1991) could affect truthfulness
of responses over the assessment of both children and fam-
ily caregivers, since they might act or report symptoms
differently from what is expected, in the attempt of being
perceived as favourable by others. Finally, traditional ASD
assessment is not always sensitive to differential diagnosis,
as in the case of low-functioning children, who are often
wrongly diagnosed as ASD instead of children with intel-
lectual disability (De Bildt et al., 2004).

Regarding ecological validity, it refers to the power
of a setting to evoke everyday experiences and realistic
behaviours, even though it is not the real world (Franzen
& Wilhelm, 1996). The current ASD assessment takes
place in neutral settings requiring ecological validity (i.e.,
laboratory) that neither reflect performance in real life, nor
allow generalization of results (Chaytor et al., 2006; Par-
sons, 2016). The lack of ecological validity in laboratory is
because it is a highly controlled setting, wherein is difficult
providing the illusion of being in the real world. On the other
hand, naturalistic environments allow study observations as
if subjects were experiencing everyday life situations, even
though they offer cost disadvantages.

Considering these limitations, the underlying issue stems
from the lack of objective and ecological measures in ASD
assessment, which could provide a more accurate and sen-
sitive ASD diagnosis through the evaluation of specific
biomarkers (Alcafiiz Raya, Chicchi Giglioli, et al., 2020;
Alcaiiiz Raya, Giglioli, et al., 2020; Alcafiiz Raya, Marin-
Morales, et al., 2020). Objective and integrative psychophys-
iological measures related to disorder cognitive and neuro-
biological correlates, as well as more controlled procedures,
and standardized realistic tasks are necessary to improve
validity and efficiency of current ASD assessment.

Eye Movements as Biomarker in ASD Assessment:
How to Overcome the Quantitative Method Need

Social cognitive neuroscience was the first scientific field
prompting the idea that social interaction is mostly driven
by implicit processes far from conscious awareness (For-
scher et al., 2019; Lieberman, 2010); therefore, the tradi-
tional idea of social cognition models that humans can cor-
rectly analyse their behaviours and report their feeling and
beliefs is outdated (Nosek et al., 2011). In the last decades,
the advances in ASD research pointed out the underlying
pathophysiology of ASD and identified possible disorder
biomarkers (Bolte et al., 2016). Implicit processes, or bio-
markers, represent biological signs in response to either
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external stimuli or internal processing that can be accurately
measured and reproduced (Strimbu & Tavel, 2010). Recent
evidences suggest that biomarkers might implement assess-
ment procedures, facilitating early diagnosis, since they
represent unconscious brain processes that can objectively
disclose ASD (Alcaiiiz Raya, Chicchi Giglioli, et al., 2020;
Alcaiiiz Raya, Giglioli, et al., 2020; Alcaifiiz Raya, Marin-
Morales, et al., 2020; Klin, 2018; Walsh et al., 2011). The
need to find a quantitative method to assess ASD yielded
novel challenges to researchers, mirrored by the exponential
increase of published studies involving implicit measures in
children with ASD (Bolte et al., 2016). Implicit measures
that allowed to define ASD biomarkers include among others
body movement, neural correlates and activations, electro-
dermal activity (EDA), genomics, and eye movements (EM)
recording (Choueiri & Zimmerman, 2017; Crippa et al.,
2015). For instance, children’s impaired eye gaze in social
situations is related to atypical development, in particular to
ASD (Chita-Tegmark, 2016); whereas, regarding neural cor-
relates and activations, EEG studies on resting state activity
showed that compared to TD children, peers with ASD have
reduced network connectivity, as well as reduced power in
the alpha frequency range (Matlis et al., 2015). In addition,
fMRI studies reported in children with ASD abnormalities
in early brain growth and increased white matter volume
in several brain regions (Ismail et al., 2016). Finally, body
movement analysis of upper limb movements (i.e., hidden
fluctuations) recorded by electromagnetic sensors in a basic
pointing task allowed to distinguish ASD from TD peers
(Wu et al., 2018). Despite the growing impact in literature
of implicit measure application to define ASD biomarkers
for assessment and intervention, none yet has been vali-
dated for clinical use (Walsh et al., 2011). ASD biomarkers
might completely change assessment process, and besides,
they might reliably track illness progression and personal
variation in symptom severity. In particular, EM seems to
be promising due to low-cost efficiency and the feasibility
of studying infants and young children’s internal cognitive
processes with a non-intrusive method (Bolte et al., 2016;
Klin, 2018). EM are measured by eye-tracking technology,
which is based on infrared cameras recording images of the
eye at several customized frequencies. The most studied
EM are saccades and fixations: saccades are rapid EM that
redirect gaze, which can occur up to four time a second and
present a variety of amplitudes, duration and peak velocity;
whereas fixations are the EM between saccades in which
gaze is stationary and visual information is decoded. In
this review, only studies focusing on aforementioned EM
in children with ASD and TD peers have been considered.
Usually, EM analysis is based on the areas of interest (AOIs)
approach, which consists in defining either a priori or a pos-
teriori boundaries in the stimulus in order to analyse specific
EM behaviours in different regions. The more traditional

a priori AOI approach is a top-down method that gener-
ates AOI boundaries according to the semantic parsing of
the stimulus (i.e., mouth, eyes, nose and background) and
without a statistical reason (Yi et al., 2014). On the other
hand, a posteriori AOIs follow a bottom-up approach that
avoids to determine AOI size and location, providing more
objective outcomes than a priori AOIs, due to an algorithm
that considers EM on the entire SS (Cilia et al., 2019a,
2019b). EM research shed light on how people with ASD
sample and process social visual information compared to
TD peers. Two recent reviews and meta-analysis on SVA in
people with ASD and TD (Chita-Tegmark, 2016; Frazier
et al., 2017) revealed, on one hand, that individuals with
ASD spend less time looking at SS than TD (mean effect
size: 0.55; Chita-Tegmark, 2016) and, on the other, that the
ASD social impairment is stronger when social complexity
in SS increased, from social images (SIs) on faces, where
eyes AOI produces the largest effect size (Hedge’s g=0.47,;
Frazier et al., 2017), to more complex comparisons of social
videos (SVs) and non-social videos (NSVs). ASD SVA
seems to be modulated by social content and researchers
should try to discern which stimuli may provide specific
impairments, taking into account both ASD severity sub-
groups and rigorous methodology (Chita-Tegmark, 2016).
Aforementioned conclusion of Chita-Tegmark (2016) and
the quantitative method need in ASD assessment inspired
researchers to implement biomarker-based attempts of ASD
early discrimination involving children’s SVA and machine
learning (ML) techniques.

ML as Statistical Approach for ASD Assessment

Two main statistical approaches to science exist: explana-
tory strategy, that tries to describe phenomenon casual
underpinnings (i.e., descriptive and inferential statistics),
and predictive strategy, that attempts to forecast events
that have not been observed yet (Yarkoni et al., 2017).
Following a statistical perspective, the model that closely
estimates the data-generating process (i.e., data-contingent
phenomenon explanation) is not the most successful at
predicting realistic conclusions (Shmueli, 2010). There-
fore, the current replication study crisis and the conse-
quent need in experimental psychology to move from
explanatory strategies towards more predictive strategies
have led researcher to consider as fruitful new algorithm-
based statistical approaches, such as ML (Orru et al., 2020;
Yarkoni et al., 2017). ML approach can better deal with
the statistical explanatory strategy issue of overfitting,
which is the propensity for traditional statistical models
to mistakenly consider sample-specific noise as if it were
relevant (Yarkoni et al., 2017). ML is a subset of artificial
intelligence that can be defined as the study of computer
algorithms that improve automatically through experience
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(Mitchell, 1997). ML can be broadly organized into two
categories: supervised and unsupervised learning (Mello
& Ponti, 2018). The former is the most used in human
behaviour research and it is the learning process in which
ML received prelabelled data as input (i.e., diagnosis) and
use them to predict target classification. On the other hand,
the latter ML category builds models analysing similari-
ties among input data, without requiring specific previous
labels. Regarding supervised ML models, the most used
in psychological research are Support Vector Machine
(SVM), kth Nearest Neighbor (kNN), Alternating Deci-
sion Tree (ADTree), Artificial Neural Networks (ANNSs),
Recurrent Neural Networks (RNNs), Convolutional Neu-
ral Networks (CNNs), Random Forest (RF), Conditional
inference Forest (CF), and Decision Trees (DT) (for a
complete review of ML models used in psychological
research see: Orru et al., 2020; in ASD assessment see:
Hyde et al., 2019). Such models can be seen as success-
ful when they accurately predict target result, as well as
when they can be generalized to new dataset. Data reduc-
tion removes irrelevant and redundant data, improving ML
prediction, in particular in models like non-neural network
approaches. Feature extraction methods allow to transform
the input data space, preserving the most relevant informa-
tion (Chumerin & Hulle, 2006). On the other hand, feature
selection is the simplest method to reduce data dimension-
ality and it selects feature subset that maximise different
objective functions, as for instance statistical differences.
Feature extraction and selection can be applied either sep-
arately or in combination. To properly validate the ML
algorithm performance on future data, cross-validation
methods allow to separate the dataset into n-subset and
to remove a subset from data before training, so that the
model can be tested on that subset (Mello & Ponti, 2018).
This process is reiterated until ML model has been trained
on all data and the average among performance scores is
computed. In a methodological perspective, cross-valida-
tion instances that guarantee good prediction outcomes are
tenfold cross validation and leave-one-out cross-validation
(Orru et al., 2020). Several values aid researchers in inter-
preting ML results: accuracy is the percentage of correct
prediction and it can be further reduced in sensitivity, that
is the ability to correctly identify true positives, and speci-
ficity, that is the ability to correctly identify true negatives.
Moreover, Cohen’s Kappa and the area under the curve
(AUC) are further relevant values for the interpretation
of ML results. The former relates the number of cases in
each class to the number of cases in which the model has
successfully matched the true class (Kappa values range
from O to 1, where O represents a non-efficient model and
1 represents a perfect model), and the latter represents the
area under the receiving operating character curve (that
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is a plot of sensitivity vs specificity), that reveals the ML
method goodness in making categorical classifications.

In ASD research, ML has been involved for two pur-
poses: pattern classification and stratification (Wolfers
et al., 2019). Pattern classification represents the use of
supervised models on either biological or behavioural
measures in order to discern children with ASD from TD.
Stratification refers to the application of unsupervised
models on a variety of measures in order to define clusters
in the ASD phenotype. ML has demonstrated its promising
power for the objective ASD assessment on several meas-
ures, reporting classification accuracies between 60 and
98% (Wolfers et al., 2019). Some instances of measures
used in the ASD assessment based on ML are EM analysis
(e.g., Jiang & Zhao, 2017; Liu et al., 2016), body move-
ments (e.g., Alcafiiz Raya, Chicchi Giglioli, et al., 2020;
Wu et al., 2018), and sensory processing (e.g., Alcaiiiz
Raya, Giglioli, et al., 2020; Koirala et al., 2019). Regard-
ing EM analysis, SVM classification on EM in a SI-based
face recognition task provided an accuracy of 88.51% in
the discrimination of children with ASD, with sensitiv-
ity of 93.10%, specificity of 86.21% and AUC of 0.8963
(Liu et al., 2016). ML models on EM towards more com-
plex stimuli, as SVs, provided a classification accuracy of
85.1%, sensitivity of 86.5%, and specificity of 83.8% in the
classification of children with ASD (Wan et al., 2019). In
addition, several studies attempted to stratify ASD by the
identification of clusters in the disorder phenotype (Wolf-
ers et al., 2019). However, the use of EM measures in
this field is not extended. Due to current ASD assessment
limitations and the heterogeneity in disorder phenotypes,
ASD assessment could benefit from ML, for both clas-
sification and stratification purposes, reducing diagnosis
time and simultaneously improving accuracy (Hyde et al.,
2019; Thabtah, 2019).

Aim of the Systematic Review

Starting from these premises, the aim of this systematic
review was to discuss the scientific evidence on early ASD
classification based on SVA towards static and dynamic
SS using ML techniques. More in detail, this systematic
review contributes to the understanding of research on
ASD social impairments, trying to discern which ML
algorithms allow to discriminate children with ASD from
TD peers. A complete discussion on ML approaches used
in the attempt to distinguish children with ASD from TD
peers, basing on their differences in SVA on SS and non-
social stimuli is presented.
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Methods

Literature search followed the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis guidelines
(PRISMA; Moher et al., 2009).

Search Strategy

Studies were selected on July 6, 2020 from PubMed Cen-
tral® and Scopus® database, searching for English peer-
review articles, in which full-text was available, published
after 2010. Search on database was conducted by the first
author using the following Boolean string: ((ASD) OR
(Autism)) AND ((eye movements) OR (gaze) OR (eye
tracking) OR (eye-tracking)) AND ((children) OR (tod-
dlers) OR (infants)) AND ((machine learning) OR (clas-
sification)) OR ((social stimuli) OR (social dynamic stim-
uli)). Studies which complied with the following inclusion

m PRISMA 2009 Flow Diagram

criteria were selected: (a) patient group had a diagnosis of
high/low functioning ASD; (b) control groups included at
least a TD children sample; (c) experimental paradigms to
measure SVA and non-SVA were presented on a display
screen; (d) EM measures included fixations and saccades;
(e) participants mean age range was 2—10 years old and
sample must include at least 10 participants; (f) aim of the
study was to discern children with ASD from TD peers
using ML on EM data toward SS; (g) studies included
not previously published data; (h) studies included ran-
domized, control trials (RCTs). According to PRISMA
recommendations on how to avoid the risk of bias, the
four authors independently selected study abstracts and
then evaluated full texts to check for the inclusion crite-
ria. Relevant information which have been extracted from
studies were the aim of the study, sample size and mean
age, ASD assessment, eye-tracking stimuli, EM measures,
data reduction technique, selected features, ML model,
ML findings and conclusions.

Records identified through
PubMed Central ® database
searching

(n=423)

Records identified through
Scopus® database searching

(n=63)

Records identified from
reference lists

(n=1)

Records after duplicates removed
(n=425)

Records screened
(n=425)

Records excluded after title
and abstract screening
(n=379)

A 4

Full-text articles assessed
for eligibility
(n=46)

Full-text articles excluded
for not matching inclusion
criteria
(n=36)

[ Included ] [ Eligibility ] [ Screening ] [Identification]

Studies included in the
qualitative synthesis
(n=11)

Fig. 1 Flow diagram of study selection
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Results
Review Flow

The flow chart of the systematic review is shown in Fig. 1.

486 articles were found, respectively 423 in PubMed
Central® and 63 in Scopus® database. Duplicated arti-
cles between database were removed (61 articles). Among
remained 425 articles, 379 were excluded after title and
abstract screening, and further 36 articles after full-text
screening checking for inclusion criteria. Remained 10 arti-
cles plus 1 additional article from reference lists of selected
articles met above criteria, with 11 articles included in the
systematic review.

Selected Studies of the Systematic Review

Selected studies are presented in Table 1 in alphabetic order.

Among the 11 studies, 10 used supervised ML mod-
els, whereas 1 used an unsupervised model (i.e., Elbattah
et al., 2019). Among supervised ML models, 7 studies used
SVM (Carette et al., 2019; Kang et al., 2020; Li et al., 2018,
2020; Liu et al., 2015, 2016; Wan et al., 2019), 3 used ANNs
(Carette et al., 2017, 2019; Li et al., 2020), 1 used CNN-
RNN architecture (e.g., Tao et al., 2019), 1 used kNN (Vu
etal., 2017), and 1 used Naive Bayes and RF (Carette et al.,
2019).

Discussion

The aim of this systematic review was to present and discuss
the ML models that were used to discern children with ASD
from TD peers, through the measurement of EM towards
static and dynamic SS. First, studies involving static SS were
presented, and then studies that used dynamic SS. Liu et al.
(2015) were the first who attempted to classify children with
ASD from TD (N=21) using EM on SIs depicting individ-
ual Chinese female faces. Features based on eye gaze coor-
dinates, eye motion, and combined variables were extracted
for each SI per subject using k-means clustering, creating
a posteriori AOIs. Besides a posteriori AOI approach, tra-
ditional a priori AOI approach on combined variables was
computed as baseline feature extraction method to compare
performance of different SVM. Selected eye gaze coordi-
nates and eye motion features were subsequently represented
with N-Gram modelling and the orderless frequency Bag
of Words (BoW). Five different SVM were trained: 3 using
BoW histogram features on eye gaze coordinates, eye motion
and combined variables after k-means clustering, 1 on eye
gaze coordinates after N-Gram modelling, and 1 on selected
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features subsequent to a priori AOI definition. Leave-one-out
strategy was used to train SVM on all participants except
one, which was used as test set. The SVM performance based
on BoW histogram features of combined variables derived
from k-means clustering achieved the best performance with
an AUC of 0.92 and an accuracy of 86.89% in ASD dis-
crimination. In a subsequent study of the same authors (Liu
et al., 2016), it was investigated the use of ML to classify
EM of children with ASD and TD peers (N=29) towards Sls
depicting either individual Chinese faces or other race faces.
Similar to the previous study, k-means clustering was used
to define a posteriori AOIs, and histogram feature extraction
provided feature representation per image for each subject.
Different features were clustered for same race faces, other
race faces and all faces. Leave-one-out cross-validation strat-
egy was used to separate the training set from the test set and
a radial basis function (RBF) kernel SVM for image-level
classification was trained. Results provided evidence that
the RBF kernel SVM on all faces outperformed the SVM
on same race faces and other race faces, with an accuracy
of 88.51%, sensitivity of 93.10%, specificity of 86.21%, and
AUC=0.89. In a like manner, Kang et al. (2020) tried to
identify children with ASD (N =49) from TD peers (N =48)
adopting supervised ML on features from two different
measures: EEG and eye-tracking. EM were recorded using
the same static SS of Liu et al. (2016), differently presented
in terms of order and exposition time. SVM performance
was tested with different inputs, which were respectively
data from EEG measure, eye-tracking technique, and com-
bined measures. Since the present review focused on EM
toward SS in ASD, only related SVM were reported. Eight
a priori AOIs were defined and results provided evidence
of fewer gazes on face, nose, and mouth on both other and
own-race faces for ASD. Feature selection was computed
applying the minimum-redundancy-maximum-relevance
method (Peng et al., 2005), which takes into account both
minimum redundancy among features and maximum rel-
evance with class labels, seeking the maximal statistical
dependency between selected features. Classification accu-
racy of 3 SVM (own-race face, other-race face, both types
of faces) were compared and best accuracy was achieved
by the ML model related to both other and own-race faces,
achieving an accuracy of 75.89% and AUC =0.87. Overall,
the best SVM performance was the one combining EEG
and eye-tracking data, accomplishing an accuracy in ASD
discrimination of 85.44% and AUC =0.93, which suggests
that multimodal assessment might lead to stronger results in
the classification of ASD.

Aforementioned studies, which used similar SS and
reduced sample size, seem to suggest that, on one hand,
the use of combined variable features (i.e. eye gaze coor-
dinates and motion; Liu et al., 2015) can enhance the ML
performance, in relation to SVM based on features of single
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variables, and on the other, the use of features from com-
bined stimuli (i.e., both same and other race faces; Kang
et al., 2020; Liu et al., 2016) can provide better model accu-
racy rather than SVM based on just one type of SIs. In addi-
tion, Kang et al. (2020) found better accuracy when both
eye-tracking and EEG data on both types of SIs were used to
train SVM, emphasizing the importance of multimodal data
acquisition in the early assessment of neurodevelopmental
disorders as complex and varied as ASD. Li et al. (2018)
took a previous dataset of raw videos of 53 children with
ASD and 136 TD peers looking at their mother’s pictures
on the screen, to later extract EM patterns in an indirect
manner. The attempt was to develop an early ASD diagnosis
tool based on raw videos that might be recorded at home
rather than in clinics. Features as eye gaze trajectories were
extracted from videos using the tracking learning detec-
tion algorithm. Inspired by the colour histogram method
for images (e.g., Deng et al., 2001), the area of videos was
divided into different zones and the number of eye displace-
ments were counted within each zone. Due to the different
methodology involved in the present study, neither a priori
nor a posteriori AOI approach on the SS were applied. To
ensure that integrity along the video timeline was preserved,
the method of accumulative histograms was introduced and
authors computed the ASD and TD holistic accumulative
histograms based on different numbers of video frames (i.e.,
20, 40, 50, and 100). SVM was chosen as ML algorithm to
test the ability of the video-based method to discriminate
ASD. To assess the efficacy of the method based on accu-
mulative histograms, it was compared to a baseline method
and a similar method based on histograms including all
video frames (i.e., Torii et al., 2016). Principal component
analysis (PCA) and kernel PCA (KPCA) were applied to
extract features and therefore reduce data dimension. Sixteen
SVM were fed and 20-fold cross validation was used to avoid
overfitting issue. Although all models achieved an accuracy
greater than 77%, highest accuracies were obtained using
KPCA, and the best model was SVM on 40 video frames
with an accuracy of 93.7%. However, the TD group was
three times bigger than the ASD group, hence the imbal-
anced sample affected the ML accuracy score, which tended
to be biased towards the sample group with more elements
(Nguyen et al., 2009). To overcome the unbalanced sample
issue, Li et al. (2020) used the same dataset of the previous
study and a further new dataset of similar raw videos of
children with ASD (N =83). The new dataset was a balanced
dataset of 272 raw videos (i.e., dataset 2) in which partici-
pants’ face was recorded while they were looking at their
mother’s picture on the screen. As in the previous study, AOI
could not be outlined due to the type of data and eye gaze tra-
jectories on SIs were computed using the tracking learning
detection algorithm and then divided into angle and length
features. Accumulative and non-accumulative histograms

@ Springer

were then generated for single and combined features with
the intention to use them as inputs for neural networks. Neu-
ral networks mimic the human brain functioning, receiving
data as input and providing an output previously defined by
the operator among prediction, classification and correla-
tion. Several neural network models have been developed:
ANN, RNN, and more complex and robust RNN as long
short-term memory (LSTM; Hochreiter & Schmidhuber,
1997). LSTM implementation follows the RNN one, except
for some nodes, as an additional one that is used as memory
rubber and it is fed by a forget gate. Six LSTM networks
were trained using tenfold-cross validation with respectively
non-accumulative and accumulative histograms of single
and combined variables. In addition, KPCA to reduce data
was computed in order to feed 6 SVM and compare their
performance to LSTM performance. Results revealed that
features based on accumulative histograms yielded better
outcomes than non-accumulative histograms, and LSTM
networks outperformed SVM by 6.2% in accuracy. The
best performance in ASD discrimination was achieved by
LSTM with combined accumulative histograms on dataset 2
(accuracy of 92.60%, sensitivity of 91.9%, and specificity of
93.4%). LSTM is usually more efficient with data providing
time dimension rather than with orderless data, representing
in this case a well-fit solution in relation to SVM. However,
even though sample size was improved in relation to Li et al.
(2018), providing more validity to the ML models, EM were
indirectly measured, since they were extracted from raw vid-
eos of participants looking at SS at their houses, rather than
directly recorded using an eye-tracking system. The pur-
pose of these studies was to develop a simple cost-effective
tool for home as rapid ASD screening, and the involvement
of a portable eye-tracker for the direct EM recording could
enhance the feasibility of the method. Moreover, involved
SS differed between participants, since each child looked at
the picture of his or her mother, increasing EM variability.
The presence of controlled setting, direct EM measurement,
and same SS for participants might improve both accuracy
and objectivity of the method.

Tao et al. (2019) integrated CNN and LSTM to classify
children with ASD and TD basing on their scanpaths related
to 300 SIs and non-social images (NSIs) presenting either
people or objects and naturalistic scenes. Scanpaths are con-
sidered as visual representations describing EM dynamics
on stimuli, such as the sequence of fixations and saccades
(Goldberg & Helfman, 2010). EM dataset was the Salien-
cy4ASD grand challenge, which is an EM dataset publicly
released to evaluate ASD classification algorithms gather-
ing EM data of 14 TD and 14 children with ASD (Duan
et al., 2019). Starting from fixation points, the reference
saliency map was created using the neural network Sal-
GAN (Pan et al., 2017) and features were extracted from
the patches related to eye gaze coordinates in the saliency
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map. Subsequently, extracted features were given as input to
two CNN-LSTM architectures, which differed in the num-
ber of layers. The best performance in ASD discrimination
was achieved by the CNN-LSTM architecture of 6 layers
with batch normalization (accuracy of 74.22%). Batch nor-
malization is a technique that improves both ANN speed and
performance, normalizing the input layer by re-centering
and re-scaling (Ioffe & Szegedy, 2015). In accordance with
Li et al. (2020) and Tao et al. (2019), RNN show poten-
tial as algorithms that can be used to automatically assess
ASD involving static SS. However, Tao et al. (2019) tested
CNN-LSTM architectures on a reduced amount of data and
the increase of sample size might enhance the strength of
the RNN model. As discussed above, the use of combined
variables, such as eye gaze coordinates and trajectories, or
mean fixation duration and fixation counts, seem to improve
accuracy in both SVM and RNN (e.g., Li et al., 2020; Liu
et al., 2015; Tao et al., 2019). Vu et al. (2017) studied the
combined effect of different SIs and exposure time on the
accuracy of ML-based assessment of ASD. Their purpose
was to look for the SS and exposure time that yielded the
best ASD discrimination accuracy. Children with ASD and
TD (N=16) looked at SIs of social scenes and paired human
faces and to NSIs of objects, both presented on the screen for
different exposure times (1, 2, or 5 s). Participants’ fixation
distribution maps on each stimulus were computed using
kNN, a learning algorithm which saves all data instances
in n-dimensional space. New data classification is based on
the classification of the closest k number of stored instances
(Orru et al., 2020). In this case, k was determined as 3. In
each image, one fixation from the computed fixation maps
was chosen and remaining gaze points were used to train
kNN, which was applied 30 times sequentially. f-score accu-
racy was computed for each image, as an average among
kNN accuracies. The most complex SI representing social
scenes achieved the best accuracy in ASD and TD discrimi-
nation (98.24%) whereas among exposure times 5 s yielded
the best accuracy (95.24%). Finally, SS and exposure time
combinations provided evidence that shorter exposure times
were weak and not recommended, whereas the best model
was the one presenting social scene for 5 s, with an accuracy
of 98.24%. Despite the reduce sample size, Vu et al. (2017)
findings were in line with Chita-Tegmark (2016) and Fra-
zier et al. (2017) meta-analyses, since the best accuracy was
achieved by the most complex SS presented for the longest
time. In the majority of studies presented so far, the com-
bined use of distinct elements in static SS, such as faces
related to different races, social and non-social elements,
or embellished social scenes, improved ML accuracy in
relation to models based on the same uncombined elements
(e.g., Kang et al., 2020; Liu et al., 2016; Tao et al., 2019; Vu
et al., 2017). In addition, further improvements in the ability
of ML algorithm to discern ASD from TD were provided by

the combination of features from different dependent vari-
ables (e.g., Li et al., 2020; Liu et al., 2015) and by the mul-
timodal acquisition of data (e.g., Kang et al., 2020).

Wan et al. (2019) and Carette et al. (2017, 2019) are the
three studies that involved dynamic SS and supervised ML.
In Wan et al. (2019) participants (N =37) watched a video
of a young Asian female mouthing the alphabet. In order to
estimate a priori AOI reliability for ASD classification, AOI
discrimination weights were tested using permutation tests.
SVM with fivefold-cross validation on fixation time on AOIs
with discriminative power was computed and the accuracy
in ASD classification achieved 85.1%, with a sensitivity
of 86.5%, and a specificity of 83.8%. Carette et al. (2017)
wanted to use a neural network approach to discern between
children with ASD (N=17) and TD (N=15), according to
their EM toward SV presenting a JA offer. Since neural
networks can manage high data dimension, no data reduc-
tion was applied. EM measures on the SV without outlining
AOIs were considered. Chosen RNN was two LSTM hid-
den layers of 20 neurons each using different fitness values.
LSTM provided promising results, achieving to correctly
classify 5 subjects out of 6 of the test set (i.e., accuracy of
83%), with a confidence greater than 95%. However, sample
size was reduced and the amount of training data (4 children
with ASD and 3 TD) was small for a RNN that can manage
broader dataset for training. The involvement of much more
participants could have reduced both uncertainty and over-
fitting. In a subsequent study, Carette et al. (2019) recorded
EM of children with ASD (N=29) and TD (N=30) on
dynamic SS to apply several ML algorithms. Involved SS
were SVs representing a JA offer toward the unique object
placed around, and NSVs with attractive elements for chil-
dren, such as colourful balloons and cartoons. EM were
recorded and later computed to draw individual scanpaths
labelled according to sample groups, which avoided the AOI
analysis. Due to the small number of generated scanpaths,
image augmentation was applied producing synthetic sam-
ples by image transformation operations (e.g., rotation) in
order to reduce uncertainty and to improve accuracy. The
new dataset was five time bigger than the original one. To
reduce data dimension, all images were firstly scale down,
then converted to greyscale, and finally PCA was eventually
applied. Traditional ML approaches were fed with selected
features and tested for ASD discrimination. Involved ML
models were Naive Bayes, SVM, and RF. Moreover, ANN
were implemented and tested for the same purpose. Devel-
oped ANN included single hidden layer of 50 neurons, 200
neurons, and 500 neurons as well as 2 hidden layers with
respectively 80 and 40 neurons. Ten-fold-cross validation
was applied. Outcomes revealed that more traditional ML
approaches achieved on average an AUC of 0.7, as opposed
to ANN, which provided accuracies greater than 90%. In par-
ticular, the single layer model of 200 neurons achieved the
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best performance in ASD discrimination (accuracy of 92%),
suggesting that increasing the ANN complexity did not pro-
vide better results. The synthetic production of scanpaths
nonetheless, allowed the computation of robust ANN, which
would have been weaker if they were based just on the real
sample size. Finally, there is only one study that used unsu-
pervised ML on ASD EM (Elbattah et al., 2019). The aim of
the study was to stratify ASD, in order to discover ASD EM
clusters related to the disorder symptom severity. Children
with ASD (N=29) and TD (N =30) looked at same SS of
Carette et al. (2019). EM were recorded and individual scan-
paths were created and scaled down for dimension reduction,
avoiding AOI analysis. In order to test which combination
between feature extraction methods and k-means algorithm
might provide better outcomes in the stratification of ASD
based on EM, four feature extraction methods were com-
pared: converting scanpaths into grayscale, PCA, the t-Dis-
tributed Stochastic Neighbor Embedding technique (t-SNE;
Maaten & Hinton, 2008), and the autoencoder, which is a
particular unsupervised ANN. k-means algorithm was then
used to develop 4 clustering models based on different fea-
tures derived by feature extraction methods. Three clustering
structures were studied, as represented by selected k values
(k=2, k=3, and k=4). Results showed that the quality of
clusters decreased increasing k value, and clusters separa-
tion using pixel-based features, PCA, or t-SNE was poor, as
opposed to autoencoder that provided better cluster quality
with faster EM related to higher ASD symptom severity.
Among the few studies that involved ML algorithms and
dynamic SS, Wan et al. (2019) was the only one applying
SVM, whereas Carette et al. (2017, 2019) opted for super-
vised ANN, and Elbattah et al. (2019) for unsupervised
ANN. Taking into account studies that involved dynamic
SS and ML for ASD classification rather than stratification
(e.g., Carette et al., 2017, 2019; Wan et al., 2019), dynamic
SS varied from SV of one actress, to complex SVs present-
ing JA offers eventually combined with NSVs. SVs can be
considered as dynamic SIs, since they are composed by a
myriad of static frames depicting social elements. In line
with findings of selected studies involving static SS with
combined social elements (e.g., Kang et al., 2020; Liu et al.,
2016; Tao et al., 2019; Vu et al., 2017), dynamic SS such
as SVs represent complex stimuli full of details, that can
be promising for the discrimination of ASD. In addition,
the use of data related to complex SVs, as well as to the
combination of SVs and NSVs might further improve ML
models, due to the greater SS complexity and the variability
in recorded data. However, although Carette et al. (2017,
2019) and Wan et al. (2019) achieved accuracies greater than
80% in ASD discrimination using dynamic SS, sample sizes
were small, in particular when ANN were involved. Only
Carette et al. (2019) tried to overcome this issue by creating
synthetic samples, reducing uncertainty and overfitting.
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Overall Findings

In summary, the majority of studies applied as data reduction
technique features extraction rather than features selection,
due to the broad feature dimensionality, which is related to
the presence of many dependent variables rather to greater
sample sizes. The majority of studies indeed reported small
sample sizes which occasionally needed data augmentation
by the computation of synthetic samples (e.g., Carette et al.,
2019), improving strength and accuracy of the ML model.
Regarding AOIs, just few studies used a posteriori AOI
approach (e.g., Liu et al., 2015, 2016), whereas the major-
ity of studies either did not consider AOIs (e.g., Carette
et al., 2017, 2019; Elbattah et al., 2019; Tao et al., 2019;
Vu et al., 2017) or based the analysis on a priori AOIs (e.g.,
Kang et al., 2020; Li et al., 2018, 2020; Wan et al., 2019).
AOIs may be irrelevant in some studies, in particular when
the analysis is based on approaches that convert data, such
as scanpath. However, whether the analysis requires AOIs,
we suggest to consider a posteriori AOI approach, since it
provides a data-driven selection of relevant areas in the SS.
Despite Elbattah et al. (2019) that involved unsupervised
ANN in the attempt to stratify ASD, remaining studies used
typical supervised ML algorithms to predict and classify
ASD. Studies involving static SS, which are the major-
ity, used kNN, SVM and RNN, whereas studies involving
dynamic SS assessed the performance of SVM, ANN, and
RNN. The combination of different elements (i.e., depend-
ent variables, stimuli) when static SS were involved seemed
to enhance SVM performance, providing stronger results in
the classification of ASD. Similarly, dynamic SS, due to the
greater amount of details and the presence of both anima-
tion and combined social elements, can enhance the ability
of ML algorithm to discriminate ASD. Overall ML algo-
rithms achieved a fair classification accuracy greater than
80%, except for Tao et al. (2019), and Kang et al. (2020)
which achieved 75.89% accuracy involving only eye tracking
data. Nevertheless, the combined features from eye tracking
and EEG data in Kang et al. (2020) gained an accuracy of
85.44%, suggesting that multimodal assessment increased
accuracy and hence reliability of the assessment process.

Conclusions and Future Directions

The aim of this systematic review was to discuss the recent
scientific evidence on ML models used to classify chil-
dren with ASD and TD according to their EM on different
SS (i.e., static and dynamic). Along with the traditional
ASD assessment, which represents a qualitative method to
diagnose ASD, ML and EM-based procedures might fulfil
the need for quantitative method in the ASD diagnosis.
However, on one hand, studies tended to involve small
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sample sizes, which affected the reliability of discrimina-
tion accuracy in ML models, and on the other, they mostly
involved static SS rather than dynamic SS. Both SVM and
neural networks achieved interesting results in the ASD
classification, but SVM seems to be more promising and
cost-effective, since it is efficient even with less sample
cases, it requires fewer amount of parameters to be set for
training, and less computational cost. It might be inter-
esting testing further ML models, such as ADTree, DT,
and RF, in order to validate a unique ML approach for
the assessment of ASD (Thabtah, 2019). Similarly, due
to the complexity in the ASD phenotype, as well as the
comorbidity with other diseases (e.g., ADHD), it might
be also interesting attempting to classify ASD through
bottom-up processes as unsupervised ML, which so far
have been mostly used in ASD stratification rather than
classification (Wolfer et al., 2019). Concerning the second
issue of the traditional ASD assessment, which is the lack
of ecological validity, previous works not involving ML
presented dynamic SS as possible solution, since they are
more naturalistic than static SS (e.g., Cilia et al., 2019a,
2019b; He et al., 2019). Accordingly, selected studies sug-
gested the preferential use of dynamic SS over static SS,
due to the greater complexity and the presence of com-
bined social elements. Dynamic SS nonetheless diverge
from realistic settings for many aspects, and the involve-
ment of controlled and standardized procedures, based on
new technologies, might definitely overcome this ecologi-
cal validity issue. New technologies indeed, such as virtual
reality (VR), have already proven their power in both ASD
diagnosis and intervention (Parsons, 2016; Parsons, 2016),
providing cost-effective realistic situations that strongly
represent real life and allow to control the environment
wherein is safe to test children with ASD. In particular,
studies with semi-immersive VR system (i.e., CAVE™)
involving several implicit measures disclosed promising
results in the discrimination of ASD (Alcaniz Raya, Chic-
chi Giglioli, et al., 2020; Alcafiiz Raya, Giglioli, et al.,
2020). Along with the traditional ASD assessment, multi-
modal VR-based assessment involving ML procedures and
several implicit measures such as EDA, body movements,
and EM, which objectively tap ASD dysfunctions reported
in DSM V (APA, 2013), can contribute to the development
of a more objective and ecological method for the ASD
early diagnosis.
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