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1 Introduction

The distribution of the neutrons inside a reactor core along time can be described by the time
dependent multigroup neutron diffusion equation. A finite element method (FEM) is used to
discretize the neutron diffusion equation to get a system of semi-ordinary differential equations

V −1 dΦ
dt + LΦ = (1− β)MΦ +

K∑
k=1

λdkXCk,

dCk
dt = βkM1Φ− λdkCk, k = 1, . . . , K.

(1)

The FEM has been implemented by using the open source finite elements library Deal.ii.
This system of ordinary differential equations is, in general, stiff. Several approaches have been
studied to integrate this time-dependent equation such as the backward differential method,
the quasi-static method or the modal method. In this work, we use this last approach that
assumes that the solution can be described by the sum of amplitude functions multiplied by
shape functions of modes. The shape functions are obtained from the solution of the λ-modes
problem

Lψm = 1
λm

Mψm. (2)

Generally, the eigenfunctions are updated in the time-dependent equations with a fixed time-
step size to obtain accurate results [1]. This implies to select a suitable time step before the
simulation. In this work, we propose an adaptive time-step control that selects an appropriate
step size from a given tolerance. The time selection for the backward method and the quasi-
static method is usually based on the local error in the time discretization. In the modal
approach, different types of errors are studied for updating the time-step selection.

1e-mail:amcarsan@iqn.upv.es
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2 The updated modal method

The modal methodology supposes that Φ(~r, t) admits the following expansion

Φ(~r, t) =
q∑

m=1
nm(t)ψm(~r), (3)

where nm(t) are the amplitude coefficients and ψm(~r) are the shape functions obtained when
problem (2) is solved. Moreover, the matrices L and M of the problem (2) can be expressed as
L = L0 + δL, M = M0 + δM, respectively, where L0 and M0 are the matrices at t = 0 and in
steady-state (M0 is divided by keff = λ1).
Taking into account these considerations and multiplying by the adjoint eigenfunctions asso-
ciated with the λ-modes problem, ψ†,il , over the Eq. (1), one can obtain the system of ODE’s

d
dtN = TN, (4)

where
N =

(
n1 · · ·nq c11 · · · cq1 · · · c1K · · · cqK

)T
,

T =


Λ−1((1− β)I − [λ]−1 −AL + (1− β)AM ) Λ−1λd1 · · · Λ−1λdK

β1(I +AM ) −λd1I · · · 0
...

... . . . ...
βK(I +AM ) 0 · · · −λdKI

 ,

and

Λlm = 〈ψ†l , V −1ψm〉, ALlm = 〈ψ†l , δLψm〉,
AMlm = 〈ψ†l , δMψm〉, clk = 〈ψ†l , XCk〉,

The initial conditions values are

n1(0) = 1, nm(0) = 0, m = 2, . . . , q,
c1k(0) = βk

λdk
, cmk(0) = 0, m = 2, . . . , q, k = 1, . . . , K,

that are obtained from the equations in the critical state. The ODE is solved with the CVODE
module from the open source library SUNDIALS.

In realistic transients, the flux can be suffered extremely spatial variations. Obtaining accurate
approximations implies a high number of modes. That means a high computational cost [2].
A solution is a modal methodology where the modes are updated in a certain time interval
[ti, ti + ∆ti] = [ti, ti+1]. In each interval [ti, ti+1], the neutron diffusion equation can be inte-
grated through the solution of the λ-modes problem associated at time ti.

The differential equations that are needed to integrate have the same form than the problem
without updating (Eq. (4)). The initial conditions for ni,λm at time ti must be defined to solve
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the differential problem in the interval [ti, ti+1]. For the expansion (3) at t = ti, one could
approximate the value of ni,λm (ti) as

ni,λm (ti) ≈
〈ψ†,im ,M iΦ(ti)〉
〈ψ†,im ,M iψim〉

,

where Φ(ti) is obtained from the previous modal step.
The concentration of precursors at time ti can be computed as

ci,λl,k(ti) =
q∑

m=1
almc

i−1,λ
m,k (ti), where, alm = 〈ψ†,il ,M i−1ψi−1

m 〉
〈ψ†,i−1

m ,M i−1ψi−1
m 〉

.

The λ-modes problem is solved with the block inverse-free preconditioned Arnoldi method,
(BIFPAM) (see more details in [5]).

3 Adaptive time-step control
The modes can be updated with fix time-step, but it implies several limitations such as selecting
a time-step previously that leads to obtain results with unpredictable errors. In this work, we
study an adaptive time-step control. Its implementation requires to define an error estimation
due to the modal expansion assumption and a suitable constraint to select the time-step based
on the error estimation.

Estimation error The modal error comes (essentially) from the assumption in the modal
expansion because the eigenvalue functions do not form a complete basis. Therefore, if there
are large variations in the flux along the time, the modal method will obtain large errors. The
first estimation is based in the difference between eigenfunctions. The modal difference error
is defined as

εmd = max
m
‖ψi−1

m − ψim‖.
The modal residual error is computed thought the residual error as

εmr = max
m
‖Liψi−1

m − λi−1
m M iψi−1

m ‖.

Finally, we assume that the flux will change according to the changing on the absorption cross-
section Σa1. We define the cross-section perturbation error as

εsa =
∑
c

‖Σi−1
a1 (c)− Σi

a1(c)‖,

where c is a cell of the reactor.

Control Algorithm Two strategies based on the error in the previous step are proposed.
The Fixed Error Control strategy defined as

∆ti =


∆ti−1 ∗ 2, ε < minle,
∆ti−1, minle < ε < maxle,
∆ti−1 / 2, maxle < ε.

The Adaptive Error Control, based on the control algorithms defined for differential methods.
The step ∆ti is computed as

∆ti = ∆ti−1 min{2.0,max{0.5,
√

3.0/ε}},
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4 Numerical results

The Langenbuch reactor [4] is chosen to study the performance of the adaptive modal method-
ology proposed with a local perturbation. This reactor has two sets of control rods that define
the transient (Fig. 1.a). It starts with the withdrawal of one bar of C1 at 10cm/s. The rest
of C1 is inserted at 3cm/s over 7.5 < t < 47.5s. C2 is inserted at 3cm/s over 7.5 < t < 47.5s.
The evolution of the global power is represented in Figure 1. The solutions are compared with
the solutions obtained with a backward differential method [3] (Fig. 1.b).
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Figure 1: Geometry and global power of the Langenbuch transient.

Table 1 shows that better approximations are obtained if the step of updating is smaller.
However, the computational times in these cases are also higher. Moreover, one can observe
that using a high number of modes in the expansion gives more accurate results. A combination
between a reasonable number of modes and a not small time-step is the most effective option.
However, these parameters are dependent on the transient.

N. eigs. (q) Updated Error CPU Time
1 1.0s 4.9e-03 38min
1 5.0s 1.8e-02 9min
3 5.0s 1.5e-02 10min
3 10.0s 3.5e-02 6min

Table 1: Performance of the Updated modal method with fixed time-step.

The global error is represented along the time (Fig. 2). It is observed that the large errors are
produced when the local perturbation is applied and before to the updating of the modes. Fig.
2 represents the radial profile of the error at t = 2.1 in the case with 3 eigenvalues and time-step
equal to 5 s. It is observed that this is focused around the control rod that is withdrawal at
this moment. The same conclusions are deduced with other settings.

29



Modelling for Engineering & Human Behaviour 2019

Error time-step Control Error CPU Time
εmd Fixed 9e-03 53.0min
εmd Adaptive 9e-03 100.2min
εmr Fixed 7e-03 8.0min
εmr Adaptive 1e-02 6.0min
εsa Fixed 8e-03 7.2min
εsa Adaptive 1e-02 6.3min

Table 2: Errors and CPU time obtained with the adaptive time-step modal method.
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Figure 2: Error in the Langenbuch transient with fixed time-step.

Table 2 shows the error and CPU times obtained with the different error estimations and con-
trol errors obtained with 3 eigenvalues. First, one can observed that the modal difference error
(md) is not a very efficient technique because it needs to compute the modes for estimating
the error (that is very expensive). Regarding to other error estimations, there are not big dif-
ferences between them. If now, the type of control error is compared the adaptive gives similar
approximations than the fixed control but in less time.

Finally, we compare the error between the adaptive time-step modal method and the fixed time-
step modal method with 3 eigenvalues and the same initial time-step (5.0 s). More accurate
results are obtained with the adaptive method in less time. Moreover, if this error is analyzed
over the time in both cases, an error more distributed is obtained by using the adaptive time-
step control.
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