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Abstract—Detailed analysis of the electrocardiogram (ECG)
recording allows to obtain relevant information about the heart
state and its behavior. Indeed, the P-wave study has proven
to be helpful in diagnosing many atrial electrical conduction
disorders. However, manual delineation of this wave is a very
time-consuming task, and a wide variety of automatic algorithms
have been proposed for that purpose. The performance of these
methods has been mostly validated on the QT database, since
it contains manual annotations from clinical experts and is
freely available at PhysioNet. Unfortunately, in the last years
several authors have shown some major limitations of this
database and this work hence presents a more robust validation
of a previously published P-wave delineator. Thus, two novel
databases which have been very recently made available to
the scientific community have been analyzed. The results show
that the methods ability to detect P-waves is close to 100% in
stable sinus rhythm episodes, but it decreases to 94% when
the heart rhythm is irregular or consecutive P-waves exhibit
notable morphological variations. Regarding the error between
the annotations obtained automatically and those available as a
reference, no relevant differences have been observed in terms of
standard deviation, thus suggesting that the algorithm achieves a
consistent delineation of the P-waves. Contrarily, a notable error
has been noticed in average values, thus highlighting the need
of a more extensive training for the P-wave delineator than that
offered by the QT database.

Keywords—Electrocardiogram; P-wave Detection; P-Wave De-
lineation; Robust Validation

I. INTRODUCTION

In the surface electrocardiogram (ECG) recording the P-
wave reflects atrial activity, being therefore the best source of
non-invasive information about its electrical conduction and
the different associated pathologies [1]. In fact, nowadays it
is clinically accepted that some parameters obtained directly
from this wave, including its duration, its dispersion or its
morphology, provide information on some atrial conduction
disorders, such as atrial fibrillation [2]. However, it is still

necessary to make a strong effort to standardize the way
to extract such information, since the P-wave presents very
low amplitude and, consequently, is greatly affected by the
presence of noise. Additionally, still there is no a single
definition of its fiducial points, that is, of the points marking
its beginning, its peak and its end [3]. Another aspect to
be highlighted is that manual delineation of the P-wave is
a very expensive task in time and effort for clinical experts,
depending largely on their experience [2].

To mitigate these limitations, in recent years a broad
variety of algorithms have been proposed to automatically
detect and delineate P-waves in long-term ECG recordings.
Most of them are based on transforming the ECG signal
to enhance the P-wave and thus facilitate its detection and
delineation. Some examples are the methods based on the
phasor transform [4] or on the Wavelet transform [5]. However,
they can cause morphological alterations in the P-wave, thus
obtaining inaccurate delineations in some scenarios. For this
reason, other algorithms have been recently proposed, which
are based on modeling the P-wave using different patterns, so
that its initial morphology is not altered, and the noise effect
is minimized [6].

The performance of these methods has been mostly vali-
dated making use of the QT database, which is freely available
at PhysioNet [7] and also contains manual annotations from
experts on the beginning, the peak and the end of the P-
waves [8]. However, in the last years several authors have
evidenced some major limitations of this database, such as
the lack of information on the specific channel used for
delineating each P-wave, the diversity of criteria used in the
annotation process, or the noise effect on the result of the
manual annotation [9], [10]. As a consequence, they have
also suggested the need for a more robust validation of the
P-wave delineation algorithms on new carefully annotated
databases [11]. In this context, the present work validates the
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performance of a previously published P-wave delineator [6]
with two novel databases, which have been recently made
available to the scientific community [11].

II. METHODS
A. Delineation algorithm of the P-wave

Although the P-wave delineator has been previously de-
scribed in [6], to render the work easier to read, its perfor-
mance is briefly summarized. Thus, the method begins by
preprocessing the ECG signal to eliminate common noise from
its acquisition and by identifying all R-peaks [6].

Next, the delineation process is mainly based on the creation
of a gaussian model of the P-wave to serve as a reference.
Hence, each wave is not treated independently, but certain
parameters computed from the preceding waves guide the
location of its fiducial points. These parameters include the
approximate distance between the corresponding R-peak and
the P-wave (dPR); its approximate duration (durP), which
defines a search window expanding its width on each side
by 25% (vbP); the type of morphology; the distance in time
and amplitude between the maximum peak and each of the
wave limits (ampllni, amplFin, tIni, tFin); and finally some
initial coefficients of the gaussian function to facilitate the
search for the best new adjustment. Some of these parameters
are shown in Figure 1. Thus, these parameters are updated for
each new wave processed with an impact ratio of 20% on the
existing values. In addition, before that, it is checked if the
difference between the two values is greater than 25%. In that
case, the wave is classified as abnormal and the values will
not be updated, thus obtaining a real-time recording of the
P-waves presenting an abnormal morphology.

The initial values for these parameters are obtained through
an initialization stage, where a reference P-wave is generated.
Thus, the ECG segments preceding the first five R-peaks are
taken, and a reference interval is created by averaging. Figure
1(a) shows an example of this segment, on which the reference
P-wave will be first detected, its morphology will be later
identified, and its fiducial points will be finally detected. These
three processes are next described. Nonetheless, it should be
noted that the first and third ones will be recursively used on
each new P-wave.

For the P-wave detection, the largest amplitude peak is
sought in a window that begins at the QRS complex onset
and extends backwards with a duration equal to one third of
the average RR-interval. Around the maximum peak detected,
a segment is isolated to delineate the P-wave. The length of
this interval is set at 180ms, although it is extended or reduced
by 20ms when the average RR-interval is too long or short,
respectively. Subsequently, the detected P wave is classified as
positive monophasic, negative monophasic or biphasic, with
either positive-negative or negative-positive polarity. For this
purpose, a decision tree based on gaussian fitting is used [6].

Finally, for the P-wave delineation, the generated gaussian
model is divided in half, and the two halves are separately
processed. Then, for each case a slope threshold is computed
to locate the limits of the wave as the first points exceeding
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Fig. 1. Example of the P-wave delineation. In the panel (a) the fundamental
parameters used in the delineation process are represented. In the panel (b)
the real P-wave (solid line) and its gaussian model (dot line) are displayed,
along with the search windows and fiducial points established.

it. Next, a search interval is defined around of each identified
point, as can be seen in Figure 1(b) in the form of shaded areas.
Thus, the same process is repeated on the preprocessed ECG,
but the search is restricted to the established interval, whose
width depends on how well the model fits the ECG signal.
Note that the more similar the Gaussian fitting to the P-wave,
the narrower this search interval. As an example, Figure 1(b)
shows how this interval is narrower for the P-wave onset than
for its end, because the first half of the wave better fits to the
gaussian model.

B. Fine-tuning of the delineation algorithm

As also described in [6], the P-wave delineation method was
trained using some ECG recordings from the QT database
(QTDB). In fact, to establish the relationship between the
maximum slope and the slope in the boundaries in each
P-wave defining the aforementioned threshold, 60 P-waves
extracted from different recordings were analyzed. In addition,
the overall performance of the method was evaluated with the
complete database, which contains 105 ECG signals with two



leads and 15 minutes in length, where at least 30 beats were
manually annotated.

C. Validation of the delineation algorithm

For a more robust and independent validation of the P-wave
delineator, in the present work two novel databases, which
have been recently made available to the scientific commu-
nity, have been analyzed. Thus, the dataset MIT-BIH P-wave
Annotations (MBPDB), available at PhysioNet [7], has been
firstly considered. It consists of 12 signals extracted from the
database MIT-BIH Arrhythmia database, where two experts
have marked the presence of all P-waves. It should be noted
that these recordings have a duration of 30 minutes, in which
sinus rhythm episodes are alternated with arrhythmias, such as
atrial fibrillation, tachycardia, bradycardia, etc., thus involving
a very challenging scenario for every P-wave detector.

On the other hand, the LU electrocardiography database
(LUEBD), described in [11] and freely available through a
Lobachevsky University repository, has also been analyzed.
It contains 200 12-lead ECG recordings with 10 seconds
in length, which have been acquired at a sample rate of
500 Hz from healthy volunteers and patients with different
cardiovascular diseases. Unlike the global annotations jointly
obtained for the 2-lead ECG recordings in the QTDB [8], the
boundaries and peaks of QRS, P and T waves were manually
determined by visual inspection of each individual lead. In
total, the database contains 16,797 annotated P waves, that is
about five times greater than the widely used QTDB.

III. RESULTS

As in the previous work where the P-wave delineator was
defined [6], its performance has been summarized through two
indices. On the one hand, the sensitivity (Se) has been com-
puted as the number of P-waves correctly detected regarding
the total of those manually identified. On the other hand, the
distance between the annotations automatically obtained by
the method and those manually marked by the experts were
calculated and expressed in terms of its mean absolute value
(p) and standard deviation (o) for the three fiducial points of
the P-wave, i.e., for its onset (P,y), its peak (Ppeax) and its
end (Pcnd)~

The results obtained for the two analyzed databases, as well
as those originally obtained from the QTDB [6], are displayed
in Table I. The latter information is included to serve as a
reference and make comparison easier. As can be seen, for
the MBPDB only results about P-wave detection are presented,
since in this case the experts only indicated the presence or
absence of the wave for each beat and did not delineate its
fiducial points. Contrarily, values of sensitivity and location
error for P-wave delineation are presented from the other two
datasets, i.e. LUEDB and QTDB.

More precisely, all P-wave fiducial points were detected
from the LUEDB with a sensitivity quite similar to the QTDB,
only losing a reduced number of marks. Similarly, for both
datasets no significant differences were noticed in terms of
the location error standard deviation (o) for the three analyzed

TABLE I
THE ALGORITHM’S ABILITY TO DETECT AND DELINEATE P-WAVES IN THE
ANALYZED DATABASES

Database Performance Index Pon Ppeak Pena
MBPDB  Se (%) 94.71
Se (%) 99.71 00 99.90
LUEDB 1 (ms) —124+410.1 1.6450 5.149.7
Se (%) 100 100 100
QDB 15 (ms) 47496 28467 0.6+9.8

points, i.e., for Py, Ppeak, and Pe,. Contrarily, a similar
finding is not applicable for the mean location error, because
notable deviations between both datasets were seen.

IV. DISCUSSION

The ECG recordings collected by the MBPDB have been
obtained from patients suffering different types of arrhythmias,
so that they present a fairly realistic scenario where ever
P-wave delineation algorithm will commonly have to work.
In fact, the P-wave is usually analyzed in patients prone
to supraventricular arrhythmias and, therefore, during their
long-term monitoring it is highly probable to find arrhythmic
episodes interspersed with others of sinus rhythm. In this
context, the analyzed algorithm has still shown a promising
capacity to detect P-waves, since a value of sensitivity greater
than 94% has been reported. However, this outcome is notable
lower than that reported in sinus rhythm conditions.

The main cause of this loss of sensitivity could be due to
the fact that the algorithm is based on the distance between
consecutive R-peaks, as well as on the adaptive gaussian mod-
eling of each P-wave from its preceding waveforms. Although
this way of working offers good results in stable sinus rhythm
episodes, irregular heart rates or remarked morphological
alterations in consecutive P-waves might lead the algorithm
to make relevant errors. As an example, Figure 2 shows how
P-waves are incorrectly detected and delineated in presence
of ventricular ectopic beats, which make the heart rhythm
totally irregular. Hence, for a better performance in a long-
term monitoring context, the analyzed algorithm should be
slightly modified to identify abrupt heart rate alterations, as
well as sudden changes in P-wave morphology, and then take
specific measures to successfully detect and delineate P-waves.

On the other hand, the values of sensitivity reported for
the LUEDB have been very similar to those obtained with
the QTDB, thus highlighting that the method properly works
in short and stable ECG intervals from a variety of cardiac
disorders. Similarly, the location error standard deviation (o)
has proven to be similar for both datasets, thus suggesting
a fairly consistent algorithm’s behavior in both cases. More-
over, it is interesting note that this performance index was
always lower than the well-accepted two standard deviation
tolerances, recommended by the CSE working party [12].

Contrarily, the mean location error have provided notable
differences for both databases. This could be due to the fact
that P-waves were manually annotated through two different
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Fig. 2. Example where the analyzed algorithm unsuccessfully detects and delineates P-waves. The heart rate is irregular due to the presence of ventricular

ectopic beats.
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Fig. 3. Differences between the automatic annotations provided by the
analyzed algorithm and those manually marked in the LUEDB.

approaches. Thus, whereas the experts made global annota-
tions for the 2-lead ECG recordings available in the QTDB,
each lead was individually analyzed for the LUEDB [11].
To this respect, Figure 3 shows how the algorithm tends to
locate the fiducial points at the base of the P-wave, but manual
annotations in the LUEDB are placed at points presenting a
higher slope. Hence, this result suggests that the algorithm
requires a much broader validation than that allowed by
the QTDB to avoid its overfitting and allow its successfully
performance in single-lead ECG recordings.

V. CONCLUSIONS

A robust validation of a previously published P-wave delin-
eator has been presented by analyzing two novel databases
of annotated ECG recordings, beyond the well-known QT
dataset. The results have shown that the algorithm successfully
works for a variety of cardiac diseases, but it should still be
modified to identify irregular heart rates and abrupt changes in
the P-wave morphology. In this way, its ability to delineate P-
waves in challenging scenarios that often appear in long-term
monitoring of patients prone to supra-ventricular arrhythmias
could be improved. Moreover, the obtained outcomes also
suggest that every P-wave detector should be validated on
a wider set of ECG recordings than that offered by the QT
database to reduce its overfitting as much as possible.
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