
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/180560

Huerta, A.; Martínez-Rodrigo, A.; Bertomeu González, V.; Quesada, A.; Rieta, JJ.; Alcaraz,
R. (2019). Quality Assessment of Very Long-Term ECG Recordings Using a Convolutional
Neural Network. IEEE. 1-4. https://doi.org/10.1109/EHB47216.2019.8970077

https://doi.org/10.1109/EHB47216.2019.8970077

IEEE



 

 

  
 

 

 

Quality Assessment of Very Long-Term ECG 
Recordings Using a Convolutional Neural Network  

A. Huerta1, A. Martínez-Rodrigo1, V. Bertomeu González2, A. Quesada3, J.J. Rieta4, R. Alcaraz1 
1Research Group in Electronic, Biomedical and Telecommunication Engineering, University of Castilla-La  

Mancha, Cuenca, Spain, {alvaro.huerta, arturo.martinez, raul.alcaraz}@uclm.es 
2 Cardiology Department, University Hospital San Juan, Alicante, Spain, vbertog@gmail.com 

3 Cardiac Arrhythmia Department, General University Hospital Consortium of Valencia, Spain, quesada_aur@gva.es 
4 BioMIT.org, Electronic Engineering Depart., Universitat Politecnica de Valencia, Valencia, Spain, jjrieta@upv.es 

City, Country, e-mail address 
 

Abstract—The electrocardiogram (ECG) is a physiological 
signal highly sensitive to disturbances during its acquisition. To 
palliate this issue, many works have described preprocessing 
algorithms operating in 12-lead, short-term ECG recordings. 
However, only a few methods have been introduced to detect noisy 
segments in single-lead, long-term ECG signals, this being a 
pending challenge to be resolved. Hence, this work proposes a 
novel technique to automatically detect low-quality segments in 
single-lead, long-term ECG recordings. The method is based on 
the high learning capability of a convolutional neural network 
(CNN), which has been trained with 2D images obtained when 
turning ECG recordings into scalograms using a continuous 
Wavelet transform (CWT). To validate the method, a publicly 
available dataset containing single-lead, long-term ECG intervals 
from patients with different cardiac rhythms has been used. These 
signals have been annotated by experts, who identified noisy 
intervals and those with sufficient quality to be clinically 
interpreted.  The results have shown that the proposed method 
discriminates correctly between low and high-quality ECG 
segments with an accuracy greater than 90%, and with sensitivity 
slightly larger than specificity. 
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I.  INTRODUCTION  

In general terms, most physiological signals are highly sensitive 
to disturbances and noise, which makes their subsequent 
analysis and interpretation difficult [1]. This limitation is 
especially relevant for the particular case of 
electrocardiographic (ECG) recordings, because the presence of 
perturbations can hinder accurate detection and diagnosis of 
most cardiovascular disorders, which provokes about 30% of 
all deaths worldwide [2], [3]. Although a wide variety of 
algorithms to reduce noise and interferences can be nowadays 
found in the scientific literature, they are unable to successfully 
work in every context. For instance, this is the case of long-term 
ECG recordings, because they are often acquired within 
dynamic and ever-changing environments, and nuisance signals 
are then extensively stronger than for resting ECG signals [4]. 

Hence, to take advantage of current wearable devices which 
enable very long-term monitoring of a patient’s daily life [5], 
automatic identification of low and high-quality ECG intervals 
plays a pivotal role [6]. In this way, real-time analysis of only 
noise-free segments could be analyzed.  

In last years, some authors have proposed several methods to 
assess quality of ambulatory ECG recordings. To this respect, 
an interesting and complete review summarizing these 
approaches can be found in [6]. Briefly, all methods are divided 
into five categories, i.e.: (1) those based on extracting fiducial 
features and applying heuristic rules; (2) those based on 
detecting fiducial features and applying machine learning 
algorithms; (3) those working with non-fiducial features and 
applying heuristic rules; (4) those working with non-fiducial 
features and applying machine learning algorithms; and finally 
(5) those based on filtering. Nonetheless, these algorithms are 
characterized by estimating ECG global quality from the 12 
standard leads. Thus, even when only a few leads do not present 
sufficient quality for their interpretation and analysis, the whole 
12-lead ECG interval is discarded [6]. 

Although these algorithms have shown a good performance 
when dealing with 12-lead, short-term ECG recordings [6], 
their ability to deal with long-term signals acquired from 
wearable systems, where the number of available leads is 
restricted, has not been demonstrated. Hence, a novel algorithm 
able to discriminate between high and low-quality segments in 
single-lead, long-term ECG recordings is proposed in this work. 
The method is based on the high learning capability of the 
convolutional neuronal networks (CNNs) for discriminating 
between those ECG intervals fully noise-free and those 
segments where artifacts are significant enough to mask 
partially or completely clinical information. It should be noted 
that CNNs have experienced a great evolution, such that a 
number of methodologies have been developed with the aim of 
transforming and processing a wide range of  physiological 
variables analyzed from different points of view [7]. 



Nevertheless, although these CNNs have shown inadequate 
characteristics for dealing with 12-leads ECG recordings [8], 
they could be relevant when single-lead ECG signals are used. 
Indeed, previous works have demonstrated the capability of 
several CNNs to discriminate between single-lead ECG 
recordings with different characteristics [7].      

II. MATERIALS AND METHODS 

A. Database  

To ensure reproducibility of the proposed methodology, a freely 
available database from PhysioNet was used. More precisely, 
the PhysioNet/Challenge 2017 [9] dataset was chosen due to 
two reasons. On the one hand, this database contains a set of 
single-lead ECG recordings acquired from a modern heart 
monitoring device. On the other hand, although the database has 
not been specifically created for ECG quality assessment, it 
contains annotations from different clinicians about whether an 
ECG signal has sufficient quality to identify the patient’s 
rhythm. Indeed, the signals were labeled into four groups: (1) 
normal sinus rhythm, (2) atrial fibrillation, (3) other rhythms 
and (4) noisy, such that the first three groups formed the  
“acceptable quality” set  and the remaining one constituted the 
“unacceptable quality” group. Precisely, this grouping was later 
used to obtain the two classes used in the validation method.     

Another interesting feature of this database consists of the large 
number of ECG signals, which are divided into two subsets for 
testing the methodology. Thus, while the first set is proposed 
for training, the another one is given for validation, as shown in 
Table I. However, it is worth noting the recordings present a 
different duration. To deal with this inconvenient and 
accurately limit noisy segments, all the recordings were 
segmented into intervals with the same duration of 10 seconds. 
In total, 25.834 ECG segments of acceptable quality and 506 of 
unacceptable quality were available in the training stage. 
Similarly, 831 and 83 intervals of acceptable and unacceptable 
quality, respectively, were used in the validation stage.  

B. ECG quality assessment 

The proposed algorithm to discern between low and high-
quality ECG intervals is based on three steps, such as Figure 1 
shows. In the first one, the ECG segment is preprocessed using 
classic methodologies to remove as much noise as possible and, 
thus, facilitate the subsequent classification. More precisely, 
baseline wander (BW) is removed following the algorithm 
proposed by Meyer et al., where the BW is estimated and then 
subtracted from the signal without adding phase distortion [10]. 
Similarly, powerline and high frequency interferences are 
removed making use of a novel wavelet shrinkage denoising 
approach based on stationary Wavelet transform [11].   

In the next step, the preprocessed ECG segment is transformed 
into a two dimensions and three channels color image. This 
transformation  is  based  on  the  use  of   Continuous Wavelet   

TABLE I. DATABASE DESCRIPTION: NUMBER AND AVERAGE LENGTH OF THE 
RECORDINGS INCLUDED IN THE  PHYSIONET/CHALLENGE 2017 DATABASE. 

Class Training set Validation set
Average 
length(s) 

Normal sinus rhythm 5154 148 31.9 
AF 771 47 31.6 
Other rhythms 2557 65 34.1 
Noisy 279 40 27.1 
Total 8761 300 32.5 

  

 
 
 
 
 

Figure 1. Block diagram describing the operation of the proposed method to 
discern between high and low-quality ECG intervals. 

Transform (CWT), which applies a bank of fixed-bandwidth 
filters to obtain time-frequency information of the ECG signal 
[12]. In fact, the resulting picture is known as scalogram and 
represents absolute value of wavelet coefficients as a function 
of time and frequency. It should be noted that CWT has been 
here used because, unlike other time-frequency 
transformations, it presents a superior ability to accurately 
detect local, transient and intermittent aperiodicities in non-
stationary signals [13]. As an example, Figure 2 shows the 
existing differences between the scalograms obtained from two 
common ECG segments, with acceptable and unacceptable 
quality, respectively. As can be observed, the scalogram from 
the acceptable ECG segment presents a characteristic pattern, 
which is repeated along the time. On the other hand, the 
scalogram from the unacceptable ECG segment shows a picture 
with a high degree of randomicity and without an identifiable 
pattern.     

Finally, in the last stage of the proposed methodology a CNN, 
known as AlexNet, is used to discriminate between low and 
high-quality ECG segments. Although a wide variety of CNNs 
can be nowadays found in the literature [14], AlexNet has been 
chosen in this work because it is previously pre-trained, thus 
minimizing computational cost for its specific training in 
identifying noisy ECG intervals. This feature is also essential in 
the context of this work, since the database under study does 
not allow to train adequately a CNN from the beginning. 
Nonetheless, it is worth noting that the use of pre-trained neural 
networks in conceptually similar tasks is a current common 
practice, which is known as transfer learning [15]. 
Nevertheless, it should be noted that in this work AlexNet 
software architecture has been modified to adequate their layer 
structure to deal with two classes. More precisely, the layers 
conforming the original architecture were designed to discern 
among 1000 common objects and have been here 
reprogrammed to deal exclusively with ECG recordings of two  
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Figure 2. Typical ECG intervals with high (top) and low (bottom) quality. 
Each signal is represented together with its scalogram obtained via CWT. 

classes, i.e., those with acceptable and unacceptable quality, 
respectively [16]. 

III. RESULTS 

Given the existing imbalance between high and low-quality 
ECG segments described in Section II.A for the training set, 
they were rearranged to obtain several stratified and balanced 
training sets, which ensured a robust and unbiased validation of 
the proposed algorithm. Thus, 10 stratified groups with a 
similar proportion of both types of signals were chosen. More 
precisely, each group was composed by 500 (out of the 506) 
low-quality ECG segments and 500 high-quality segments, 
randomly chosen from the 25.834 available ones. Note that 
high-quality ECG intervals were not repeated in different 
groups.  

Next, the proposed method was exposed to 10 training cycles, 
employing in each case a different group. The resulting 
classification model in each iteration was then tested using the 
validation set described in Section II.A. The results were 
computed in terms of sensitivity, specificity and accuracy of the 
model under study in each case [17]. In this context, sensitivity 
(Se) was defined as the rate of low-quality ECG segments 
correctly classified. Similarly, specificity (Sp) was defined as 
the percentage of high-quality ECG segments properly 
identified. Finally, accuracy (Acc) was computed as the total 
proportion of ECG segments rightly detected. The values 
obtained on the validation set for each training/testing iteration, 
as well as mean value, are shown in Table II. As can be seen, 
sensitivity was always 100%, but specificity was around 90% 
in most cases.  

 

TABLE II. CLASSIFICATION RESULTS FOR EACH TRAINING/TESTING ITERATION 
OF THE PROPOSED ALGORITHM. THE RESULTS ARE EXPRESSED IN TERMS OF 

SENSITIVITY (SE), SPECIFICITY (SP) AND ACCURACY (ACC). COMPUTATIONAL 
TIME FOR CLASSIFICATION OF THE VALIDATION SIGNALS IN EACH ITERATION IS 

ALSO INCLUDED (T). 

Iteration Se. Sp. Acc. T (s) 

Group #1 1 0.964 0.967 17.48 
Group #2 1 0.912 0.920 17.22 
Group #3 1 0.908 0.917 16.80 
Group #4 1 0.924 0.931 17.57 
Group #5 1 0.899 0.908 18.01 
Group #6 1 0.882 0.893 18.06 
Group #7 1 0.877 0.888 17.87 
Group #8 1 0.876 0.887 16.92 
Group #9 1 0.911 0.919 16.38 
Group #10 1 0.876 0.887 16.60 
Mean value 1 0.903 0.912 17.29 

Finally, remark that Table II also presents the time spent by the 
proposed method to classify the signals included in the 
validation set for each training iteration. In all cases, this time 
ranged from 16 to 18 seconds, when experiments were 
conducted on a PC with a 3.40 GHz Intel i7 processor, 16 GB 
of RAM, and running Windows 10 operating system.  

IV. DISCUSSION 

A new methodology able to discern between high and low-
quality single-lead, long-term ECG recordings has been 
presented in this work, obtaining a global accuracy greater than 
90%. Moreover, the method has also proven ability to correctly 
identify 100% of the low-quality segments, such that they could 
be rejected, and any misinterpretation of their clinical 
information could also be prevented. On the contrary, the 
method has presented a slightly more limited capability of 
correctly identifying high-quality segments. To this respect, 
about 10% of the high-quality ECG intervals have been 
inappropriately considered as noisy ones. Although this 
circumstance means a limitation that could be corrected in 
future versions of the method, in the specific context of long-
term ECG monitoring, it would not avoid the possibility of 
improving the diagnosis and follow-up of some patients 
suffering from cardiovascular disorders. In fact, a lot of 
information would be still available for real-time analysis.  

Nonetheless, it is mandatory to note that this method has 
obtained a similar global performance compared with other 
previous works. Thus, Satija et al. developed a method based 
on decision-making trees, obtaining an accuracy of 89% when 
noisy ECG segments acquired from a wearable device were 
analyzed [18]. However, that method was designed to work in 
a context of 12-lead ECG recordings and, moreover, it was not 
validated on a realistic environment. Indeed, clean ECG signals 
were disturbed by artificial noise synthetically generated. On 
the other hand, Zhao et al. have recently presented a work with 
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a similar procedure [4], but intended for dealing with 12-lead 
ECG recordings. Despite much more information is available 
when 12-lead ECG signal are considered, that method only 
reached a global accuracy about 85%.  

Another relevant difference regarding previous works, is that 
the proposed method has been validated considering a more 
realistic context. Thus, besides intervals from normal sinus 
rhythm, ECG segments with cardiac rhythm disorders have 
been considered. The presence of arrhythmias and other rhythm 
alterations is very common when patients suffering from 
cardiac diseases are long-term monitored [19]. Moreover, 
although a more detailed analysis must be performed, the 
presence of atrial fibrillation and other rhythm alterations does 
not seem to cause specificity reduction noticed when using this 
algorithm. Indeed, among the high-quality ECG segments 
incorrectly classified as noisy ones, the same proportion of all 
ECG rhythms (i.e., sinus rhythm, atrial fibrillation and other 
rhythms) was found.  
 
Finally, remark that although the total duration of the segments 
included in the validation set was approximately 150 minutes, 
once the proposed method was trained, it only needed around 
17 seconds to process all information. This observation 
suggests that the method could be implemented in wearable 
devices and process the information in real time, thus offering 
the possibility of only recording and processing ECG segments 
with enough quality. In this way, energy consumption and 
memory could be minimized.  

V. CONCLUSION 

A method able to discern between high and low-quality 
intervals in single-lead, long-term ECG recordings with an 
accuracy higher than 90% has been proposed for first time in 
this work. Despite using much less information, its accuracy is 
comparable to other methods dealing with 12-lead ECG signals.  
Moreover, the method also offers the possibility of working in 
real time. Nevertheless, it presents a slightly lower specificity 
than sensitivity, so that future versions will have to address this 
limitation.  
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