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A family of iterative schemes for approximating the inverse and generalized inverse of a 

complex matrix is designed, having arbitrary order of convergence p. For each p, a class 

of iterative schemes appears, for which we analyze those elements able to converge with 

very far initial estimations. This class generalizes many known iterative methods which are 

obtained for particular values of the parameters. The order of convergence is stated in each 

case, depending on the first non-zero parameter. For different examples, the accessibility 

of some schemes, that is, the set of initial estimations leading to convergence, is analyzed 

in order to select those with wider sets. This wideness is related with the value of the first 

non-zero value of the parameters defining the method. Later on, some numerical examples 

(academic and also from signal processing) are provided to confirm the theoretical results 

and to show the feasibility and effectiveness of the new methods. 
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1. Introduction 

Computing the inverse matrix of large-scale nonsingular complex matrices is essential in some engineering applications 

and it has binding computational requirements. In a wide variety of topics, such as signal and image processing [1–4] ,

cryptography [5,6] , control system analysis [7,8] , and others, the inverse or different generalized inverses must be computed 

in order to solve the involved issues. 

There are several procedures to address this problem, divided into two classes: the direct schemes such as Gaussian 

elimination with partial pivoting, which require big amount of calculations and memory for large scale problems, and the 

iterative schemes like the Schulz-type iterations, in which an approximation of the inverse matrix is obtained up to the 

desired precision. 

In the last decade, many iterative schemes of different orders have been designed for approximating the inverse or some 

generalized inverse (Moore-Penrose inverse, Drazin inverse, etc.) of a complex matrix A . In this manuscript, we focus on 

constructing a new class of iterative methods, free of inverse operators and with arbitrary order of convergence, for finding 

the inverse of a non-singular complex matrix. We also analyze the proposed schemes for computing the Moore-Penrose 
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inverse of complex rectangular matrices. The designed family depends on several real parameters, which by taking particular 

values provide us numerous known methods constructed by other authors. 

Recently, some authors have presented a unified approach of the computation of different generalized inverses by means 

of the calculation of outer inverses A 

(2) 
T,S 

for appropriate choice of T and S (see, for example, [9,10] ). 

Perhaps, the most common scheme to compute the inverse A 

−1 of a non-singular complex matrix A is the Schulz’s 

method given in 1933, with iterative expression 

X k +1 = X k (2 I − AX k ) , k = 0 , 1 , . . . (1) 

where I is the identity matrix with the same size of A . Schulz in [11] demonstrated the convergence of sequence { X k } k ≥0 ,

obtained from (1) , to the inverse A 

−1 is guaranteed if the eigenvalues of matrix I − AX 0 are lower than 1. Taking into account 

that the residuals E k = I − AX k , k = 0 , 1 , . . . satisfy ‖ E k +1 ‖ ≤ ‖ E k ‖ 2 , expression (1) has quadratic convergence. In general, in

the Schulz-type methods it is common to use as initial approach X 0 = αA 

∗ or X 0 = αA, where 0 < α < 2 /ρ(A 

∗A ) , where A 

∗ is

the conjugate transpose of A and ρ(·) the spectral radius. In this paper, we use n the case of inverses and also in generalized

inverses, the initial estimation X 0 = βA 

∗/ ‖ A ‖ 2 . We will also analyze the set of values of the parameter β guaranteing the

convergence. 

Li et al. in [12] investigated the family of iterative methods 

X k +1 = X k 

(
νI − ν(ν − 1) 

2 

AX k + 

ν(ν − 1)(ν − 2) 

3! 
(AX k ) 

2 − . . . + ( −1) ν−1 ( AX k ) 
ν−1 

)
, ν = 2 , 3 , . . . 

with X 0 = αA 

∗. They proved the convergence of ν-order of { X k } k ≥0 to the inverse of matrix A . This class was used by Chen

et al. in [13] and by Li et al. in [14] for approximating the Moore-Penrose inverse. 

Soleymani et al. in [15] also proposed a fourth-order iterative scheme for calculating the inverse and the Moore-Penrose 

inverse, with iterative expression 

X k +1 = 

1 

2 

X k (9 I − AX k (16 I − AX k (14 I − AX k (6 I − AX k )))) , k = 0 , 1 , . . . 

On the other hand, Stanimirovi ́c et al. in [16] proposed the following scheme of order eleven for computing the general-

ized outer inverse A 

(2) 
T,S 

X k +1 = X k (I + (R k + R 

2 
k )(I + (R 

2 
k + R 

4 
k )(I + R 

4 
k ))) , k = 0 , 1 , . . . 

being R k = I − AX k , k = 0 , 1 , . . . . 

Kaur et al. in [17] , by using also the hyperpower iterative method, designed the following scheme of order five for

obtaining the weighted Moore-Penrose inverse 

X k +1 = X k (5 I − 10 AX k + 10(AX k ) 
2 − 5(AX k ) 

3 + (AX k ) 
4 ) , k = 0 , 1 , . . . 

These papers are some of the manuscripts that have been published to approximate the inverse of a non-singular matrix 

or some of the generalized inverses of arbitrary matrices. In this paper, we design a parametric family of iterative methods

with arbitrary order of convergence that contains many of the methods constructed up to date. For each fixed value of the

order of convergence, we still have a class of iterative methods depending on several parameters. We are able to select the

most stable members of these classes in terms of the wideness of the set of initial estimations converging to the solution

(defined as basin of convergence). The best members are chosen to be compared, both dynamical and numerically, with 

some known methods. 

The rest of this manuscript is organized as follows. Section 2 is devoted to the construction of the proposed class of iter-

ative schemes, proving its convergence to the inverse of a nonsingular complex matrix, with arbitrary order of convergence. 

In Section 3 , it is proven that the same family of iterative methods is able to converge to the Moore-Penrose inverse of a

complex matrix of size m × n . Some particular cases of this class are found in Section 4 , corresponding to existing methods

proposed by different authors. Section 5 is devoted to study the dependence on the initial estimations of the methods of the

same class, with a fixed value of p, and also the effect of the kind of initial estimation in the wideness of the set of converg-

ing initial estimations. A wide range of numerical test are also found in Section 6 , checking the robustness and applicability

of the proposed methods, compared with other known ones on different kinds of matrices. Finally, some conclusions are 

stated. 

2. A class of iterative schemes for matrix inversion 

In this section, we are going to present a parametric family of iterative schemes for obtaining approximated inverses and 

to prove their order of convergence. Firstly, we define the following polynomial matrix. 

Definition 1. Let B ∈ C 

m ×m be a complex square matrix and p > 0 a positive integer number. We define the polynomial

matrix G p (B ) as 

G p (B ) = 

p ∑ 

j=1 

(−1) j−1 C j p B 

j−1 = C 1 p I − C 2 p B + C 3 p B 

2 + . . . + (−1) p−1 C p p B 

p−1 , 
2 
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where C 
j 
p is the combinatorial number C 

j 
p = 

(
p 

j 

)
= 

p! 

j !(p − j )! 
. 

The following result is a technical lemma whose proof is straightforward by using mathematical induction with respect 

to p. 

Lemma 1. Let p > 0 be a positive integer and B ∈ C 

m ×m . Then (I − B ) p = I − BG p (B ) . 

Let A ∈ C 

m ×m be a nonsingular matrix and p > 1 a positive integer. Let { α1 , α2 , . . . , αp } be a set of real parameters such

that αi ∈ [0 , 1] , for i = 1 , 2 , . . . , p − 1 ,αp ∈ ]0 , 1] and 

p ∑ 

i =1 

αi = 1 . 

We assume a sequence of complex matrices { X 0 , X 1 , . . . , X n , . . . } , of size m × m, satisfying following two conditions: 

a) ‖ I − AX 0 ‖ = γ0 < 1 , 

b) I − AX k +1 = 

p ∑ 

i =1 

αi (I − AX k ) 
i . 

We consider the family of iterative schemes described as 

X k +1 = X k 

p ∑ 

i =1 

αi G i (AX k ) , k = 0 , 1 , . . . (2) 

For each positive integer p, p > 1 , we have a different class of iterative methods, whose order of convergence depends on

the value of parameters αi , i = 1 , 2 , . . . , p. 

In the following results, we prove the convergence of these schemes to the inverse of A . 

Proposition 1. Let A ∈ C 

m ×m be a nonsingular matrix and p > 1 a positive integer. Let us consider the sequence of complex

matrices constructed as 

X k +1 = X k 

p ∑ 

i =1 

αi G i (AX k ) , k = 0 , 1 , . . . , 

where αi ∈ [0 , 1] , for i = 1 , 2 , . . . , p − 1 , αp ∈ ]0 , 1] and 

p ∑ 

i =1 

αi = 1 . Then, condition 

I − AX k +1 = 

p ∑ 

i =1 

αi (I − AX k ) 
i , 

is equivalent to 

X k +1 = X k 

p ∑ 

i =1 

αi 

( 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(AX k ) 

j−1 

) 

. (3) 

Proof. From Lemma 1 we obtain: 

I − AX k +1 = 

p ∑ 

i =1 

αi (I − AX k ) 
i ⇔ I − AX k +1 = 

p ∑ 

i =1 

αi (I − AX k G i (AX k )) 

⇔ I − AX k +1 = I −
p ∑ 

i =1 

αi AX k G i (AX k ) 

⇔ AX k +1 = AX n 

p ∑ 

i =1 

αi G i (AX k ) 

⇔ X k +1 = X k 

p ∑ 

i =1 

αi G i (AX k ) 

Therefore, the result is proven. �

By mathematical induction it is also easy to prove the following result. 

Proposition 2. Let us consider sequence { X k } k ≥0 obtained from expression (2) . If ‖ I − AX 0 ‖ < 1 , then 

‖ I − AX k ‖ < 1 , k = 1 , 2 , . . . 

Therefore, the main result regarding matrix inversion can be stated. 
3 
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Theorem 1. Let A ∈ C 

m ×m be a nonsingular matrix and an initial guess X 0 ∈ C 

m ×m . Let α1 , . . . , αp be nonnegative real numbers

such that αi ∈ [0 , 1] , αp � = 0 and 

p ∑ 

i =1 

αi = 1 . If ‖ I − AX 0 ‖ < 1 , then sequence { X k } k ≥0 , obtained by (2) , converges to A 

−1 with

convergence order q for any p > 1 , where q = min 

i =1 , 2 , ... ,p 
{ i | αi � = 0 } . 

Proof. By using previous condition (b), we have 

‖ I − AX k +1 ‖ = 

∥∥∥∥∥ p ∑ 

i =1 

αi (I − AX k ) 
i 

∥∥∥∥∥ ≤
p ∑ 

i =1 

αi ‖ I − AX k ‖ 

i = 

p ∑ 

i = q 
αi ‖ I − AX k ‖ 

i , 

but, from Proposition 2 we can assure 

‖ I − AX k +1 ‖ ≤
p ∑ 

i = q 
αi ‖ I − AX k ‖ 

q = ‖ I − AX k ‖ 

q . 

Thus, 

‖ I − AX k +1 ‖ ≤ ‖ I − AX k ‖ 

q . (4) 

By using Equation (4) and mathematical induction, we prove 

‖ I − AX k +1 ‖ ≤ ‖ I − AX 0 ‖ 

q k +1 

. 

Therefore, as k → ∞ : 

‖ I − AX k +1 ‖ → 0 ⇒ I − AX k +1 → 0 ⇒ { X n } k ≥0 → A 

−1 , 

with order q . �

In the next section, we extend family (2) for approximating the Moore-Penrose inverse of any complex rectangular ma- 

trix. 

3. A class of iterative schemes for computing Moore-Penrose inverse 

Let A be a m × n complex matrix. The Moore-Penrose inverse of A (also called pseudoinverse), denoted by A 

† , is the

unique n × m matrix X satisfying 

AX A = A, X AX = X, (AX ) ∗ = AX, (X A ) ∗ = X A. 

This generalized inverse plays an important role in several fields, such as eigenvalue problems and the linear least square 

problems [18] . It can be obtained, explicitly, from the singular value decomposition of A but, with a high computational

cost. Therefore, it is interesting to have efficient iterative methods to approximate this matrix. In this section, we prove 

how family (2) allows us to compute the pseudoinverse with the same order of convergence that in the previous section,

where the inverse of a square matrix was calculated. First, we establish the following technical result, that is proven by

mathematical induction (similar to Lemma 2.1 of [13] ), although other authors state similar results in the context of outer

inverses (see, for example, [9] ). 

Lemma 2. Let us consider X 0 = αA 

∗, where α ∈ R , and sequence { X k } k ≥0 generated by family (2) . For any k ≥ 0 , it is held that 

(X k A ) ∗ = X k A, (AX k ) 
∗ = AX k , X k AA 

† = X k , A 

† AX k = X k . (5)

Proof. For n = 0 , the first two equations can readily be verified, and we only give a verification to the last two equations: 

X 0 AA 

† = αA 

∗AA 

† = αA 

∗(AA 

† ) ∗ = αA 

∗(A 

† ) ∗A 

∗ = α(AA 

† A ) ∗ = αA 

∗ = X 0 , 

and 

A 

† AX 0 = (A 

† A ) ∗(αA 

∗) = αA 

∗(A 

† ) ∗A 

∗ = α(AA 

† A ) ∗ = αA 

∗ = X 0 . 

Let us assume now that the conclusion holds for k . We now show that it continues to be held for k + 1 . Using the

iterative procedure in Equation (2) , we have 

(X k +1 A ) ∗ = 

( [ 

X n 

p ∑ 

i =1 

αi 

( 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(AX k ) 

j−1 

) ] 

A 

) ∗

= 

( 

p ∑ 

i =1 

αi 

( 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(X k A ) j 

) ) ∗
4 
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= 

p ∑ 

i =1 

αi 

( 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(X k A ) j 

) 

= 

[ 

X k 

p ∑ 

i =1 

αi 

( 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(AX k ) 

j−1 

) ] 

A = X k +1 A, 

where the fourth equality uses that (X k A ) ∗ = X k +1 A . Thus, the first equality of (5) holds for k + 1 . Second equality can be

proven in a similar way. 

For the third equality of (5) , we use the assumption that X k AA 

† = X k and the iterative procedure in (2) : 

X k +1 AA 

† = 

[ 

X n 

p ∑ 

i =1 

αi 

( 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(AX k ) 

j−1 

) ] 

AA 

† 

= 

p ∑ 

i =1 

αi 

( 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(X k A ) j−1 X k AA 

† 

) 

= X n 

p ∑ 

i =1 

αi 

( 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(AX k ) 

j−1 

) 

= X k +1 . 

Hence the third equality of (5) holds for k + 1 . The fourth equality can similarly be proven, and the desired result follows. �

Now, some technical results are presented. 

Lemma 3 ( [13] ) . Let A ∈ C 

m ×n . Let X 0 = αA 

∗ be, where α < 

1 

σ 2 
1 

and σ1 is the largest singular value of A . Then ‖ (X 0 − A 

† ) A ‖ < 1 .

The following result is straightforward by using Lemma 2 . 

Lemma 4. Let A ∈ C 

m ×n and { X k } k ≥0 be the sequence generated by (2) . Let us consider E k = X k − A 

† . Then, 

1. ‖ X k − A 

† ‖ ≤ ‖ E k A ‖‖ A 

† ‖ , 
2. (I − A 

† A ) E k A = 0 . 

Lemma 5. Let A ∈ C 

m ×n and { X k } k ≥0 be the sequence generated by (2) . We denote E k = X k − A 

† . Then 

E k +1 A = 

p ∑ 

i =1 

αi (−1) i −1 (E k A ) i , k = 0 , 1 , . . . (6) 

Proof. By using the fact that 

p ∑ 

i =1 

αi = 1 , we have 

E k +1 A = 

[ 

X k 

p ∑ 

i =1 

αi G i (AX k ) 

] 

A − A 

† A 

= 

[ 

X k 

p ∑ 

i =1 

αi 

( 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(AX k ) 

j−1 

) ] 

A − A 

† A 

= 

p ∑ 

i =1 

αi 

( 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(X k A ) j 

) 

− A 

† A 

= 

p ∑ 

i =1 

αi 

( 

−I + 

i ∑ 

j=1 

(−1) j−1 C j 
i 
(X k A ) j 

) 

+ I − A 

† A 

= −
p ∑ 

i =1 

αi ( I − X k A ) 
i + I − A 

† A. 

Now, taking into account that X k A = A 

† A + E k A, (I − A 

† A ) q = I − A 

† A and (I − A 

† A ) E k A = 0 (from Lemma 4 ), we get 

−
p ∑ 

i =1 

αi ( I − X k A ) 
i + I − A 

† A = −
p ∑ 

i =1 

αi 

(
I − A 

† A − E k A 

)i + I − A 

† A 
5 
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1  

1  

1  
= −
( 

p ∑ 

i =1 

αi 

[
(I − A 

† A ) i − C 1 i (I − A 

† A ) i −1 E k A + C 2 i (I − A 

† A ) i −2 (E k A ) 2 + . . . 

+(−1) i −1 C i −1 
i 

(I − A 

† A )(E k A ) i −1 + (−1) i C i i (E k A ) i 
])

+ I − A 

† A 

= −
( 

p ∑ 

i =1 

αi 

[
(I − A 

† A ) − C 1 i (I − A 

† A ) E k A + C 2 i (I − A 

† A )(E k A ) 2 + . . . 

+(−1) i −1 C i −1 
i 

(I − A 

† A )(E k A ) i −1 + (−1) i C i i (E k A ) i 
])

+ I − A 

† A 

= −
( 

p ∑ 

i =1 

αi 

[
(I − A 

† A ) + (−1) i C i i (E k A ) i 
]) 

+ I − A 

† A 

= 

p ∑ 

i =1 

αi (−1) i −1 (E k A ) i . 

�

Finally, we can state the following result. 

Theorem 2. Let A ∈ C 

m ×n and q = min 

i =1 , 2 , ... ,p 
{ i | αi � = 0 } . Then, sequence { X k } k ≥0 generated by (2) converges to the Moore-Penrose

inverse A 

† with q th-order provided that X 0 = αA 

∗, where α < 

1 

σ 2 
1 

is a constant and σ1 is the largest singular value of A. 

Proof. Therefore, 

‖ X k +1 − A 

† ‖ ≤ ‖ 

E k A ‖ 

q ‖ A 

† ‖ . (7) 

Now, from (7) and by applying mathematical induction, we prove 

‖ X k +1 − A 

† ‖ ≤ ‖ 

E 0 A ‖ 

q k +1 ‖ A 

† ‖ . 

Therefore, as n −→ ∞ : 

‖ X k +1 − A 

† ‖ → 0 ⇒ X k +1 − A 

† → 0 ⇒ { X k } k ≥0 → A 

† , 

with order q . �

4. Proposed family and previous known methods 

The proposed class of iterative schemes in (2) is a generalization of other methods constructed with different techniques. 

Some of them are described below. 

1. For any p > 1 , if α1 = · · · = αp−1 = 0 and αp = 1 , then we obtain the method proposed by Li and Li. (see Eq. (2.3) in

[12] for inverse case and Eq. (2.1) in [13] for pseudoinverse one). Recall that method proposed by Li and Li generalizes

the Newton-Schultz ( p = 2 ) and Chebyshev method ( p = 3 ). 

2. On the other hand, if αi = 0 for i = 1 , 2 , . . . , 8 , α9 = α12 = 1 / 8 and α10 = α11 = 3 / 8 , then we get the method proposed

by Soleymani and Stanimirovic (see Eq. (12) in [19] ). 

3. Also expression (2) gives us the method proposed by Toutounian and Soleymani (see Eq. (18) in [15] ), if α4 = 1 / 2 and

α5 = 1 / 2 and α1 = α2 = α3 = 0 . 

4. When the only not null parameter is α7 = 1 , then we obtain method proposed by Soleymani (see Eq. (18) in [20] ). 

5. In a similar way, if the only parameter different from zero is α6 = 1 , then the method proposed by Soleymani, Stan-

imirovic and Zaka (see Eq. (2.4) in [21] ) is obtained. 

6. When αi = 0 for i = 1 , 2 , . . . 7 , α8 = α10 = 1 / 4 and α9 = 2 / 4 , the resulting scheme is that proposed by Soleymani in

Eq. (9) in [22] . 

7. The method proposed by Soleymani et al in [23] , Eq. (10), appears if α1 = · · · = α8 = 0 , α9 = 7 / 9 and α10 = 2 / 9 . 

8. The scheme proposed by Razavi, Kerayechian, Gachpazan and Shateyi, (see Eq. (16) in [24] ) is obtained if we choose

α1 = . . . = α9 = 0 , α10 = α12 = 1 / 4 and α11 = 1 / 2 in Eq. (2) . 

9. When the first eight paramenters are null, α9 = 343 / 729 , α10 = 294 / 729 , α11 = 84 / 729 and α12 = 8 / 729 then we get

method proposed by Al-Fhaid et al in [25] , Eq. (5) . 

0. If α7 = 9 / 16 , α8 = 6 / 16 , α9 = 1 / 16 and the rest of parameters are zero, then the scheme proposed by Soleymani is found

(see Eq. (3.1) in [26] ). 

1. When p = 12 and the only parameters different from zero are α9 = α12 = 1 / 8 and α9 = α10 = 3 / 8 , therefore the method

proposed by Liu and Cai. see Eq. (4) in [27] ) is obtained. 

2. If α2 = 0 , α1 = 1 − α and α3 = α, where α ∈ (0 , 1] , then we find the method proposed by Srivastava and Gupta in [28] ),
Eq. (6) . 

6 
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5. Dependence on initial estimations 

A key aspect of an iterative method is its order of convergence and also the set of initial guesses that converge to the

estimated solution. When a class of iterative schemes is defined, all with the same order of convergence, a good behavior

in terms of wider basins of convergence can make the difference. In this section, we use some graphical tools from complex

discrete dynamics in order to deduce which scheme should be used within a class of iterative procedures with the same

order of convergence. 

Several known methods are used to this purpose, that are included in our proposed class: some of them are the extension

for matrix equations of classical methods; the rest have been developed by other researchers in the last years and have been

deduced as elements of our proposed class in Section 4 . 

So, the methods used are second-order Newton-Schulz (NS) scheme, with iterative expression (see [11] ) 

X k +1 = 2 X k − X k AX k , k ≥ 0 , 

Chebyshev’s scheme (CH), with third-order of convergence, deduced by Amat et al. in [29] , 

X k +1 = X k (3 I − AX k (3 I − AX k )) , k ≥ 0 . 

On the other hand, seventh-order scheme (SS) defined by Soleymani and Stanimirovich in [19] is also considered, 

X k +1 = −1 / 8 X k (−7 I + 9 Y k − 5 Y 2 k + Y 3 k )(12 I − 42 Y k + 103 Y 2 k − 156 Y 3 k + 157 Y 4 k − 104 Y 5 k + 43 Y 6 k − 10 Y 7 k + Y 8 k ) , k ≥ 0 , 

where Y k = AX k . 

It is also interesting to compare the results with the fourth-order procedure by Toutonian and Soleymani (TS) [15] , whose

iterative expression is 

X k +1 = (1 / 2) X k (9 I − Y k (16 I − Y k (14 I − Y k (6 I − Y k )))) , k ≥ 0 , 

where Y k = AX k . Also, third-order Homeier’s method (HM) is expressed by Li et al. as (see [30] ) 

X k +1 = X k (I + (1 / 2)(I − AX k )(I + (2 I − AX k ) 
2 )) , k ≥ 0 , 

and also Midpoint scheme (MP) has third-order of convergence and the iterative expression (see [30] ) provided by Li et al, 

X k +1 = (I + 1 / 4(I − X k A )(3 I − X k A ) 2 ) X k , k ≥ 0 . 

Let us remark that the last two methods do not belong to the family of proposed methods. 

To observe which is the performance of proposed and existing methods by using different initial estimations, we use the 

dynamical planes. A dynamical plane is obtained by iterating a method on a wide set of initial estimations. To generate it,

we used a mesh of 400 × 400 points as values of parameter β ∈ C , used to define the initial estimation of the process X 0 .

We paint in orange the values of β whose related starting points converge to the inverse (or pseudoinverse) of matrix A,

with a tolerance of 10 −3 . Those points whose orbit (set of consecutive iterates) achieve the maximum of 80 iterations are

painted in black. 

Firstly, let us find an estimation of the inverse of Toeplitz matrix 

A 1 = 

( 

1 1 1 

−1 1 1 

0 −1 1 

) 

. 

We firstly employ the initial estimation X 0 = βI, being I the identity matrix of the size of the matrix to be inverted.

In order to satisfy condition ‖ AX 0 − I‖ < 1 , it is necessary that | β − 1 | < 1 . In Fig. 1 , it can be observed that the set of

converging initial values is narrow. However, it is wider in HM and MP cases than in NS or CH ones. In this case, we have

worked with a the mesh in [0 , 1] × [ −0 . 5 , 0 . 5] corresponding to real and imaginary part of a complex value of β . 

Now, let us change the initial estimation. If we consider X 0 = β
A 

T 
1 

‖ A 1 ‖ 2 , then the set of converging initial values is wider

than in previous case (see Fig. 2 ). Nevertheless, the widest ones correspond again to HM and MP methods. This is the reason

why we have constructed the mesh in [ −1 , 4] × [ −2 . 5 , 2 . 5] . 

Let us observe the case p = 2 in expression (2) , where, fixing α2 = 1 − α1 , a class of first-order (at least) iterative schemes

including Newton-Schulz’s method (for α1 = 0 ) is obtained, 

X k +1 = X k ( α1 + (1 − α1 )(2 I − AX k ) ) . 

In Fig. 3 , it can be observed that the basin of convergence (set of values of β that, taken as initial estimation, allows the

process to converge) is wider for higher values of | β| . However, the color of these basins are brighter for lower values of

| β| ; the reason is that the order of convergence is only linear as α1 � = 0 and it is slower for higher values of β . 

Let us consider now a class of methods defined by the general expression of the family (2) with p = 3 , α1 = 0 and

α2 + α3 = 1 , 

X k +1 = X k 

(
α2 (2 I − AX k ) + (1 − α2 )(3 I − 3(AX k ) + (AX k ) 

2 
)
. 
7 
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Fig. 1. Dynamical planes corresponding to X 0 = βI of different methods on Toeplitz matrix A 1 . 

 

 

 

 

 

 

 

 

The members of this class have, at least, second order of convergence if α2 � = 0 and third-order (the corresponding it-

erative scheme is Chebyshev’s one) if α2 = 0 . As the initial estimation taken is X 0 = β
A 

T 
1 

‖ A 1 ‖ 2 , in Fig. 4 , we notice that also

the wideness of the basin of attraction of the inverse matrix is bigger for higher absolute values of β but this amplitude is

lower than in the case of the members of the family for p = 2 , for the same value of β . That is, the order is higher but the

set of converging values of β is lower. 

Now, let us to compare the performance of the methods with other kind of matrices by using command 

gallery('leslie',3) in Matlab, a 3 × 3 matrix appearing in population models, 

A 2 = 

( 

1 1 1 

1 0 0 

0 1 0 

) 

. 

By using this matrix and X 0 = β
A 

T 
2 

‖ A 2 ‖ 2 , the set of converging initial values is painted in orange color for Newton-Schulz’s

method and also several second-order schemes of family corresponding to p = 3 and α1 = 0 . Specifically, for α2 = 0 . 3 , α2 =
0 . 5 α2 = 0 . 7 and α2 = 0 . 8 and α3 = 1 − α2 . In Fig. 5 it is observed that the basin of attraction increases its wideness as

well as parameter grows, being α2 ≤ 0 . 7 . Moreover, the set of converging values of β is connected meanwhile α2 ≤ 0 . 7 and

disconnected in other cases. 

If the matrix is ill-conditioned, the role of the convergence and dependence on initial estimations is even more important. 

In Fig. 6 , the inverse of a Hilbert matrix of size 3 × 3 , 

A 3 = 

( 

1 1 / 2 1 / 3 

1 / 2 1 / 3 1 / 4 

1 / 3 1 / 4 1 / 5 

) 

, 
8 
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Fig. 2. Dynamical planes corresponding to X 0 = β
A T 1 

‖ A 1 ‖ 2 on Toeplitz matrix A 1 . 

 

 

 

 

 

 

 

 

 

is estimated with X 0 = β
A 

T 
3 

‖ A 3 ‖ 2 . Let us notice that the color of the basins of convergence is darker than in previous cases.

This means that the convergence is slower, due to stability problems. However, each scheme has the same wideness and 

shape than in previous cases, were the conditioning of the involved matrices were good. 

Now, pseudoinverse calculation is made for the low-rank matrix 

A 4 = 

( 

1 2 3 4 

0 1 0 1 

2 4 6 8 

) 

. 

In Fig. 7 , it can be observed that the performance of the iterative schemes for estimating the pseudoinverse matrix is the

same as in previous non-singular square matrices, showing the best behavior the method α2 = 0 . 7 , in terms of the size of

the set of converging initial estimations. In case of first-order class of iterative methods, it has been also observed that the

performance of the procedures (as far as it depends on the initial estimation) is the same as in the inverse calculations. 

6. Numerical performance 

In this section, we check the performance of the proposed schemes, in comparison with other known ones, on small and

large–scale matrices. These came from academical problems and also from applied signal processing problems. Among the 

academical problems, we use the Hilbert matrix as example of ill-conditioned matrix. These numerical tests have been made 

with Matlab R2018b, by using double precision arithmetics. The convergence is checked by means of the stopping criterium 

of the residual, ‖ AX k − I‖ < 10 −6 and a maximum of 200 iterations. In all cases, the initial estimation taken is X 0 = β
A 

T 

‖ A ‖ 2 ,
being A the matrix whose inverse we are estimating, as we have seen in the previous section that this estimation, with

values of β close to 0.7, gives the best results. 

In Tables 1 , 2 , 3 , elements α1 = 0 , α1 = 0 . 6 and α1 = 0 . 8 for the class p = 2 (all of them with α2 = 1 − α1 ) are com-

pared with the members of class p = 3 corresponding to α = 0 and α = 0 , α = 0 . 6 and α = 0 . 8 , where α = 1 − α . The
1 2 2 2 3 2 
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Fig. 3. Dynamical planes corresponding to first-order class with α1 ∈ [0 , 1[ and X 0 = β
A T 1 

‖ A 1 ‖ 2 on matrix A 1 . 

Table 1 

Numerical results for Toeplitz matrix A 1 . 

β

p = 2 p = 3 , α1 = 0 

α1 = 0 α1 = 0 . 6 α1 = 0 . 8 α2 = 0 α2 = 0 . 6 α2 = 0 . 8 

it res it res it res it res it res it res 

1 5 2.3e-10 28 9.3e-7 63 9.3e-7 3 7.5e-9 4 1.2e-7 5 2.5e-12 

1.5 5 2.3e-10 26 6.8e-7 58 8.6e-7 3 7.5e-9 4 3.7e-10 4 2.2e-7 

2 nc - 25 6.9e-7 58 9.9e-7 nc - 4 1.2e-7 6 1.5e-9 

2.5 nc - 24 8.1e-7 59 8.8e-7 nc - 3 2.1e-8 nc - 

3 nc - 28 9.4e-7 59 9.1e-7 nc - 5 4.8e-8 nc - 

3.5 nc - nc - 59 8.8e-7 nc - nc - nc - 

4 nc - nc - 58 9.9e-7 nc - nc - nc - 

4.5 nc - nc - 59 8.5e-7 nc - nc - nc - 

5 nc - nc - 59 8.8e-7 nc - nc - nc - 

5.5 nc - nc - nc - nc - nc - nc - 

6 nc - nc - nc - nc - nc - nc - 

 

 

 

 

 

 

comparison is made through the number of iterations needed to converge (it) and the residual ‖ AX k − I‖ , denoted by (res).

If the method does not converge (typically giving “NaN”), it is denoted by “nc” in the column of iterations; if the scheme

simplify needs more than 200 iterations to converge, it is denoted by > 200 . 

Table 1 shows the results obtained for matrix A 1 introduced in the previous section. In Table 2 the numerical results

correspond to a Leslie matrix of size 100 × 100 , and in Table 3 the results generated by a Hilbert matrix of size 5 × 5 are

shown. 

From the results appearing in Table 1 , it can be deduced that, among second-order schemes, the best convergence results

are those corresponding to the method of class p = 2 with α1 = 0 and α2 = 0 . 8 . It converges for a much wider set of initial

estimations, although the number of iterations needed is high. In terms of the number of iterations needed to converge, 
10 
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Fig. 4. Dynamical planes corresponding to second-order class ( p = 3 ) with α1 = 0 , α2 ∈ [0 , 1[ and X 0 = β
A T 1 

‖ A 1 ‖ 2 on matrix A 1 . 

Table 2 

Numerical results for a Leslie matrix of size 100 × 100 . 

β

p = 2 p = 3 , α1 = 0 

α1 = 0 α1 = 0 . 6 α1 = 0 . 8 α2 = 0 α2 = 0 . 6 α2 = 0 . 8 

it res it res it res it res it res it res 

1 18 6.9e-12 55 8.5e-7 113 9.2e-7 11 2.9e-8 14 6.4e-7 16 2.4e-10 

1.5 17 4.2e-9 54 7.7e-7 111 8.8e-7 11 4.8e-12 14 2.4e-9 15 1.4e-7 

2 53 3.7e-11 53 8.3e-7 107 9.6e-7 33 8.0e-11 14 1.3e-11 15 1.4e-9 

2.5 nc - 52 9.8e-7 108 9.2e-7 nc - 13 3.9e-7 nc - 

3 nc - 52 7.5e-7 107 9.2e-7 nc - 13 3.7e-8 nc - 

3.5 nc - nc - 106 9.5e-7 nc - 26 1.1e-12 nc - 

4 nc - nc - 106 8.1e-7 nc - nc - nc - 

4.5 nc - nc - 105 8.7e-7 nc - nc - nc - 

5 nc - nc - 104 9.6e-7 nc - nc - 14 1.2e-12 

5.5 nc - nc - 104 8.5e-7 nc - nc - nc - 

6 nc - nc - > 200 - nc - nc - nc - 

 

 

 

 

 

the best results are those provided by the element of family p = 3 with α1 = 0 , α2 = 0 . 6 (and α3 = 1 − α2 ); the process

converges in a very reduced number of iterations, with lower residual error than classical Newton-Schulz method. Regarding 

the results obtained by using classical Chebyshev’s scheme, we remark that it does not improve the data from the best of

proposed schemes, in sipe of having third-order of convergence. 

In Table 2 , we notice that for large–scale ( 100 × 100 ) Leslie matrix, the numerical results obtained by p = 2 , α1 = 0

and α2 = 0 . 6 show convergence to the inverse matrix even when parameter β of the initial estimation is not close to zero.

However, in these cases the number of iterations is very high. Regarding the lowest number of iterations needed to converge,

the best method corresponds to p = 3 , α = 0 and α = 0 . 6 as it holds low number of iterations and high value of β . 
1 2 
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Fig. 5. Dynamical planes corresponding to some second-order methods with X 0 = β
A T 2 

‖ A 2 ‖ 2 on Leslie matrix A 2 . 

Table 3 

Numerical results for a Hilbert matrix of size 5 × 5 . 

β

p = 2 p = 3 , α1 = 0 

α1 = 0 α1 = 0 . 2 α1 = 0 . 4 α2 = 0 α2 = 0 . 6 α2 = 0 . 8 

it res it res it res it res it res it res 

1 42 3.9e-9 54 5.7e-7 72 4.3e-7 27 2.3e-11 34 9.5e-11 37 1.07e-7 

1.5 41 4.9e-7 53 9.3e-7 71 4.8e-7 26 5.1e-8 33 1.5e-7 37 9.8e-11 

2 56 5.7e-8 53 4.2e-7 70 6.9e-7 nc - 33 2.3e-9 36 3.9e-7 

2.5 nc - nc - 70 4.5e-7 nc - 33 4.8e-11 nc - 

3 nc - nc - nc - nc - 33 1.3e-11 nc - 

3.5 nc - nc - nc - nc - 32 2.1e-8 nc - 

4 nc - nc - nc - nc - nc - nc - 

4.5 nc - nc - nc - nc - nc - nc - 

5 nc - nc - nc - nc - nc - nc - 

5.5 nc - nc - nc - nc - nc - nc - 

6 nc - nc - nc - nc - nc - nc - 

 

 

 

 

Table 3 corresponds to a test on a 5 × 5 Hilbert matrix. It is clear that the numer of iterations is high due to the bad

conditioning of the matrix. Nevertheless, the performance is, in general similar to previous cases. 

Now, we compare our proposed method of family p = 3 , α1 = α2 = 0 and α3 = 0 . 7 (denoted by PM 3 0 . 7 with other known

ones, introduced in the previous section and denoted by SS, TS, HM and MP. In Table 4 , we present the results obtained for

these schemes on a Toeplitz matrix of size 100 × 100 , by using the initial estimation X 0 = β
A 

∗

‖ A ‖ 2 , tolerance 10 −6 and a

maximum of 200 iterations. We notice that our scheme gets convergence to the inverse matrix in a very similar execution 

time (e-t) than other methods with higher order of convergence and moreover, it converges with initial estimations with 

bigger values of β than the rest of procedures. 
12 
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Fig. 6. Dynamical planes corresponding to some second-order methods with X 0 = β
A T 3 

‖ A 3 ‖ 2 on Hilbert matrix A 3 . 

Table 4 

Numerical results for a Toeplitz matrix of size 100 × 100 . 

β SS PM 3 0 . 7 TS HM MP 

it res e-t it res e-t it res e-t it res e-t it res e-t 

0.1 4 3.8e-14 0.028 10 3.1e-10 0.025 6 4.8e-15 0.044 7 1.4e-15 0.027 7 6.9e-12 0.022 

0.5 3 4.4e-14 0.029 8 6.4e-10 0.026 4 4.2e-7 0.026 5 3.6e-8 0.028 6 1.1e-15 0.022 

0.9 3 4.1e-14 0.031 7 2.6e-8 0.028 4 6.2e-12 0.034 5 1.7e-13 0.027 5 1.3e-10 0.031 

1 3 3.9e-14 0.037 7 4.8e-9 0.032 4 3.9e-13 0.029 5 8.7e-15 0.038 5 1.1e-11 0.031 

1.5 3 3.5e-14 0.029 7 1.1e-12 0.026 4 7.3e-15 0.032 4 1.8e-7 0.022 5 9.9e-16 0.026 

2 2 2.7e-8 0.020 6 2.1e-8 0.028 3 8.6e-7 0.024 4 1.3e-9 0.027 4 5.6e-8 0.022 

2.5 3 6.4e-14 0.024 6 3.3e-10 0.024 4 1.9e-10 0.027 5 1.1e-9 0.017 6 7.8e-15 0.028 

3 nc - - 6 1.5e-11 0.027 nc - - nc - - nc - - 

3.5 nc - - 6 1.4e-11 0.023 nc - - nc - - nc - - 

4 nc - - 7 1.5e-11 0.028 nc - - nc - - nc - - 

4.5 nc - - nc - - nc - - nc - - nc - - 

 

 

 

The rest of the section is devoted to several test matrices for which we approximate its pseudoinverse. Table 5 includes

the results of pseudoinverse calculation made for the low-rank matrix A 4 defined in Section 4 . In this case, Chebyshev’s

method perfoms better than the most of methods under analysis, as it needs a very low number of iterations to converge

to the psudo-inverse, although p = 2 can converge even with values of β = 6 or higher. 

A similar performance is observed in Table 6 , where we use a random matrix of size 300 × 200 . 

Finally, we present the last example corresponding to a random matrix with no full rank. Let us consider matrix 

A = 

(
B C 
D E 

)
∈ R 

303 ×204 , 
13 
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Fig. 7. Dynamical planes corresponding to second-order class with α1 ∈ [0 , 1[ and X 0 = β
A T 1 

‖ A 1 ‖ 2 on matrix A 4 . 

Table 5 

Numerical results for the estimation of the pseudo-inverse of A 4 with X 0 = β
A T 4 

‖ A 4 ‖ 2 . 

β

p = 2 p = 3 , α1 = 0 

α1 = 0 α1 = 0 . 6 α1 = 0 . 8 α2 = 0 α2 = 0 . 6 α2 = 0 . 8 

it res it res it res it res it res it res 

1 13 4.9e-10 43 6.9e-7 86 8.2e-7 11 7.6e-10 12 1.2e-10 9 2.9e-15 

1.5 12 1.0e-7 42 6.2e-7 83 9.7e-7 11 2.0e-13 11 8.7e-8 8 3.5e-8 

2 12 4.6e-10 41 6.7e-7 82 8.5e-7 10 1.3e-8 11 7.2e-10 8 1.1e-10 

2.5 nc - 40 7.9e-7 81 8.1e-7 10 3.5e-10 nc - nc - 

3 nc - 39 9.9e-7 80 8.0e-7 10 1.0e-11 nc - nc - 

3.5 nc - 39 7.9e-7 79 9.3e-7 10 6.2e-10 nc - nc - 

4 nc - nc - 78 8.8e-7 nc - nc - nc - 

4.5 nc - nc - 77 9.5e-7 nc - nc - nc - 

5 nc - nc - 77 8.3e-7 nc - nc - nc - 

5.5 nc - nc - 76 9.2e-7 nc - nc - nc - 

6 nc - nc - 76 8.3e-7 nc - nc - nc - 

 

 

 

 

where B is a random matrix of size 300 × 200 , B = rand(300 , 200) , C is a matrix of zeros, C = zeros (300 , 4) , D is a matrix

of ones, D = ones (3 , 200) and E is the matrix 

E = 

( 

1 1 0 −1 

2 0 0 0 

3 1 0 −1 

) 

. 

In this case, we use as stopping criterium ‖ X k +1 − X k ‖ < 10 −6 and the last value of ‖ X k +1 − X k ‖ appears in the column called

’res’. 

The results corresponding to this example are shown in Table 7 . When this table is observed, we notice that the best

global results are from MP and our proposed method PM3 0 . 7 . Both schemes unify very wide areas of converging initial

estimations with low execution times. 
14 
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Table 6 

Numerical results for the estimation of the pseudoinverse of a random matrix of size 300 × 200 with X 0 = β
A T 

‖ A ‖ 2 . 

β

p = 2 p = 3 , α1 = 0 

α1 = 0 α1 = 0 . 6 α1 = 0 . 8 α2 = 0 α2 = 0 . 6 α2 = 0 . 8 

it res it res it res it res it res it res 

1 19 5.4e-8 56 6.7e-7 109 9.7e-7 13 4.9e-15 16 1.2e-9 18 5.7e-14 

1.5 19 1.3e-11 55 6.0e-7 107 9.3e-7 12 4.3e-8 16 4.2e-13 17 3.8e-10 

2 18 5.4e-8 54 6.5e-7 106 8.1e-7 12 1.5e-10 15 2.1e-8 17 6.8e-13 

2.5 nc - 53 7.7e-7 104 9.7e-7 nc - 15 6.1e-10 nc - 

3 nc - 52 9.7e-7 103 9.7e-7 nc - 15 2.1e-11 nc - 

3.5 nc - 52 7.7e-7 103 8.0e-7 nc - 15 3.5e-8 nc - 

4 nc - nc - 102 8.5e-7 nc - nc - nc - 

4.5 nc - nc - 101 9.2e-7 nc - nc - nc - 

5 nc - nc - 101 8.1e-7 nc - nc - nc - 

5.5 nc - nc - 100 9.0e-7 nc - nc - nc - 

6 nc - nc - 100 8.1e-7 nc - nc - nc - 

Table 7 

Numerical results for non-square matrix without full rank of size 303 × 204 . 

β SS PM 3 0 . 7 TS HM MP 

it res e-t it res e-t it res e-t it res e-t it res e-t 

0.1 8 3.6e-14 0.308 19 4.9e-7 0.266 11 8.4e-9 0.211 13 3.7e-8 0.240 14 3.9e-11 0.244 

0.5 7 3.3e-14 0.266 17 9.7e-7 0.273 10 1.2e-9 0.245 12 6.0e-11 0.264 13 1.8e-15 0.236 

0.9 7 3.3e-14 0.289 17 1.2e-10 0.266 10 4.1e-15 0.231 12 1.9e-15 0.238 12 1.1e-9 0.235 

1 7 3.6e-14 0.276 17 1.5e-11 0.262 10 4.1e-15 0.242 11 6.4e-7 0.244 12 1.3e-10 0.248 

1.5 7 3.2e-14 0.273 16 2.9e-8 0.266 9 7.9e-7 0.245 11 1.2e-9 0.240 12 3.7e-15 0.237 

2 6 3.7e-7 0.265 16 2.4e-10 0.245 9 1.0e-8 0.248 11 3.1e-12 0.250 11 5.4e-7 0.240 

2.5 6 1.1e-8 0.258 16 1.4e-12 0.258 9 1.5e-10 0.233 11 9.8e-5 0.242 11 1.9e-8 0.250 

3 nc - 15 2.0e-7 0.230 nc - - nc - - 11 6.7e-10 0.264 

3.5 nc - 15 2.3e-8 0.231 nc - nc - - 24 6.7e-12 0.314 

4 nc - 15 2.8e-9 0.265 nc - - nc - - 11 9.6e-13 0.228 

4.5 nc - nc - - nc - - nc - - nc - - 

Fig. 8. (a) Some randomly selected images of Saturn. (b) Noisy versions of images in (a). 

 

 

 

 

 

 

Now, we are going to apply the proposed schemes on a non-academic problem dealing with image processing. 

6.1. Illustrative example: image denoising 

This example illustrates an application of proposed method to an image denoising problem [31–33] . Specifically, we 

consider the problem of compression, filtering and decompression of a noisy image C ∈ R 

90 ×90 estimation on the basis of

the set of training images A = 

{
A 

(1) , . . . , A 

(s ) 
}
, where A 

( j) ∈ R 

90 ×90 , for j = 1 , . . . , s . Our training set A consists of s = 20 0 0

different satellite images from Saturn (see Fig. 8 (a) for 9 sample images). Images in A were taken from the NASA Solar

System Exploration Database [34] . 

It is assumed that instead of images in A , we observed their noisy version C = 

{
C (1) , . . . , C (s ) 

}
, where C ( j) ∈ R 

90 ×90 , for

j = 1 , . . . , s . Each C ( j) is simulated as C ( j) = A 

( j) + 0 . 2 N 

( j) , where N 

( j) ∈ R 

90 ×90 is a random matrix generated from a normal

distribution with zero-mean and standard deviation 1. For each image A 

( j) , matrix N 

( j) simulates noise. (see Fig. 8 (b) for 9
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Fig. 9. Bar graphs of Method 1 and Method 2. Compression ratio c r versus: (a) MSE and (b) SSIM between Methods 1 and 2. 

 

 

 

 

 

 

C

sample images). It is assumed that noisy image C does not necessarily belong to C, but it is “similar” to one of them, i.e.,

there is C ( j) ∈ C such that 

C ( j) ∈ arg min 

C (i ) ∈C 
‖ C (i ) − C ‖ f r ≤ δ, 

for a given δ ≥ 0 . 

Here, we vectorize matrices A 

( j) and C ( j) , i.e., convert each matrix into a column vector by stacking the columns of the

matrix. Let v ect : R 

m ×n → R 

mn be the vectorization transform. We write a j = v ec(A 

( j) ) ∈ R 

8100 and c j = v ec(C ( j) ) ∈ R 

8100 .

If A = [ a 1 a 2 . . . a s ] ∈ R 

810 0 ×20 0 0 and C = [ c 1 c 2 . . . c s ] ∈ R 

810 0 ×20 0 0 , the goal of the image denoising problem is find 

̂ X ∈
R 

8100 ×8100 
r that gives a small reconstruction error for the training set, i.e., find ̂ X such that 

‖ A − ̂ X C‖ 

2 
f r = min 

X∈ R 8100 ×8100 
r 

‖ 

A − XC ‖ 

2 
f r . (8) 

Here, R 

m ×n 
r denotes the set of all real m × n matrices of rank at most r ≤ min { m, n } . A solution of problem (8) , given by

Friedland and Torokhti [35] , is ̂ X = � AC † C 
 r C † , (9) 

where � M
 r is the r-truncated SVD of M. In this example, we use the proposed method to compute the pseudoinverse, with

 0 = 

C T 

‖ C‖ 2 , p = 2 , α1 = 0 . 6 and α2 = 0 . 4 . 
Fig. 10. Illustration of the estimation of noisy image C by Methods 1 and 2. (a) Source image. (b) Noisy observed image C . (c)-(d) Estimation using 

Methods 1 and 2, respectively, for c r = 0 . 25 . (e)-(f) Estimation using Methods 1 and 2, respectively, for c r = 0 . 5 . (g)-(h) Estimation using Methods 1 and 2, 

respectively, for c r = 0 . 75 . (i)-(j) Estimation using Methods 1 and 2, respectively, for c r = 1 . 
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The compression ratio in problem (8) is given by c r = 

r 
min { p,q } . Fig. 9 presents the execution MSE and structural similarity

index 1 (SSIM) between Method 1, which compute (9) using Matlab command pinv , and Method 2, which compute (9) using

proposed method, for compression ratio c r ∈ { 0 . 25 , 0 . 5 , 0 . 75 , 1 } , i.e., r ∈ { 2025 , 4050 , 6075 , 8100 } . In Fig. 10 , we show the

estimates of C using both methods. The numerical results obtained in Figs. 9 and 10 clearly demonstrate the advantages of 

the proposed method. It is clear that both methods achieve the same MSE. 

7. Conclusions 

In this paper, we have developed a parametric family of iterative methods for computing inverse and pseudoinverse of 

a complex matrix, having arbitrary order of convergence. Moreover, we have shown in Theorems 1 and 2 that the order of

the suggested method in (2) depends on the first non-zero parameter. Moreover, among all the procedures with the same 

order of convergence, those with the first non-zero parameter between 0.6 and 0.8 show the best performance, in terms of

stability. 

The proposed parametric family in (2) is a generalization of other methods which are obtained for particular values of 

the parameters. The numerical experiments show the feasibility and effectiveness of the new methods, for both nonsingular 

and rectangular matrices with or without full rank and arbitrary size. Indeed, the proposed methods have proven their 

applicability by solving image denoising problems with success. 
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