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Summary

In this work we consider control problems represented by a linear di�erential equation

assuming that all the coe�cients are random variables and with an additive control that

is a stochastic process. Speci�cally, we will work with controllable problems in which the

initial condition and the �nal target are random variables. The probability density function

of the solution and the control have been calculated. The theoretical results have been

applied to study, from a probabilistic standpoint, a damped oscillator.
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1 INTRODUCTION

The aim of Control Theory is to ensure that a system subject to perturbations can remain under a specific trajectory. This interdisciplinary branch
of Engineering and Mathematics has many applications in both areas 1,2,3. An important part of Control Theory is devoted to study systems that
obey the so called superposition principle, that is, linear systems 4. A linear differential equation with additive control can be written in the form

x(n)(t) + an−1x
(n−1)(t) + · · ·+ a0x(t) = u(t), (1)

where x(t) denotes the state variable at the time instant t and u(t) is the control. In this context it is important to note that a system is said to be
controllable if any final state can be reached from any initial state in a control time T > 0. The values of coefficients (also called model parameters),
ai, 0 ≤ i ≤ n−1, that appear in the formulation are usually set experimentally. As a consequence, these values may contain an intrinsic uncertainty.
So it is more convenient to treat model parameters as random variables (RVs) or stochastic processes (SPs) in dealing with control problems 5,6,7,8.
In this setting, the solution x = x(t) and the control u = u(t) are SPs defined on a common complete probability space (Ω,F ,P). Thus, they are
denoted by x(t, ω) and u(t, ω), respectively, being (t, ω) ∈ (0,T] × Ω. Unlike the deterministic theory, in the setting of random control theory,
besides computing x(t, ω) and u(t, ω), it is important to determine their main statistical properties, in particular the mean, µx(t), and the variance,
σ2

x (t). A more desirable objective is to obtain the so called first probability density functions (1-PDF), f1(x, t) and f1(u, t), of the solution SP, x(t, ω),
and of the control SP, u(t, ω), respectively. From the 1-PDF, the mean, the variance and other statistics can be calculated by integration. For
example, in the case of the solution SP,

µx(t) = E[x(t, ω)] =

∫
R

xf1(x, t) dx, σ2
x(t) = E[(x(t, ω))2]− (E[x(t, ω)])2 =

∫
R

x2f1(x, t) dx− (µx(t))2 , (2)

0Abbreviations: PDF, probability density function; RV, random variable; SP, stochastic process; 1-PDF, first probability density function
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here E[·] stands for the expectation operator. Also, from the 1-PDF one can calculate the probability that the solution SP lies on a particular set of
interest

P[a ≤ x(t, ω) ≤ b] =

b∫
a

f1(x, t) dx.

The main objective of this contribution is to compute the 1-PDF of linear control problems of the form (1) where all the coefficients are RVs and
the control is a SP. To do this, the Random Variable Transformation (RVT) method will be applied. RVT is an useful technique to determine the PDF
of a RV which comes from mapping another RV whose PDF is given. The multidimensional version of the RVT method is stated in Theorem 1.
Theorem 1 (Random Variable Transformation technique). 9 pp. 24–25 Let X(ω) = (X1(ω), . . . ,Xm(ω))> and Z(ω) = (Z1(ω), . . . ,Zm(ω))> be
two m-dimensional absolutely continuous random vectors defined on a complete probability space (Ω,F ,P). Let s : Rm → Rm be a one-to-one
deterministic transformation of X(ω) into Z(ω), i.e., Z(ω) = s(X(ω)), ω ∈ Ω. Assume that s is a continuous mapping and has continuous partial
derivatives with respect to each component xi, 1 ≤ i ≤ m. Then, if fx(x1, . . . , xm) denotes the joint probability density function of the vector
X(ω), and p = s−1 = (p1(z1, . . . , zm), . . . , pm(z1, . . . , zm)) represents the inverse mapping of s = (s1(x1, . . . , xm), . . . , sm(x1, . . . , xm)), the joint
probability density function of the random vector Z(ω) is given by

fZ(z1, . . . , zm) = fX (p1(z1, . . . , zm), . . . , pm(z1, . . . , zm)) |Jm| ,

where |Jm|, which is assumed to be different from zero, denotes the absolute value of the Jacobian defined by the following determinant

Jm = det


∂p1(z1, . . . , zm)

∂z1
· · ·

∂pm(z1, . . . , zm)

∂z1... . . . ...
∂p1(z1, . . . , zm)

∂zm
· · ·

∂pm(z1, . . . , zm)

∂zm

 .

In our previous contribution 10, the random linear control problem
x′(t, ω) = A(ω)x(t, ω) + B(ω) u(t, ω), 0 < t ≤ T,

x(0, ω) = x0(ω),
(3)

has been studied assuming that only the initial condition and the final target are RVs and the control is a SP, since in this case one can take into
account the well known Kalman’s controllability condition:
if A and B are matrices of dimensions n × n and n × m, respectively, where m ≤ n, whose elements are deterministic, a necessary and sufficient
condition for (A,B) to be controllable is 11,10,12

rank(C) = rank (B,AB, . . . ,An−1B
)

= n,

where C has dimension n× nm and it is referred to as the Kalman’s controllability matrix.
We finish this section pointing out that throughout this paper the exponential function will be denoted by e or exp , interchangeably.

2 CONTROLLABLE RANDOMIZED EQUATION

As a natural extension of its deterministic counterpart (1), a linear differential equation whose coefficients are RVs and having an additive stochastic
control is given by

x(n)(t, ω) + an−1(ω)x(n−1)(t, ω) + · · ·+ a0(ω)x(t, ω) = u(t, ω), (4)
where x(t, ω) is a SP that describes the evolution of the system, ai(ω), i = 0, 1, . . . , n − 1 are n independent RVs, and u(t, ω) is the control term
that is assumed to be a SP. All these quantities are defined in a common complete probability space (Ω,F ,P).

In this contribution, we are interested in random controllable problems, this is, given a random initial condition
{x(0, ω) = x01(ω), x′(0, ω) = x02(ω), . . . , x(n−1)(0, ω) = x0n(ω)}, (5)

we are interested in reaching a random final target
{x(T, ω) = x11(ω), x′(T, ω) = x12(ω), . . . , x(n−1)(T, ω) = x1n(ω)}, (6)

at a fixed time T > 0. Therefore, we will assume that x0
i (ω), x1

i (ω), i = 1, . . . , n, are RVs.
Now, we will establish specific conditions under which the problem (4)–(6) is controllable. For this goal, we will take advantage of Kalman’s

controllability condition introduced in Section 1. The first step is to recast the random nth-order linear control differential equation (4) as a random
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first-order linear control system. To this end, we perform the classical change of variables
y1(t, ω) = x(t, ω),

y2(t, ω) = x′(t, ω),

y3(t, ω) = x′′(t, ω),

...
yn(t, ω) = x(n−1)(t, ω),

then, equation (4) can be rewritten as
y′(t, ω) = A(ω)y(t, ω) + bu(t, ω), (7)

where

y(t, ω) =



y1(t, ω)

y2(t, ω)

...
yn−1(t, ω)

yn(t, ω)


, b =



0

0

...
0

1


, (8)

are n-dimensional vectors and

A(ω) =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

... . . . ...
0 0 0 · · · 1 0

0 0 0 · · · 0 1

−a0(ω) −a1(ω) −a2(ω) · · · −an−2(ω) −an−1(ω)


, (9)

is a n× n matrix whose elements of the nth row are RVs. The corresponding initial condition is given by
y0(ω) =

(
x01(ω), x02(ω), . . . , x0n(ω)

)>
, (10)

and the associated final target is
y1(ω) =

(
x11(ω), x12(ω), . . . , x1n(ω)

)>
. (11)

Note that the Kalman matrix, C(ω), will be a random matrix because of the randomness of matrix A, so we will denote
C(ω) =

(
b,A(ω)b,A2(ω)b, . . . ,An−1(ω)b

)
the random Kalman matrix associated to problem (7) (or equivalently (4)). Henceforth, denoting by [[K]]j the jth-column of matrix K, one can check
that

[[A(ω)]]n =



0

0

0

...
0

1

#


, [[A2(ω)]]n =



0

0

0

...
1

#

#


, . . . , [[An−2(ω)]]n =



0

1

#

...
#

#

#


, [[An−1(ω)]]n =



1

#

#

...
#

#

#


,

for A(ω) and b given by (9) and (8), respectively; where # involves a polynomial in RVs ai(ω), i = 0, 1, . . . , n− 1. Then,

rank(C(ω)) = rank



0 0 0 · · · 0 1

0 0 0 · · · 1 #

0 0 0 · · · # #

... ... ...
0 0 1 · · · # #

0 1 # · · · # #

1 # # · · · # #


= n, ∀ω ∈ Ω,

regardless expressions #. So Kalman’s controllability condition holds independently of the RVs ai(ω), i = 0, 1, 2, . . . , n− 1, defining the problem.
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Once we have ensured problem (7) is controllable, we are interested in determining a closed-form solution to problem (7)–(11). Applying the
formula of variation of parameters, we can construct a solution of problem (7). So, given u(t, ω) ∈ L2((0,T]×Ω;R), the unique solution y(t, ω) ∈
H1((0,T]× Ω;Rn) of random problem (7) is given by 10

y(t, ω) = exp (A(ω)t)y0(ω) +

t∫
0

exp (A(ω)(t− s))bu(s, ω) ds, t ∈ [0, T ]. (12)
But formula (12) involves the control term, u(t, ω), that needs to be determined. An explicit expression to the control SP, u(t, ω), can be obtained
by reducing the controllability problem (7) into an observability one. Then, we obtain the following expression

u(t, ω) = b> exp
(
A>(ω)(T − t)

) T∫
0

exp(A(ω)(T − s))bb> exp
(
A>(ω)(T − s)

)
ds

−1 (
y1(ω)− exp (A(ω)T )y0(ω)

)
. (13)

Details about how is derived equation (13) can be found in recent literature, for example Lazar et al. 12 or Section 3 of Cortés et al. 10
At this point, it is interesting to introduce the following notation in order to simplify the presentation of our subsequent analysis

q(t,A) = [[exp(A(T− t))]]n, (14)
Λ(t,A) =

t∫
0

q(s,A)q>(s,A) ds, (15)
V(t,A) = Λ(t,A)Λ−1(T,A), (16)
M(t,A) = exp(A(t− T))V(t,A). (17)

As problem (7)–(11) is controllable for all ω ∈ Ω and 0 < t < T, using Remark 1 of Cortés et al. 10, we can establish the following results that will
play a fundamental role in Sections 3.1 and 3.2.
Remark 1. Λ(t,A(ω)) defined by expression (15), where A(ω) is defined by (9) is an invertible matrix for ω ∈ Ω and t ∈]0,T].
Remark 2. As a consequence of Remark 1,V(t,A(ω)) is well defined. Also,V(t,A(ω)) andM(t,A(ω)) are invertiblematrices forω ∈ Ω and t ∈]0,T].

3 COMPUTATION OF THE 1-PDF OF SOME STOCHASTIC PROCESSES OF INTEREST IN CONTROL

PROBLEMS

In dealing with a control problem, themain goal is to calculate both the solution and the control, but in the random setting it is also relevant to obtain
its main statistical properties as the mean and the variance, or, as mentioned in the Introduction section a more desirable objective is to compute
their respective 1-PDF. Thus, we shall compute the 1-PDF of both, the solution SP, x(t, ω), and the control SP, u(t, ω), taking the advantage of
RVT technique, Theorem 1. Henceforth, we will assume that random inputs of problem (coefficients, ai(ω), i = 0, 1, . . . , n − 1 ; initial condition,
x0

i (ω), i = 1, 2, . . . , n; and final target, x1
i (ω), i = 1, 2, . . . , n) are absolutely continuous RVs. We have 3n RVs that, for convenience, we will arrange

in three vectors, y0(ω) and y1(ω), given in (10) and (11), respectively, and
a(ω) = (a0(ω), a1(ω), . . . , an−1(ω)) . (18)

Also, and for the sake of generality, we will assume a joint PDF for these 3n RVs that will be denoted by fx0,x1,a = fx0,x1,a(x0,x1,a).

3.1 Computing the 1-PDF of the solution stochastic process

In this section we will determine the 1-PDF, f1(y, t), of the solution SP, y(t, ω), of problem (7)–(11). Notice that y(t, ω) involves the solution SP,
x(t, ω), of problem (4) and their derivatives until order n−1. Then, the 1-PDF associated to y(t, ω) is a joint PDF that provides relevant information
about x(t, ω) and their derivatives.
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In order to obtain f1(y, t) applying RVT technique, we rewrite the solution SP, y(t, ω), given by (12) and (13) taking advantage of notation
introduced in (14)–(17),

y(t, ω) = exp (A(ω)t)y0(ω) +

t∫
0

exp (A(ω)(t− s))bu(s, ω) ds

= exp (A(ω)t)y0(ω) + exp (A(ω)(t− T))

t∫
0

[[exp (A(ω)(T− s))]]nu(s, ω) ds

= exp (A(ω)t)y0(ω) + exp (A(ω)(t− T))

t∫
0

q(s,A)u(s, ω) ds,

where
u(t, ω) = b> exp

(
A>(ω)(T− t)

) T∫
0

exp(A(ω)(T− s))bb> exp
(

A>(ω)(T− s)
)

ds

−1 (
y1(ω)− exp(A(ω)T)y0(ω)

)

= q>(t,A)

 T∫
0

q(s,A)q>(s,A) ds

−1 (
y1(ω)− exp(A(ω)T)y0(ω)

)
= q>(t,A)Λ−1(T,A)

(
y1(ω)− exp(A(ω)T)y0(ω)

)
. (19)

Introducing this expression in y(t, ω), we obtain
y(t, ω) = exp (A(ω)t)y0(ω) + exp (A(ω)(t− T))

t∫
0

q(s,A)q>(s,A)Λ−1(T,A)
(
y1(ω)− exp(A(ω)T)y0(ω)

)
ds

= exp (A(ω)t)y0(ω) + exp (A(ω)(t− T)) Λ(t,A(ω))Λ−1(T,A(ω))
(
y1(ω)− exp(A(ω)T)y0(ω)

)
= exp (A(ω)t)y0(ω) + exp (A(ω)(t− T)) V(t,A(ω))

(
y1(ω)− exp(A(ω)T)y0(ω)

)
= exp (A(ω)t)y0(ω) + M(t,A(ω))

(
y1(ω)− exp(A(ω)T)y0(ω)

)
.

And finally, rearranging terms we obtain the most compact expression,
y(t, ω) = (exp(A(ω)t)−M(t, A(ω)) exp(A(ω)T ))y0 +M(t, A(ω))y1.

Let us fix ω ∈ Ω and t > 0. We define the following mapping
s = (s1, s2, s3) : R3n −→ R3n,

whose components, si : R3n −→ Rn, i = 1, 2, 3, for simplicity, are defined by blocks,
z0 = s1(y0,y1,a) = y0,

z1 = s2(y0,y1,a) = (exp(At)−M(t,A) exp(AT))y0 + M(t,A)y1,

z2 = s3(y0,y1,a) = a,

where the n-dimensional random vectors y0, y1 and a contain all RVs of our problem arranged as indicated in (10), (11) and (18), M is defined in
(17) and for convenience, we have denoted by A the following n× n matrix in terms of the inputs of our mapping

A =



e2

e3

e4...
en−1

en

−a


,

where ei, i = 2, . . . , n represents the i-th row of the n× n identity matrix, In.
The inverse mapping of s, denoted by p = (p1,p2,p3) = s−1, and defined also conveniently by blocks, is given by

y0 = p1

(
z0, z1, z2

)
= z0,

y1 = p2

(
z0, z1, z2

)
= M−1(t,Z)z1 −

(
M−1(t,Z)− In

)
exp(Zt)z0,

a = p3

(
z0, z1, z2

)
= z2,
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where
p : R3n −→ R3n,

pi : R3n −→ Rn, i = 1, 2, 3.

Also, for simplicity in the exposition, we have introduced the matrix Z of dimension n × n, that is a matrix whose elements are in terms of the
mapping inputs and it is defined as

Z =



e2

e3

e4...
en−1

en

−z2


, (20)

and finally
M−1(t, Z) = V −1(t, Z) exp(Z(T − t)) =

(
Λ(t, Z)Λ−1(T, Z)

)−1
exp(Z(T − t)) = Λ(T, Z)Λ−1(t, Z) exp(Z(T − t)).

The absolute value of the Jacobian of the inverse mapping p is given by

|J3n| =

∣∣∣∣∣∣∣∣det


In #n×n 0n×n

0n×n M−1 (t,Z) 0n×n

0n×n #n×n In


∣∣∣∣∣∣∣∣ =

∣∣det
(
M−1 (t, Z)

)∣∣ ,
where, as usually, 0n×n stands for the null matrix of size n× n, and #n×n for a matrix of size n× n, whose entries are not necessary to explictly in
order to compute the above determinant because of the particular structure of this Jacobian matrix.

Notice that, by Remark 2, we can ensure that
|J3n| 6= 0.

At this point, we have all ingredients to apply Theorem 1 in order to obtain the PDF of the 3n-dimensional random vector (z0, z1, z2
) in terms

of the joint PDF of the 3n-dimensional random vector of input parameters (y0,y1,a
). This PDF is given by

fz0,z1,z2
(
z0, z1, z2

)
= fy0,y1,a

(
z0,M−1(t, Z)z1 −

(
M−1(t, Z)− In

)
exp(Zt)z0, z2

)
, (21)

where matrix Z is defined in terms of z2 by (20).
As the solution of problem (7) is z1, the joint 1-PDF ofy(t, ω) is obtained bymarginalizing (21) with respect to z0(ω) = y0(ω) and z2(ω) = a(ω),

f1(y, t) =

∫
R2n

fy0,y1,a

(
y0,M−1(t, A)y −

(
M−1(t, A)− In

)
exp(At)y0,a2

) ∣∣det
(
M−1(t, A)

)∣∣dy0 da, (22)
where

dy0da =
∏

1≤i≤n
dx0i dai−1.

In the case that some of the model parameters are not random, expression f1(y, t) given in (22) can be easily adapted neglecting as integration
variables the deterministic ones. This issue will be illustrated in the examples later (see Case 1 in Appendix A.1).

If we are interested in computing the 1-PDF of the solution SP x(t, ω) of problem (4), wemust take into account that x(t, ω) is the first component
of vectory(t, ω). Then, its 1-PDF can be obtained from f1(y, t), which is given by (22) bymarginalizing it with respect to the n−1 latests components
of y(ω). So, if we denote

y =

(
x

w

)
, w = (y2, . . . , yn)> ,

the 1-PDF of the solution SP x(t, ω) of (4) is computed as
f1(x, t) =

∫
R3n−1

fy0,y1,a

(
y0,M−1(t, A)

(
x

w

)
−
(
M−1(t, A)− In

)
exp(At)y0,a2

)∣∣det
(
M−1(t, A)

)∣∣dy0 dadw,

where
dw =

∏
2≤j≤n

dyj .
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3.2 Computing the 1-PDF of the control stochastic process

Using the notation introduced in (14)–(17), the control SP given in (19) can be written as
u(t, ω) = J(t, A(ω))

(
y1(ω)− exp(A(ω)T )y0(ω)

)
,

where
J(t, A) = q>(t, A)Λ−1(T,A),

is a 1× n matrix (row vector).
The 1-PDF of u(t, ω) is determined by applying Theorem 1 in a similar way to the one developed in Subsection 3.1.
Let us fix t > 0, and define the mapping s : R3n → R3n as,

z0 = s1(y0,y1,a) = y0,

z1 = s2(y0,y1,a) =

[
J(t,A)

L

]
y1 +

[
−J(t,A) exp(AT)y0

0(n−1)×1

]
,

z2 = s3(y0,y1,a) = a,

where
si : R3n → Rn, i = 1, 2, 3,

and
L =

[
0(n−1)×1 In−1

]
. (23)

Computing the inverse mapping, its Jacobian, and applying RVT technique, Theorem 1, the PDF of the random vector (z0, z1, z2) is
fz0,z1,z2 (z0, z1, z2) = fy0,y1,a

z0,[ J(t,Z)

L

]−1(
z1 +

[
J(t,Z) exp(ZT)z0

0(n−m)×1

])
, z2

∣∣∣∣∣∣det

[
J(t,Z)

L

]−1
∣∣∣∣∣∣ . (24)

Notice that for every t fixed, the control is given by the first component of z1. So, in order to determine its 1-PDF we marginalize expression
(24) with respect to the other variables, it is, z0(ω) = y0(ω), z2(ω) = a(ω) and the n − 1 last components of z1(ω) (corresponding to the n − 1

last components of y1(ω). This yields
f1(u, t) =

∫
R3n−1

fy0,y1,a

y0,

[
J(t,A)

L

]−1 [
u + J(t,A) exp(AT)y0

k

]∣∣∣∣∣∣det

[
J(t,A)

L

]−1
∣∣∣∣∣∣ dkdy0da, (25)

where k =
(
x1

2, . . . , x
1
n

)> and
dkdy0da =

∏
2≤l≤n

∏
1≤i≤n

dx1l dx0i dai−1.

4 APPLICATION TO STUDY THE DYNAMICS OF A RANDOM OSCILLATOR

A damped oscillator with random inputs and an additive control can be described by the following equation
x′′(t, ω) +

R(ω)

M
x′(t, ω) +

k(ω)

M
x(t, ω) = u(t, ω), (26)

where x(t, ω) is a SP describing the position of the mass at instant t; R(ω) is the resistance RV; k(ω) is the restoring force RV; M is the mass and
u(t, ω) is the control term, which is a SP.

Our main objective is to determine the 1-PDF of the solution SP, x(t, ω), and the control SP, u(t, ω), using the theoretical results obtained
in previous sections, considering the system is at an initial state, x(0, ω), x′(0, ω) and we want to reach a final target x(T, ω), x′(T, ω) at a fixed
instant T > 0. As Eq. (26) is a second-order random differential equation, we can rewrite (26) as a first-order linear control system according to
the structure studied in Section 2, i.e.

y′(t, ω) = A(ω)y(t, ω) + bu(t, ω), (27)
where

y(t, ω) =

(
y1(t, ω)

y2(t, ω)

)
=

(
x(t, ω)

x′(t, ω)

)
, A(ω) =

(
0 1

− k(ω)
M
−R(ω)

M

)
, b =

(
0

1

)
.

Notice that as it has been established in Section 2, Kalman’s controllability condition is fulfilled independently of the RVs defining the oscillator
behaviour.
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To study the influence on the solution due to the randommodel parameters k andR, wewill consider two cases, wherewe compare deterministic
and random scenarios. In all cases, we will consider M = 1, T = 1 and x1(ω) a multivariate Normal distribution with mean µ1 = (1, 0) and
variance-covariance matrix

Σ1 =

(
0.01 0

0 0.005

)
, (28)

and x0(ω) a multivariate Normal distribution with mean µ0 = (2, 0) and variance-covariance matrix
Σ0 =

(
0.01 0

0 0.01

)
. (29)

Case 1 In this case we choose the constant values k = 10 and R = 1.
Case 2 The following distributions are considered:

• k(ω) has a truncated Normal distribution of parameters µk = 10 and σk = 0.2 on the interval [9, 11].
• R(ω) has a truncated Normal distribution of parameters µR = 1 and σR = 0.1 on the interval [0.5, 1.5].

Observe that the mean of k(ω) and R(ω) coincide with the ones assumed in Case 1.
For all cases we have computed the joint 1-PDF of the solution SP to the random oscillator control problem (27), f1(y, t) = f1(y1, y2, t), and

from it, confidence regions at certain levels 1 − α have been determined too. Confidence regions at level 1 − α are constructed by plotting the
contour (taking f1(y, t) constant), Cα, which contains a probability 1− α. In other words, Cα is determined by∫

D

f1(y, t) dy = 1− α,

where D is the region bounded by Cα. Also, the 1-PDF of the control SP, u(t, ω), associated to this problem has been obtained. For more details
about the construction of the joint 1-PDF of the solution SP f1(y1, y2, t) and the 1-PDF of the control SP f(u, t) see Appendix A.

In Fig. 1 we have represented the joint 1-PDF of the solution SP of system (27) at t = 0.2 in Cases 1 (top) and 2 (bottom). We can observe
that the analytical computations obtained applying RVT method developed in this paper agree with Monte Carlo simulations and that the 1-PDF is
flattened in the presence of randomness in the model parameters. Similar behaviour can be observed considering other times. This issue is better
observed in Fig. 2, where we have represented the phase portrait. The expectation of the SP solution follows the shape of a spiral line, being
represented by a discontinuous curve. This expectation is shown with a pink point at the following times, t = {0, 0.2, 0.4, 0.5, 0.6, 0.9, 1}. Also, at
this specific times, confidence regions at 50% and 90% level are plotted in blue and red lines, respectively.

The 1-PDF of control SP, u(t, ω), for Cases 1 and 2 is shown in Fig. 3 at times t = {0, 0.1, 0.5, 0.8, 1}, top and bottom, respectively. We can
observe that in both cases it is sharper specially at initial and final times. Notice that the 1-PDFs for a fixed time are more similar when we are at
intermediate times.

In Fig. 4 we have plotted the 1-PDF, f1(x, t), of the solution SP, x(t, ω) of problem (26), at several times instants in both Cases 1 and 2. Also, the
mean µx(t) has been plotted with red and dashed lines in both cases. Notice that in Case 1 the PDFs are sharper at intermediate times.

5 CONCLUSIONS

In this article, the probability density function of a controllable linear system with additive control has been calculated, as well as the probability
density function of the control in the case that all the coefficients, initial condition and final target are random variables, and the control is a
stochastic process. The obtained theoretical results have been applied to study a random damped oscillator. It has been found that by adding more
randomness to model parameters, the variability of the solution increases. The results have been validated with Monte Carlo simulations. The
equation becomes a system where some of the elements of matrix A are random, which is a novelty with respect to previous works 10. This is a
first step to treat systems in the future where all the elements of A and B are random variables.
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FIGURE 4 Graphical representation of the 1-PDF, f1(x, t), of the solution SP x(t, ω) of problem (26) at different time instants (blue and continuous
lines). µx(t) of problem (26) (red and dashed lines). Up: Case 1. Down: Case 2.
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APPENDIX

A CONSTRUCTION OF THE 1-PDFS IN THE CONTEXT OF THE APPLICATION

In this appendix we detail how to construct the closed form of both the joint 1-PDF of the solution SP, f1(y, t), and the 1-PDF of the control SP,
f1(u, t). As in the application we have considered two cases, we obtain the formulas in each scenario.

A.1 Case 1

In this case x0(ω) = (x(0, ω), x′(0, ω)) and x1(ω) = (x(T, ω), x′(T, ω)) are assumed to be independent multivariate Normal distributions, while
the parameters k and R are considered deterministic quantities. Taking into account that now A is deterministic, we apply expression (22) but
only integrating with respect to x0(ω) = (x(0, ω), x′(0, ω)). So, in this case the expression of the joint PDF of the random vector y(t, ω) =

(y1(t, ω), y2(t, ω)) writes
f1(y, t) =

∫
R2

fx0

(
x0
)
fx1

(
M−1(t, A)y −

(
M−1(t, A)− I2

)
exp(At)x0

) ∣∣det
(
M−1(t, A)

)∣∣ dx01 dx02. (A1)
On the other hand, as x0(ω) ∼ N(µ0,Σ0) and x1(ω) ∼ N(µ1,Σ1) where µ1 = (1, 0), µ2 = (2, 0), and Σ0 and Σ1 are given by (29) and (28),
respectively, their density functions are

fx0 (x01, x
0
2) =

1

0.0002π
e
− 1

2

((
x0
1−2√
0.01

)2

+

(
x0
2√

0.01

)2)
and fx1 (x11, x

1
2) =

1

0.0001π
e
− 1

2

((
x1
1−1√
0.01

)2

+

(
x1
2√

0.005

)2)
. (A2)

Substituting the densities (A2) in the joint 1-PDF indicated in formula (A1), we obtain the closed expression for the joint 1-PDF of the solution SP
y(ω). At this point, we notice that we have carried out computations by Mathematica© software, and it allows us to define f1(y, t) as an integral.
Matrix M(t,A) in (A1) can be computed from formulas (14)–(17). Analogously, the 1-PDF of the control SP can be calculated. In this case, from the
expression (25) taking into account again thatA is deterministic, one gets

f1(u, t) =

∫
R3

fx0

(
x0
)
fx1

(
J(t, A)−1

(
u+ J(t, A) eAT x0

)) ∣∣det J(T,A)−1
∣∣ dx01 dx02 dx12, (A3)

where J(t,A) = q>(t,A)Λ−1(T,A) with matrices q and Λ given in (14) and (15), respectively. Note that, all the matrices, Λ(t,A), q(t,A), V(t,A),
M(t,A) and J(t,A) have been directly symbolically defined inMathematica©. Although, final expressions for matrices M(t,A) and J(t,A), and their
corresponding inverses, can be calculated, its expressions are very cumbersome. Then, we define them using the commandsNIntegrate,MatrixExp
and Inverse, among others.

A.2 Case 2

In this case x0(ω) = (x(0, ω), x′(0, ω)), x1(ω) = (x(T, ω), x′(T, ω)), k(ω) and R(ω) are assumed to be independent and following Normal
distributions. Now the expression of the joint 1-PDF of the random vector y(ω) = (y1(ω), y2(ω)) is

f1(y, t) =

∫
R4

fx0

(
x0
)
fx1

(
M−1(t, A)y −

(
M−1(t, A)− I2

)
exp(At)x0

)
fk(k)fR(r)

∣∣det
(
M−1(t, A)

)∣∣ dx01 dx02 dk dr. (A4)
The densities of x0(ω) and x1(ω) are calculated in (A2). With respect to RVs k(ω) and R(ω), they have truncated Normal distributions. Then, we
are able to calculate expressions for both densities

fk(k) =

{
1.99471 e−12.5(k−10)2

, 9 < k ≤ 11,

0, otherwise,
and fR(r) =

{
3.98943 e−50(r−1)2

, 0.5 < r ≤ 1.5,

0, otherwise.
(A5)

Substituting the densities indicated in (A2) and (A5) in the joint 1-PDF given by formula (A4), we obtain the closed expression for the joint 1-PDF
of the solution SP y(t, ω). As in the previous case, all calculations in these scenario have been carried out using Mathematica© software defining
the matrices symbolically.
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