
Renewable and Sustainable Energy Reviews 149 (2021) 111357

Available online 3 July 2021
1364-0321/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Innovative regression-based methodology to assess the techno-economic 
performance of photovoltaic installations in urban areas 

Enrique Fuster-Palop a, Carlos Prades-Gil b, X. Masip b, Joan D. Viana-Fons a, Jorge Payá a,* 
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A B S T R A C T   

Households present a significant contribution in the national energy consumption, and photovoltaics (PV) has 
become an economically feasible technology that can play an important role to lower this consumption and the 
associated emissions. Nevertheless, there is still a gap between too in-depth technical models for detailed studies 
and what urban energy planners need, which are simpler, yet reliable techno-economical tools to select which 
roofs of city buildings are the best candidates for PV production. In order to face this gap, a multiple linear 
regression (MLR) model has been developed to determine the economic payback using dimensionless parame
ters. The methodology has been adopted in the city of Valencia (Spain) for a large sample of multi-storey 
buildings, which are the most common typology. The approach has a high replicability since it can be applied 
for different countries. The MLR model provides a payback root mean squared error (RMSE) of 0.48 years in 
comparison with a complex techno-economic model which was previously developed and validated with the 
software System Advisor Model (SAM). The variables which have a bigger weight in the payback are the shadow 
losses and the power unit cost due to the economy of scale. With the current Spanish regulation, PV installations 
on multi-storey buildings can reach paybacks of around 7–15 years and the best option is to have large economies 
of scales together with a low energy surplus.   

1. Introduction 

European (EU-28) households accounted in 2018 for 24% (3299 
TWh) of the total final energy consumption, and the electricity share was 
of 25% (811 TWh) [1,2]. This share can be even bigger in some coun
tries, such as in Spain, where 44% was reached (75 GWh) in 2018 [3], 
and the expectations are that the energy consumption will increase even 
further [4]. 

The PV sector is nowadays in a very favorable situation both tech
nically and legally [5], particularly in Spain. The wide solar resource 
and the high PV penetration has led to a reduction of costs up to 90% 
during the last decade [6]. Self-consumption has also been promoted 
throughout the current Spanish regulation with the Royal Decree-Law 
15/2018 [5] and the Royal Decree 244/2019 [6], hereby opening the 
possibility to install PV installations on rooftops of urban environments 
from which several consumers, such as community of neighbours, can 
benefit. 

However, the scarce awareness of home-owners and investors on the 

cost-effectiveness of PV facilities has become an important barrier which 
hinders the implementation of PV facilities in cities [7]. Therefore, for a 
further penetration of PV in urban areas, a favorable framework is 
necessary, as well as the development of holistic energy plans. All the 
energy actors need information both on technical and on economical 
aspects [8]. 

In this context, there is a need for tools to analyze the PV economic 
potential [9] both accurately and with a low computational cost. These 
models could help energy planners, local administrations, companies, or 
investors to identify the urban rooftops where PV facilities would pre
sent reduced payback periods, and which are consequently more 
attractive for end users [10]. 

Literature on accurate PV models on an urban scale is abundant and 
includes the physical, geographic, as well as the technical PV potential. 
The most common approach of solar resource assessment in urban en
vironments is based on top-down methods which require to filter the 
information from radiation timeseries, Laser Imaging Detection and 
Ranging (LiDAR) and raster or vectorial maps to obtain mainly the solar 
energy potential on tilted surfaces of rooftops [11] and facades [12]. 
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Some well-known computational radiation models for this purpose are r. 
sun, ArcGIS Solar Analyst, SolarFlux and SORAM [13]. Additionally, 
many models has been proposed to estimate the technical PV potential 
[14], based on manufacturer data such as the module efficiency and the 
performance ratio (PR). A further level of detail has also been reached by 
including more complex electrical calculations which have achieved a 
very good agreement with measurement data [15]. As a result, several 
recent studies have helped to locate the most productive rooftops in 
cities such as Irun [16] or Vitoria [17]. Such studies are based on LiDAR 
and cadastral data and using Geographic Information System (GIS) 
software tools, which are widely used for this purpose. However they do 
not adddress cover the economic impact. 

Literature regarding the economic feasibility of PV installations in 
urban areas is very scarce and most frequent models that calculate the 
energy and economic savings are complex. For instance, Michael J. 
Mangiante et al. [18] proposed a method that couples geospatial (with 
LiDAR data) and economic models to determine the size and location of 
PV facilities on residential rooftops. Ali Mohammad Shirazi et al. [19] 
carried out a 3D-based techno-economic analysis of the PV potential, 
and optimized the payback period with the tilt angle of panels for fa
cades and roofs. Commercial software, such as PVsyst [20], TRNSYS 
[15] or SAM [21], has also been employed to simulate specific PV fa
cilities. Nevertheless, the computational cost would be unassumable if 
the latter simulation tools were employed on an urban level. Further
more, such tools do not consider systematically the available surface on 
rooftops nor the potential shadows cast by the urban environment. The 
shadowing elements have to be introduced one by one by the user. 

For energy planning applications, such as the search of optimal 
rooftops for PV facilities with a minimum economic payback, detailed 
results of the PV production are not required and they imply a high 
computational cost. In an effort to simplify the above-mentioned 
methods and their high computational demand, several studies carried 
out bottom-up approaches based on the statistical analysis of the 
different input variables. Machine learning techniques have also been 
commonly employed for this purpose [22]. Nevertheless, most frequent 
machine learning models such as random forest and neural networks 
add a further complexity in their interpretation and hinder their repli
cability [23]. In this context of urban planning, one of the simplest, yet 

fastest, and easy-to-replicate statistical model is a linear regression. 
Calcabrini et al. [24] proposed a simplified MLR model to estimate the 
yearly energy yield of PV facilities in urban environments based on a 
correlation between the radiation components and the skyline profile. 
The results were accurately validated with measurement data from 
several facilities. This work is in turn based on a study carried out by 
Chatzipoulka et al. [25] where the PV production was highly correlated 
for certain latitudes with the sky view factor (SVF) as a predictor. In 
contrast with the previous models that require a calculation of the sky 
view factor, K. H. Poon et al. [26] suggested a MLR model to predict the 
irradiation on rooftop and facades based on predictors such as the height 
of the building, the slenderness and the plot ratio. Trigo-Gonzalez et al. 
[27] proposed a MLR model to predict the hourly PV production using 
minimum weather conditions and the performance ratio as predictors. 
With this approach, root mean squared errors (RMSE) lower than 16% 
were obtained in comparison with measured production data of 
different PV power plants. Other MLR models employ as predictors 
technoeconomic, socio-demographic and building variables. For 
example, the model proposed by Jonas Müller et al. [28] forecasts 
spatial projections of PV installations, showing the versatility and 
effectiveness of a multidisciplinary approach. 

Nevertheless, the above-mentioned regression models focus on 
providing a quick estimation of the PV energy production and no 
additional simplified models have been found to obtain the profitability 
results, for instance the economic payback of any PV facility on a rooftop 
of a building. The latter depends on global building features that are 
easily known in advance, such as the amount of shadow losses or the 
maximum installable capacity. Consequently, there is a potential to 
develop simplified models based on the global building characteristics. 

In order to cover this gap, the present work provides a regression 
model to estimate the economic payback. The proposed model is an 
alternative to the complex top-down models, providing clear informa
tion to the local energy planners and the rest of energy actors on the 
payback which can be obtained with PV installations on a large number 
of urban rooftops. 

Given the previous literature review, the current study presents the 
following novelties: 

Abbreviations 

GIS Geographic Information System 
CO2 Carbon dioxide 
LiDAR Light Detection and Ranging o Laser Imaging 
GWh Gigawatt hour 
MLR Multiple linear regression 
kg Kilogram 
PV Photovoltaic 
km Kilometer 
REE Red Eléctrica de España 
kW Kilowatt 
SAM System Advisor Model 
kWh Kilowatt hour 
kWp Kilowatt peak 
m2 Square meter 
◦C Degree Celsius 
t Ton 
TWh Terawatt hour 
V Volt 

Symbol description 
Wp Watt of peak power 
BPR Building Power Ratio 

CR Cost ratio 
EPV Yearly PV production– 
EPV, location Yearly PV production per power installed in a specific 

location 
EPV, building, location Yearly PV production in a specific building in a 

specific location 
EPV, building, Valencia Yearly PV production in a specific building of 

Valencia 
G0,location Yearly global horizontal irradiation 
MAE Mean Absolute Error– 
NOCT Normal Operating Cell Temperature– 
PPV PV Installed Peak Power– 
PR Performance Ratio 
R2 R squared or coefficient of determination– 
RMSE Root mean squared error– 
SPV Yearly PV surpluses 
SF Shading Factor 
SL Shadow Losses– 
SR Surpluses Ratio– 
SR* Surpluses Ratio obtained with the Building Power Ratio 
SVF Sky View Factor– 
T0,location Yearly mean ambient temperature–  
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• A new MLR methodology has been conceived for the simulation of 
PV panels in urban areas, considering both the technical and the 
economic performance, predicting the economic payback of PV fa
cilities on rooftops as a function of the shadow losses, the installed 
capacity and unit costs.  

• A MLR approach has been developed to ensure a high replicability of 
the methodology in different countries, with their corresponding 
prices and electricity tariffs. 

2. Methods 

2.1. Description of the methodology 

The present section summarizes the methodology which has been 
applied to obtain the correlations. As mentioned above, the primary 
objective of this article is the development of a MLR economic model 
capable of providing the same global results as more complex and 
detailed models. Fig. 1 shows the workflow which has been adopted. 

In the first place, a complex techno-economic model has been built to 
calculate the economic payback automatically for any rooftop PV fa
cility defined only by its coordinates. This helps to easily carry out an 
analysis on an urban scale without going into any further technical de
tails. This model has been in turn validated by comparing the results 
with the software SAM [29]. In the second place, the predictive variables 
of the regression model have been identified by analyzing the results of 
the complex model. In the third place, the sample size has been defined 
through an iterative process, which starts from a reduced random 
sample of buildings. The minimum size to obtain a representative 
regression has been verified by means of an F-test. Finally, in step 4, the 
paybacks predicted by the MLR model have been compared against the 
paybacks obtained with the techno-economic model. Furthermore, 
alternative regressions have been developed to estimate the PV pro
duction in other regions of the world based on simple predictors such as 
shadow losses, installed power, annual horizontal radiation, and mean 
temperature. These models have been validated with the production 
obtained from the techno-economic model. 

As stated by Campos Inês et al., multi-storey residential buildings 

present a high potential for electricity savings [30], and they are also the 
most common buildings in cities by far. Consequently, this typology 
(urban houses with more than two floors) has been chosen for the pre
sent study. Tillmann Lang et al. [31] also stated that large-residential 
multi-floor buildings provide promising combinations of key drivers of 
economic performance, in a study which compared the PV 
self-consumption of four buildings types (residential and commercial, 
each small and large). 

2.2. Techno-economic model 

The techno-economic model has been developed in the R program
ming code to estimate the PV electricity generation and to calculate the 
energy, economic and environmental impact. The calculations are car
ried out with an hourly time step. The approach only requires as main 
input the rooftop coordinates of the building under study. 

As shown in Fig. 2, the model is composed of several submodules. In 
(i) the urban spatial model helps to obtain the skyline of surrounding 
obstacles around the point of study using LiDAR and cadastral data. In 
(ii) the irradiation model enables the calculation of the irradiation on a 
tilted surface considering nearby shadows. In (iii) the production model 
is employed to calculate the electrical PV yield of the entire facility. In 
(iv) the electrical demand of the building is calculated and compared 
with the production. In (v) the economic model estimates the costs, cash 
flows and energy savings. Finally, in (vi) the emissions model is used to 
quantify the environmental impact of the facility. 

The calculations are particularized to each specific building by using 
the LiDAR and cadastral information according to the following three 
variables: the skyline of the surrounding buildings, the rooftop area and 
the electrical demand of the building. 

The techno-economic model is explained in more detail in recent 
literature [32]. The present section describes the main assumptions and 
inputs which have been considered. 

2.2.1. Spatial urban model 
The shadow modelling can be based on shadow profiles or based on 

the skyline/viewshed. The first method is computationally heavy since it 

Fig. 1. Workflow of the proposed methodology.  
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requires to scan the environment for each time step. In contrast, the 
second method only requires a single scan to obtain the skyline of nearby 
buildings. The calculation of the shadow losses is performed using sun 
maps or knowing the sun path. As a consequence, the global irradiation 
is based on a single representative point selected manually for each 
rooftop. The latter is chosen as the area with less shadows from nearby 
buildings, chimneys, parapets, elevator shafts, etc. 

The skyline of the surrounding buildings is calculated given the co
ordinates of a representative point of the rooftop. This skyline is the first 
step to quantify the shadow loss factors for beam and diffuse irradiation. 
Both factors have been obtained by means of a GIS-based model, 
developed by Viana-Fons et al. [33], which employs the cadaster data as 
inputs. The cadaster data provides the geometry of the rooftops of the 
buildings, and the height of the buildings is obtained from LiDAR data 
[34]. As a result, each polygon is assigned a determined height, hereby 
creating a prismatic model. The assumed error for this prismatic 
approach is enough to accurately estimate the shadow losses in the 
rooftops of Valencia [35]. Additionally, according to Filip Biljecki et al. 
the potential improvement on the level of detail is very small [36]. 

The median of the Z coordinate of the LiDAR points contained in the 
building footprints has been used for the calculation of the height of the 
buildings in the vector-based 3D city model. The median is a high robust 
statistic estimator for this application according to Viana-Fons et al. 
[37]. Through geometric calculations proposed by Gál and Unger [38], 
the model generates a skyline profile. For each azimuthal angle step, set 
to 5◦, the skyline is obtained within a radius of 200 m from the calcu
lation point on the rooftop. According to the preliminary results re
ported by Chen et al. [39], considering obstacles located further than 
300 m do not yield more accuracy to the SVF calculation. 

2.2.2. Irradiation model 
The isotropic radiation model from Liu and Jordan [40] has been 

employed in the model. For a given building rooftop, the program cal
culates the hourly global irradiation on the PV module. The azimuth 
angle considers the shadows cast by the surrounding buildings and 
nearby obstacles. The components of the horizontal irradiation have 
been previously obtained from the Typical Meteorological Year data of 
Valencia provided by EnergyPlus [41] and the equations of J.J. 
Michalsky [42] for the sun path, and the ground reflectance. 

The shadow losses affect the beam and the diffuse components, 

respectively. They have been included in the calculation of the Shading 
Factor (SF) and the Sky View Factor (SVF). 

Moreover, the skyline must contemplate those regions of the visible 
sky that are blocked by a given surface of the surroundings. For this 
purpose, the analytical expression proposed by Arbi Gharakhani et al. 
[43] is used to generate a profile which associates an elevation angle for 
each azimuth to the sky which is blocked by the panel. This obstacle 
profile is combined with the skyline of the surrounding buildings, 
resulting in a new combined obstacle skyline on which the shadow loss 
factors (SF and SVF) are calculated. 

Additionally, soiling losses of 5% have been applied to the global 
irradiation, the result is denoted as effective global irradiance. 

2.2.3. Production model 
The hourly PV energy production is calculated according to the 

Spanish guidelines from IDAE [44]. The latter assume typical values of 
PR and an efficiency of the PV module, which depends on the temper
ature considering a standard power’s temperature coefficient and a 
normal operating cell temperature (NOCT). The production is scaled 
considering the effective area of panels on the rooftop area. The total 
area is reduced by 30% to consider other space requirements such as for 
Heating Ventilation Air Conditioning), chimneys, or shadows from the 
surrounding walls. An annual degradation of the power of the modules 
of 5% has also been considered. 

2.2.4. Demand model 
The PV production is compared with the electricity demand curve of 

the entire building. The latter is generated assuming a dimensionless 
hourly demand profile [27] multiplied by the annual electricity demand 
of the building, considering all its dwellings and premises from the 
cadastral information. The model assumes a same profile of the load 
curve for all dwellings and other premises of the building. 

2.2.5. Economic model 
The economic calculations have been developed according to the 

self-consumption modality with surpluses under compensation of RD 
244/2019 [45]. The latter allows the energy surpluses to be sold to the 
grid to perceive a reduction which is as maximum the monthly elec
tricity bill with no PV. The electricity and compensation prices are ob
tained from time series of 2018 provided by the corporation which 

Fig. 2. Block diagram of the PV techno-economic model.  
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operates the Spanish electric grid (Red Eléctrica de España, REE). The 
assumed investment costs depend on the installed power as indicated in 
Table 1. Additionally, a yearly operation and maintenance cost has been 
considered, as well as a yearly inflation rate and discount rate, as indi
cated further on in Table 2. 

2.2.6. Emissions model 
The model also estimates the avoided emissions due to savings from 

the electricity grid considering an emission factor, as well as the envi
ronmental impact in the manufacturing of PV modules and its 
transportation. 

The emission factors, together with all the other inputs, are listed in 
Table 2. The model is calculated in hourly terms and the simulations are 
run throughout the entire life cycle of the facility (25 years). 

3. Results and discussion 

The correlations use as a starting point the performance of PV in
stallations located in potential roof tops of Valencia. The performance is 
obtained with the techno-economic model described in section 2.2. In 
section 3.1, the techno-economic model is validated. In section 3.2, the 
performance results obtained with the model are employed for the 
development of the correlations. 

3.1. Validation of the techno-economic model 

The energy production results provided by the techno-economic 
model have been compared with the results provided by the software 
SAM. Both models have been executed for a same PV self-consumption 
facility, which is summarized in Table 3 and is located on a rooftop of 
a public building in Valencia (39.469072◦, − 0.340381◦). Both models 
are fed with the same inputs and climate data. The Simple Module Ef
ficiency Model was chosen in SAM and the shadow losses were intro
duced with the feature “solar azimuth-by-altitude beam irradiance 
shading losses”, considering the skyline obtained with the Viana Fons 
et al. model [37]. Fig. 3 compares the PV production obtained with both 
models. The RMSE and mean absolute error (MAE) are 0.525 kWh and 
0.233 kWh, respectively, and the deviation is of ± 10% except for low 
production levels at afternoon hours. This is probably due to the fact that 
the azimuth resolution allowed in SAM (20◦ each step) to introduce the 
skyline of surrounding obstacles is less accurate than the one obtained 
with the techno-economic model (5◦ each step). As a result, there are 
small deviations in radiation results in late hours when the sun is 
covered by a building in the west. Moreover, the PV production in the 
late afternoon may be below or above the inverter electrical thresholds 
defined in SAM. This aspect has not been considered in the 
techno-economic model to simplify the calculations. 

3.2. Payback regression model 

The payback regression model is obtained from the analysis of the 
simulation results provided by the techno-economic model. The first 
step is to define the minimum sample of buildings and to define the 
predictors. 

3.2.1. Assumptions and required sample size 
The payback regression model has been applied to a random sample 

of multi-storey buildings with flat rooftops in the urban nucleus of 
Valencia. 

As exposed in section 2.2 and in Fig. 2, PV facilities are influenced by 
buildings due to three different features: (i) the skyline of the sur
rounding buildings, which is associated with the shadow losses; (ii) the 
available rooftop area related with the potential economy of scale and 
with the energy production; and (iii) the demand profile, which defines 
the amount of surpluses and the self-consumption levels. Given the 
previous variables, four different dimensionless predictor variables were 
initially tested to predict the economic payback: 

Table 1 
Unit power costs as a function of the installed power.  

Power range, P (kWp) Power unit cost (€/kWp) 

P ≤ 10  1.600  
10 ≤ P ≤ 20  1.800 − 20⋅P  
20 ≤ P ≤ 50  1.566 − 8, 33⋅P  
50 ≤ P ≤ 500  1.178 − 0, 556⋅P  
P > 500  900   

Table 2 
Summary table of all the inputs of the simulations.  

Parameter Value Units Source 

Default module tilt angle 30 ◦ – 
Default azimuth tilt angle 0 ◦ – 
Latitude 39,4697 ◦ – 
Soiling losses 5 % M. R. Maghami et al. 

[46] 
Albedo coefficient 0,2 – P. Gilman et al. [47] 
Efficiency of the module 15 % Ó. Perpiñán [48] 
Power temperature coefficient 

of the module 
− 0,4 %/◦C M. C. Brito et al. [49] 

NOCT 45 ◦C IDAE [44] 
Performance ratio 0,8 – W.G.J.H.M. van Sark 

et al. [50] 
Useful area ratio 0,7 – – 
Area/power ratio 10 m2/Wp Grupotech [51] 
Module degradation rate 2 %/year D.C Jordan et al. [52] 
Electrical demand per 

dwelling 
3500 kWh/year IDAE [53] 

Electrical demand in 
commerces 

300 kWh/ 
m2year 

ANPIER [54] 

Electrical demand in offices 137,75 kWh/m2 Cámara de Madrid 
[55] 

Electric tariff (mean) 0,12,335 €/kWh REE [56] 
Surplus remuneration 0,046,584 €/kWh REE [57] 
O&M costs 9,35 €/Wp J.Chase [58] 
Inflation rate 1,30 % inflation.eu [59] 
Discount rate 7 % CNMC [60] 
CO2 grid emission factor 0,267,262 kgCO2/ 

kWh 
REE [61] 

CO2 transport emission factor 0,151 kgCO2/ 
t⋅km 

PVsyst [62] 

CO2 manufacturing emission 
factor 

932 kgCO2/ 
kWp 

PVsyst [63] 

Module weight/power ratio 0,07047 t/kWp Atersa [64] 
Life cycle of the facility 25 years M. S. Chowdhury 

et al. [63]  

Table 3 
Characteristics of the PV facility located in Valencia for the model validation.  

Characteristic Value Units 

Installed power 25.94 kWp 

Total area of panels 133.03 m2 

Temperature coefficient − 0.36 %/oC 
Maximum power voltage 33.54 Vdc 

Open circuit voltage 37.38 Voc 

Module efficiency 19.5 % 
Inverter nominal power 25 kW 
Inverter efficiency 98.3 % 
Tilt angle 10 ◦

Azimuth angle 0 ◦

Modules per string in subarray Subarray1:22 

Subarray2:18 
– 

Modules parallel in subarray Subarray1:2 

Subarray2:2 
–  
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• The percentage of shadow losses (SL) defined as the ratio between 
the yearly global irradiation on the tilted surface including shadows 
and the yearly global irradiation on the tilted surface without 
shadows.  

• The cost ratio (CR) defined as the relationship between the power 
unit cost of the facility and the maximum power unit cost (assumed 
as 1.6 €/Wp for small facilities, as shown in Table 1). This predictor 
indirectly considers the available rooftop area since it is related with 
the power unit costs and to the economy of scale.  

• The building power ratio (BPR) defined as the relationship between 
the peak power of the demand curve and the peak PV installed 
power.  

• The Surpluses Ratio (SR) understood as ratio between yearly energy 
surpluses (SPV) and the production (EPV). This ratio is important since 
surpluses in Spain are treated differently than self-consumption at an 
economical level. 

The minimum required sample size is determined by means of an F- 
test performed with the software G*Power [65]. The latter carries out 
statistical power analyses, with the statistical F-test feature for MLR 
“Fixed model, R2 deviation from zero” [66]. The F-test evaluates for a 
given sample size whether a continuous variable, the payback in this 
case, is significantly estimated by a set of predictors, in this case the SL, 
CR, BPR and SR. The program assumes as null hypothesis that the R2 

equals zero, and as alternative hypothesis that the R2 is greater than 
zero, which means that there is a correlation between the predictors and 
the payback with a statistical significance. 

In order to perform this test it is necessary to assign values to the 

type-I error, the power and the effect size index (f2). The standard type-I 
and type-II errors have been fixed respectively as 5% and 20% (associ
ated with a power of 80%, the probability of rejecting the null hy
pothesis). The latter values have been fixed taking as reference the five- 
eighty convention suggested by J. Cohen [67]. These values are also 
within the range proposed by other authors [68]. The effect size is set at 
f2 = 0.29, which depends on the correlation coefficients between the 
four predictors and the payback. These correlation coefficients are ob
tained from the results of a sample of 200 buildings simulated prior to 
this test and yield similar values to the ones shown in Fig. 4. 

As a result of the F-test, the minimum sample of buildings is 47 with a 
power of 80,91%. In other words, there is a probability of 80,91% that 
the R2 will significantly be greater than zero if the sample is of 47 
buildings or more. Nevertheless, in order to cover all the districts of the 
urban nucleus, at least 50 buildings per district have been selected, 
hereby yielding a total of 1035 buildings for the entire city shown in 
Fig. 4. This amount has been finally reduced to 893 buildings after 
filtering the paybacks which are higher than the facility useful life [63]. 
As discussed in section 3.3.1, the sample size decision is backed by 
analyzing the RMSE for several test and train ratios (the proportion of 
the dataset intended to fit the model and its complementary intended to 
validate the model). 

3.2.2. Regression model 
Due to the fact that the MLR assumes that the residuals of the model 

are distributed normally [69] the normality of the filtered payback 
dataset of 893 buildings has been assessed with a Shapiro-Wilk test. The 
null-hypothesis is that the economic payback is distributed normally, 

Fig. 3. Validation of the hourly PV production from the techno-economic model compared with the energy results obtained from SAM for a same facility in Valencia.  
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consequently if the p-value is less than a type-I error of 5% [67], the null 
hypothesis is rejected. The test provides a p-value of 2.2⋅10− 16, thus the 
data does not meet a pure normality assuming a confidence level of 95%. 
Furthermore, the distribution is moderately right-skewed (skew = 1.23), 
which indicates an asymmetric density distribution with a long tail on 
the right side. in order to reduce its right skewness, the payback variable 
has been transformed with the inverse root square (Payback− 0.5), as 
suggested Tabachnick et al. [70]. A normal distribution has then been 
obtained with a p-value of 0.18 for the Shapiro-Wilk test and a with a 
distribution which is practically symmetric (skew = − 0.03). Finally, the 
payback dataset has been randomly split using a 20:80 ratio, to create 
the training dataset and test dataset, respectively. The first one is used to 
train the MLR model and the second one to assess and validate the 
model. 

Once the minimum sample size has been obtained and the payback 
has been fitted properly, the correlation matrix of Fig. 5 helps to obtain a 
preliminary assessment of the four predictors given their impact on the 
predicted variable, which is the economic payback. 

As a first step it is necessary to reduce the multicollinearity among 
predictors. Fig. 5 shows a strong positive correlation of 0.89 between the 
predictors BPR and SR, while the correlation values among the other 
predictors are negligible. 

For this reason, a polynomial regression of degree six has been 

introduced to reflect the relationship between the SR and the BPR (as 
denoted by SR* in Equation (1)). As a result, the MLR model presented in 
Eq. (2) predicts the economic payback with only three features (SL, CR 
and SR), as also shown in Fig. 6. From the first row of this correlation 
matrix, the degree of influence of each predictor is determined. SL has 
the biggest impact, followed by the CR, and finally SR* in a lower level. 

SR*=
SPV

EPV
=k0+k1⋅BPR+k2⋅BPR2+k3⋅BPR3+k4⋅BPR4+k5⋅BPR5+k6⋅BPR6

(1) 

Finally, the MLR for the payback is described in equation (2). The 
regression parameters are estimated by ordinary least squares. 

1̅̅
̅̅̅̅

PB
√ = k0 + k1⋅SR* + k2⋅CR + k3⋅SL + k4⋅SL2 (2) 

The coefficient results for both regressions are gathered in Table 4. 
The correlations are very good given the high R2 values. The negative 
sign of the coefficients shows that an increase of any of the predictors 
implies an increase of the payback. Considering their absolute value and 
the correlation matrix, the most important predictor is CR, followed by 
SL and finally, to a lower extent, SR*. 

Fig. 4. Location of the simulated buildings in the city of Valencia, Spain.  

Fig. 5. Correlation matrix with the preliminary predictors.  Fig. 6. Correlation matrix with the final predictors.  
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3.3. Validation of the regression model 

The previous models have been fed with the test dataset, and the 
predicted values have been compared with the ones from the complex 
model. According to Fig. 7, 97.97% of the predicted values present a 
relative error lower than 5%, and there are only three outliers in total. 
The MLR tends to over-predict slightly the payback in general, whereas 
the predictions with the greater residuals are underpredicted. 

The errors shown in Table 5 indicate that the model provides accu
rate payback values, as illustrated by the RMSE which is of only 0.48 
years. This value is completely assumable since the purpose of this 
regression is to provide an order of magnitude for energy planning. 

3.3.1. Analysis of the errors depending on the test/training data ratio 
An analysis of the error dispersion depending on the training set size 

has been carried out to demonstrate that the chosen sample size is robust 
and to guarantee an accurate evaluation error score independent of the 
training and test data partition. For this purpose, the training dataset 
size is increased from 100 to 700 by steps of 100. For each step, the 
original dataset is split into a random training sample and its comple
mentary for testing is taken. Finally, the RMSE and MAE are calculated 
by repeating the process 1000 times, resulting in a different error value 
in each repetition due to the randomness of the sampling. The error 
distributions for each training dataset size are reflected in Fig. 8 and 
Fig. 9. The mean values of the RMSE and MAE register a very slight 
reduction, hereby confirming that a sample size of 200 buildings for 
train data is large enough to present an accurate regression. In both 
figures, there is a slight increase of the error between the 400 and 500 
samples due to an overfitting of the model. The model reproduces too 
closely a particular dataset for samples larger than 400 buildings, 
consequently leading to poor generalization when predicting new 
testing data. 

Additionally, an independent 10-fold cross-validation of the MLR 
model has been carried out. This is important to contrast the previous 

errors with a standardized methodology which is generally employed to 
validate regression models. The payback dataset is randomly split with a 
20:80 ratio into 10 distinct subsets called folds. Afterwards, the MLR 
model has been fitted 10 times, choosing every evaluation step a 
different fold to train it and selecting the complementary folds to test it 
with the payback results from the complex techno-economic model. The 
results are similar to the previous plots in Figs. 8 and 9 with an average 
RMSE of 0.59 years and a MAE of 0.28, as well as a standard deviation of 
0.043 and 0.008 years, respectively. 

3.3.2. Regression results for other locations 
In order to ensure the replicability of the methodology for other lo

cations, two regressions have been proposed, which combined estimate 
the yearly PV energy production, a value that can be easily converted 
into economic savings. 

The first regression consists of a MLR model to estimate the yearly PV 
production in Valencia, depending on the installed peak power (PPV) and 
SL. 

EPV, building, Valencia(PPV , SL)= k0 + k1 ⋅ PPV + k2 ⋅ SL+ k3 ⋅ PPV ⋅SL (3) 

The production results obtained with the previous Eq. (3) for the 
sample of buildings described in section 3.2.1 have been compared in 
Fig. 10 with the results of the techno-economic model, obtaining an 
RMSE of 91.91967 kWh/year and a relative error lower than 5% in all 
cases 

The second correlation is the simple linear regression shown in 
equation (4), which has been introduced to adapt the PV production 
(with SL = 0%) from the previous MLR model to the climatic conditions 
of any given location. This conversion only depends on location data 
such as the yearly global horizontal irradiation (G0, location) and the mean 
ambient temperature (Tlocation). 

EPV,location
(
G0, location, Tlocation

)
= k0 + k1 ⋅ G0, location + k2⋅Tlocation (4) 

The combination of both regressions enables the calculation of the 
yearly PV production from any given location, as indicated in equation 
(5). Fig. 11 presents the validation results for several locations for fa
cilities with null shadow losses. The deviation is below 5% for 12 of the 
15 locations assessed and the regression model tends to slightly over
predict the yearly production, except for the high latitudes. 

EPV,building,location =EPV, building, Valencia(PPV , SL)⋅
EPV,location

(
G0, location, Tlocation

)

EPV,location
(
G0, Valencia, TValencia

)

(5) 

Additionally, shadow losses in the range from 0 to 40% have been 
simulated in different locations to check that there is still a linear rela
tionship between EPV, Location, G0, location, and Tlocation. Fig. 12 shows these 
results, revealing that most of the points are within a deviation of ±

Table 4 
Coefficients of the polynomial regression (Equation (1)) and the MLR model (Equation (2)).  

Regression k0  k1  k2  k3  k4  k5  k6  R2 

SR* = SPV/

EPV  

0.036 2.107 0.822 − 0.612 − 0.026 0.251 − 0.110 0.9975 

1/
̅̅̅̅̅̅
PB

√ 0.586 − 0.209 − 0.279 − 0.234 − 0.223 – – 0.9951  

Fig. 7. Results and validation of the MLR model to predict the payback.  

Table 5 
Errors provided by the polynomial regression to estimate SR and the MLR to 
estimate the PB.  

Regression RMSE MAE Units 

SR∗ = SPV/EPV  0.00398 0.00306 – 

1/
̅̅̅̅̅̅
PB

√ 0.48242 0.19189 years  
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Fig. 8. RMSE boxplots for different train/test splits.  

Fig. 9. MAE for different train/test splits.  
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10%. In general, there is an underprediction when the shadow losses 
increase for a same location. Again, as described in Fig. 11, there is an 
underprediction in Brussels (the location in Fig. 11 with a highest lati
tude), however for regular shadows and latitudes the regression model 
provides accurate results providing a RMSE of 3.20 kWh/kWp⋅year. 

Finally, the coefficients and errors of Equations (3)–(5) are gathered 
in Table 6. 

The previous regressions can be employed as a starting point to make 
the balance with the electrical demand, to apply other costs or electricity 
prices and to calculate the surplus remuneration according to appro
priate climate and regulation (net-metering, feed-in-tariff, and other 
schemes gathered by Campos Inês et al. [30]). 

3.4. Overall analysis of the assessed multi-storey buildings 

The main results obtained with the techno-economic model for the 
sample of 893 buildings (those whose payback is under 25 years) are 
showcased in the boxplots of Fig. 13, Fig. 14 and Table 7. 

According to Fig. 13, the average economic payback for the sample is 
11.59 years. 40.42% of the total results yield paybacks between 8 and 11 
years and only 0.33% provide values under 6 years. As mentioned in 
section 3.2.2, the economic payback distribution is right skewed since 
there is a wide dispersion of cases for which the profitability is hindered 
by shadows and/or a low match between production and demand or 
high costs. In fact, this tail of the distribution would be larger if the 
discarded facilities with paybacks beyond the lifecycle had been repre
sented (13.72% of the original dataset). 

The environmental payback, understood as the time to recover the 
emissions generated during the manufacturing and transport of the 
panels, presents an average of 2.31 years, which shows a high positive 
impact on the environment even on a short term. The low standard 
deviation is due to the assumption of a similar emission factor for all the 
cases. The dispersion could increase if different manufacturers had been 
considered. However, this analysis provides an order of magnitude of 
the notorious difference between the economic and environmental 
paybacks. 

As Fig. 14 shows, the low levels of exports, with an average of 3.62% 
of the yearly production, are explained by the high level of electricity 
demand in comparison with the PV production, which is limited by the 
effective rooftop area. These small exportation values together with the 
low prices of surplus remuneration are the main reasons why electricity 
export does not play an important role to improve the economic payback 
for these buildings. The same conclusions were obtained with the MLR 
model. Given the reduced exportation, practically for half of the simu
lated buildings the energy generated is self-consumed on site. 

Regarding the renewable fraction shown in Figs. 14 and 17.73% of 
the total grid electricity consumption could be supplied entirely with on- 
site PV production. The highest renewable fraction and exportation 
ratesare achieved in buildings with a yearly PV production higher than 
65% of the yearly demand. In general, these installations are oversized. 

The shadow losses usually have low values for this type of building 
due to their elevated height. An average shadow loss of 17.73% is 

Fig. 10. Results and validation of the MLR model to predict the en
ergy production. 

Fig. 11. Results and validation of the polynomial regression model to predict the SR.  
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obtained and the latter drops significantly down to 10.39% if the median 
is considered. These losses are generally due to shadows cast by the 
railings, elevator shafts and chimneys. In most modern districts, thanks 
to urban planning, most of the buildings have a similar height and 
consequently they hardly produce shadows between them. This phe
nomenon can be noticed with the spatial distribution of paybacks shown 
in Fig. 4, where downtown buildings present higher paybacks due to 
abrupt skylines, whereas the modern districts on the outskirts yield 
lower paybacks. 

At a more detailed level in the building characterization, the build
ings which present the best profitability results share the following 
characteristics: 

• Large rooftop areas, which imply lower unit costs due to the econ
omy of scale.  

• High levels of electricity consumption, since the PV generation is 
intended to reduce the costs of the energy term of the electricity bill, 
whose cost is higher than the current surplus remuneration.  

• Low percentage of shadow losses to maximize the PV production.  
• Coincidence of consumption hours with radiation hours to maximize 

the energy and bill savings and reduce surpluses, which provide a 
lower income. 

The above-mentioned characteristics generally fit with the charac
teristics of industrial buildings and residential multi-storey buildings. 
Both typologies are consequently the most suitable for PV production. 
Taking the above-mentioned characteristics into account, an alternative 
to subsidies that could help to improve the payback consists of creating 
energy communities with a same PV facility, but aggregating the elec
trical demand from several buildings. As a result, all of the produced 

energy could be self-consumed and the savings in the electric bill would 
be higher. 

According to the techno-economic model, PV facilities in single- 
family houses do not present as favorable economic results as multi- 
storey buildings, although they present a greater renewable fraction 
(with an average of 30% of the PV production) and exportation rates 
(with an average of 40% of the production), as confirmed by simulating 
100 houses. The average of their shadow losses registered is 35%, which 
contrasts with the average of 10% for multi-storey buildings. 

Likewise, with the results of the sample of buildings, Fig. 15 shows a 
gradient plot representing the influence of the two main predictors (SL, 
and power unit costs) on the economic payback. A greater weight of the 
unit power cost is appreciated. For costs above 1.5 €/Wp, the shadow 
losses must remain lower than 40% to guarantee a payback lower than 
the facility life cycle. The gradient plot has been constructed by means of 
a linear interpolation of the discrete points of the sample in a 200 × 200 
grid. The presence of outliers and their consequent discontinuities in the 
plot for costs over 1.4 €/Wp are because the selected predictors do not 
explain entirely the payback for these specific points. 

4. Conclusions 

The present work has been developed to shorten the gap between 
energy planners and detailed simulation models of PV facilities. A MLR 
model has been developed, in a similar approach as recent studies from 
literature, although including the main novelty of addressing the eco
nomic impact and ensuring a high replicability since it can be applied for 
other locations. As an application, the mentioned methodology has been 
applied for the most common buildings in the city of Valencia, which are 
multi-storey residential buildings. 

Fig. 12. Results and validation of the MLR model to predict the payback.  

Table 6 
Coefficients of equations (3)–(5).  

Regression k0  k1  k2  k3  RMSE (kWh/kWp year) MBE (kWh/kWp year) R2 

EPV, building, Valencia(PPV,SL) − 13.167 1534.410 − 85.760 − 1510.610 2.116 0.148 0.999 
EPV,location(G0, location, Tlocation) 185.705 0.841 − 6.499 – 3.200 2.751 0.970 
EPV,building,location  – – – – 3.200 2.751 0.970  
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Fig. 13. Economic and environmental payback results for the sample of buildings of Valencia.  

Fig. 14. Shadow losses, exportation ratio and renewable fraction for the sample of buildings of Valencia.  
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The MLR model is based on the results given by a complex techno- 
economic model, which has previously been compared and validated 
with SAM providing a RMSE of 0.53 kWh in the hourly PV production. 
The proposed MLR model has been validated by means of a cross- 
validation methodology which has provided a RMSE of 0.48 years 
which is perfectly assumable for energy planning purposes. As a com
plement for other countries, a combination of regressions has been 
proposed to estimate the PV production on any rooftop given the ca
pacity, shadow losses and climatic data. The relative errors for this 
methodology are close to 10% for the studied locations with a R2 value 
of 0.97. 

The following conclusions have been obtained when applying the 
methodology to the residential multi-storey buildings of Valencia:  

• The key drivers on the payback are the shadow losses and the 
economy of scale. The best economic paybacks are obtained in large 
available rooftop areas.  

• On the demand side, buildings with high levels of electricity demand 
tend to profit in a high percentage from on-site energy generated 

from self-consumption. The surpluses are very low and all the PV 
production is translated into energy and bill savings. In the case of 
low consumption levels such as buildings with very few dwellings, 
the savings are very limited, therefore their cashflows are low in 
comparison with the investment costs.  

• For high electricity demands, the sale of surpluses does not represent 
a relevant factor to generate large savings and reduce the payback. 
The sale price in Spain is lower than the price of the bill. One solution 
to reduce the high paybacks in single-family houses and buildings 
with low energy demand can be the promotion of energy commu
nities, since the results show that adding consumption and reducing 
exports leads to a better profitability. As future work, the authors will 
analyze in more detail the opportunities of PV production in energy 
communities. 
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Table 7 
Statistical results for the sample of buildings in Valencia.  

Variable Units Mean Standard deviation Skewnessa Minimum Q1 Median Q3 Maximum 

Economic Payback years 11.59 3.93 1.26 5.83 8.79 10.68 13.26 24.97 
Environmental Payback years 2.31 0.48 1.85 1.88 1.97 2.14 2.50 5.25 
Shadow losses % 10.39 10.15 1.29 0.00 2.40 7.31 15.21 50.28 
Exportation % 3.62 7.92 2.99 0.00 0.00 0.06 2.78 55.53 
Renewable fraction % 17.73 8.94 0.32 0.24 11.21 17.09 23.48 44.20  

a Adimensional value. 

Fig. 15. Relationship between the economic payback and the most influential predictors: shadow losses and power unit costs for the sample of buildings of Valencia.  
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