
mathematics

Article

On the Languages Accepted by Watson-Crick Finite Automata
with Delays

José M. Sempere

����������
�������

Citation: Sempere, J.M. On the

Languages Accepted by Watson-Crick

Finite Automata with Delays.

Mathematics 2021, 9, 813. https://

doi.org/10.3390/math9080813

Academic Editor: Matteo Cavaliere

Received: 28 February 2021

Accepted: 7 April 2021

Published: 9 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València,
Camino de Vera, 46022 Valencia, Spain; jsempere@dsic.upv.es

Abstract: In this work, we analyze the computational power of Watson-Crick finite automata (WKFA)
if some restrictions over the transition function in the model are imposed. We consider that the
restrictions imposed refer to the maximum length difference between the two input strands which
is called the delay. We prove that the language class accepted by WKFA with such restrictions is a
proper subclass of the languages accepted by arbitrary WKFA in general. In addition, we initiate the
study of the language classes characterized by WKFAs with bounded delays. We prove some of the
results by means of various relationships between WKFA and sticker systems.

Keywords: Watson-Crick finite automata; sticker systems; DNA computing; formal languages

1. Introduction

DNA computing is a research area that draws its inspiration from the processes that
take place in nature based on the functioning and structure of biomolecules, DNA, RNA,
and proteins [1]. For more than 20 years, several models have been proposed in this
research area, most of them universal and complete models, inspired by natural processes
carried out in living cells. One of the first computational models proposed in the framework
of DNA computing was the Watson-Crick finite automaton (WKFA) [2], which is a type of
finite state abstract machine that takes its input tape from the DNA double strand and takes
into account the complementarity relationships between symbols as it happens in nature
with respect to the DNA nucleotides. That is, adenine (A) is related with thymine (T) and
cytosine (C) is related with guanine (G), according to the Watson-Crick complementarity
rule. The other aspect taken under consideration in this model is the ability of DNA to
recombine. DNA recombination occurs at the ends of a molecule that has been previously
denatured and fractionated, that is the primers of the molecule that have a length that
allows to keep the molecules stable. The length of these “sticky ends” will be used in this
work to characterize the language acceptation by WKFA. Several variants of the WKFA
model have been proposed in recent years. We can mention, among others, the reversible
WK automata [3], the unary WK automata [4], the WK Jumping Finite Automata [5], and
the 5′ → 3′ sensing WKFA [6], among others. In [7], a system with several WKFA and
parallel communication is proposed. A survey on the WKFA model can be found in [8].

Another computation model proposed in the DNA computing framework was the
sticker systems [9]. The characteristics of this model are similar to WKFA (double strands
and complementarity) but within a generative approach. In this case, we have a finite set
of (possibly incomplete) double strands (the axioms) and a finite set of rules (dominoes)
that can enlarge the axioms by using an operation over strands called sticking. The
sticking operation is based again on the DNA recombination by the double strand and the
complementarity relationship. It could be considered that sticker systems and WKFA are
very similar models whose main difference is that WKFA are accepting systems (at least in
their basic definition), while sticker systems are generating systems.

In this work, we propose an additional restriction in order to accept or reject a double
strand in the WKFA. We consider that the length of the primers of the double strand during

Mathematics 2021, 9, 813. https://doi.org/10.3390/math9080813 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2393-9224
https://doi.org/10.3390/math9080813
https://doi.org/10.3390/math9080813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9080813
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9080813?type=check_update&version=2

Mathematics 2021, 9, 813 2 of 12

the computation time, does not exceed a predefined positive integer value. We can impose
this feature in the computations performed during the application of transitions in the
WKFA, as is the case in the delayed computations of sticker systems [10], or we can define
it explicitly in the transitions of the model. In this work we will propose the latter approach,
and explicitly define the delays in the definition of the model transition function. Once the
characteristic feature we are working with has been explicitly defined, we will proceed to
study its computational power by relating it to the classical theory of formal languages. It is
important to study such kinds of restrictions in the model because if we wish to see practical
applications of the model such as its application in bioinformatics [11], then working with
the model in a generic way implies having to solve extremely difficult problems such
as working with ambiguous and non-deterministic models. By imposing these types of
constraints, the model can be put into a practical context that allows the application of
machine learning techniques in order to solve problems of a very diverse nature [12].
Hence, it is important: (1) To study the scope of the restrictions from a formal point of view
(i.e., study the classes of languages that can be defined with the restricted model), and (2)
explicitly define the restrictions imposed for better use in other application areas.

The structure of this paper is as follows: In the next section we will introduce the
basic concepts about formal language theory and the WKFA and sticker systems that we
will use in the rest of the work. In addition, we define the delays in sticker systems and
we relate sticker systems with WKFA. In Section 3, we will introduce the WKFA model
with bounded delays and we define some relationships between their language classes. In
addition, we provide a sufficient condition to define bounded delays as the intial delays
in the WKFA. Finally, in Section 4, we provide some results about the language classes in
WKFA with only initial delays. We finish our work with some conclusions and future work
on the topic addressed in this work.

2. Basic Concepts and Notation

In this section, we introduce basic concepts from formal language theory according
to [13,14] and from stickers according to [1] that we will use in the sequel.

An alphabet Σ is a finite nonempty set of elements named symbols. A string defined
over Σ is a finite ordered sequence of symbols from Σ. The infinite set of all the strings
defined over Σ is denoted by Σ∗. Given a string x ∈ Σ∗ we denote its length by |x|. The
empty string is denoted by λ and Σ+ denotes Σ∗ − {λ}. Given a string x we denote the
reversal string of x by xr. Given two strings x = x1x2 · · · xp and y = y1y2 · · · ym, we denote
the product (concatenation) of x by y as the string xy = x1x2 · · · xpy1y2 · · · ym. A language
L defined over Σ is a set of strings over Σ.

A grammar is a construct G = (N, Σ, P, S) where N and Σ are the alphabets of auxiliary
and terminal symbols with N ∩ Σ = ∅, S ∈ N is the axiom of the grammar and P is a finite
set of productions in the form α → β, where α ∈ (N ∪ Σ)∗N(N ∪ Σ)∗ and β ∈ (N ∪ Σ)∗.
The language of the grammar is denoted by L(G) and it is the set of terminal strings that can
be obtained from S by applying symbol substitutions according to P. Formally, w1 ⇒

G
w2 if

w1 = uαv, w2 = uβv, and α→ β ∈ P. We denote the reflexive and transitive closure of⇒
G

by ∗⇒
G

. The language generated by G is defined by the set L(G) = {w ∈ Σ∗ : S ∗⇒
G

w}.
We say that a grammar G = (N, Σ, P, S) is right (left) linear (regular) if every pro-

duction in P is in the form A → uB (A → Bu) or A → w with A, B ∈ N and u, w ∈ Σ∗.
The class of languages generated by right (left) linear grammars is the class of regular
languages and is denoted by REG. We say that a grammar G = (N, Σ, P, S) is linear if
every production in P is in the form A → uBv or A → w with A, B ∈ N and u, v, w ∈ Σ∗.
The class of languages generated by linear grammars is denoted by LIN . A well-known
result from formal language theory is the inclusionREG ⊂ LIN .

A deterministic finite automata (DFA) is an abstract machine A = (Q, Σ, δ, q0, F),
where Q is a finite set of states, Σ is an input alphabet, δ : Q×Σ→ Q is a transition function,
q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states. The extension of the transition

Mathematics 2021, 9, 813 3 of 12

function over strings δ̂ : Q× Σ∗ → Q is defined as δ̂(q, λ) = q, and δ̂(q, xa) = δ(δ̂(q, x), a)
for every x ∈ Σ∗, and a ∈ Σ. In the following, we will not distinguish between δ and δ̂ , and
its meaning will depend on the function arguments. The language accepted by a DFA A is
the set L(A) = {x ∈ Σ∗ : δ(q0, x) ∈ F}. A classical result from formal language theory is
that the class of languages accepted by deterministic finite automata isREG. For the case of
non-deterministic finite automata, the transition function is defined as δ : Q× Σ→ P(Q),
where P(Q) is the power set of Q. It is a classical result from formal language theory that
the set of languages accepted by non-deterministic finite automata is againREG.

Regular languages can be defined by regular expressions. They are a language spe-
cification based on definition rules that consider letters of the alphabet, the union, product
and closure operators, and the use of parentheses to reorder the priority of operators.

A homomorphism h is defined as a mapping h : Σ→ Γ∗ where Σ and Γ are alphabets.
We can extend the definition of homomorphisms over strings as h(λ) = λ and h(ax) =
h(a)h(x) with a ∈ Σ and x ∈ Σ∗. The homomorphism over a language L ⊆ Σ∗ is defined
as h(L) = {h(x) : x ∈ L}.

Given an alphabet Σ = {a1, · · · , an}, we use the symmetric (and injective) relation of
complementarity ρ ⊆ Σ× Σ. For any string x ∈ Σ∗, we denote by ρ(x) the string obtained
by substituting the symbol a in x by the symbol b such that (a, b) ∈ ρ (remember that ρ is
injective) with ρ(λ) = λ.

Given an alphabet V, a sticker over V is the pair (x, y) such that x = x1vx2, y = y1wy2

with x, y ∈ Σ∗ and ρ(v) = w. The sticker (x, y) will be denoted by
(

x
y

)
. A sticker(

x
y

)
will be a complete and complementary molecule if |x| = |y| and ρ(x) = y. A

complementary and complete molecule
(

x
y

)
will be denoted as

[
x
y

]
. The set of all complete

and complementary molecules over V will be called the Watson-Crick domain and denoted
by WKρ(V).

We define the following sets, where ρ denotes the symmetric relation between the
symbols in V:

Lρ(V) = (

(
λ

V∗

)
∪
(

V∗

λ

)
)

[
V
V

]∗
ρ

,

Rρ(V) =

[
V
V

]∗
ρ

(

(
λ

V∗

)
∪
(

V∗

λ

)
),

LRρ(V) = (

(
λ

V∗

)
∪
(

V∗

λ

)
)

[
V
V

]+
ρ

(

(
λ

V∗

)
∪
(

V∗

λ

)
).

In addition, we can consider the set Wρ(V) = Lρ(V) ∪ Rρ(V) ∪ LRρ(V). Observe that
WKρ(V) is included in each set from Lρ(V), Rρ(V) and LRρ(V).

Kari et al. [9] defined the sticking operation µ which can be considered as a product
operation over stickers. Basically, given two stickers x and y, the operation µ(x, y) returns
a new sticker by taking into account the complementarity relation ρ between the upper
string in x and the lower string in y and vice versa.

Sticker systems were defined by Freund et al. in [15] and by Kari et al. in [9] as a
generative model to apply the sticking operation µ (a product-like operation over stickers)
to obtain languages. At the same time, Păun and Rozenberg [10] introduced some aspects
which will be highly related to the present work such as the (bounded) delayed languages
defined by sticker systems. A sticker system is defined by the tuple γ = (V, ρ, A, D), where
V is an alphabet, ρ ⊆ V ×V is a symmetric (and injective) relation, D is a finite subset of
Wρ(V)×Wρ(V) where its elements are called dominoes, and A is a finite subset of LRρ(V)
which are the axioms of the system. The derivation relation⇒ between stickers, according
to a sticker system γ, can be defined as follows:

x ⇒ y iff y = µ(u1, µ(x, u2)) such that (u1, u2) ∈ D.

Mathematics 2021, 9, 813 4 of 12

Given that⇒ is a relation between stickers subjected to a sticker system γ, we will
denote the reflexive and transitive closure of⇒ by ∗⇒. Now, we can define the language of
complete and complementary molecules generated by the sticker system γ = (V, ρ, A, D)
with no restrictions as follows:

LMn(γ) = {w ∈WKρ(V) : x ∗⇒ w, x ∈ A}.

In addition, the language generated by γ is defined as:

Ln(γ) = {x ∈ V∗ :
[

x
ρ(x)

]
∈ LMn(γ)}.

The family of languages generated by arbitrary sticker systems is denoted byASL(n).

The maximal length of an overhang in a sticker z =

(
x
y

)
is called the delay of z.

Observe that the delay of a sticker z is the maximal length of the right or left overhang

located in the upper or lower strand. Formally, if z = u
[

v
ρ(v)

]
w, with u, w ∈

(
λ

V∗

)
∪(

V∗

λ

)
, then the delay of z equals to the maximum value between |u| and |w|, where

|u| = |u′| if u =

(
u′

λ

)
or u =

(
λ
u′

)
, and |w| = |w′| if w =

(
w′

λ

)
or w =

(
λ
w′

)
. The

delay associated to a derivation in a sticker system is the maximal delay of the stickers
that are produced during that derivation. For any sticker system γ, the language of strings
generated by γ with a delay d is denoted by Ld(γ). A sticker system γ is said to have
a bounded delay if there is d > 1 such that Ld(γ) = Ln(γ)· The family of languages
generated by arbitrary sticker systems with a bounded delay is denoted by ASL(b).

Watson-Crick finite automata (WKFA) were defined first by Freund et al. [2] as an
acceptance model to deal with stickers. It can be defined by the tuple M = (V, ρ, Q, s0, F, δ),
where Q and V are disjoint alphabets (states and symbols), ρ ⊆ V × V is a symmetric
(and injective) relation of complementarity, s0 ∈ Q is the initial state, F ⊆ Q is a set of

final states, and δ : Q ×
(

V∗

V∗

)
→ P(Q). A transition step in an arbitrary WK finite

automaton M is denoted by 7→
M

. So,
(

x1
y1

)
q
(

x2x3
y2y3

)
7→
M

(
x1x2
y1y2

)
p
(

x3
y3

)
iff p ∈ δ(q,

(
x2
y2

)
),

with x1, x2, x3, y1, y2, y3 ∈ V∗. The transitive and reflexive closure of 7→
M

is denoted by ∗7→
M

.

We can use a normal form such that for every transition q ∈ δ(q,
(

x1
x2

)
) then |x1x2| = 1.

This normal form defines the so-called 1-limited WK finite automata and they were proved
to be equivalent to arbitrary ones [2].

The language of complete and complementary molecules accepted by M will be

defined by the set Lm(M) = {
[

x
y

]
: s0

[
x
y

]
∗7→
M

[
x
y

]
q, with q ∈ F and x, y ∈ V∗}, while the

upper strand language accepted by M will be defined as:

Lu(M) = {x ∈ V∗ : s0

[
x
y

]
∗7→
M

[
x
y

]
q, q ∈ F ∧ x, y ∈ V∗}.

The class of languages accepted by arbitrary WKFA in the upper strand is denoted
by AWK.

We can use a normal form such that for every transition q ∈ δ(q,
(

x1
x2

)
) then x1 = λ

or x2 = λ. This normal form defines the so called simple WKFA and they were proved to
be equivalent to arbitrary ones [2].

Now, we will relate the languages in AWK with the languages generated by sticker
systems through the following result.

Mathematics 2021, 9, 813 5 of 12

Theorem 1. Let M = (V, ρ, Q, s0, F, δ) be a simple WKFA. Then there exists a sticker system
γ = (V′, ρ′, A, D), a morphism h and a regular language R which satisfies h(Ln(γ)∩ R) = Lu(M).

Proof. Let us take M = (V, ρ, Q, s0, F, δ) to be a simple WKFA with Q = {s0, q1, . . ., qn}
and V = {a1, · · · , an}. Observe that this restriction over WKFA does not affect the com-
putational capacity of the model, given that simple is a normal form for WKFA. We can
define the sticker system γ = (V′, ρ′, A, D) where the elements of γ are defined as follows:

• V′ = V ∪Q ∪ {q f , #}, where q f , # /∈ Q ∪V;
• ρ′ is defined as:

ρ′(a) =

a if a ∈ Q ∪ {q f , #}
ρ(a) if a ∈ V
;

• The set of axioms A is defined through the following rules:

1.
(

#
s0#

)
This axiom places the initial state of M as the first state in the sequence defined
to accept any string.

2.
(

s0#
qs0#

)
where q ∈ δ(s0,

(
λ
λ

)
)

An axiom is created for every transition from the initial state of the WKFA, s0.
The overhang end on the left lower strand of the axiom corresponds to the state
of the WKFA that is reached from the initial state with a λ-movement.

3.
(

s0#
q f s0#

)
if s0 ∈ F

If the initial state in the WKFA is final too, then this axiom is inserted. That is, the
additional state q f is produced from the initial state without any input symbol.

• The set D is defined by the pairs according to the following rules:

1. (

(
q
p

)
,
(

x
y

)
) where p ∈ δ(q,

(
x
y

)
) and x = λ or y = λ.

That means that, in M, it is possible to transit from q to p with the pair
(

x
y

)
.

2. (

(
#q
q f #

)
,
(

λ
λ

)
) where q ∈ F.

For each final state qi ∈ F of the WKFA, these stickers mark the end of the state
sequence in the WKFA to accept the input.

3. (

(
q f
λ

)
,
(

λ
λ

)
)

This rule is added to avoid overhang ends in the left side of the sticker system.
When this rule is added there is no way to add another one according to the
automata transitions.

Now, observe the following accepting computation in M:

s0

[
x
y

]
7→
M

(
x1
y1

)
qi1

(
x2. . .xn
y2. . .yn

)
7→
M

(
x1x2
y1y2

)
qi2

(
x3. . .xn
y3. . .yn

)
7→
M
· · · 7→

M

(
x1x2. . .xn
y1y2. . .yn

)
qin ,

where qin ∈ F. The following derivation is hold in γ:

Mathematics 2021, 9, 813 6 of 12

(
#

s0#

)
⇒
γ

(
s0#x1

qi1 s0#y1

)
⇒
γ

(
qi1 s0#x1x2

qi2 qi1 s0#y1y2

)
⇒
γ
· · · ⇒

γ

(
qin−1 . . .qi1 s0#x1. . .xn

qin qin−1 . . .qi1 s0#y1. . .yn

)
⇒
γ
· · ·

· · · ⇒
γ

(
#qin qin−1 . . .qi1 s0#x1. . .xn

q f #qin qin−1 . . .qi1 s0#y1. . .yn

)
⇒
γ

(
q f #qin qin−1 . . .qi1 s0#x1. . .xn
q f #qin qin−1 . . .qi1 s0#y1. . .yn

)
,

and it can easily be shown that x1. . .xn ∈ Lu(M) iff q f #qin qin−1 . . .qi1 s0#x1. . .xn ∈ Ln(γ).
A regular set R is defined by the regular expression:

q f #(s0 + q1 + · · ·+ qn)
∗#(a1 + a2 + · · ·+ an)

∗.

The above regular expression guarantees that only strings containing a single symbol
q f can be produced and, therefore, in the sticker system, the molecules obtained correspond
only to those that have reached a final state in the WKFA. On the other hand, note that
without the set R acting as a control set, the sticker system could generate molecules
that would not be recognized in the automaton. In other words, nothing prevents the
sticker system from continuing to add stickers that could complete new molecules once the
molecule accepted by the automaton has been generated.

Finally, we can define the morphism h : V′ → V as follows:

h(a) =

{
a if a ∈ V
λ if a /∈ V.

Hence, q f #qin qin−1 . . .qi1 s0#x1. . .xn ∈ Ln(γ)∩R, h(q f #qin qin−1 . . .qi1 s0#x1. . .xn) = x1. . .xn,
and the theorem holds.

It can be observed that the sequence of states needed to accept any string x in M is
defined by the reverse of the sequence of states between the # marks in the stickers obtained
in γ.

Example 1. Let us take the simple WKFA defined by the transition diagram in Figure 1.

Figure 1. A simple Watson-Crick finite automata (WKFA).

From the previous WKFA, we build a sticker system, such that A and D are defined as follows:

A = {
(

#
q0#

)
}.

D = {(
(

q0
q1

)
,
(

λ
a

)
), (
(

q1
q4

)
,
(

a
λ

)
), (
(

q1
q2

)
,
(

ab
λ

)
), (
(

q2
q1

)
,
(

λ
ba

)
), (
(

q2
q3

)
,
(

λ
bb

)
),

(

(
q2
q5

)
,
(

λ
b

)
), (
(

q3
q2

)
,
(

λ
bb

)
), (
(

#q4
q f #

)
,
(

λ
λ

)
), (
(

#q5
q f #

)
,
(

λ
λ

)
), (
(

q f
λ

)
,
(

λ
λ

)
)}.

The regular expressión defined to control the stickers generation is defined as follows:

Mathematics 2021, 9, 813 7 of 12

q f #(q0 + q1 + q2 + q3 + q4 + q5)
∗#(a + b)∗.

3. Accepting Languages with Bounded Delays in WKFA

In this section, we will introduce the delays during a WKFA computation in a way
similar to sticker systems [10].

Let us suppose that we consider the following computation in a WKFA M = (V, ρ, Q, s0,
F, δ) with x = x1x2. . .xn and y = y1y2. . .yn:

q0

[
x
y

]
7→
M

(
x1
y1

)
qi1

(
x2. . .xn
y2. . .yn

)
7→
M

(
x1x2
y1y2

)
qi2

(
x3. . .xn
y3. . .yn

)
7→
M
· · · 7→

M

(
x1x2. . .xn
y1y2. . .yn

)
qin ,

where xj, yj ∈ V∗, qij ∈ Q , if 0 ≤ |x1x2. . .xj| − |y1y2. . .yj| ≤ d, for 1 ≤ j ≤ n, and qin ∈ F

then we say that M accepts
[

x
y

]
with an upper bounded delay d. If 0 ≤ |y1y2. . .yj| −

|x1x2. . .xj| ≤ d, for 1 ≤ j ≤ n we say that M accepts
[

x
y

]
with a lower bounded delay d. If

||x1x2. . .xj| − |y1y2. . .yj|| ≤ d, for 1 ≤ j ≤ n we say that M accepts
[

x
y

]
with an arbitrary

bounded delay d. The language accepted by M with upper (lower, arbitrary) bounded
delay d in the upper strand is denoted by Lu,updel(M, d) (Lu,lowdel(M, d), Lu,del(M, d)). The
class of languages accepted by arbitrary WKFA in the upper strand with upper (lower,
arbitrary) bounded delay equals to d will be denoted by AWKupdel(d) (AWKlowdel(d),
AWKdel(d)).

The definition of delays in the computation of the automaton is a constraint that reduces
the computational power of the model. This can be formalized by the following result.

Lemma 1. For every integer value d > 0, AWKupdel(d) (AWK.

Proof. Let us consider the language L = {wcw : w ∈ {a, b}∗}. This language belongs to
AWK given that it can be accepted by the following WKFA.

δ(q0,
(

a
λ

)
) = {q0} δ(q0,

(
b
λ

)
) = {q0} δ(q0,

(
c
λ

)
) = {q1}

δ(q1,
(

a
a

)
) = {q1} δ(q1,

(
b
b

)
) = {q1} δ(q1,

(
λ
c

)
) = {q2}

δ(q2,
(

λ
a

)
) = {q2} δ(q2,

(
λ
b

)
) = {q2},

with F = {q2} and ρ = {(a, a), (b, b), (c, c)}. Observe that the automaton reads first in the
upper strand the string w until it reaches the symbol c always being in the state q0. Once
the symbol c has been read, the automaton changes its state and it then starts to match
the string after the symbol c with the string starting on the lower strand. If the symbol
c is found in the lower strand then it proceeds to read the rest of the input string in the
lower strand.

It is easy to see that for any delay value d > 0, a string wcw with |w| > d will not
be parsed with a delay less than or equal to d given that the automaton needs to read the
string w first before arriving to the symbol c. In such a case, the automaton produces a
delay greater than d given that |w| > d.

Now, we are going to consider the relationships between the upper, lower, and
arbitrary delays. In this case, we will work with arbitrary WKFA and the identity as the
relation ρ defined in the automata. Observe that this does not detract from the generality of
our results since the complementarity relationship can be reduced to the identity as shown
in [16].

Lemma 2. For every integer value d > 0, AWKlowdel(d) = AWKupdel(d).

Mathematics 2021, 9, 813 8 of 12

Proof. Let M1 = (V, ρ, Q, s0, F, δ1) be an arbitrary WKFA with ρ being the identity relation,
and L be the language accepted by M1 with a bounded upper (lower) delay d. Then,

from M1 we can obtain the WKFA M2 = (V, ρ, Q, s0, F, δ2) where p ∈ δ2(q,
(

y
x

)
) if p ∈

δ1(q,
(

x
y

)
). It is easy to see that if w is accepted by M1 with an upper (lower) delay d, then

w is accepted by M2 by a lower (upper) delay given that the relation ρ is the identity and
the transitions in M2 swap the contents of the upper and lower strands.

Lemma 3. AWKupdel(0) = REG.

Proof. Let M = (V, ρ, Q, s0, F, δ) be an arbitrary WKFA and L = Lu,updel(M, 0). For every
x ∈ Lu,updel(M, 0) there exists a computation in M as follows:

q0

[
x
x

]
7→
M

(
x1
x1

)
qi1

(
x2. . .xn
x2. . .xn

)
7→
M

(
x1x2
x1x2

)
qi2

(
x3. . .xn
x3. . .xn

)
7→
M
· · · 7→

M

(
x1x2. . .xn
x1x2. . .xn

)
qin .

Observe that ρ is the identity relation and, we can assume that xi ∈ V, 1 ≤ i ≤ n.
Then, from M we can obtain a non-deterministic finite automata A = (Q, V, s0, f , F), such

that p ∈ f (q, a) iff p ∈ δ(q,
(

a
a

)
).

It is easy to see that x ∈ L(A) = L. Hence, AWKupdel(0) ⊆ REG. In order to
see that REG ⊆ AWKupdel(0), we take any arbitrary deterministic finite automata A =
(Q, Σ, f , q0, F), and we obtain the WKFA M = (Σ, ρ, Q, q0, F, δ) where ρ is the identity

relation, and p ∈ δ(q,
(

a
a

)
iff f (q, a) = p. Again, it is easy to see that x ∈ Lu,updel(M, 0) iff

x ∈ L(A). Then,REG ⊆ AWKupdel(0), and the lemma holds.

A Sufficient Condition for Bounded Delays in WKFA

We have seen how delays during computation, regardless of whether they occur on
the upper or lower strand, can be variable. That is, given a delay value d, the computation
can produce that delay incrementally (i.e., starting with a delay less than d and then
increasing it to the required value). In this section, we will propose a way to produce the
required delay instantaneously. Informally, the approach we are going to propose requires
producing the desired delay in the first movement of the computation and, subsequently,
maintaining it until a point in time where it is completely reduced. This, without being a
normal form, can be interesting when dealing with WKFA inductive inference as proposed
in [12].

We say that M accepts x in the upper strand with an initial delay k iff M applies the
following transition sequences to accept x = x1x2 · · · xl . Remember that we can use the
identity relation without loss of generality.

1. First movement (initial delay)

s0

(
x1x2 · · · xl

x

)
7→
M

(
x1x2 · · · xk

λ

)
s1

(
xk+1 · · · xl

x

)
.

2. Delay propagation ∀i ≥ 1 such that (i + 1) · k < l

(
x1 · · · xi·k

ρ(x1 · · · x(i−1)·k)

)
p
(

xi·k+1 · · · xl
ρ(x(i−1)·k+1 · · · xl)

)
7→
M

(
x1 · · · x(i+1)·k
ρ(x1 · · · xi·k)

)
q
(

x(i+1)·k+1 · · · xl
ρ(xi·k+1 · · · xl)

)
.

3. Final movement ∀m ≥ 0 such that l −m + 1 < k

Mathematics 2021, 9, 813 9 of 12

(
x1 · · · xm

ρ(x1 · · · xm−k)

)
p
(

xm+1 · · · xl
ρ(xm−k+1 · · · xl)

)
7→
M

(
x1 · · · xl

ρ(x1 · · · xl)

)
q.

Therefore, M accepts x in the upper strand by first processing k symbols of the upper
strand, and then processing alternately k symbols of the lower and upper strand. When
there are less than k symbols left in the upper strand, all the remaining symbols are
processed. Figure 2 shows graphically how the stickers are organized as they are processed
with initial delays.

Figure 2. Stickers organization to be processed with initial delays.

Observe that the movements of the automata can adapted to be simple: The movement

q ∈ δ(p,
(

x
y

)
), with |x| = |y| = k can be replaced by the following two movements

q′ ∈ δ(p,
(

λ
y

)
) and q ∈ δ(q′,

(
x
λ

)
). Hence, the scheme to process the stickers in a simple

WKFA with initial delays is shown in Figure 3.

Figure 3. Order in processing stickers with initial delays.

Observe that according to the previous figure, in the WKFA the delay always equals to
k given that first it is produced in the upper strand and then the lower strand is completed.
In the following we will work with simple WKFA with only initial delays.

4. Languages Accepted by WKFA with Only Initial Delays

Let M be a simple WKFA with only initial delay movements, and let d be the delay
at every computation step in M. If a sticker system γ is built from M as established in
Theorem 1, then Ln(γ) ∈ ASL(b). This is due to the fact that, according to the definition
of a WKFA with an initial delay d, the length of the delay that may appear in any of the
two strands when processing a sequence cannot be longer than d. Therefore, in the sticker
system, during its construction, the overhang end in the right side cannot be longer than d,
and, in the left side, longer than one.

Example 2. Let us take the simple WKFA with initial delays defined by the transition diagram of
Figure 4. Observe that the bounded delay in this case equals to 2.

Figure 4. A simple WKFA with initial delays equal to 2.

Mathematics 2021, 9, 813 10 of 12

Observe that the bounded delay in this case equals to 2 and Lu(M) = Lu,updel(M, 2).
From the previous WKFA, we build a sticker system γ, such that A and D are defined as follows:

A = {
(

#
q0#

)
}.

D = {(
(

q0
q1

)
,
(

aa
λ

)
), (
(

q1
q2

)
,
(

λ
aa

)
), (
(

q2
q3

)
,
(

bb
λ

)
), (
(

q3
q0

)
,
(

λ
bb

)
), (
(

q3
q4

)
,
(

λ
bb

)
),

(

(
q4
q5

)
,
(

b
λ

)
), (
(

q5
q6

)
,
(

λ
b

)
)(

(
#q4
q f #

)
,
(

λ
λ

)
), (
(

#q6
q f #

)
,
(

λ
λ

)
), (
(

q f
λ

)
,
(

λ
λ

)
)}.

In this case, Lu(M) = Ln(γ) which can be defined by the regular expression:

(aabb)(aabb)∗(b + λ),

given that, once a molecule is completed in γ, after having reached the final state q4, there is no
possibility of lengthening the molecule and completing a larger one, as the upper and lower strand
would not be complementary.

Thus, the definition of a regular expression for derivative control, as in the proof of
Theorem 1, is completely unnecessary in the case of initial delays. This aspect will be
formalized by the following theorem.

Theorem 2. Let M = (V, ρ, Q, s0, F, δ) be a simple WKFA with only initial delays. Then there
exists a sticker system γ = (V′, ρ′, A, D) and a morphism h which satisfies h(Ln(γ)) = Lu(M).

Proof. Let M = (V, ρ, Q, s0, F, δ) be a simple WKFA with only initial delays. Then we
define a sticker system γ and a morphism h as in the proof of Theorem 1. Observe that in

this case, there is no way to keep on derivating a sticker once the pairs (
(

#q
q f #

)
,
(

λ
λ

)
) and

(

(
q f
λ

)
,
(

λ
λ

)
) have been applied given that the rest of elements in D do not preserve the

complementarity since the relation ρ is the identity.

It is known that ASL(b) ⊆ LIN (Theorem 4.3 in [10]). That theorem is proven by
building a linear grammar G = (N, T, S, P) from a sticker system γ = (V, ρ, A, D). In the
grammar G, the molecules are obtained by a derivation from the ends of the molecule until
reaching its central part in a reverse process to the one that happens in the sticker system.
We can take advantage of this result together with the results we have proven before to
characterize the language accepted by the WKFA with only initial delays. It is established
by the following result.

Theorem 3. Let M = (V, ρ, Q, s0, F, δ) be a simple WKFA with only initial delays. Then
Lu(M) ∈ REG.

Proof. A sticker system γ can be obtained from M, according to the proof of Theorem 1.
Let γ = (V′, ρ′, A, D) and V′ = V ∪ Q ∪ {#, q f } be such a sticker system. Let G =

(N,
[

V′

V′

]
, S, P) be a linear grammar built from γ as described in [10]. It can be observed

that, for every production in G in the form A → αBβ the sticker α is defined from the
symbols in Q ∪ {#, q f } while the sticker β is defined from the symbols in V.

Now, a left linear grammar G′ = (N, V, S, P′) can be constructed from G. The set of
productions in P′ is defined as follows:

• A→ Bv1 if A→
(

u1
u2

)
B
(

v1
v2

)
∈ P;

Mathematics 2021, 9, 813 11 of 12

• A→ h(ω1) if A→
(

ω1
ω2

)
∈ P,

where the morphism h : V′ → V is defined as h(a) = a if a ∈ V and h(a) = λ if
a ∈ Q ∪ {#, q f }. The language generated by the grammar G′ is the result of removing
the symbols in Q ∪ {#, q f } from the strings generated by G in the upper strand. These
strings are the strings in Lu(M). Since G′ is a left linear grammar and L(G′) = Lu(M) then
Lu(M) ∈ REG.

5. Conclusions

In this paper we addressed some aspects of the languages defined by WKFA where
the delay between the two strands in obtaining the upper strings is bounded. This aspect is
interesting because, on the one hand, it allows us to relate two classical DNA computational
models such as Watson-Crick finite automata and sticker systems. On the other hand, it
allows us to establish a result that limits the computational capacity of the WKFA model,
i.e., by introducing a bounded delay, we are reducing the class of languages that the model
is able to accept.

Another aspect we want to highlight is that the study of language families character-
ized by bounded delays is a prior step to establishing efficient methods for their inductive
inference, that is the application of machine learning techniques to obtain DNA computa-
tional models. In this sense, some previous results allow us to approach this aspect in a
reasonable way [12]. The imposition of some kind of constraints and normal forms for some
classes of languages accepted by WKFA is important in establishing the machine learning
algorithms to infer WKFA from positive examples. It is well known in formal language
theory that from linear languages there exist inherently ambiguous languages [17]. Since
WKFA can be represented by intersections of linear and even linear languages [18], then
the inherent ambiguity of some languages accepted by this model is unavoidable. This
leads to multiple options, when specifying a set of transitions during the elaboration of a
model by using machine learning techniques. The imposition of features such as initial
delays makes the ambiguity disappear given that a predefined form is imposed on the
transitions and makes it feasible to automatically learn some subclasses of this model.

There are additional aspects of this work that deserve to be explored in future research.
For example, one aspect to consider is whether delays induce a hierarchy of languages in
a gradual way, i.e., whether any language accepted by a WKFA with a bounded delay d
can be accepted by a WKFA with a smaller delay. In the case of a negative answer to this
question, we could obtain an infinite hierarchy, where the smallest class would be defined
by the class of regular languages (null delays) which, in turn, would contain the languages
that can be accepted only with initial delays.

Funding: This work has been developed with the financial support of the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 952215 corresponding to the
TAILOR project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Păun, G.; Rozenberg, G.; Salomaa, A. DNA Computing. New Computing Paradigms; Springer: Berlin/Heidelberg, Germany, 1998.
2. Freund, R.; Păun, G.; Rozenberg, G.; Salomaa, A. Watson-Crick finite automata. In Proceedings of the DNA Based Computers III

DIMACS Workshop, Pennsylvania, PA, USA, 23–25 June 1997; Rubin, H., Wood, D.H., Eds.; The American Mathematical Society:
Providence, RI, USA, 1999; pp. 297–327.

3. Chatterjee, K.; Sankar Ray, K. Reversible Watson-Crick automata. Acta Inform. 2017, 54, 487–499. [CrossRef]
4. Chatterjee, K.; Sankar Ray, K. Unary Watson-Crick automata. Theor. Comput. Sci. 2019, 782, 107–112. [CrossRef]

http://doi.org/10.1007/s00236-016-0267-0
http://dx.doi.org/10.1016/j.tcs.2019.03.009

Mathematics 2021, 9, 813 12 of 12

5. Mahalingam, K.; Mishra, U.K.; Raghavan, R. Watson-Crick Jumping Finite Automata. Int. J. Found. Comput. Sci. 2020, 31, 891–913.
[CrossRef]

6. Nagy, B. On 5′ → 3′ Sensing Watson-Crick Finite Automata. In Proceedings of the 13th International Meeting on DNA Computing,
DNA13, Memphis, TN, USA, 4–8 June 2007; Garzon, M.H., Yan, H., Eds.; DNA Computing; Springer LNCS: Berlin/Heidelberg,
Germany, 2008; Volume 4848, pp. 256–262.

7. Czeizler, E.; Czeizler, E. Parallel communicating Watson-Crick automata systems. Acta Cybern. 2006, 17, 685–700. [CrossRef]
8. Czeizler, E.; Czeizler, E. A short survey on Watson-Crick automata. Bull. EATCS 2006, 88, 104–119.
9. Kari, L.; Păun, G.; Rozenberg, G.; Salomaa, A.; Yu, S. DNA computing, sticker systems, and universality. Acta Inform. 1998, 35,

401–420. [CrossRef]
10. Păun, G.; Rozenberg, G. Sticker Systems. Theor. Comput. Sci. 1998, 204, 183–203. [CrossRef]
11. Sempere, J.M. On the Application of Watson-Crick Finite Automata for the Resolution of Bioinformatic Problems. In Proceedings

of the Invited Talk at the Tenth Workshop on Non-Classical Models of Automata and Applications (NCMA 2018), Košice, Slovakia,
21–22 August 2018; Freund, R., Hospodár, M., Jirásková, G., Pighizzini, G., Eds.; Österreichische Computer Gesellschaft: Vienna,
Austria, 2018; pp. 29–30.

12. Sempere, J.M. Learning Context-Sensitive Languages from Linear Structural Information. In Proceedings of the 9th International
Colloquium on Grammatical Inference ICGI 2008, Saint-Malo, France, 22–24 September 2008; Clark, A., Coste, F., Miclet, L., Eds.;
Springer LNAI: Berlin/Heidelberg, Germany, 2008; Volume 5278, pp. 175–186.

13. Hopcroft, J.; Ullman, J. Introduction to Automata Theory, Languages and Computation; Addison Wesley Publishing Co.: Boston, MA,
USA, 1979.

14. Rozenberg, G.; Salomaa, A. (Eds.) Handbook of Formal Languages; Springer: Berlin/Heidelberg, Germany, 1997.
15. Freund, R.; Păun, G.; Rozenberg, G.; Salomaa, A. Bidirectional sticker systems. In Proceedings of the Third Annual Pacific

Conference on Biocomputing, Maui, HI, USA, 4–9 January 1998; Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E., Eds.; World
Scientific: Singapore, 1998; pp. 535–546.

16. Kuske, D.; Weigel, P. The Role of the Complementarity Relation in Watson-Crick Automata and Sticker Systems. In Proceedings of
the 8th International Conference DLT 2004, Auckland, New Zealand, 13–17 December 2004; Calude Elena Calude, C.S., Dinneen,
M.J., Eds.; Springer LNCS: Berlin/Heidelberg, Germany, 2004; Volume 3340, pp. 272–283.

17. Greibach, S. The Undecidability of the Ambiguity Problem for Minimal Linear Grammars. Inf. Control 1963, 6, 119–125. [CrossRef]
18. Sempere, J.M. A Representation Theorem for Languages accepted by Watson-Crick Finite Automata. Bull. EATCS 2004, 83,

187–191.

http://dx.doi.org/10.1142/S0129054120500331
http://dx.doi.org/10.1016/j.tcs.2006.01.049
http://dx.doi.org/10.1007/s002360050125
http://dx.doi.org/10.1016/S0304-3975(98)00039-5
http://dx.doi.org/10.1016/S0019-9958(63)90149-9

	Introduction
	Basic Concepts and Notation
	Accepting Languages with Bounded Delays in WKFA
	Languages Accepted by WKFA with Only Initial Delays
	Conclusions
	References

