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Abstract

Audio systems have been extensively developed in recent years thanks to
the increase of devices with high-performance processors capable of per-
forming more efficient audio processing. In addition, the expansion of wire-
less communications has given the possibility of implementing networks in
which devices can be placed in different locations without physical limita-
tions, unlike wired networks. The combination of these technologies has
led to the emergence of Acoustic Sensor Networks (ASN). An ASN is com-
posed of nodes equipped with audio transducers, such as microphones or
speakers. In the case of acoustic field monitoring, only acoustic sensors (or
microphones) need to be incorporated into the ASN nodes. However, in
the case of control applications, the nodes must interact with the acoustic
field through loudspeakers.

The ASN can be implemented through low-cost devices, such as Rasp-
berry Pi or commercial mobile devices, capable of managing multiple mi-
crophones and loudspeakers and offering good computational capacity. In
addition, these devices can communicate through wireless connections, such
as Wi-Fi or Bluetooth. This ASN design provides high processing power
and flexibility due to the processors and the wireless communications of-
fered by the current mobile devices. Therefore, in this dissertation, an
ASN composed of commercial mobile devices connected to wireless speak-
ers through a Bluetooth link is proposed. Additionally, the problem of syn-
chronization between the devices in an ASN is one of the main challenges
to be addressed since the audio processing performance is very sensitive
to the lack of synchronism. Therefore, a deep analysis of the synchroniza-
tion problem between commercial devices connected to wireless speakers in
an ASN is also carried out. In this regard, one of the main contributions
is the analysis of the audio latency of mobile devices when the acoustic
nodes in the ASN are comprised of mobile devices communicating with
the corresponding loudspeakers through Bluetooth links. A second signifi-
cant contribution of this dissertation is the implementation of a method to
synchronize the different devices of an ASN, together with a study of its
limitations. Finally, the proposed method has been introduced in order to
implement personal sound zones (PSZ) applications. Therefore, the imple-
mentation and analysis of the performance of different audio applications
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over an ASN composed of commercial mobile devices and wireless speakers
is also a significant contribution in the area of ASN.

In cases where the acoustic environment negatively affects the percep-
tion of the audio signal emitted by the ASN loudspeakers, equalization
techniques are used with the objective of enhancing the perception thresh-
old of the audio signal. For this purpose, a smart equalization system is
defined and implemented in this dissertation. In this regard, psychoacous-
tic algorithms are employed in order to implement a smart processing based
on the human hearing system capable of adapting to changes in the envi-
ronment, and thus increase the perception threshold of the audio signal
dynamically. Therefore, another important contribution of this thesis fo-
cuses on the analysis of the spectral masking between two complex sounds.
This analysis will allow to calculate the masking threshold of one sound over
the other in a more accurate way than the currently used methods. This
method is used to implement a perceptual equalization application that
aims to improve the perception threshold of the audio signal in presence of
ambient noise. To this end, this thesis proposes two different equalization
algorithms: 1) pre-equalizing the audio signal so that it is perceived above
the ambient noise masking threshold and 2) designing a perceptual control
of ambient noise in active noise equalization (ANE) systems, so that the
perceived ambient noise level is below the masking threshold of the audio
signal. Therefore, the last contribution of this dissertation is the imple-
mentation of a perceptual equalization application with the two different
embedded equalization algorithms and the analysis of their performance
through the testbed carried out in the GTAC-iTEAM laboratory.

Keywords: Acoustic Sensor Networks, synchronization between devices,
personal sound zones, psychoacoustics, smart equalization, perceptual ex-
periments.



Resumen

Los sistemas de audio han experimentado un gran desarrollo en los últimos
años gracias al aumento de dispositivos con procesadores de alto rendi-
miento capaces de realizar un procesamiento de audio cada vez más efi-
ciente. Por otra parte, la expansión de las comunicaciones inalámbricas
ha permitido implementar redes en las que los dispositivos pueden estar
ubicados en diferentes lugares sin limitaciones f́ısicas, a diferencia de las
redes cableadas. La combinación de estas tecnoloǵıas ha dado lugar a la
aparición de las redes de sensores acústicos (o sus siglas en inglés, ASN).
Una ASN está compuesta por nodos equipados con transductores de audio,
como micrófonos o altavoces. En el caso de la monitorización del campo
acústico, sólo es necesario incorporar sensores acústicos (o micrófonos) en
los nodos de la ASN. Sin embargo, en el caso de las aplicaciones de control,
los nodos deben interactuar con el campo acústico a través de altavoces.

La ASN puede implementarse a través de dispositivos de bajo coste,
como Raspberry Pi o dispositivos móviles comerciales, capaces de ges-
tionar varios micrófonos y altavoces y de ofrecer una buena capacidad
computacional. Además, estos dispositivos pueden comunicarse mediante
conexiones inalámbricas, como Wi-Fi o Bluetooth. Este diseño de ASN
proporciona una gran potencia de procesamiento y una gran flexibilidad
gracias a los procesadores y las comunicaciones inalámbricas que ofrecen
los dispositivos móviles actuales. Por ello, en esta tesis se propone una
ASN compuesta por dispositivos móviles comerciales conectados a altav-
oces inalámbricos a través de un enlace Bluetooth. El problema de la
sincronización entre los dispositivos de una ASN es uno de los principales
retos a abordar ya que el rendimiento del procesamiento de audio es muy
sensible a la falta de sincronismo. Por lo tanto, también se lleva a cabo
un análisis profundo del problema de la sincronización entre los disposi-
tivos comerciales conectados a los altavoces inalámbricos en una ASN. En
este sentido, una de las principales contribuciones es el análisis de la la-
tencia de audio de los dispositivos móviles cuando los nodos acústicos en
la ASN están compuestos por dispositivos móviles que se comunican con
los correspondientes altavoces a través de enlaces Bluetooth. Una segunda
contribución significativa de esta tesis es la implementación de un método
para sincronizar los diferentes dispositivos de una ASN, junto con un estu-
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dio de sus limitaciones. Por último, se ha introducido el método propuesto
para implementar aplicaciones de zonas de sonido personal (o sus siglas
en inglés, PSZ). Por lo tanto, la implementación y el análisis del rendi-
miento de diferentes aplicaciones de audio sobre una ASN compuesta por
dispositivos móviles comerciales y altavoces inalámbricos es también una
contribución significativa en el área de las ASN.

En los casos en los que el entorno acústico afecta negativamente a la
percepción de la señal de audio emitida por los altavoces del ASN, se uti-
lizan técnicas de ecualización con el objetivo de mejorar la percepción de
la señal de audio. Para ello, en esta tesis se define e implementa un sistema
de ecualización inteligente. Para ello, se emplean algoritmos psicoacústicos
con el fin de implementar un procesamiento inteligente basado en el sis-
tema auditivo humano capaz de adaptarse a los cambios del entorno, y
aśı aumentar la percepción de la señal de audio de forma dinámica. Por
ello, otra contribución importante de esta tesis es el análisis del enmas-
caramiento espectral entre dos sonidos complejos. Este análisis permitirá
calcular el umbral de enmascaramiento de un sonido sobre el otro de forma
más precisa que los métodos utilizados actualmente. Este método se utiliza
para implementar una aplicación de ecualización perceptiva que pretende
mejorar la percepción de la señal de audio en presencia de un ruido ambien-
tal. Para ello, esta tesis propone dos algoritmos de ecualización diferentes:
1) la pre-ecualización de la señal de audio para que se perciba por encima
del umbral de enmascaramiento del ruido ambiental y 2) diseñar un con-
trol de ruido ambiental perceptivo en los sistemas de ecualización activa de
ruido (o sus siglas en inglés, ANE), de modo que el nivel de ruido ambiental
percibido esté por debajo del umbral de enmascaramiento de la señal de
audio. Por lo tanto, la última aportación de esta tesis es la implementación
de una aplicación de ecualización perceptiva con los dos diferentes algorit-
mos de ecualización embebidos y el análisis de su rendimiento a través del
banco de pruebas realizado en el laboratorio GTAC-iTEAM.

Palabras clave : Redes de sensores acústicos, sincronización entre dis-
positivos, zonas de sonido personal, psicoacústica, ecualización inteligente,
experimentos perceptuales.



Resum

El sistemes de so han experimentat un gran desenvolupament en els últims
anys gràcies a l’augment de dispositius amb processadors d’alt rendiment
capaços de realitzar un processament d’àudio cada vegada més eficient.
D’altra banda, l’expansió de les comunicacions inalàmbriques ha permès
implementar xarxes en les quals els dispositius poden estar situats a difer-
ents llocs sense limitacions f́ısiques, a diferència de les xarxes cablejades. La
combinació d’aquestes tecnologies ha donat lloc a l’aparició de les xarxes de
sensors acústics (o les seues sigles en anglés, ASN). Una ASN està composta
per nodes equipats amb transductors d’àudio, com micròfons o altaveus.
En el cas del monitoratge del camp acústic, només cal incorporar sensors
acústics (o micròfons) als nodes de l’ASN. No obstant això, en el cas de les
aplicacions de control, els nodes han d’interactuar amb el camp acústic a
través d’altaveus.

Una ASN pot implementar-se mitjantçant dispositius de baix cost, com
ara Raspberry Pi o dispositius mòbils comercials, capaços de gestionar di-
versos micròfons i altaveus i d’oferir una bona capacitat computacional.
A més, aquests dispositius poden comunicar-se a través de connexions
inalàmbriques, com Wi-Fi o Bluetooth. Aquest disseny d’ASN propor-
ciona una gran potència de processament i una gran flexibilitat gràcies als
processadors i les comunicacions inalàmbriques que ofereixen els dispositius
mòbils actuals. Per això, en aquesta tesi es proposa una ASN composta
per dispositius mòbils comercials connectats a altaveus inalàmbrics a través
d’un enllaç Bluetooth. El problema de la sincronització entre els dispositius
d’una ASN és un dels principals reptes a abordar ja que el rendiment del
processament d’àudio és molt sensible a la falta de sincronisme. Per tant,
també es duu a terme una anàlisi profunda del problema de la sincronització
entre els dispositius comercials connectats als altaveus inalàmbrics en una
ASN. En aquest sentit, una de les principals contribucions és l’anàlisi de la
latència d’àudio dels dispositius mòbils quan els nodes acústics en l’ASN
estan compostos per dispositius mòbils que es comuniquen amb els altaveus
corresponents mitjançant enllaços Bluetooth. Una segona contribució sig-
nificativa d’aquesta tesi és la implementació d’un mètode per sincronitzar
els diferents dispositius d’una ASN, juntament amb un estudi de les seves
limitacions. Finalment, s’ha introdüıt el mètode proposat per implemen-
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tar aplicacions de zones de so personal (o les seues sigles en anglés, PSZ).
Per tant, la implementació i l’anàlisi del rendiment de diferents aplicacions
d’àudio sobre una ASN composta per dispositius mòbils comercials i al-
taveus inalàmbrics és també una contribució significativa a l’àrea de les
ASN.

En els casos en què l’entorn acústic afecta negativament a la percepció
del senyal d’àudio emesa pels altaveus de l’ASN, es fan servir tècniques
d’equalització amb l’objectiu de millorar la percepció del senyal d’àudio.
En consequència, en aquesta tesi es defineix i s’implementa un sistema
d’equalització intel·ligent. Per això, s’utilitzen algoritmes psicoacústics
per implementar un processament intel·ligent basat en el sistema audi-
tiu humà capaç d’adaptar-se als canvis de l’entorn, i aix́ı augmentar la
percepció del senyal d’audio de manera dinàmica. Per aquest motiu, una
altra contribució important d’aquesta tesi és l’anàlisi de l’emmascarament
espectral entre dos sons complexos. Aquesta anàlisi permetrà calcular el
llindar d’emmascarament d’un so sobre l’altre de manera més precisa que
els mètodes utilitzats actualment. Aquest mètode s’utilitza per a imple-
mentar una aplicació d’equalització perceptiva que pretén millorar la per-
cepció del senyal d’àudio en presència d’un soroll ambiental. Per això,
aquesta tesi proposa dos algoritmes d’equalització diferents: 1) la pree-
qualització del senyal d’àudio perquè es percebi per damunt del llindar
d’emmascarament del soroll ambiental i 2) dissenyar un control de soroll
ambiental perceptiu en els sistemes d’equalització activa de soroll (o les
seues sigles en anglés, ANE) de manera que el nivell de soroll ambiental
percebut estiga per davall del llindar d’emmascarament del senyal d’àudio.
Per tant, l’última aportació d’aquesta tesi és, doncs, la implementació d’una
aplicació d’equalització perceptiva amb els dos algoritmes d’equalització
embeguts i l’anàlisi del seu rendiment a través del banc de proves realitzat
al laboratori GTAC-iTEAM.

Paraules clau : Xarxes de sensors acústics, sincronització entre disposi-
tius, zones de so personal, psicoacústica, equalizació intel·ligent, experi-
ments perceptuals.
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the Universidad Carlos III de Madrid, for spending their time reading my
thesis. I deeply appreciate the time the evaluators and the members of the
committee spent on my thesis.

I also want to thank Dr. Miguel Ferrer and Dr. Franciso José Mart́ınez
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Introduction 1
1.1 Motivation

In the last decades, audio applications have undergone a far-reaching trans-
formation due to progress in certain areas, such as data communication or
audio processing. A wide variety of applications have been implemented
allowing, for example, the localization of acoustic sources or the rendering
of a specific acoustic field in some positions. To do this, audio applications
must have the capability of recording and/or reproducing sound signals
through microphones and speakers. In addition, a computing processor is
required to analyze the recorded signals and generate the signals fed to
the loudspeakers, if necessary. Furthermore, if the necessary hardware to
make communication links is available, the information can be exchanged,
resulting in a network composed by microphones and speakers. This struc-
ture is known as acoustic sensor network (ASN), which can be composed
of several acoustic nodes, being an acoustic node the combination of a set
of microphones, speakers and a processor.

In general, the ASNs focus on the estimation of a common signal or
parameter that is measured by some nodes, or on the estimation of specific
signals for each node. The information from each node can be exchanged
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with the others, and thus implement different applications. Audio applica-
tions aiming at environment monitoring [1] or audio event classification [2]
only require microphones at each node. However, there are other applica-
tions that require sound generation through the loudspeakers of the nodes,
as it is illustrated in Figure 1.1. This figure shows how some parameters
are exchanged between nodes in order to generate a specific acoustic field
through the loudspeakers in the control zone.

Processing Unit

(CPU)

.....

..... Processing 
Unit

(CPU)

.....

........
..

...
..

Exchange of 
information/data

Processing 
Unit

(CPU)

Acoustic Environment

Control Zone

Figure 1.1. ASN composed by multiple acoustic nodes to perform

different sound-field applications.

Figure 1.1 shows an ASN where the acoustic nodes include microphones
and loudspeakers. This configuration allows the development of more com-
plex audio applications, such as beamforming for speech enhancement in
noisy environments [3], active noise control [4] or, personal sound zone
(PSZ) applications [5]. Since these applications modify the sound field,
they are referred to as sound-field applications in this dissertation.



1.1. Motivation 3

In this regard, this thesis addresses the study of two sound-field appli-
cations over ASN: a perceptual equalization based on active noise control
techniques and a PSZ application. These applications will be able to im-
plement intelligent algorithms over the ASN, based on different network
parameters and environmental information. That is, through this “smart
sound processing”, the sound-field applications will be able to dynamically
adapt to the environment in order to render the corresponding sound in
the specific zone.

Reproduction of music signals through speakers in a hostile environ-
ment can be annoying due to ambient noise. Since ambient noise can mask
some frequency bands of the music signal [6], the perception threshold of
the music signal can be seriously degraded, causing an inappropriate user
experience. To prevent this result, equalization is required to correct the
affected frequency bands. However, because both signals can have non-
stationary behavior, an adaptive equalization is needed in order to dynam-
ically adapt the music reproduction at each time. In addition, the study
of the masking effect can provide a smart processing and consequently an
efficient equalization because it perceptually models the interference be-
tween different sounds. Perceptual equalization has been used previously
for the same purpose but using headphones [7]. As far as we know, no
previous studies have been carried out using loudspeakers. In addition,
those works only perform equalization over the music signal. This thesis
introduces an adaptive equalization system based on active noise control
(ANC) techniques [4] that equalizes the ambient noise instead of the music
signal.

PSZ applications, where the objective is the reproduction of some audio
signal in a specific area [5], make possible the reproduction of binaural
audio through loudspeakers. These applications can be implemented in a
wireless ASN, increasing the flexibility since the elements can be placed in
different locations without physical restrictions, unlike the wired ASN. Due
to this flexibility, portable low-cost audio devices can be a good alternative
to perform sound-field applications. Due to the great development of the
current mobile devices, they can fulfill the role of performing reproduction
applications [8, 9]. Therefore, this dissertation proposes a wireless ASN
composed of mobile devices in order to perform PSZ applications. To this
end, it is first necessary to address the issue of synchronization [10]. When
different devices in an ASN are not properly synchronized, they are not
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able to simultaneously perform the corresponding sound-field application,
resulting in a poor user experience.

1.2 Objectives

Considering the previous aspects, this thesis is focused on the development
of different sound-field applications over ASNs capable of performing smart
audio processing to adapt to the specific environment. Therefore, in order
to achieve this purpose, the following objectives should be met:

• To study and analyze the algorithms proposed for the sound-field
applications to examine their feasibility when being implemented into
an ASN.

• To review the effect of the interaction between two simultaneously
generated audio signals. Since noise signals (or ambient noise) can
be present in the same environment as the signal to be perceived
(or target signal), the perception threshold of the target signal can
be degraded. Therefore, perceptual algorithms must be considered
in order to improve the perception threshold of the target signal in
presence of ambient noise. To this end, the masking threshold algo-
rithm is studied and implemented, since it models the way two signals
interact psychoacoustically.

• To implement the perceptual equalization application using the mask-
ing threshold algorithm. This includes the implementation of two dif-
ferent approaches: a perceptual equalization on the target signal and
a perceptual equalization on the ambient noise.

• To evaluate the different approaches of the perceptual equalization
application through different perceptual tests carried out by several
participants in order to analyze the performance of each approach.

• To implement a network composed of low-cost devices in order to
examine the performance of sound-field applications. This includes a
review of the corresponding algorithms in terms of computational cost
and processing time when they are implemented on low-cost devices.



1.3. Organization of the thesis 5

• To provide a full study of the sound-field reproduction applications
over an ASN. The problem of performing accurate synchronization
between different acoustic nodes should be analyzed since perfect
control of the reproduction and recording of the acoustic nodes is
required to produce an optimal result. Therefore, an in-depth study
of the synchronization between acoustic nodes must be carried out
before implementing the corresponding sound-field reproduction ap-
plication.

1.3 Organization of the thesis

This thesis describes the research that has been undertaken to develop the
previous objectives. The chapters are organized and presented as follows:

• Chapter 2: This chapter describes the basic concepts necessary for a
full understanding of this dissertation. It contains an introduction to
acoustic networks, a brief explanation of current mobile devices and
their impact on these networks and finally the fundamental principles
of the psychoacoustic theory used in the dissertation.

• Chapter 3: This chapter is focused on the psychoacoustic theory.
The chapter includes an in-depth explanation of the algorithm for
estimating the masking of a signal step by step. In the last part,
a perceptual equalization application is presented. It is focused on
equalizing sounds based on the masking algorithm presented in the
chapter. In addition, this application is evaluated by perceptual ex-
periments in order to study the performance of the masking algo-
rithm.

• Chapter 4: This chapter presents a wireless network composed of
mobile devices in order to perform an in-depth study about the syn-
chronization between these devices acting as acoustic nodes of an
ASN. For this purpose, first a detailed description about the audio
latency of the mobile devices is presented. Then, two complementary
methods are proposed in order to address accurately the synchro-
nization problem. Finally, a sound-field reproduction application is
implemented in order to analyze the performance achieved when im-
plementing the two proposed methods.
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• Chapter 5: Finally, the conclusions obtained throughout the disser-
tation are presented. In addition, a list of the publications related to
this thesis and the list of the projects that have financially supported
this dissertation are also included.

• Appendix A: The first appendix shows the structure of a software
implemented on mobile devices to address the synchronization and
implement the sound-field reproduction application.

• Appendix B: In the second appendix, a method of searching for
relevant information from ASN acoustic nodes based on Android OS
is described.

• Appendix C: In the last appendix, a brief study is carried out on
the optimal buffer size to be used in the ASN composed of mobile
devices and wireless speakers.
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This chapter presents a brief description of the main concepts nec-
essary to fully understand the methodology used in this dissertation.
In the first section, acoustic sensor networks (ASN) are explained, as
well as their main design challenges. Afterwards, a brief overview of
mobile devices is included, since they are considered in this disserta-
tion as acoustic sensors of an ASN. Subsequent to the introduction
of mobile devices, the main wireless communication protocols are de-
scribed in order to understand the current available options to form
a wireless network of acoustic nodes. Finally, since the subjective
perception of the audio generated in ASNs is also evaluated, the fun-
damental psychoacoustics theory is explained.

2.1 Acoustic Sensor Networks

2.1.1 Sensor Networks Overview

Over the past decades, technology has focused on reducing the size of com-
ponents (such as device processors) and increasing their computational ca-
pability [11] in order to improve the performance of the applications. The
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development that some areas (such as the computational and the sensing
areas) have experienced, along with the improvements in communications
and power consumption methods, have led to a technology capable of pro-
cessing and exchanging a large amounts of data [12]. According to [13], the
areas mentioned above are key areas for the sensor networks (SN) technol-
ogy, where a sensor denotes any component for measuring certain properties
of the environment where the network is located and a processor capable
of processing the captured data by the sensing hardware [14].

The development of SNs has grown exponentially over the last years
because of their use different areas. Depending on the type sensors used, a
SN can be able to measure the temperature to detect a fire in a forest [15],
monitor the air conditioning system in a building [16], or to monitor the
health of a person [17, 18], with the body being the element that delimits the
network, resulting in what is known as body area sensor network (BASN).
The SN technology can be used in the military field as well [19], where
wireless SN (WSN) are used to monitor the enemy forces areas, or in [20],
where the main goal is to improve the response to asymmetric threats.

Regarding the previous literature, most of the current applications im-
plemented over SNs use wireless connections to connect their sensors, such
as shown in [21, 22], where the tracking and maintenance of industrial
equipment is performed. As it is explained in [23], thanks to the wireless
connections in SN, larger areas can be covered using same number of sen-
sors compared to traditional wired SN as shown in Figure 2.1, where the
sensors of the network are represented by the microphones. Therefore, the
WSN provide a greater flexibility and a lower computational cost [24].

Because both types of sensor network (shown in Figure 2.1) only dif-
fer in the connection between the sensors, for the sake of simplicity, in
this dissertation a sensor network will be denoted as SN, regardless of the
connection between sensors used (wireless or wired).

2.1.2 Passive Acoustic Networks

When a network is composed by acoustic sensors, the network is known as
Acoustic SN (ASN). These sensors are represented by microphones (as illus-
trated in Figure 2.1), where acoustic environment can be captured without
altering it, resulting in a network capable of obtaining features of the en-
vironment through the recorded audio. Since these ASNs are able to get
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(a) (b)

Figure 2.1. Area covered in a SN (Left) and in a WSN (Right) [10].

parameters from the audio signal, but they cannot modify the sound field,
we call them as passive ASN.

Therefore, the main objective of the passive ASNs is to sense the acous-
tic environment. In this way, they can also obtain useful parameters to
characterize that scenario, such as the room impulse response (RIR), which
measures the propagation path between two points separated in space [25].
Since ASN are able to obtain useful information about the environment,
they are used to solve different issues, such as localization or tracking of
targets [26, 27].

In recent years, ASN composed only by microphones have been widely
used in different applications. The most common applications are focused
on the monitoring, detection and classification of acoustic events. Some
examples of monitoring applications are found in [28], where the main goal
is to control the state of volcanic eruptions, in [29], where an ASN is used
to supervise vehicle traffic, or in [30], where important environmental fac-
tors affecting to the people are monitored. Regarding the second group of
applications, ASNs are used to detect audible events, such as the gunfire of
a sniper [31] or to detect audio events in general (such as opening a door
or footsteps) [32, 33], or to classify audio events [2].
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Considering the previous literature, passive ASN can be assumed to be
formed by a set of microphones capable of exchanging information (using
wireless or wired connections) in order to obtain key parameters of the area
where the ASN is located. The monitored environment is usually associated
with offices, homes or outdoor scenarios, although the deployment of ASN
in underwater scenarios has been considered for different applications as
well [34]. However they cannot be able to modify the acoustic field.

2.1.3 Active Acoustic Networks

When an ASN is composed of microphones and speakers, it is able not
only to monitor the acoustic field but also to modify it. For this reason,
in this dissertation these ASNs are called as active ASNs. An example is
depicted in Figure 2.1, where loudspeakers are considered as a new element
of the acoustic network. Through the introduction of the speakers, the user
experience can be improved since the ASN is able to perform more complex
tasks beyond monitoring, classification or detection acoustic events.

Nowadays, active ASN are used in different applications that adapt
the acoustical environment to some type of requirement. For example,
as shown in Figure 2.2, an ASN can be used to actively control ambient
noise at certain locations of the ASN through the loudspeakers [4, 35], or
to enhance speech using beamforming processing techniques [3, 36]. The
most popular audio applications implemented over ASNs are the generation
of personal sound zones (PSZ), where the objective is to render different
sounds in different acoustic zones of the same acoustic environment [37, 38],
as shown by Figure 2.2.

In this dissertation an acoustic node is defined as a group of micro-
phones, loudspeakers and a processing unit (CPU) that allows the pro-
cessing and exchange of information between other nodes. According to
this description, an acoustic node can be represented through the model
depicted in Figure 2.3, where the left picture is a simplified version that
contains only one microphone and a loudspeaker, which will be denoted as
single-channel node.

Due to the great development of the ASN technology, these acoustic
nodes can include from high-quality microphones and speakers [39] to low-
cost devices, such a Rasberry Phi [40]. Therefore, the ASN presents a very
flexible structure that can be configured in different ways.
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Figure 2.2. Scheme of an arbitrary ASN composed by microphones and

speakers.

2.1.4 ASN design challenges

Since different technologies are involved in ASN, an accurate implementa-
tion is necessary to take full advantage of the network. To achieve this
purpose, different aspects of the network must be considered, as detailed
in [1, 10, 41], where an analysis of the ASN design is done. The most
important aspects for this dissertation are:

• Topology: It defines the structure of the underlying communication
network. The most common are shown in Figure 2.4 (star, fully con-
nected, . . . ). The choice of the topology depends on several factors,
as it is explained in [42], but two main approaches can be taken: ei-
ther establish the topology and perform the algorithms based on that
topology [43], or choose the topology according to physical param-
eters, such as the impulse responses of the system related with the
positions of the nodes [44].

• Processing computation: This feature concerns the approaches (or
strategies) to perform the algorithms inside the network. Two strate-
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Figure 2.3. Model of acoustic node.

gies are explained in [45, 46, 47], centralized and distributed process-
ing. The first strategy aims to use a central node to process all the
data in the network, as the blue node in Figure 2.4a represents. The
second strategy focuses on sharing the computational cost of the al-
gorithms among the nodes. This latter strategy will be more efficient
in networks with a topology such as shown in Figure 2.4b. Therefore,
the approach to process data will be very related with the chosen
topology.

• Scalability: This feature is related to the complexity of the algorithms
as the network grows. Another goal is to design an algorithm able
to scale when the number of the nodes of the network increases [10],
meaning that the introduction of more nodes is not a significant draw-
back.

• Synchronization: Since each node has its own hardware and software,
simultaneous procedures in different nodes are difficult to implement.
Therefore, in order to address the problem, synchronization mecha-
nisms must be performed [48, 49].



2.1. Acoustic Sensor Networks 13

• Minimizing input-output delay: In order to perform real-time audio
applications, a key parameter is the audio delay that depends on both
the hardware and software of the node [10]. This parameter is closely
related to the network synchronization.

(a) Star. (b) Fully-connected.

(c) Mesh. (d) Ring.

Figure 2.4. Most common topologies in ASN [42].

2.1.5 ASN commercial systems

Nowadays, the most common commercial application for indoor environ-
ments based on ASN are focused on reproducing music signals simulta-
neously by the speakers of the ASN. Figure 2.5 shows the system where
these applications are performed, called as Multi-Room Speaker System
(MRSS) [50], where all the speakers are connected through the Wi-Fi link
in order to reproduce the same signal simultaneously. This system allows
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to reproduce different signals by each speaker at the same time as well.

Figure 2.5. Scheme of a MRSS.

Some MRSS are focused not only on reproducing a sound but equalizing
it according to the room where system is located in order to enhance the
quality of the reproduced sound and improve the user experience [51]. In
addition, since the elements of the MRSS (the acoustic nodes) are also
composed by microphones, these systems are capable of performing speech
detection applications [52] in order to give specific commands to the system
to reproduce music.

Although the MRSS can generate acoustic environments within indoor
spaces, the available commercial MRSS are focused exclusively on render-
ing sound without applying any processing except equalization. Further-
more, usually these systems are proprietary systems, i.e. the ASN must be
composed by the same type of components (in this case, same speakers)
otherwise the application performance is significantly reduced due to the



2.2. Acoustic Networks based on mobile devices 15

differences between the speakers of different manufacturers. In addition,
each of these components is often very expensive [53]. In this dissertation,
more affordable devices will form the active ASN.

2.2 Acoustic Networks based on mobile devices

2.2.1 Mobile device development

According to the data obtained in February 2021 [54], the use of the mobile
devices, such smartphones and tablets, have shown an exponential growth
in these last years. As Figure 2.6 shows, a data forecast was done for next
months, for this reason the last year is highlighted with the ∗ symbol.
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Figure 2.6. Increment of sells of mobile devices from 2007-2021 [54].

As a result of this exponential growth, a great number of audio ap-
plications have been developed, such as noise monitoring [55], evaluation
of the sound [56], sound classification by using the smartphone to mon-
itor the environmental sounds [57], or even to record ultra-sound signals
with an in-build microphone in order to implement a proximity detection
system [58].

Moreover, current mobile devices present more than one microphone
and speaker that can be controlled in order to reproduce or/and record
multi-channel signals. In addition, they offer a powerful processor that
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is capable of performing complex algorithms that can be useful to extract
information about the acoustic environment. Furthermore, the current mo-
bile devices are capable of exchanging the information obtained with other
mobile devices through different communication protocols (such as Blue-
tooth or Wi-Fi), that will be explained in Section 2.3. Taking into account
the particularity of such mobile devices, they can be considered as acoustic
nodes of an ASN because they provide all the required elements to act as
nodes of an ASN (see Section 2.1.3).

On the other hand, as Figure 2.6 shows, the increase in mobile devices
consume becomes significant in the last decade. One of the main reasons
of this behavior was the introduction of stable versions of their Operating
Systems (OS). In 2008, a wide range of OS were used, but they had a limited
number of features. In addition, many updates were required frequently.
However, during 2010-2011 two of these OS started to outstand from the
rest, as Figure 2.7 shows, because they started to provide a robust and
stable OS for the mobile devices. These two OS are well known nowadays
and nearly all devices use one of these, and as a consequence, the rest of
the OS have already been disappeared.
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Figure 2.7. Worldwide Operating System distribution [59].

These two OS are: Android, from Google company, and iOS, from Ap-
ple company. Since both are very different OS, they are usually compared
in order to analyze their differences as well as advantages and disadvan-



2.2. Acoustic Networks based on mobile devices 17

tages [60, 61, 62]. Although both OS are the most common used nowadays,
according to Figure 2.7, Android is more extended than iOS in terms of
number of devices, specifically almost 80% of devices use Android and 20%
of devices use iOS. This gap between both OS is due mainly to two reasons:

1. The cost of the mobile device of each OS. Android devices are usually
cheaper with a broader range of prices than iOS devices.

2. The system category. Meanwhile Android is an open free system, iOS
is a proprietary system. For this reason a greater number of different
companies (such as Samsung, LG, Motorola, etc . . . ) use Android as
the OS for their mobile devices. In contrast, iOS only is used by one
company, Apple.

As it is shown in Figure 2.7, nowadays a wide range of different devices
with Android are presented and for the reasons mentioned above, in this
dissertation Android mobile devices are chosen to implement the acoustic
nodes of an ASN. The study of the an ASN composed by mobile devices is
described in Chapter 4.

Finally, since we focus on Android mobile devices, in the following
paragraphs a brief explanation about the structure of the Android OS is
given.

2.2.2 Android structure

The structure of the Android OS (also called Android stack) is implemented
through different layers in order to allow the developers of each company
greater flexibility and a greater functionality in their mobile devices. Fig-
ure 2.8 shows the stack of Android, the different layers that compose it and
the libraries (set of functionalities) available in each layer.

The performance of the application depends on the stack, or more pre-
cisely, on the communication between the different layers that compose the
stack. A good performance leads to an optimal communication between
the layers, or in other words, the processing time required for one layer to
transform the information in order to be processed by the next is minimum.
This factor, performance, is one of the most common issues to address in
Android devices [64, 65], but at the same time it is one of the most diffi-
cult to address since layers are not designed by the same developers, unlike
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Figure 2.8. Android Stack [63].

iOS. In fact, to implement a multi-platform system, the stack is separated
in different sections where each section is designed by different developers
resulting in a fragmented stack where upper layers are designed by the
developers of Android and lower layers are designed by the developers of
each company of mobile devices. In this regard, because different compa-
nies are capable of implementing Android systems, the performance of each
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specific application can be significantly reduced depending on the mobile
device, as indicated in Section 2.2.1. On the other hand, the stack is exclu-
sively software and hardware has not been considered in the performance,
but it greatly impacts on it, resulting in better performance for a powerful
hardware.

Despite this disadvantage, Android system has significantly improved
during the last years through continuous software revisions, where last one
corresponds to version 12 [66]. However, when the application demands
high system resources, such as multimedia applications, performance is
still a weak point. Multimedia operations require a fast processing, specially
when real-time processing is the main objective, but this goal becomes very
difficult to achieve when Android devices are used [67, 68]. This behavior
will be thoroughly explained in the study carried out in Chapter 4 where
an ASN composed by Android devices is implemented in order to perform
an audio application.

2.3 Communication protocols

The current mobile devices have become very powerful systems capable of
exchanging information with similar or different devices due to its capacity
of using different communication technologies to transmit data. In order to
perform a practical ASN, mobile devices must exchange their data with the
purpose of providing the network with a certain intelligence that will allow
to implement more efficient algorithms based on the information shared by
the nodes.

When using mobile devices, the most common communication pro-
tocols are wireless. From these protocols the most known (and there-
fore the most used) are Wi-Fi (IEEE 802.11 [69]) and Bluetooth (IEEE
802.15.1 [70]). At present, these two protocols are widely used in differ-
ent applications, although Wi-Fi is used in most of the cases because it
provides higher transfer rates and higher coverage than Bluetooth. Never-
theless, Bluetooth is still used in some specific fields, such as the headphones
or speakers where most of them use Bluetooth.

On the other hand, according to [71] where a comparison among differ-
ent communication technologies is carried out, the main differences between
Wi-Fi and Bluetooth protocols are:
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1. Transmission band. Meanwhile Bluetooth provides the service in the
2.4 GHz band, Wi-Fi is able to transmit in 2.4 GHz and 5 GHz bands.

2. Data transfer rate. Although, the rate has been improved after each
version, Wi-Fi achieves much higher rates than Bluetooth, as it is
shown in Table 2.1.

Wi-Fi Bluetooth

Generation Rate (Mbps) Version Rate (Mbps)

1st (802.11) 2 1 1

2nd (802.11 b) 11 2 2.1

3rd (802.11 g/a) 54 3 24

4th (802.11 n) 600 4 32

5th (802.11 ac) 3600 5 50

Table 2.1. Data transfer rates for Wi-Fi and Bluetooth protocols.

Through the flexibility and versatility that wireless communications are
able to provide, current devices are able to build a network similar to the
network represented in Figure 2.1b, by placing the devices at any point of
the space. As Table 2.1 shows, since Wi-Fi protocol provides better rates,
it is the optimal solution for connecting the acoustic nodes of an ASN due
to the fact that data transmission is faster.

On the other hand, audio devices (such as speakers or headphones)
can be implemented through a wireless protocol in order to receive data
from the wireless link and reproduce that data [72, 73]. Considering this
performance, when a mobile device uses a wireless speaker in order to
reproduce data through that speaker instead of the own loudspeakers of the
mobile device, the flexibility of the ASN is increased since microphone and
speaker can be located at different spots. However, as it is stated before,
most of the current audio devices use the Bluetooth protocol instead of
the Wi-Fi one resulting in a slower data transmission between the mobile
device and the speaker.

Since the use of wireless speakers in the ASN increases the network
flexibility, we will considered them instead of using the own loudspeakers
of the mobile devices. However, a comparison should be made between
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the features offered by the Wi-Fi and Bluetooth speakers in order to se-
lect the best option to use in this dissertation. On one side, Bluetooth
provides a variety of speakers greater than Wi-Fi. On the second hand,
Bluetooth provides a generic method called Advanced Audio Distribution
Profile (A2DP) that explains how the multimedia data is streamed from
the mobile device to the speaker [74], while Wi-Fi speakers must be used
through a proprietary application that is provided by the speaker manufac-
turer, in order to exchange the audio information between devices. That
means that the application can be different for different speakers of differ-
ent manufacturers. In addition, no other sound reproduction application
can independently transfer data to the speaker because the transmission is
managed by the manufacturer application. Finally, since Wi-Fi speakers
are composed by more physical components, such as the Ethernet port,
as well as additional processing algorithms in order to achieve a better
sound quality than Bluetooth speakers, they are usually more expensive
than Bluetooth speakers.

Therefore, Wi-Fi speakers achieve a better sound quality and they are
able to receive audio data faster, but they cannot be accessed without the
manufacturer application, while Bluetooth speakers are more affordable
and they provide a generic method to transmit the audio data without
any additional application. For these reasons, the best choice is to use
Bluetooth speakers.

2.4 Psychoacoustics

Psychoacoustics is the science that studies how a person perceives a sound
of the surrounding environment [75]. In this section a revision of the psy-
choacoustic topics related to how two sounds are perceived simultaneously
in the human hearing system will be revised.

2.4.1 Human hearing system

An acoustic sound can be described as a time-varying sound pressure mea-
sured in Pascal (Pa), where values from 10−5 to 102 are within the range
that a sound is perceived [6]. Due to the large extension of this range, the



22 2. State of the Art

sound pressure level is defined in logarithmic scale as [6]:

LSPL = 20 log10

(
p

p0

)
dB , (2.1)

where p and p0 are, respectively, the sound pressure of the captured sound
and the reference sound pressure which depends on the propagation medium
(in the particular case of the air it takes a value of p0 = 20 uPa). In (2.1),
LSPL is the corresponding sound pressure level in logarithmic units, from
now called as SPL level.

The SPL level is widely used to provide a real measurement of the audio
system. When an audio sound is captured by a microphone, usually this
signal is provided within the range of [−1, 1] without units of measurement,
usually called as Full Scale (FS) units. That means that to obtain a real
measurement of its SPL level, we must carried out a calibration process [76].
This process is based on (2.1) and it relates the digital information, in the
range of [−1, 1], with the physical measurement in dB SPL.

When the sound pressure reaches the human ear, it is analyzed by
three different regions called respectively outer, middle and inner ear, as it
is illustrated in Figure 2.9 [77]. Firstly, the outer ear transmits the sound
pressure to the middle ear where it is transformed to a vibratory stimulus.
Secondly, this stimulus is transmitted to the inner ear where the vibration
is transformed into electrical information, through the auditory nerves, in
order to send the information to the brain where the electrical information
is interpreted.

Thus, as stated before, the sound pressure is transmitted by the air
in the outer ear, while a vibratory stimulus is sent via liquid in the inner
ear [77]. Therefore, a transformation of the sound pressure in a vibratory
stimulus is done in the middle ear. In addition, a proper adaptation of
impedances, due to the propagation medium change, to avoid signal losses
is performed in the middle ear. However, as [6] states, a perfect match of
impedances cannot be performed, being the narrowband signals centered
on 1 kHz the best adapted.

Due to the human ear behavior, the auditory system perceives the
sound in a very specific range. This range is called the audible spectrum
and it is limited by four boundaries. The first two involve the limit fre-
quencies that are perceptible, that is, 20 Hz and 20 kHz. The other two
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Figure 2.9. Regions of the human auditory system [77].

boundaries were presented above and they involve the limit pressures that
are perceptible, that is 10−5 Pa to 102 Pa. Through these boundaries, an
area can be described that presents the sounds that can be perceived by the
human hearing system. Any sound outside this area cannot be perceived
by the ear, such as ultra-sounds. This area is called the hearing area [6]
and it is usually represented as shown in Figure 2.10, where the SPL level
vs frequency is shown.

Figure 2.10 shows important information, such as the regions normally
occupied by the music and speech, the region of SPL levels where is located
a harmful sound for the auditory system (represented through the upper
curves) and finally, the minimum SPL level required for a sound to become
audible by our hearing system, also called as the threshold in quiet (or
human hearing threshold). According to Figure 2.10, the threshold in quiet
is different for different frequencies, making some regions more sensitive
than others. In fact, the most sensitive region is located between 2–5 kHz,
where most speech sounds are located, while the least sensitive are located
in the extremes of the hearing area, or in other words, the least sensitive
sounds are located in the lowest and highest frequencies of the hearing
area while the most sensitive is located in the upper-middle frequencies. In
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Figure 2.10. Hearing Area of the human hearing system [6].

conclusion, the human hearing system perceives sounds in different ways
depending on frequency.

The threshold in quiet is a very useful parameter for understanding
how the auditory system deals with the sounds in the environment. It
is the result of a large number of subjective tests performed on a large
number of subjects. With the aim of obtaining that threshold, a single
tone with a variable frequency ranging from low to high values is generated.
Then, the subject is able to change its SPL level in order to obtain the
perception threshold at the corresponding frequency. This test is called
Bekésy-tracking method [78] and the current auditory tests (or audiometry)
are based on that method in order to evaluate the hearing thresholds of
subjects, even with cochlear implants [79].

2.4.2 Critical Bands

The concept of critical bands was introduced by Fletcher and Munson [80]
in order to characterize the response of the auditory system. This model
explains how the inner ear decomposes the sound into several frequency
bands resulting in the behavior shown in Figure 2.10. These frequency
bands are known as critical bands because when two different sounds are



2.4. Psychoacoustics 25

located at the same band, they interfere with each other causing a differ-
ent perception than when these two sounds are located at different critical
bands. In [81], this behavior is studied for the loudness parameter (de-
scribed in Section 2.4.3), being the perceived loudness greater when sounds
(in that case the tones) are located in multiple critical bands instead of
within a single one.

As [75] explains, auditory system uses auditory filters according to the
critical bands to analyze the sounds. But due to the composition of the
ear (see Figure 2.9), the bandwidth of these filters is different depending on
the frequency. This relationship between the bandwidth of the filters (also
known as critical bandwidth) and the frequency can be seen in Table 2.2,
where each critical band (represented through the critical band number,
ν) is presented in terms of the upper and center frequency (fu and fc

respectively) and its bandwidth (BW).

ν fc (Hz) fu (Hz) BW (Hz) ν fc (Hz) fu (Hz) BW (Hz)

1 50 100 100 13 1850 2000 280

2 150 200 100 14 2150 2320 320

3 250 300 100 15 2500 2700 380

4 350 400 100 16 2900 3150 450

5 450 510 110 17 3400 3700 550

6 570 630 120 18 4000 4400 700

7 700 770 140 19 4800 5300 900

8 840 920 150 20 5800 6400 1100

9 1000 1080 160 21 7000 7700 1300

10 1170 1270 190 22 8500 9500 1800

11 1370 1480 210 23 10500 12000 2500

12 1600 1720 240 24 13500 15500 3500

Table 2.2. Relationship of frequency and critical band.

As Table 2.2 shows, the critical bandwidth increases as the frequency
increases, leading to lower resolution at high frequencies. In addition, this
relationship is related to the sampling frequency (fs) of the sound to be
analyzed, causing that the last critical band is defined by fs

2 . Therefore,
assuming a sound sampled at fs = 16000, last critical band to be analyzed
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will be the 22nd, while for a sound sampled at fs = 8000, the last critical
band will be the 18th.

On the other hand, from Table 2.2 a non-linear increase of the critical
bandwidth can be appreciated. In fact, for low frequencies (up to the
5th critical band) the relationship between the center frequency and the
bandwidth of the critical band is linear, but from that band onward, a
logarithmic relationship can be appreciated. In order to model this non-
linear relationship, [82] proposed the following expression:

∆fν(f) = 25 + 75

[
1 + 1.4

(
f

1000

)2
]0.69

, (2.2)

where ∆fν(f) is the critical bandwidth, f is the frequency and ν is the
critical band number. To evaluate the accuracy of the model in (2.2),
the difference between expression (2.2) and the critical bandwidth data of
Table 2.2 is represented in Figure 2.11, where the red line represents the
expression of [82] and the blue dots represents the data of Table 2.2.
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Figure 2.11. Difference between Table 2.2 and expression (2.2) [82].

As Figure 2.11 shows, the model proposed by [82] adequately imple-
ments the relationship in most of the frequencies leading to a proper method
to define the bandwidth of all the critical bands where according to Ta-
ble 2.2, 24 bands can be found. The critical bands are usually called as
Bark bands as well and are denoted by the same symbol (ν) [6]. Therefore,
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in this dissertation both, critical and Bark bands, will be used to refer to
these bands.

2.4.3 Masking between signals

Subjective metrics based on the previous critical band model (see Sec-
tion 2.4.2) have been implemented [6, 83, 84, 85] to model the human
hearing perception. One of the most well-known metrics is the masking
threshold that models the masking effect between signals.

The masking effect occurs when two different sounds are perceived
by the auditory system causing a change in the perception of the first
sound (called maskee or target sound) due to the second sound (called
masker sound). This effect is extended in both, temporal and frequency
domains leading to two different masking effects: temporal and spectral
masking [86]. Although in Chapter 3 of this dissertation, spectral masking
effect is analyzed in detail in order to implement audio applications, a brief
explanation of the temporal masking is also given here. According to [87],
temporal masking is an effect that occurs over a certain time interval when
two sounds interact in the auditory system. It can be spread before and
after of the masker sound, just as [6] explains with the Figure 2.12 where
a masker of 200 ms and a short tone burst (maskee sound) are used.
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Figure 2.12. Temporal Masking for a masker of 200 ms [6].

On the other hand, spectral masking is produced when two different
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sounds, located at the same frequency components (or closely components),
are perceived by the auditory system at the same time [88]. The effect of the
spectral masking depends on the SPL level of maskee and masker sounds,
and depending on these levels, the maskee sound can reduce its perception.
The masking effect that the masker sound produces on the maskee sound
increases as the SPL level of the masker sound increases. Finally, when the
SPL level of the masker sound is much higher than the SPL level of the
maskee sound, the masker sound is able to mask completely the maskee
sound, making it inaudible. Therefore, the masking effect depends on the
frequency content of the masker sound [6].

An example of spectral masking is shown in Figure 2.13, where spectral
masking from a narrowband noise (the masker sound) to a pure tone (mas-
kee sound) is shown. In this case, three different scenarios are presented,
each one in a different critical band in order to appreciate dependence of
the spectral masking effect with the frequency. In all three scenarios, the
masker sound is a narrowband noise of bandwidth one critical band and
the maskee sound is a pure tone located at the same critical band as the
noise.
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Figure 2.13. Spectral masking of a narrow-band noise with a bandwidth

of one critical band [6].
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As shown in Figure 2.13, the center frequencies of the maskee and
masker sounds are 250 Hz, 1kHz and 4kHz. In addition, the SPL of the
masker (60 dBSPL) is indicated with the dotted line, as well as the hu-
man hearing threshold (the dashed line). It can be seen that the spectral
masking is always lower than the SPL of the masker in any of the three
frequencies, leading to assume that the masking produced by a sound is
always below its SPL level. In addition, the masking level is lower as fre-
quency is increases, thus, decreasing the effect of the masker sounds at high
frequencies. Therefore, as shown in Figure 2.13, the SPL level of the mas-
kee sound must exceed the masking level produced by the masker sound
in order the maskee sound to become audible, otherwise the maskee sound
will be inaudible.

The spectral masking effect is a very relevant issue in audio applications
that demands a proper sound perception. Some of these applications are
focused on audio coding [89, 90], where the masker is considered as the
quantification noise, speech recognition [91, 92] or music equalization [93,
94]. Given the impact of this effect, in this dissertation a deeply study of the
spectral masking will be done through the masking threshold metric. As
the Chapter 3 will explain, this metric depends on the perceptual parameter
called tonality, that depends at the same time on the loudness parameter.
For this reason, in the following paragraphs a brief explanation of both
parameters is done.

LOUDNESS

According to [80], loudness is a parameter that subjectively describes the
sound pressure level. Additionally, as it was depicted in Figure 2.10, the
sound pressure that the auditory system is able to perceive also depends
on frequency. For this reason, the loudness is related with the intensity
and the frequency composition of the sound. In addition, when sound is
composed by several frequency components, the loudness depends on the
masking caused among the different components, as [95] explains.

The loudness uses as a measurement unit the “sone”, which is usually
denoted by the symbol N . However, in order to avoid confusion with the
number of nodes of an ASN, in this dissertation it is denoted as F . The
“sone” unit is related with a tone located at 1 kHz in such a way that 1
“sone” represents the perceived sound power of a tone of 40 dB SPL located
at 1 kHz. Therefore, if the loudness of an arbitrary sound is 1 sone, it
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means that it is as loud as a tone of 40 dB SPL located at 1 kHz. However,
another measurement is often used: the “loudness level”(denoted in this
case by LF), whose measurement unit is the “phon” [6]. In contrast to the
loudness, F , the loudness level is directly related with the SPL of a tone of
1 kHz, in such a way that a sound of “X” phons means that the sound is
as loud as a tone of 1 kHz of “X” dB SPL. These two measures, loudness
(F ) and loudness level (LF), are used equally to evaluate subjectively the
sound pressure level of the sounds and they are related through the next
expression [6]:

LF =

{
40 + 10 log2 (F ) F ≥ 1

40 (F + 0.005)0.35 F < 1 .
(2.3)

Assuming that the sound to analyze is a pure tone, the loudness level
can be represented as a curve that depends on the SPL level and frequency
of the tone to analyze. The international standard ISO 226 [96] establishes
the different curves according to the loudness levels, leading to the equal-
loudness contour curves that are represented in Figure 2.14, where loudness
level is defined for certain frequencies up to 12.5 kHz.
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Figure 2.14. Equal loudness contour curves for pure tone [96].

Considering a specific curve, such as the 20 phon curve, it represents
the required SPL of a tone in order to be as loud as a tone of 1 kHz of
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20 dB SPL. As Figure 2.14 shows, in case of the tone of 1 kHz, the loudness
level matches with the SPL level in all the curves, due to the definition
of loudness level. Additionally, the lower curve (0 phons) indicates the
threshold in quiet, shown in Figure 2.10.

Since the loudness depends on the perception of a sound in the auditory
system, it is a non-linear parameter. This non-linearity can be intensified in
the case of broadband sounds where frequency and temporal effects (such
as masking) of other components can interfere by completely changing the
loudness perceived and the loudness level. In order to consider all the
contributions of these components, different standards have been defined
to obtain the loudness of complex sounds. In this dissertation the ISO 532-b
is used as the standard to estimate the loudness, F , [97] (and consequently
the loudness level through (2.3)). This standard estimates the loudness
through the combination of the specific loudness per critical band. In other
words, the standard first estimates the loudness per critical band of the
broadband sound and then combines all the contributions to obtain the
total loudness (F ).

TONALITY

The last psychoacoustic parameter that we will introduce is the tonality.
According to [98], the tonality quantifies the perception of the tonal content
of a sound. The tonality gives information about the frequency composition
of the sound, leading to a specific perceptual analysis of the sound that
can be used in different psychoacoustic models, such as masking [99] or
perceptual annoyance [100].

As Figure 2.14 shows, narrowband sounds (such as tones) located at
different frequencies are not equally perceived. Since the tonality also de-
pends on the frequency of the sound, this behavior leads to consider that
tonality and loudness can be related, as [101] explains. The tonality can be
estimated through different methods, such as those explained in [101, 102],
where tonality is estimated through loudness, or in [98], where the relation-
ship between the tonal and non-tonal parts of a sound are used.

According to [103], the tonality parameter is very important in the
masking effect. The masking has been demonstrated to be different in pure
tones than in narrow-band noise signals located at the same frequency,
being the masking effect of the noise signals stronger than that produced
by the tones [104, 105]. Based on the masking model that will be used
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and detailed in Chapter 3, the difference in masking is caused because of
the tonality of the signals: a white noise causes more masking due to its
low tonality whereas a pure tone produces less masking because its high
tonality. In order to understand the effect of the tonality over the masking,
Figure 2.15 shows the masking level (in dB SPL) of a masker sound in terms
of critical band. The SPL per critical band of the masker is represented as
a dotted line in order to appreciate the offset (∆) that the masking level of
a masker suffers on its SPL level (as can also be seen in Figure 2.13).
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Figure 2.15. Effect of tonality over the masking [103].

The offset or shift shown in Figure 2.15, is the effect of the tonality
over the masking. Because tonality depends on the frequency composition
of the sound to be analyzed (in this case the masker), it will be different
for different masker sounds leading to different masking levels, even when
the maskers have the same SPL per critical band.
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This chapter describes processing techniques that allow to estimate
the spectral masking threshold of signals through a perceptual analy-
sis. This analysis is based on the human auditory system, which de-
composes audio signals in different spectral bands with different band-
widths called critical bands. According to the literature, the masking of
a signal is obtained through the spectral masking threshold model that
can be divided into the auditory masking model and the tonality
estimator model. Both processes are deeply analyzed in this chapter
in order to provide an accurate estimator able to measure the masking
parameter of the signals. On one side, the auditory masking process
provides a masking curve based on a specific pattern. On the other
hand, the tonality estimator process estimates an offset that will be
applied to the masking curve depending on the features of the signal.
Finally, in the two last sections, an equalizer modeled on an ASN is
implemented in which the above spectral masking model is applied by
using two different methodologies. Therefore, a perceptual equaliza-
tion that adapts dynamically according to the masking between signals
is implemented.
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3.1 Spectral masking model

The analysis that will be developed in this chapter is based on the mask-
ing effect, introduced in Section 2.4.3. As explained, the masking effect
is produced in both time and frequency domains [86], although the anal-
ysis performed in this dissertation is focused on the masking effect in the
frequency domain, called from now on as spectral masking.

The spectral masking is analyzed using the spectral masking threshold
model that indicates the level of masking that an audio signal is capa-
ble of producing at each critical band (see Section 2.4.2). The spectral
masking model forms the basis for different applications, such as coding
applications [106, 107] where the noise introduced by the encoder is ana-
lyzed in order to perform a more accurate coding of the audio signal, the
enhancing of audio signals (music or speech) in a noisy environment in
headphones [94], or in a car through the loudspeakers [108]. This masking
model can also be used to remove irrelevant components of any real-world
music or speech sound to facilitate the sound synthesis and design [109],
or to enhance the sound quality of the hybrid electric power-train noise
perceived inside the passenger compartment [110].

According to [6], the spectral masking model was developed as a result
of multiple subjective studies of the masking between different narrowband
signals (such as tones or narrowband noise signals located in a single critical
band). In this regard, the target audio signal is called the maskee signal
and the signal used to mask the target signal is called the masker signal,
as it is described in Section 2.4.3. The different studies show that the
masking effect can be modelled as a triangular-shaped function (as it will be
shown in Section 3.2.2) leading to assume the masking spreads over several
critical bands (front and back critical bands) depending on the critical
band where masker signal is located. This behavior has been analyzed for
years resulting in different masking models, as for instance those based
on the ERB filters [106] or based on the masking patterns [111]. Both
models are commonly used in audio coding applications [103], although
they can be used in applications with different approaches as well, such
as equalization [93, 94]. In this dissertation, the masking model based on
masking patterns [111] will be discussed. This model can be decomposed
as shown in Figure 3.1 where xm(n) represents the masker signal with m
as the frame index. This model is composed by two main processes needed
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to obtain the spectral masking threshold of the masker signal (Tx,m(ν)) per
critical band (see Section 2.4.2).

Spectral 
Analysis

Mapping to 
Bark

Spreading 
Function

Tonal 
Factor

Offset 
Function

+
xm(n) +

-
Tonality Estimator

Auditory Masking

Px,m(k)

Ex,m(ν)

Ox,m(ν)

μx,m

Tx,m(ν)

Sx,m(ν)

Figure 3.1. Block diagram of the spectral masking model.

According to Figure 3.1, in order to estimate Tx,m(ν) of a specific
masker signal, the spectral masking model is divided in two blocks. The
upper branch is called the “Auditory Masking Model” because it estimates
the masking pattern based on the human auditory system. The process of
the bottom branch is called “Tonality Estimator Model” as it estimates the
tonality parameter of the masker signal, explained in Section 2.4.3.

As shown in Figure 3.1, the diagram input is the mth frame of the signal
of interest x(n), whose length is MS samples. In an initial state, the Power
Spectrum (PS) of the xm(n), Px,m(k), is estimated through the “Spectral
Analysis” block by means of the Welch method [112] averaging NF frames,
including the current frame (m), such that MT = NFMS samples, using
a hamming window, an overlap of 50% and a FFT size of NFFT = MS

samples. As shown in Figure 3.1, Px,m(k) is estimated in linear units over
the discrete frequencies fk = k

NFFT
fs, where fs is the sample rate used and

k is the frequency bin, such that k = 0, . . . , NFFT
2 .

Once Px,m(k) has been estimated, the perceptual processes “Auditory
Masking Model” and “Tonality Estimator Model” are performed. These
processes are explained in detail in the following sections.
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3.2 Auditory masking model

3.2.1 Background

The main objective of the “Auditory Masking” process is to obtain the
overall masking curve (Sx,m(ν)) that represents the shape of the masking
of themth frame of the masker signal, x(n), [94]. As indicated in Section 3.1,
it is based on patterns that provide information of the masking per critical
bands (see Section 2.4.2) in order to mimic the human auditory system.

The masking patterns were designed as a result of the analysis of multi-
ple experiments where the masking caused by narrowband signals (signals
with a maximum bandwidth of one critical band, such as tones or nar-
rowband noise signals) [6]. They represent the masking caused by one
critical band (where the masker is located) over the rest of them [90]. As
shown in [103], these patterns are functions with a triangular shape, in-
dicating that the masking of one critical band spreads over the rest. For
this reason, the masking patterns are more commonly known as “Spreading
Functions” [103, 113, 114].

Although the “spreading functions” represent the auditory masking
pattern for narrowband signals, for years they have been used for the anal-
ysis of broadband signals as well. Nevertheless, the masking of broadband
signals was first studied by [115] where the objective was to predict the
masking of broadband signals using narrowband signals, alone and com-
bined, in order to determine whether the masking of the broadband signal
could be estimated through the combination of the masking caused by each
of their narrowband components. This combination of different masking is
known as “additivity of masking” [6, 116], since the contributions of the
different maskers are added together.

The “additivity of masking” has been discussed several times due to
the complexity of its modeling. As [116] explains, the prediction of the
masking of two combined narrowband signals does not correspond to the
experimental results, that show a masking level between 10 – 17 dB above
the predicted masking. On the other hand, the results in [117] show that
the prediction of the masking of two combined narrowband signals matches
experimental studies in certain cases, depending on the SPL level and fre-
quency position of the masker signals. Finally, in [118] a study (based
on [116]) is provided where the combination of different masking can be
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defined through a power-law expression, which will be seen in (3.5), in or-
der to select the way the different contributions of each masker are added
together.

The combination of the different masking leads to the overall masking
curve (Sx,m(ν)), that it is the result of the upper branch of Figure 3.1. For
this reason in the following sections the steps that compose the “Auditory
Masking Model” are described in detail for a full understanding of this
procedure.

3.2.2 Overall masking curve computation

According to Figure 3.1, the first step of the upper branch computes the
energy per critical band of the masker signal, xm(n). This transformation
is done in two stages. Firstly, frequency bins are converted into Bark bins
through the following expression [82]:

ν = 13 arctan

(
0.76fk
1000

)
+ 3.5 arctan

(
fk

7500

)2

, (3.1)

where fk is the frequency in Hz and ν is the critical band index (or Bark
index), being ν = 1, · · · , Nc with Nc as the number of critical bands. The
frequency range of all the critical bands is shown in Table 2.2, specifying the
center, low and high frequency of each critical band for the whole spectrum.

This mapping provides a non-linear relationship between frequency and
Bark domains, specifically it provides a logarithmic relationship, as Fig-
ure 2.11 shows. This relationship causes the critical bandwidth of each
critical band to increase according to their center frequency. On the other
hand, as (3.1) describes, mapping depends on frequency resolution, since
fk = k

NFFT
fs, with NFFT, fs and k defined in Section 3.1. Therefore, the

FFT size, NFFT, will define the number of frequency components that each
critical band will have. Since the bandwidth is narrower in the lower criti-
cal bands (see Figure 2.11), a poor frequency resolution will cause the low
critical bands to be composed by a few frequency components, resulting in
an inaccurate estimate of the lower bands.

Once the mapping to Bark domain has been done, in a second stage,



38 3. Sound Masking on ASN

the energy per critical band is obtained through [111]:

Ex,m(ν) =

sup(ν)∑
k=inf(ν)

Px,m(k) , (3.2)

where Ex,m(ν) is the energy per critical band in linear units and inf(ν) and
sup(ν) correspond to the frequency bin of the lower and upper boundary of
the Bark band ν, respectively. This expression gathers the frequency com-
ponents of the power spectrum according to the critical band where they
are included. As an important aspect to consider in this relationship is
the fact that the “power spectrum” is considered as the “energy spectrum”
divided by the frequency interval (∆f) where that energy has been calcu-
lated. But, in this case Px,m(k) already considers the frequency interval,
causing that ∆f = 1 in (3.2).

According to Figure 3.1, the second block of the upper branch is the
“spreading function” block where the “additivity of masking” is performed.
As stated before, the masking patterns provides information about the
masking caused by a specific critical band (named as masker band) over
the rest of them (named as maskee bands).

A large number of masking patterns based on different approaches
to the human perception of sounds have been proposed in the literature.
In [103], an extensive analysis of different masking patterns can be found.
However, the process to obtain Sx,m(ν) is identical regardless to the used
pattern. The masking pattern proposed in [107] is the base of modern audio
coding standards [90, 119] and we will use it as the masking pattern in the
following steps to illustrate how the method of the “additivity of masking”
works. That pattern can be expressed as follows:

Bν(η) = 15.81 + 7.5 (∆ν(η) + 0.474)− 17.5

√
1 + (∆ν(η) + 0.474)2 , (3.3)

where ν is the maskee band, η is the masker band, ∆ν(η) = (ν − η) and
Bν(η) is expressed in dB units. The Figure 3.2 shows the masking pattern
obtained for η = 8 where a triangular shape can be appreciated. This
triangular pattern is common to all the spreading functions [103].

For broadband signals, the spreading function in (3.3) must be obtained
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Figure 3.2. Masking pattern proposed in [107] for η = 8.

for each critical band η. For this reason both, η and ν are defined in the
range of 1 to Nc.

In (3.3), we can see that masking patterns do not consider the level
provided by the masker signal, or from an alternative point of view, the
masking patterns assume a SPL level of the masker signal of 0 dB SPL (as
Figure 3.2 shows). Therefore, in order to provide the corresponding SPL
level to the masking patterns, the energy per critical band of the masker
signal (see (3.2)) must be included as:

bν(η) = 10
Bν (η)

10 Ex,m(η) , η = 1, . . . , Nc , (3.4)

where bν(η) are the corresponding masking patterns, considering the SPL
level of the masker signal, Ex,m(η), expressed in linear units.

We will illustrate the meaning of (3.4) with an example where a white
Gaussian noise is used. The noise is sampled at fs = 44100 Hz and filtered
with a low-pass filter of 1 kHz in order to provide a broadband signal. In
addition, to estimate the energy per critical band of the noise, the SPL
level of the masker signal must be known. Thus, the measurement must
be done in a calibrated system. In this case we will assume an energy per
critical band of 70 dB SPL. The result when the previous expressions ((3.3)
and (3.4)) are used for this specific signal is shown in Figure 3.3, where the
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energy per critical band, Ex,m(η), of the masker signal is represented by a
blue line.
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Figure 3.3. Masking patterns, bν(η), calculated by (3.4). Their

maximum values correspond to the band of interest η.

As Figure 3.3 shows, each masking pattern is calculated according to
the energy per critical band. It can be appreciated how both, energy and
masking pattern, decrease from the 10th critical band in advance, which
corresponds with a noise low-pass filtered at 1 kHz (see Table 2.2).

Once the masking patterns have been particularized for the specific
masker level, next step is to combine the different contributions of the
masking patterns in order to obtain Sx,m(ν), performing what is known as
the “additivity of masking”. This final step is performed through the next
expression that represents the overall masking curve (in dB units) [94]:

Sx,m(ν) = 10 log10


 Nc∑
η=1

[bν(η)]α

 1
α

 , 0 < α <∞ ; ν = 1, . . . , Nc ,

(3.5)

where α indicates the weight of the different contributions in order to per-
form the summation. This expression can be seen as the alpha-norm of
a vector of Nc components since bν(η) ≥ 0. Therefore, setting α = 1
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corresponds to the simple summation of the terms while taking α → ∞
corresponds to using the highest masking pattern. When α < 1 is used,
the masking obtained produces a higher level than the simple summation
of the terms, just as the study in [116] presents, where the best results are
obtained when α = 0.33.

Returning to our illustrative example, the value of Sx,m(ν) with α = 1
has been obtained from (3.5) using the masking patterns in Figure 3.3. The
curve for ν = 8 is shown in Figure 3.4 to illustrate the summation of the
terms.
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Figure 3.4. “Additivity of masking” for the critical band ν = 8.

As Figure 3.4 shows, the “additivity of masking” for a specific critical
band is performed by adding all the components of the rest of critical bands
in that specific band, represented through the circles in Figure 3.4. A softer
decrease in the SPL level of Sx,m(ν) after the 10th critical band can be
appreciated compared to the energy per critical band shown in Figure 3.3.
This behavior is the result of adding the different masking patterns, since
as stated before, they spread across the rest of critical bands, specially the
closest ones, as Figure 3.4 shows.

After performing the “additivity of masking”, the process performed
by the upper branch of Figure 3.1 is completed and the overall masking
curve, Sx,m(ν), is obtained.
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3.3 Tonality Estimator Model

3.3.1 Background

In this section, the bottom branch of Figure 3.1 is described. According
to [103], the overall masking curve, Sx,m(ν), suffers a decrease in the en-
ergy that depends on the tonal features of the masker signal. This effect
can be appreciated in Figure 2.15 (and the corresponding explanation in
Section 2.4.3).

Multiple studies of the masking of signals provide results where mask-
ing is different even when the different maskers lie in the same critical band
and they have identical SPL levels. Some of these examples are described
in [105, 120, 121] where a comparative study between tone signals mask-
ing noise signals and vice-versa is performed. Their experimental results
conclude that masking does not present a symmetrical behavior, that is,
narrowband noise signals and tone signals do not mask equally even though
they have the same SPL level and they are located at the same critical band.

Considering the proposed model, the effect of the asymmetry of the
masking is estimated through the bottom branch of Figure 3.1. Although [6]
explains that tonality influence should be obtained through empirical test,
nowadays different methods are implemented to estimate the tonality in
the spectral masking threshold model. One of the most used methods at
present was designed by Johnston [111] where an estimated tonal factor
produces an offset per critical band used to estimate the lost energy of
Sx,m(ν). Similar approaches to the method implemented by Johnston have
been used in perceptual audio coding [119, 122], perceptual speech enhance-
ment [113, 114] and music equalization in presence of a noise [93, 94, 123].
Although this approach has been widely used, it can be inaccurate for ap-
plications involving complex noise signals [120, 124] or involving speech
and high frequency noise signals [125]. Alternative methods can be found
in [124, 126] where tonality is based on different methods such as the tem-
poral envelope rate (TE-R) method, the linear prediction method or the
“Auditory Image Correlation” (AIC) method where tonality is estimated
through a time-domain approach that analyzes the envelope fluctuations
according to the auditory system.

In this dissertation, two different approaches to estimate tonality in the
spectral masking model are presented and compared between them with the
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purpose of studying which one performs a more realistic spectral masking
effect. The first method is described in [111] and it is the most commonly
method used in this spectral masking threshold model. The second one is
based on the method explained in [127] and it considers several features of
the masker sound. Each one estimates a tonal factor, µx,m in Figure 3.1, in
order to use it in the same “Offset Function”. The estimation of this tonal
factor is explained in detail for each method in Sections 3.3.2 and 3.3.3.

3.3.2 Spectral Flatness Method

This method was originally described in [111]. It estimates the tonal factor,
µx,m, from the so-called Spectral Flatness Measure (SFM), thus, we have
denoted this method as the “Spectral Flatness” (SF) method.

To estimate µx,m, the two steps shown in Figure 3.5 have to be carried
out. The “SFM Estimator” block computes the SFM, denoted by Υx,m,
as the ratio between the geometric and arithmetic mean of Px,m(k) of the
masker signal [128]:

Υx,m = 10 log10


[
NFFT∏
k=1

Px,m(k)

] 1
NFFT

1
NFFT

NFFT∑
k=1

Px,m(k)

 . (3.6)

Tonal 
Rating

Tonal Factor 

μx,mSFM 
Estimator

Px,m(k)    x,m

Figure 3.5. Block diagram of the SF method to estimate the tonal

factor, µx,m.

According to the definition of the SFM parameter, their values range
between two boundaries. Its highest level is 0 dB, corresponding to a white
noise, and its lowest level is −∞ dB, which corresponds to the case of a
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tone signal. According to this behavior, a masker signal would represent
a greater “whiteness” in its spectrum as its SFM level becomes closer to
0 dB. Once the SFM is estimated by (3.6), the “Tonal Rating” is computed
in order to obtain the tonal factor:

µx,m = min

(
Υx,m

Υ1k60
, 1

)
, (3.7)

where Υ1k60 corresponds to the SFM of a tone of 60 dB SPL located at
1 kHz. In [111], this constant is set as Υ1k60 = −60 dB. Basically, the
expression compares the SFM of the masker signal with the SFM of the
tone signal, leading a value between 1 (a tone signal) and 0 (a white noise
signal). Therefore, the masker signal provides a more noise-like tonality as
µx,m gets closer to 0 and a tone-like tonality as µx,m gets closer to 1.

3.3.3 Aures Method

The second method to obtain the tonal factor that we will study here is
based on the Aures method [127]. This method provides an elaborated
estimation of the tonality since several perceptual characteristics of the
masker signal are considered to calculate µx,m.

The block diagram with all the steps performed in the method is shown
in Figure 3.6, and it based in the block diagrams depicted in [127, 129, 130].
As it can be seen in Figure 3.6, µx,m is obtained at the end of the process
through two main branches. The upper branch considers the frequency,
bandwidth and SPL of xm(n) (through Px,m, that has been estimated in
the “Spectral Analysis” block, see Section 3.1), while the lower branch takes
into account its loudness.

Due to the high complexity of the method, in the following paragraphs
a detailed explanation of the steps shown in Figure 3.6 is included, where for
the sake of simplicity, the subscript m, denoting the mth frame, is omitted.

Extraction of the tonal components

According to Figure 3.6, the first step is the extraction of the tonal and
noise components of the masker signal, x(n). This step is based on the
pitch extraction algorithm modeled by Terhardt [131, 132] that uses the
estimated power spectrum, Px(k), of the masker signal. According to this
method, all the frequency bins of Px(k) are analyzed to determine whether
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Figure 3.6. Block diagram of the Aures method to estimate the tonal

factor,µx,m.

they satisfy the following two conditions:

P dB
x (k − 1) < P dB

x (k) ≥ P dB
x (k + 1) , (3.8a)

P dB
x (k)− P dB

x (k ± λ) ≥ TH , (3.8b)

where P dB
x (k) is Px(k) expressed in dB units, TH is a threshold stated to

detect tonal components and λ represents the neighboring components to
be checked, excluding ±1 since the first condition already considers them.
Therefore, the kth component of P dB

x (k) will be considered “tonal” if the
following two conditions are fulfilled:

1. It must be the largest component considering its nearest neighbors.

2. It must be, at least, TH dB larger than its ±λ-separated neighboring
components, with λ = 2, 3, . . .

Both λ and TH are estimated according to the frequency resolution
used to estimate P dB

x (k). The original method proposed by Aures [132]
used a frequency spacing of 12.5 Hz, a set of λ values given by λ = {2, 3}
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and a threshold of TH = 7 dB, where this last parameter was empirically
set from the analysis of different sounds [132].

In this dissertation, we have used a different frequency resolution, which
results in different values of λ and TH. Using a sample rate of fs = 44100 Hz,
a value of NFFT = 4096 samples is required in order to estimate efficiently
Px(k) and obtain a similar frequency resolution than the resolution used
in [132]. More specifically, through these parameters the frequency reso-
lution is fs

NFFT
= 10.76 Hz. Regarding the neighborhood range in (3.8),

the maximum value of λ = 3 in the original method produced a maxi-
mum frequency separation of 3 × 12.5 = 37.5 Hz. For this case, a range
of λ = {2, 3, 4} has been used, obtaining a maximum frequency separation
of 4 × 10.76 = 43.06 Hz. Similarly to procedure in [132], the value of the
threshold, TH in (3.8), has been obtained through empirical test resulting
in a value of TH = 5.5 dB.

As shown in Figure 3.6, the SPL level (P dB
l ) and the frequency (fl) of

the tonal components are obtained at the output of this block. The index l
indicates the tonal component ranging from l = 1, . . . , CL where CL is the
number of tonal components found. An illustrative example of detected
tonal components is shown in Figure 3.7 for a multi-tone signal (left) and
a white noise signal (right).
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(b) White Gaussian noise.

Figure 3.7. Tonal components detected for two different signals.

As Figure 3.7 shows, in this case the algorithm is able to detect all the
tonal components when a multi-tonal signal is analyzed, while it detects
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two tonal components in the white noise signal. This behavior is caused
because of the randomization of samples that compose the noise. We have
observed that the number of tonal components detected in flat spectrum
signals decreases when TH is increased. However, an excessive level of
the threshold can decrease significantly the tonal components in complex
broadband signals. For this reason, TH should not be overestimated in
order to accurately detect the tonal components in any type of signal.

Sound Pressure Level Excess (SPL Excess)

According to [132], once the tonal components have been found, the next
step is to estimate which ones are aurally relevant, that is, which ones
can be appreciated. For this purpose, the SPL excess, denoted by ∆L, is
estimated for each tonal component l detected in the previous step:

∆Ll = P dB
l − 10 log10


 CL∑
γ=1
γ 6=l

10
LEγ (fl)

20


2

+ IN,l + 10
LTH(fl)

10

 , (3.9)

where LEγ(fl) is the excitation level caused over the lth tonal component
due to the tonal component γ, IN,l is the noise intensity in the critical band
where the lth tonal component is located and finally, LTH(fl) is the level of
the hearing threshold at the frequency fl.

The excitation level in (3.9) can be modeled as [132]:

LEγ(fl) = P dB
γ − ρ(fγ , fl)(νγ − νl) , (3.10)

where P dB
γ is the SPL level of the tonal component γ expressed in dB

units, νγ and νl are the frequencies of the γth and lth tonal components re-
spectively, expressed in the Bark domain through (3.1), and the parameter
ρ(fγ , fl) specifies the masking pattern and it is expressed as (in dB/Bark):

ρ(fγ , fl) =

{
27 if fl ≤ fγ

−24− 230
fγ

+ 0.2PB
γ if fl > fγ .

(3.11)



48 3. Sound Masking on ASN

The noise intensity, IN,l in (3.9), is obtained through the addition of all
the components located within the critical band defined between νl − 0.5
and νl+0.5, without including the tonal components l and their neighbors,
defined by (3.8b). In addition, we have considered suitable to remove the
influence of the other tonal components (such as γ) in this term if these
components are located in the critical band defined between νl − 0.5 and
νl + 0.5 since their impact is already considered through (3.10). Finally,
the hearing threshold, LTH, of (3.9) in dB units can be obtained as [131]:

LTH(fl) = 3.64

(
fl

1000

)−0.8

− 6.5e
−0.6

(
fl

1000
−3.3

)2

+ 10−3

(
fl

1000

)4

. (3.12)

The tonal components with a SPL excess such that ∆L > 0 will be
considered as aurally relevant tonal components. Since not all the tonal
components l might be considered relevant, a new subscript is considered,
such that:

∆Lz = ∆Ll , for ∆Ll > 0 , (3.13)

where z represents the index of the relevant tonal components, ranging from
z = 1, . . . , CZ with CZ as the number of relevant tonal components found.
Similar to the previous step, the SPL excess (∆Lz) and the frequency (fz)
of the relevant tonal components are obtained in this step.

The process described above is illustrated in Figure 3.8 where same
signals than Figure 3.7 has been analyzed in order to appreciate the effect
of this step over the tonal components. As Figure 3.8 shows, the red cir-
cles represent the SPL levels of the candidates to be relevant components
(denoted through l), whereas the black circles show the SPL excess, ∆L,
of the remaining relevant components (denoted by z).

As Figure 3.8 shows, for the multi-tonal signal on the left, all the tonal
components are relevant. It can be seen that all the components exhibit a
∆L above 40 dB SPL. For the noise signal on the right, in this case, only one
component is relevant, this means that the other component exhibit a value
of ∆L lower than 0 dB SPL. Furthermore, although some tonal components
are detected as relevant in noise signals, they have a low impact over the
tonality measurement due to their small SPL excess value, unlike the signals
composed by tones.
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Figure 3.8. Estimation of the relevant tonal components (SPL excess).

Tonal Weighting

According to Figure 3.6, the tonal weighting is performed over the relevant
tonal components considering their bandwidth in the Bark domain (∆νz),
frequency (fz) and SPL excess magnitude (∆Lz). The tonal weighting,
WT, can be estimated as [127]:

WT =

√√√√ CZ∑
z=1

[ω1(∆νz)ω2(fz)ω3(∆Lz)]
2 , (3.14)

where the weighting functions denoted by ωn(·) for n = 1, 2, 3 are defined
as [127]:

ω1(∆νz) =

(
0.13

∆νz + 0.13

)
(3.15a)

ω2(fz) =

 1√
1 + 0.2

(
fz
700 + 700

fz

)2

 (3.15b)

ω3(∆Lz) =
(

1− e
−∆Lz

15

)
, (3.15c)

where ω1 has been modified with respect to the original method [127, 133],
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ω1(∆νz) =
(

0.13
∆νz+0.13

) 1
0.29

. This innovation has been done to be consistent

with the other two weighting functions, ω2 and ω3.

Loudness Weighting

In the lower branch of Figure 3.6, the Aures method considers the effect of
the loudness (in sones, see expression (2.3)) of the tonal components. For
this purpose two types of loudness are calculated: the “Signal Loudness” ,
FS, that computes the loudness of xm(n), and the “Noise Loudness”, FN,
that computes the loudness of the noisy part of xm(n). The noisy part is the
remaining signal once the l tonal components have been eliminated. Both
loudness are estimated according to the Zwicker method (ISO 532) [97].

In order to eliminate these tonal components, IIR (Infinite Impulse
Response) notch filters of second order are designed for each frequency, fl,
with a minimum attenuation of 30 dB in the suppressed band. These filters
must be adapted to the features of the tonal components, more specifically
to its bandwidth in order to remove their contribution as much as possible.
For this reason, the bandwidth of all the IIR filters is set to be equal to the
bandwidth of the tonal components, that is:

BW =

⌈
2λMNFFT

fs

⌉
, (3.16)

where BW is expressed in hertz and λM corresponds to the maximum value
of λ, that in this case stands for λM = 4 (see (3.8) and its corresponding
explanation).

Then, x(n) is filtered through the cascade of notch filters, obtaining the
noisy signal in time domain, xN(n). Once xN(n) is obtained, its loudness
level, FN, is computed [97] and the loudness weighting is obtained as:

WF = 1− FN

FS
. (3.17)

Considering the ratio between FN and FS as the loudness percentage of
the noisy part of the mth frame of x(n), it can be stated that WF represents
the loudness percentage of its tonal part.
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Total Weighting

Finally, the tonal factor (µx) for the mth frame of x(n) is defined as the com-
bination of the Tonal Weighting (3.14) and the Loudness Weighting (3.17):

µx = C1k60W
0.29
T W 0.79

F , (3.18)

where C1k60 is a calibration variable that sets µx = 1 for a pure tone of
60 dB SPL located at 1 kHz. In [130], this constant is set as C1k60 = 1.09
under ideal conditions. The exponents of WT and WF are correction fac-
tors introduced in the model according to empirical experiments on the
matter [127].

In order to clarify all the operations carried out by the Aures method to
obtain (3.18), a pseudocode is provided in Algorithm 1, where the equations
related to each step are given as a comment at the end of the corresponding
lines.

3.3.4 Offset Function

Once the tonal factor has been estimated, either by the SF method (3.7) or
the Aures method (3.18), the next step to perform is the “Offset Function”.

According to [103] a pure tone signal located at the νth critical band
suffers a shift (or offset) of (14.5 + ν) dB over its overall masking curve
Sx,m(ν), while the offset suffered by the overall masking curve of a white
noise ranges between 3 and 6 dB, usually considered a constant value of
5.5 dB [94, 111]. This offset can also be estimated even for masker signals
that are not completely tone-like or noise-like. For this purpose, µx,m is used
to geometrically weight the above mentioned thresholds, as follows [111]:

Ox,m(ν) = µx,m(14.5 + ν) + (1− µx,m)5.5 dB , ν = 1, . . . , Nc . (3.19)

Finally, according to the last step of Figure 3.1, the spectral masking
threshold (in dB units) for every frame m of the masker signal x(n) is
obtained as [94]:

Tx,m(ν) = Sx,m(ν)−Ox,m(ν) , ν = 1, . . . , Nc . (3.20)
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Algorithm 1 Aures tonality method.

1: Initialize: fs = 44.1 kHz; NFFT = 4096

2: Initialize: λ = 2, 3, 4, λM = 4; TH = 5.5 dB; l = 0; z = 0

3: Initialize: C1k60 = 1.09; WT = 0; WF = 0

4: for all freqbins (λM + 1) ≤ k ≤
(
NFFT

2

)
− (λM + 1) do

5: if P dB
x (k) ≥ P dB

x (k ± 1) and P dB
x (k)− P dB

x (k ± λ) ≥ TH then . see (3.8)

6: l = l + 1

7: P dB
l = P dB

x (k); fl =
⌈

k
NFFT

fs

⌉
8: end if

9: end for

10: if l > 0 then

11: for all TonCompon 1 ≤ l ≤ CL do

12: Compute LEγ(fl) . (3.10)-(3.11)

13: Compute IN,l
14: Compute LTH(fl) . see (3.12)

15: Obtain ∆Ll . see (3.9)

16: if ∆Ll > 0 then

17: z = z + 1

18: ∆Lz = ∆Ll; fz = fl
19: end if

20: end for

21: if z > 0 then

22: for all RelevantCompon 1 ≤ z ≤ CZ do

23: Compute BW . see (3.16)

24: Map BW to ∆νz . see (3.1)

25: Compute w1(∆νz); w2(fz) and w3(∆Lz) . see (3.15)

26: end for

27: Obtain WT . see (3.14)

28: end if

29: Compute loudness of x(n), FS . Zwicker loudness [97]

30: for all TonCompon 1 ≤ l ≤ CL do

31: Design notch filter for fl
32: end for

33: Compute xN(n) as x(n) filtered out by the CL notch filters in cascade

34: Compute loudness of xN(n), FN . Zwicker loudness [97]

35: Obtain WF . see (3.17)

36: end if

37: Obtain µ . see (3.18)
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3.3.5 Subjective Experiments

In this section a subjective test has been carried out in order to validate the
performance of the different tonality methods described in Sections 3.3.2
and 3.3.3. However, as stated in Section 3.3.3, the original Aures method
has been slightly modified from the mathematical point of view, as Ta-
ble 3.1 shows, where the motivation of the modifications carried out are
presented. As a result, in this section three different tonality methods have
been compared:

1. The SF method explained in Section 3.3.2 that it is commonly used
in the masking threshold estimation [7, 99].

2. The original Aures (OA) method that estimates the tonal factor from
the approach seen in [127].

3. The proposed improved Aures (IA) method that estimates the tonal
factor according to the procedure seen in Section 3.3.3.

In order to compare these tonality methods, the spectral masking
threshold, Tx,m(ν), has been computed for each tonality method as the
average value of (3.20) over all the time frames, and compared to the aver-
age masking threshold obtained in the subjective test. Therefore, the four
averaged masking thresholds that will be referred to along this section are:

• T̃x(ν): Obtained from the subjective test.

• T SF
x (ν): Obtained by the SF method (3.7).

• T IA
x (ν): Obtained by IA method (3.18), according to the values given

in Table 3.1.

• TOA
x (ν): Obtained by the OA method (3.18), according to the values

given in Table 3.1.

Since the main difference between T IA
x (ν), TOA

x (ν) and T SF
x (ν) lies on

the calculation of the µx,m parameter, the overall masking curve Sx,m(ν),
obtained in (3.5), and the offset function, Ox,m(ν), obtained in (3.19),
will be the same for the different methods considered. Additionally, for
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Feature
OA

Method

IA

Method
Motivation

Frequency

resolution

(Hz)

12.5 10.76 FFT analysis carried out

through the efficient FFT.

FFT size as power of 2.FFT size

(samples)
3528 4096

Tonal

Threshold,

TH (dB)

7 5.5

This value is a compromise in

order to detect most of the

single-tone signals as tonal

components, but only a few

in noise signals.

Neighboring

separation,

λ (samples)

3 4 Similar bandwidth to the OA

method, but using the

frequency resolution given by

the FFT.
Tonal

bandwidth

(Hz)

75 86.08

Exponent of

ω1 (3.15a)
(0.29)−1 1

In correspondence with the

other two weighting

functions, see (3.15b)

and (3.15c).

Table 3.1. Differences between the OA method and the proposed IA

method.

this comparison, the overall masking curve, Sx,m(ν), has been generated
through the masking pattern of (3.3) with α = 1.

In order to describe in detail the subjective test, the main features as
well as the results obtained are explained in the following paragraphs.
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Generation of the stimuli

We have designed two sets of sounds to be used in the subjective tests:
multi-tonal signals and narrowband noise signals. Each stimuli is formed
by the combination of a multi-tonal signal and a noise signal, as shown
in Table 3.2. On one side, three different multi-tonal signals, each one
composed by three different tones between 350 and 5800 Hz have been
used. Additionally, nine narrowband noise signals have been generated
with a bandwidth of one critical band (whose center frequency is shown in
Table 3.2). These signals can be considered stationary, thus the mean value
of the estimated masking threshold over time, T̃x(ν), can be considered
unbiased for long enough frames. As it can be appreciated from Table 3.2,
the chosen frequencies for both types of signals are the center frequency of
certain critical bands. We have tried to use a wide part of the perceptual
spectrum, covering eight of the twenty-five critical bands, particularly those
more sensitive according to the human audibility threshold.

Center Frequency (Hz)

Stimuli # Multi-tonal signal Noise signal Critical Band

1 700, 840, 1000 700

7, 8, 92 700, 840, 1000 840

3 700, 840, 1000 1000

4 350, 450, 5800 350

4, 5, 205 350, 450, 5800 450

6 350, 450, 5800 5800

7 1000, 2150, 3400 1000

9, 14, 178 1000, 2150, 3400 2150

9 1000, 2150, 3400 3400

Table 3.2. List of stimuli generated for the subjective test.

There are only three different multi-tonal signals, as shown Table 3.2.
The first multi-tone signal is formed by three tones lying in consecutive crit-
ical bands, the seventh, eighth and ninth, whereas the other two multi-tonal
signals are formed by three tones spread along the frequency spectrum. In
this way, the design of the subjective test takes into account a diverse set
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of complex signals with a different energy distribution along the frequency
spectrum. The 1000-Hz tone has been used in two multi-tonal signals, once
as the highest tone and once as the lowest, in order to analyze the masking
produced on a single critical band by their adjacent (pre and post) critical
bands within a complex sound.

Both set of signals, multi-tonal and noise signals, have been generated
with a sample rate of fs = 44100 Hz. Each of the tones that compose the
multi-tonal signals were generated as a zero initial phase sine and all having
the same amplitude. The narrowband noise signals were generated as the
output of IIR band-pass filters centered at the frequencies shown in the
second column of Table 3.2, being their inputs white Gaussian noise, and
with a minimum attenuation of 60 dB in the stop bands. The stop bands
of these filters started at the center frequencies of their adjacent critical
bands, thus, each filter had a bandwidth of one critical band.

Apparatus and design

The perceptual test was carried out inside the listening room of the Audio
Processing laboratory of the Institute of Telecommunications and Multime-
dia Applications (iTEAM) [134]. The reproduction system, shown in Fig-
ure 3.9, was formed by a M-Track Quad sound card and a pair of Sennheiser
HD 600 headphones connected to a laptop. The laptop is equipped with an
Intel i7 processor, 8 GB of RAM and a NVIDIA GeForce 940MX graphics
card.

The reproduction system was calibrated in order to provide 60 dB SPL
for a single tone signal located at 1 kHz, resulting in a digital amplitude
of −14.7 dB with respect to the same tone ranging the full digital scale of
[−1, 1]. Additionally, the signals shown in Table 3.2, have been weighted
in loudness with the loudness of the tone signal used for calibrating the
system in order to make the perceptual test as comfortable as possible. For
this purpose, firstly the loudness of a tone of 60 dB SPL located at 1 kHz
has been estimated (through the Zwicker method [97]). Then, the loudness
of each signal shown in Table 3.2 is estimated and matched to the loudness
of the tone at 1 kHz. Both, the calibration and the perceptual test were
implemented on Matlab [135].

Finally, as Section 3.3.2 explains, the SF method requires the SFM
value of a tone signal of 60 dB SPL located at 1 kHz (Υ1k60, see (3.7)).
Therefore, in order to perform an accurate comparison with the SF method,
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Sennheiser 
HD 600 

M-Track 
Quad

Figure 3.9. System used in the tonality study.

this value must be calculated for the system described previously. Addi-
tionally, MT and MS (that is equal to NFFT) must be indicated in order to
determine the frequency resolution of Px,m(k), that affects to Υ1k60 as well.
Since the IA method requires NFFT = 4096 samples (see Section 3.3.3), for
this study we will consider that value for the IA and SF methods, that is,
MS = NFFT = 4096 samples, while for the OA method, this value is set to
NFFT = 3528 samples in order to obtain a frequency resolution of 12.5 Hz
(as Table 3.1 indicates). In addition, the power spectrum, Px,m(k), has
been estimated by averaging four frames, that is, MT = 4MS. Considering
these features, we obtain that Υ1k60 = −54 dB.

Participants

Nineteen people participated in the subjective evaluation. Before starting
the subjective test, an audiometry was carried out at each participant using
the same reproduction system available for the test. For this purpose,
we also programmed an ad-hoc application in Matlab. In this way, the
audibility threshold of each participant was assessed in order to assure that
all of them presented normal hearing.

Inspection of the results revealed some subjects whose results appeared
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to be outliers and their results were excluded from the statistical analysis.
Consequently, only the assessment given by 16 subjects have been consid-
ered for the results. Therefore, the jury panel was formed by 7 males, 9
females, aged between 18 and 50 years, although most of the participants
aged between 24 and 30 years, and only three of them were familiarized
with the psychoacoustic research field.

Procedure

The perceptual test aims to obtain the masking threshold, Tx,m(ν), of the
multi-tonal signal at the specific critical band where noise signals are lo-
cated, thus, one perceived masking threshold is estimated per stimuli. For
this purpose, the multi-tonal signals are reproduced with a constant SPL
while the noise levels of each stimuli can be increased or decreased by the
subject as it will be described in the following.

The perceptual test is performed through an application designed in
Matlab, whose main interface is shown in Figure 3.10. At the bottom left,
there is the possibility of selecting the stimuli to be played (labelled as
“Signal 1” in the figure). At the bottom center, there are two buttons that
allow to increase (“+”) or decrease (“-”) the SPL level of the narrowband
noise. The application also provides two examples of multi-tonal signals
with narrowband noise signals (none of them used in the real test) in order
to introduce the participant into the dynamic of the test. Both examples
can play the multi-tonal signal alone (“Play Clean”) or in addition with
the narrowband noise (“Play dirty”).

Each participant manages the interface shown in Figure 3.10 in order
to set the spectral masking threshold for each stimuli following the flow
diagram of Figure 3.11. The different options of this flow diagram are
described in the following:

1. The participant starts the test by selecting one of the stimuli from the
list at the bottom left of Figure 3.10. There are nine stimulus labeled
from “Signal 1” to “Signal 9” corresponding to those of Table 3.2.

2. Then, the participant must press “Play Signal” to reproduce the stim-
uli selected. The multi-tone is presented with a fixed level, while the
noise signal is presented with an attenuation of 40 dB with respect
to the SPL of a noise whose loudness would be equal to that of the
multi-tonal signal. In this way, we assure the noise is masked.
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Example

Example 1

Example 2

Play clean

Stop Example

Play dirty

Audio Test

Stimulus SPL change

+ -

Reproduction

Signal 1

Play Signal Stop

Finish Test

Figure 3.10. Matlab interface specifically designed to run the subjective

tests.

3. Then, the participant presses the plus (“+”) button as many times
as necessary in order to make the noise audible. At this point, the
SPL level of the noise increases in steps of 5 dB each time the button
“+” is pressed.

4. Once the participant is able to hear the added noise, the participant
presses the minus (“-”) button as many times as necessary in order
to make the noise inaudible again. The first time that the “-” button
is pressed, the noise level is decreased by 3 dB. The second and suc-
cessive times that the button “-” is pressed, the level values decrease
in steps of 2 dB. This reduction of the step size as the number of
selections increases is a common technique in subjective tests whose
goal is the estimation of a threshold, as in the hearing in noise test
(HINT) [136], or as in the perceptual test used in Lutfi [116].

5. The participant repeats steps 3 and 4 within a loop making the noise
almost audible through step 3 and almost inaudible through step 4.
However, at this point, every press of the plus (“+”) or minus (“-”)
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EXPERIMENT

Noise 
Threshold
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Figure 3.11. Flow diagram of the steps followed by any participant

when they carried out the subjective test.

buttons means an increase or decrease of the noise SPL of only 2 dB
respectively. The loop terminates when the participant presses the
“+” (or “-”) button once and then presses the “-” (or “+”) button
once, or alternatively when the participant have pressed any “+” or
“-” button 20 times.

6. Once the evaluation of the stimuli has finished, the noise signal is
saved and the application allows for the selection of a new stimuli,
going to step 1.
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7. Once all the stimuli have been evaluated by the participant, the “Fin-
ish Test” button at the bottom right of Figure 3.10 is enabled in order
to finish the subjective test.

The final SPL level of the narrowband noise obtained in step 6 will
indicate the level of the masking threshold produced by that particular
multi-tonal signal over the critical band covered by the noise. More specif-
ically, the energy of the noise Ex(ν) is obtained for that critical band
through the average of (3.2) over time, and the masking threshold is set as
Tx(ν) = EdB

x (ν). Finally, the subjective masking threshold, T̃x(ν), is ob-
tained as the average value over the sixteen participants for every stimuli
and critical band shown in Table 3.2.

Results and discussion

The results of the subjective test in comparison with the SF, the OA and
the IA methods are shown in Figure 3.12. For all the sub-figures, the SF
masking threshold, T SF, is represented by a red line, the IA masking thresh-
old, T IA, is represented by a blue line and the OA masking threshold, TOA,
is represented by the cyan line. Additionally, each sub-figure represents
three different masking thresholds obtained for the same multi-tonal signal
of Table 3.2. The masking thresholds obtained from the perceptual test
are labeled as T̃ (fn), where fn indicates the center frequency of each of the
noise signals used for each of the stimuli (n = 1, . . . , 9) shown in Table 3.2.

As it was described above, the perceived masking threshold T̃ (fn) is
obtained from the energy of the noise in the critical band where the noise
is located. However, Figure 3.12 show the energy of the noise for the whole
spectrum, although the only value of interest is their maximum, which
coincides with the value of the perceived masking threshold T̃ (fn).

From Figure 3.12, it can be seen that T SF provides a lower masking
level than the masking levels obtained in the perceptual test. This means
that T SF always underestimates the masking level, specially in middle and
high frequency ranges, and therefore the masking levels provided T SF do
not mask the noise in practice. The OA method produces the opposite
performance than the SF method, that is, TOA overestimates the masking
level, specially for frequencies below 1 kHz, as it can be seen from Fig-
ure 3.12a. Regarding the IA method, T IA provides the closest masking
levels to those obtained in the perceptual test for most of the stimuli.
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Figure 3.12. Masking thresholds of the SF (T SF), OA (TOA) and IA

(T IA) methods compared to the masking thresholds obtained in the

subjective test for the (a) first, (b) second and (c) third multi-tonal signal.
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Figure 3.12. (continued).

The difference between the masking levels provided by each method
(SF, OA and IA) and the masking levels obtained by the perceptual test
are shown in Figure 3.13, where the difference in dB units is defined as:

ε(n) = T (νn)− T̃ (fn) , (3.21)

where n = 1, . . . , 9 corresponds to the stimulus of Table 3.2, fn is the
center frequency of the narrowband noise of the nth stimuli and νn is the
critical band where fn is located. The average differences are ε̄ = 5.8 dB
for the OA model, ε̄ = −5.3 dB for the SF and ε̄ = 0.8 dB for the IA. This
error indicates the deviation of each method with respect to the perceptual
results. On the other hand, the values of the mean absolute error are
|ε̄| = 5.8 dB for the OA model, |ε̄| = 5.3 dB for the SF and |ε̄| = 1.7 dB for
the IA. The difference of values in the IA method is caused because is the
only method that provides positive and negative differences, as opposed to
the OA and the SF method, as it is illustrated in Figure 3.13.

As Figure 3.13 shows, the masking levels of the three first stimulus
(see Figure 3.12a) present a significant difference with the masking levels



64 3. Sound Masking on ASN

1 2 3 4 5 6 7 8 9
Stimulus (n)

-10

-8

-6

-4

-2

0

2

4

6

8

10

0
(d

B
)

OA Method 0 = 5.78
IA Method 0 = 0.83
SF Method 0 = -5.31

Figure 3.13. Difference in dB units as defined in (3.21) of the IA

method (blue bars), the OA method (cyan bars) and the SF method (red

bars) for the stimuli listed in Table 3.2.

obtained in the perceptual test, T̃ (fn), for the OA and SF methods. More
specifically, TOA levels are 6 dB above for the seventh and eighth critical
bands, and around 10 dB above for the ninth critical band. For the SF
method, the T SF levels are 6 dB below for the seventh and eighth critical
bands, and around 4 dB below for the ninth critical band. Regarding the
IA method, the T IA levels present a lower difference with the T̃ (f) levels for
the seventh and eighth critical band, around 1 dB above, while it is 4 dB
greater for the ninth critical band.

The next three stimulus in the Figure 3.13 correspond to the multi-
tonal signal shown in Figure 3.12b. The tonal components of this multi-
tonal signal are 350 Hz, 450 Hz and 5800 Hz, corresponding to the fourth,
fifth and twentieth critical bands. Notice that the first two tones lie in
consecutive bands, but the third tone cover a separated Bark band. In
addition, the first two tones are located at the low part of the spectrum
where the human audibility threshold is higher [6], whereas the third tone
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presents the highest frequency used in the test, increasing the contribution
of the tonality (in a negative sense) to the masking. In this case, Figure 3.13
shows that the T SF levels are 3 dB, 0.8 dB and 7.5 dB below the T̃ (fn) levels
for the fourth, fifth and twentieth critical bands respectively. In contrast to
the SF method, the TOA levels are 3 dB, 5.7 dB and 5.3 dB above the T̃ (fn).
Regarding the IA method, T IA provides values slightly above of the T̃ (fn)

levels. Specifically, the T IA levels are 0.5 dB, 3 dB and 0.2 dB above the
T̃ (fn) levels for the fourth, fifth and twentieth critical bands respectively.

Finally, the last three stimulus in the Figure 3.13 correspond to the
multi-tonal signal shown in Figure 3.12c. The tonal components of this
multi-tonal signal are 1000 Hz, 2150 Hz and 3400 Hz, corresponding to
the ninth, fourteenth and seventeenth critical bands. The three tones are
located at non-consecutive critical bands of the most sensitive area of the
human hearing system. As Figure 3.13 shows, the T SF levels are 4 dB below
the T̃ (fn) levels in the ninth critical band, 7 dB below in the fourteenth
critical band and 8 dB below in the seventeenth critical band. Regarding
the OA method, the TOA levels are around 5 dB above the T̃ (fn) levels
for the three critical bands. The IA method provides levels closer to those
obtained in the subjective test, specifically, the T IA levels are 0.1 dB above
the T̃ (fn) levels and 1.8 dB and 2.5 dB below the T̃ (fn) levels.

According to these results, the IA method provides a lower tonality
estimation than the SF method and a higher tonality estimation than the
OA method, providing the most accurate estimate of the masking threshold
level obtained in the subjective tests.

3.3.6 Conclusions

In this section, the tonality parameter has been studied in depth provid-
ing different approaches to estimate it. The first method is a well-known
method commonly used to estimate the masking threshold called, in this
dissertation, as spectral flatness (SF) method (see Section 3.3.2). The sec-
ond method is a modified version of the Aures method [127] with minor
changes of the original method from a mathematical point of view. Due to
these changes, explained in Section 3.3.3, this method is called as improved
Aures (IA).

Moreover, a perceptual test has been carried out in order to evaluate
the performance of the different tonality methods regarding the subjective
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perception of broadband signals. Since the IA method is slightly different
from the original Aures method (OA), the study has evaluated the three
different tonality methods (the SF, IA and OA methods). The test has been
carried out by 16 participants and it has used three multi-tone signals cov-
ering the most sensitive range of the human hearing system (350 – 5800 Hz)
with the purpose of obtaining the perceived masking threshold in the pres-
ence of a narrowband noise. The objective masking thresholds of the OA,
IA and SF methods have been computed and compared to the levels ob-
tained in the subjective test. The results (see Figures 3.12 and 3.13) show
that the SF method underestimates the masking, while the OA method
overestimates the masking. In contrast, the IA method presents the most
accurate masking levels, regarding the subjective masking levels, among the
three methods. In fact, according to Figure 3.13, the IA method presents
an absolute mean error(|ε̄|) of 1.7 dB, while the SF method and the OA
method present an absolute mean error of 5.3 dB and 5.8 dB respectively.
Therefore, the SF and OA methods produce a similar mean error (above
5 dB), while the mean error of the IA method is reduced in 3 dB approxi-
mately. This behavior can be appreciated as well in the average difference
(ε̄), where the IA presents a value of 0.8 dB with respect to the mask-
ing thresholds provided by the subjective test, while for the SF and OA
methods the value reaches −5.3 dB and 5.8 dB respectively.

Therefore, the IA tonality method improves the estimation of the mask-
ing threshold regarding the traditional tonality method (the SF method).
Additionally, the IA method has been implemented straightforwardly and
simply from the OA method giving a very significant improvement on the
estimation of the masking threshold, as Figures 3.12 and 3.13 show.

3.4 Perceptual Audio Equalization

3.4.1 Overview

The perception of audio signals may be severely impaired when they are
reproduced in the presence of ambient noise. A solution to this problem is
the use of headphones to prevent ambient noise from interfering with the
audio signal. There are, however, some cases where this solution is not
possible, such as for the driver of a car. And even for the other passengers
of the car, a non-headphone-based solution will be more pleasant. To this



3.4. Perceptual Audio Equalization 67

end, a method that avoids the use of headphones is proposed in this section.

Audio equalization is a large area of research that aims to adjust certain
frequencies (or frequency bands) of a specific audio signal and thus, modify
its spectral shape. To this end, a bank of filters, that can be designed
in many different ways [137, 138], is used in order to modify the spectral
shape of the specific audio signal. The equalizers provide a great flexibility
since a different number of filters with different bandwidths can be defined,
leading to different ways of performing an equalization depending on the
requirements of the corresponding application [139, 140]. Therefore, the
spectral shape of the equalized signal is governed by the different filters
that compose the equalizer.

In the above situation, when the audio signal may be affected by the
ambient noise, the equalization can be used to modify the frequency re-
sponse of the audio signal with the purpose of improving its perception in
presence of ambient noise. For this purpose, an analysis of both signals
must be performed in order to obtain the gains corresponding to each of
the filters of the equalizer [141, 142]. In addition, as stated in Section 2.4.3,
when two sounds are perceived simultaneously, the masking effect is pre-
sented, causing a change in the perception of one of the sounds, considered
as the maskee signal, in presence of the other, that acts as the masker
signal. In Section 3.1, we presented an algorithm to estimate the mask-
ing threshold of a signal (see Figure 3.1). Therefore, the level of masking
caused by the ambient noise to the audio signal (and vice-versa) can be
known through the masking threshold algorithm. In fact, this algorithm
can be used in order to obtain the corresponding gains for each filter of
the equalizer and adjust the audio signal spectral shape, resulting in the
so-called perceptual equalizer [7, 93].

In [7] a study of a single-user perceptual equalizer is carried out when
using headphones. By using a single microphone to capture the ambient
noise, the proposed algorithm in [7] is able to adaptively modify the fre-
quency response of the audio signal, and consequently improve its percep-
tion according to the masking caused by the ambient noise. This approach
is highly interesting since the reproduction system is capable of adapting
in real-time to the changes of the ambient noise automatically through an
analysis that mimics the auditory system. In this regard, this section pro-
poses and analyzes a single-user perceptual equalizer that does not require
the use of headphones.
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The proposed system is formed by one microphone and one loudspeaker
to record and reproduce the corresponding signals, and a processor to im-
plement the algorithms for the perceptual equalization. Accordingly to
Section 2.1.3, this organization corresponds to a single-channel acoustic
node of an ASN. Therefore, the single-user perceptual equalizer can be im-
plemented over an acoustic node, as Figure 3.14 shows, where N nodes (or
N single-user perceptual equalizers) are shown.
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Figure 3.14. Single-user perceptual equalizers running on an ASN.

The system shown in Figure 3.14 can also be considered as a multiple-
user perceptual equalizer where the nodes communicate with each other in
order to exchange important details about the local equalization of each
node, performing a perceptual processing more precise. In addition, this
processing can be performed in two different ways. If we consider a small
scenario, such as the cabin of a car, a centralized system with a single pro-
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cessor, which will perform the required perceptual analysis and send the
corresponding parameters to each node can be used. But, for larger sce-
narios, such as trains or airplanes, an ASN with distributed processors can
be a more reliable solution since they provide a more flexible and scalable
network [4, 143, 144].

Nevertheless, before studying the system shown in Figure 3.14, a deep
analysis of the single-user perceptual equalizer is essential in order to evalu-
ate its performance and, thus simplify as much as possible the extension to
the multiple-user. In this regard, in this section, a single node of the ASN
shown in Figure 3.14 is considered (such as the node labelled as “Node 1”).
Considering this scenario, two main studies are carried out in this section:

1. A comparison of different masking patterns in order to obtain an op-
timal spectral masking model. This study will allow to find the lowest
complexity pattern to be used in the masking estimation causing the
extension to multiple users to be simpler.

2. Based on the optimal frequency model found, we perform an experi-
mental study for a single-user case to analyze the performance of the
perceptual equalizer.

First of all, the steps that compose the process to equalize the audio
signal will be explained in detail. Then, once the equalization process has
been explained, each of the studies defined above will be discussed in depth.

3.4.2 Perceptual equalization algorithm

The block diagram of Figure 3.15 shows the process to compute the percep-
tual equalization over the mth audio signal frame, sm(n), composed by MS

samples. This process estimates the mth equalized audio signal frame, that
is emitted by the jth speaker (qj,m(n)), based on the analysis of the mth

audio signal and noise signal frame at the ith microphone position (ũi,m(n)
and r̃i,m(n) respectively).

As Figure 3.15 shows, the process of equalization can be divided into
three main steps:

1. Source Separation: This block allows to independently obtain the con-
tributions ũi,m(n) and r̃i,m(n) from the total recorded signal, yi,m(n).
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Figure 3.15. Block diagram of the audio perceptual equalization.

2. Gain Estimation: This block estimates the gain levels (gsm
m (ν)) that

will feed the equalizer in order to improve the audio signal perception.
However, the perception can be improved in different ways leading to
different strategies, called in this dissertation as “equalization pro-
files”. According to these profiles, the perceptual analysis is different
and consequently the equalized audio signal, qj,m(n), is also different.

3. Graphic Equalizer: The final block equalizes the audio signal frame,
sm(n). The transfer function of the graphic equalizer is controlled
by specifying the gains of each band [138]. Since these gains are
obtained through the perceptual analysis, based on critical bands,
the bands that compose the graphic equalizer are designed according
to the critical bands as well (see Table 2.2).

In order to fully understand each step, in the following paragraphs a
detailed description of each one is made, where for the sake of simplicity,
the subscript m denoting the mth frame is omitted.
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Source Separation

Consider that the signal picked up by the ith microphone (yi(n) in Fig-
ure 3.15) is modeled as:

yi(n) = ui(n) + ri(n) , (3.22)

where ui(n) and ri(n) are the audio signal and the ambient noise signal at
the position of the ith microphone respectively. Assuming the audio signal
(s(n)) is known and the electro-acoustic paths between ith microphone and
all the speakers (cij(n) with j = 1, . . . , J) have been estimated in a previous
stage, the recorded audio signal can be estimated as:

ũi(n) = s(n) ∗
J∑
j=1

c̃ij(n) , (3.23)

where c̃ij(n) is an estimate of cij(n). If we consider the single-user case,
only one acoustic path (c11(n)) is involved, and equation (3.23) is developed
for J = 1. Finally, considering an accurate estimate of the electro-acoustic
path, the recorded ambient noise, ri(n), could be estimated by using (3.22).

Gain Estimation

Once each contribution has been identified, the perceptual analysis block
is performed in order to estimate the gain levels in dB units, gsm(ν). This
analysis depends on the different equalization profiles implemented. In this
case, because two different masking thresholds can be estimated (from the
audio signal and from the noise signal), two different profiles are imple-
mented: 1) Unmasked Audio Signal (UAS) profile and 2) Masked Noise
(MN) profile. Because each one estimates the gains differently, in the
following paragraphs, the process to obtain the gains for each profile is
described.

Unmasked Audio Signal (UAS) profile

This profile is based on the strategy used in [94] that aims to prevent
masking of the audio signal from the ambient noise signal. To this end,
the masking threshold of the recorded ambient noise (r̃i(n)) is estimated
in order to find the critical bands that present a higher level in compar-
ison with the SPL level of the recorded audio signal (ũi(n)), which must
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be expressed in terms of critical band (see (3.2)) to perform an accurate
comparison. For those bands where the masking of r̃i(n) is higher than
the SPL level of ũi(n), the gain level will be a positive value, otherwise the
gain level will be zero. Therefore, the gain levels for the UAS profile can
be estimated as follows:

g(ν) = max
([
Tr(ν)− EdB

u (ν)
]

+ 2, 0
)
, (3.24)

where g(ν) is the gain in dB units for the critical band ν. EdB
u (ν) (3.2) is the

energy per critical band of the recorded audio signal and Tr(ν) is the mask-
ing threshold (3.20) of the recorded ambient noise, both expressed in dB
SPL. According to [94], the value +2 dB is introduced since sounds above
2 dB the masking threshold of a masker sound showed a clear improvement
in its perception.

Noise Masked (NM) profile

The NM profile is used to mask the ambient noise through the audio
signal. In this case, the masking threshold of the recorded audio signal
(ũi(n)) is estimated in order to analyze which are the critical bands where
the threshold is lower than the SPL level of the ambient noise. Identically
to the previous profile, to perform an accurate comparison, the energy
per critical band of the recorded ambient noise is estimated, causing the
following expression to estimate the gains for the NM profile:

g(ν) = max
(
EdB
r (ν)− Tu(ν), 0

)
, (3.25)

where g(ν) is included in the same range than previous profile, such that
g(ν) ≥ 0, EdB

r (ν) is the energy per critical band of the recorded ambient
noise and Tu(ν) is the masking threshold of the recorded of the audio signal,
both expressed in dB SPL.

Additionally, a gain level limitation is used to prevent undesired non-
linear effects over the equalization, such as saturation in the reproduction.
In this case, regardless of the profile, g(ν) has been limited to 15 dB for all
the critical bands. Furthermore, when audio signal is not detected, such
that EdB

u (ν) ≤ 0 dB SPL, gain levels must not be introduced (g(ν) = 0 dB)
in those critical bands.

As a final stage in the perceptual analysis, a frame averaging over
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the gains is performed. Since both, audio signal and noise signal, can be
non-stationary, the estimated gain levels could be very different between
frames. This behavior can lead to large fluctuations in the gain levels for the
critical bands causing an annoying effect. Therefore, an EMA (Exponential
Moving Average) [145] is applied over the gain levels to provide a smoother
transition between frames for each critical band. However, depending on
the gain level tendency, two cases can be distinguished: 1) increase of the
gain level between frames and 2) decrease of the gain level between frames.
The first case requires a fast adaptation in order to achieve the desired
condition (see (3.24) and (3.25)). In contrast, for the second case a slow
adaptation is a better option because a fast reduction of the gain leads to
a perceptible reduction of the loudness and consequently to a reduction of
the perception of the audio signal [6] (even if the ambient noise is reduced).
Therefore, the introduction of a slow adaptation will solve the problem,
as the reduction will be gradual and imperceptible. Since two cases are
presented, two EMA must be performed, one for the critical bands falling
under the first case and the other for the critical bands falling under the
second case. Although two EMA are used, the expression is identical in
both cases:

gsm(ν) = ξag(ν) + (1− ξa)gsm(ν) , (3.26)

where gsm(ν) are the averaged gains in dB units and ξa is the smoothing
constant that depends on the cases previously described, where subscript
a = 1, 2 defines the case. For the first case (a fast adaptation) ξ1 = 0.3 and
for the second case (slow adaptation) ξ2 = 0.1. As Figure 3.15 shows, the
averaged gains are introduced in the graphic equalizer.

Graphic Equalizer

The graphic equalizer is composed by as many filters as critical bands are
presented, where each filter is designed for each critical band. According
to [138], these filters can be represented by a second-order digital peaking
and shelving filters where the whole frequency response is expressed as

H(z) =

Nc∏
ν=1

Hν(z), (3.27)

where Nc are the total number of critical bands and Hν(z) is the filter for
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the critical band ν that can be expressed as:

Hν(z) =
b0(ν) + b1(ν)z−1 + b2(ν)z−2

1 + a1(ν)z−1 + a2(ν)z−2
, (3.28)

where the coefficients of the denominator and the numerator can be ex-
pressed as:

a2(ν) =
2Q(ν)− sinϕc(ν)

2Q(ν) + sinϕc(ν)

a1(ν) = b1(ν) = − (1 + a2(ν)) cosϕc(ν)

b0(ν) =
1

2
(1 + a2(ν)) +

1

2
(1− a2(ν)) gopt(ν)

b2(ν) =
1

2
(1 + a2(ν))− 1

2
(1− a2(ν)) gopt(ν) ,

(3.29)

where Q(ν) is the quality factor, expressed as:

Q(ν) =
1

2

[
gopt(ν) sin2 ϕc(ν) (cosϕl(ν) + cosϕu(ν))

2 cosϕc(ν)− cosϕl(ν)− cosϕu(ν)

] 1
2

, (3.30)

ϕc(ν) is the center frequency, expressed as:

ϕc(ν) = arccos {κ(ν)− sign{κ(ν)}
(
κ(ν)2 − 1

) 1
2 }, (3.31)

being:

κ(ν) =
1 + cosϕl(ν) cosϕu(ν)

cosϕl(ν) + cosϕu(ν)
, (3.32)

where ϕu(ν) and ϕl(ν) are the upper and lower boundaries respectively of
the critical band ν, that is, the high and low frequencies of the specific
critical band. The parameter gopt(ν) is described as the optimal gain per
critical band in linear units, obtained from (3.26).

According to [146] and in order to obtain an specific global frequency
response, gsm(ν), estimated in (3.26), should be re-adjusted based on the
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global frequency response of the graphic equalizer (given in (3.27)). Oth-
erwise the equalizer will provide different gain levels than desired in each
critical band due to the contributions of the different filters, Hν(z), as
Figure 3.16 shows.

0.1 0.25 0.5 1 2 5 10 20
Frequency (kHz)

0

5

10

15

20

M
ag

ni
tu

de
 (d

B
)

Figure 3.16. Global frequency response (in blue line) of the graphic

equalizer assuming 10 dB gain per critical band.

Figure 3.16 represents an equalizer with a gain of 10 dB per critical
band. However, the resulting global frequency response, H(z) (represented
by the blue line), exhibits a response with a magnitude higher than the
desired one. For this reason, an additional processing is required to adjust
the gains at each critical band:

gdB
opt = A−1gsm , (3.33)

where gdB
opt is the array of optimal gains expressed in dB units, such that

gdB
opt =

([
gdB

opt(1) . . . gdB
opt(Nc)

])T
and gsm is the array of gains estimated in

the previous step, such that gsm = ([gsm(1) . . . gsm(Nc)])
T . The matrix A

is an interaction matrix of [Nc ×Nc] that stores the normalized amplitude
response of all the filters at the corresponding center frequencies. The
generation of this matrix is described in [146] and it is estimated through
the following procedure:

1. Select a prototype gain, gp, such as gp = 10 dB.
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2. Assume the first critical band (ν = 1) gets the prototype gain, gp,
while the rest of the critical bands offer 0 dB of gain.

3. Generate the filters Hν(z) through (3.28).

4. Obtain the global frequency response of the graphic equalizer, H(z),
through (3.27).

5. Obtain the magnitude at the center frequency of each critical band in-
side the global frequency response. These contributions will represent
the first row of A.

6. Repeat the process for all critical bands assuming the prototype gain,
gp = 10 dB, is used only in one of them at the same time.

Finally, once all the rows have been estimated, A must be divided by
gp, such as A = A/gp, in order to normalize the results and use A for any
gain level.

Considering the case illustrated in Figure 3.16, the processing per-
formed through (3.33) leads to the result depicted in Figure 3.17. In con-
trast to Figure 3.16, the gain levels of the global response of the graphic
equalizer is around 10 dB for each critical band.
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Figure 3.17. Global frequency response (in blue line) of the graphic

equalizer assuming 10 dB gain per critical band considering A matrix.
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Thus, the theoretical gain of each filter must be reduced to achieve the
corresponding target response, as shown in Figure 3.17.

3.4.3 Efficient spectral masking Model

The spectral masking model is analyzed in this section with the purpose
of obtaining a straightforward method to estimate the masking threshold.
In this way, we can facilitate the extension from the single user to the
multiple user case. The process explained in Section 3.4.2 is based on the
study performed in [7], where the masking pattern used to estimate the
masking threshold depends on the energy level of the masker signal. It also
provides a non-linear addition between the different contributions of the
masker signal. As a result, the complexity for computing the gain levels is
high for the single-user case. This means that when it is extended to mul-
tiple users, the complexity can be significantly increased. Therefore, this
section proposes to study different masking patterns in order to reduce their
complexity while maintaining their performance compared to the masking
pattern used in [7].

In this study, three different masking patterns are compared (including
the one used in [7]). The first pattern can be found in [103, 107] and it
is commonly used for audio coding applications. Because it was defined
in [107], in this study it is named as the “Schroeder” pattern and it will
be denoted as BS

ν (η). The second pattern is described in [109] and is used
for removing irrelevant components of the signal. This pattern is named
as the “Balazs” pattern and it will be denoted as BB

ν (η). Finally, the third
patter is used in [7] for perceptual equalization. This pattern is named as
the “Rämö” pattern and it will be denoted as BR

ν (η). These patterns are
expressed in dB units as follows:

BS
ν (η) = 15.81 + 7.5 (∆ν(η) + 0.474)− 17.5

√
1 + (∆ν(η) + 0.474)2

BB
ν (η) = 13.94 + 1.5 (∆ν(η) + 0.03)− 25.5

√
0.3 + (∆ν(η) + 0.03)2

BR
ν (η) =

[
−27 + 0.37 max{EdB

x,m(η)− 40, 0}θ (∆ν(η))
]
|∆ν(η)| , (3.34)

where ∆ν(η) is defined in (3.3), EdB
x,m(η) is the energy per critical band in

dB units (3.2) and θ(∆ν(η)) in the Rämö pattern is a step function equal
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to 0 for negative values of ∆ν(η) and 1 for positive values. Significant
differences can be found between the three masking patterns of (3.34).
The most relevant difference is that the Rämö pattern depends on the
energy per critical band, while the other two patterns are independent of
this factor.

In order to better appreciate the differences between these patterns,
Figure 3.18 shows the effect of each masking pattern for a single critical
band, specifically the 8th band. In addition, to show the effect of the energy
dependency on the Rämö pattern, two different examples are used. The
first one considers a masker of EdB

x,m(8) = 70 dB SPL, while he second one

assumes a masker of EdB
x,m(8) = 40 dB SPL.
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Figure 3.18. Difference between the patterns of (3.34) assuming the 8th

band as the masker band.

As Figure 3.18 shows, the three patterns have a triangular shape, but
with certain differences, specially in the right slope where the Schroeder
pattern has a smoother fall than the others. That is, the Schroeder pattern
considers that the masking has a greater spreading for the bands after the
masker band, causing that the overall spreading curve is higher than the
rest. Regarding the Rämö pattern, it presents a smoother fall of the right
slope when masker has a SPL level of 70 dB SPL, while the left slope does
not show any difference. This means that the energy significantly affects to
the right slope of the pattern, and it does not affect to the left slope. As a
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result, a higher energy leads to a higher spreading, causing a higher overall
spreading curve. Finally, the Balazs pattern provides a pattern independent
of the energy per critical band, as the Schroeder pattern. However, the
Balazs pattern produces a lower spreading than the Schroeder pattern,
specially in the right slope, and even a lower spreading than the Rämö
pattern when EdB

x,m(8) = 70 dB SPL.

According to [116], the addition between the different contributions of
the different critical bands is controlled by the “α” parameter (see (3.5)). As
stated before, the Rämö pattern provides a non-linear summation, specif-
ically α = 0.33, in order to increase the masking, compared to the simple
summation (α = 1). In [107, 109], the Schroeder pattern and the Balazs
pattern use α = 1, leading to a linear summation between the different
contributions of the critical bands. Additionally, a non-linear summation,
specifically α = 0.5, for the Schroeder and the Balazs patterns are proposed
to perform a more complete study. Furthermore, same as Section 3.3.5,
both tonality methods (Aures and SF) are used in the study as well, lead-
ing to a collection of ten different combinations.

To compare the patterns shown in (3.34), the real system depicted in
Figure 3.15 has been simulated. This system represents the position of a
seated passenger inside a vehicle and it is composed by one microphone and
one speaker (one acoustic node) and an additional speaker to emulate the
ambient noise. The signal to be processed (y(n) in Figure 3.15) has been
simulated by using the real-time acoustic response measured in the system
shown in Figure 3.19 located in the listening room of the Audio Processing
Laboratory of the Polytechnic University of Valencia [134]. As Figure 3.19
shows, the loudspeaker that reproduces the audio signal is separated 50 cm
from the microphone, while the speaker that emulates the ambient noise
is separated 1.5 m from the microphone. In addition, the microphone of
the real system have been calibrated, thus the SPL level of the simulated
signal, y(n), can be obtained.

Considering this scenario, the single-channel perceptual equalizer of
Figure 3.15 has been implemented for the different combinations to be
compared. The audio signal used, s(n), is an excerpt of the song “Tell
me something good” by Chaka Khan, while the ambient noise is an ex-
cept of traffic noise whose spectral composition is shown in Figure 3.22.
Both signals are sampled at fs = 44100 Hz and have a duration of 30
seconds. Additionally, the audio signal has been weighted in loudness as
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Ambient Noise
 (Traffic noise)

Node 1

Mic 1

Spk 1

Figure 3.19. Scenario simulated for the perceptual equalizer.

Section 3.3.5 explains, but using a tone of 70 dB SPL located at 1 kHz for
the reference loudness. The traffic noise has been weighted as well with
respect to the loudness weighted audio signal in order to produce a signal-
to-noise ratio (SNR) of −3 dB. Regarding to the processing, the audio
perceptual equalizer shown in Figure 3.15 is designed using MT = 2MS

and MS = NFFT = 4096 samples (see the “Spectral Analysis” block in
Section 3.1).

Each of the ten combinations defined above have been used for the
different equalization profiles (UAS and NM), resulting in twenty different
gain levels, gsm(ν). The gain levels indicate how the spectral shape of the
audio signal is modified. Therefore, the more similar the gain levels are
between the different combinations, the more similar the equalized audio
signal will be. This means that similar gain levels will produce a similar
perception in presence of the ambient noise.

Figures 3.20 and 3.21 compare the different combinations according
to the equalization profile (UAS or NM) and the tonality method (SF or
Aures) used. These results show the 75 % percentile of the sum of the
smoothed gains, such as gT =

∑
ν g

sm(ν), from the 6 to the 11 seconds
(represented from 0 to 5 in the figures) since this fragment shows a signifi-
cant change in the audio signal energy.
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Figure 3.20. Curves of the 75 % percentile of gT for the different

combinations when tonality is estimated through the Aures method.

Figure 3.20 shows the gain levels when the tonality has been computed
with the Aures method. The patterns of Schroeder with α = 1, Balazs with
α = 0.5 and Rämö show a very similar gain levels regardless the profile.
However, they are more similar for the NM profile since the difference is
less than 1 dB, while for the UAS profile they present a difference around
2 dB in the worst case. In contrast, the patterns of Schroeder with α =
0.5 and Balazs with α = 1 present significant differences with the Rämö
pattern. For the NM profile, (see Figure 3.20a), the pattern of Schroeder
with α = 0.5 shows the lowest gain level among all the combinations, while
for the UAS profile it shows the highest gain level. Regarding the Balazs
pattern with α = 1, it presents the opposite performance as the Schroeder
pattern with α = 0.5.

Figure 3.21 shows the gain levels when the tonality has been computed
with the SF method. Similar to Figure 3.20, the patterns of Schroeder with
α = 1, Balazs with α = 0.5 and Rämö presents a similar behavior with a
difference less than 1 dB for the NM profile and a difference around 2 dB
for the UAS profile in the worst case. In this case, these three patterns
are very close of the gain limit value (15 dB) for the NM profile. In fact,
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Figure 3.21. Curves of the 75 % percentile of gT for the different

combinations when tonality is estimated through the SF method.

these combinations are limited from the second 4 to 5. The other two
combinations present the same behavior as Figure 3.20. However, it should
be highlighted the fact that the Balazs pattern with α = 1 always provides a
result higher than 15 and for this reason this combination is always limited,
as opposed to the case shown in Figure 3.20.

As Figures 3.20 and 3.21 show, the patterns of Schroeder with α = 0.5
and Balazs with α = 1 show a different behavior to the rest. In this regard,
we can assure that the Balazs pattern with α = 1 estimates a lower masking
threshold than the rest of combinations, while the Schroeder pattern with
α = 0.5 estimates a higher one. As a result, the behavior of each one
of these patterns are the opposite depending on the profile. Regarding
the other three patterns, they present a similar estimation of the masking
threshold, resulting in similar gain level values. Additionally, according
to these results, the SF tonality method provides higher gain levels with
the NM profile than the Aures tonality method, while for the UAS profile
the performance is just the opposite. According to (3.24) and (3.25), a
higher masking threshold produces lower gain levels for the NM profile,
but higher gain levels for the UAS profile. Therefore, the Aures method
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estimates a higher masking threshold than the SF method, just as described
in Section 3.3.5.

Given these results, the patterns of Schroeder with α = 1, Balazs with
α = 0.5 estimate a similar equalized audio signal than the Rämö pat-
tern and consequently they provide a similar perception of the audio signal
in presence of the ambient noise. However, the patterns of Balazs with
α = 0.5 and Rämö compute the masking through a non-linear addition of
the different contributions of the different critical bands, and moreover, the
latter depends on the energy per critical band. As a result, the pattern of
Schroeder with α = 1 is selected, since it provides both, a pattern indepen-
dent of the energy of the masker signal and a linear addition between the
different contributions of the critical bands.

Considering the masking pattern of Schroeder with α = 1, the masking
threshold (3.20) is computed in linear units as:

tx,m = Sx,mO−1
x,m = ex,mBO−1

x,m , (3.35)

where ex,m is defined as the vector that contains the energy per critical
band at the mth frame:

ex,m = [Ex,m(1) Ex,m(2) . . . Ex,m(Nc)] , (3.36)

B is defined as a [Nc × Nc] matrix with the values of the Schroeder pattern
in linear units(see (3.34)):

B =
([
B1(η)T B2(η)T . . . BNc(η)T

])T
, (3.37)

and O is defined as a diagonal [Nc × Nc] matrix whose non-zero elements
are the Nc values of the tonality offset (Ox,m(ν)) obtained at the lower
branch of Figure 3.1.

From (3.35), the gains in (3.24) and (3.25) are derived in vectorial way
and in linear units as:
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gNM
m = max

(
er,m

eu,mBO−1
u,m

, 1

)
gUAS
m = max

(
er,mBO−1

r,m

eu,m
, 1

)
,

(3.38)

where er,m and eu,m are the vectors of the noise and audio signal energy
values respectively, and Or,m and Ou,m are the matrices that contains the
offset estimated through the noise and audio signal respectively.

Considering now the multi-user scenario in Figure 3.14 and focusing on
the first node (labeled as “Node 1”) to estimate the gains to equalize the
audio signal, the recorded signal can be modeled as:

y1,m(n) = c11(n) ∗ sm(n) + cnet(n) ∗ sm(n) + r1(n) , (3.39)

where cnet(n) models the network contribution to the recorded signal at the
first node, which is represented by the combination of c1j with j = 2, . . . , J
in Figure 3.15. This contribution can be seen as an additional energy
to each band of the audio signal leading to the following expressions to
estimate the gains:

gNM
m = max

(
er,m

(eu,m + enet,m) BO−1
u,m

, 1

)
gUAS
m = max

(
er,mBO−1

r,m

(eu,m + enet,m)
, 1

)
,

(3.40)

where enet,m is the energy vector per critical band provided by the rest
of the nodes of the network. Unlike the UAS profile where the additional
network energy does not significantly increase the complexity of the whole
algorithm in the multi-user case, the NM profile requires to know the mask-
ing threshold of the recorded audio signal. Therefore, for the Rämö pattern
(that is dependent of the energy), the B matrix must be estimated for each
of the different contributions of the energy. However, for the Schroeder
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pattern, the B matrix is estimated once, reducing the computational com-
plexity when using multiple users. In addition, since the pattern selected
uses α = 1, the addition between the contributions of the different critical
bands is linear, resulting in a lower computational cost compared to the
combinations where α 6= 1. For this reason, the selected pattern facilitates
the computation of the masking pattern in the multi-user case.

3.4.4 Perceptual experiment

A subjective test has been carried out in order to analyze the performance of
the different profiles explained in Section 3.4.2. To this end, the Schroeder
pattern with α = 1 is used because of the results of Section 3.4.3. Addi-
tionally, both tonality methods (the SF method, explained in Section 3.3.2,
and the Aures method, explained in Section 3.3.3) are used in this study.
Furthermore, the profile where no equalization is performed has also been
considered in the perceptual test as a baseline and it has been labelled as
“NONE” profile in the results. Therefore, five different profiles are studied
in this test:

1. The NM Aures profile. The NM profile based on the masking thresh-
old when the Aures tonality method is used.

2. The NM SF profile. The NM profile based on the masking threshold
when the SF tonality method is used.

3. The UAS Aures profile. The UAS profile based on the masking
threshold when the Aures tonality method is used.

4. The UAS SF profile. The UAS profile based on the masking threshold
when the SF tonality method is used.

5. The NONE profile. A profile where no equalization is performed, that
is, q(n) = s(n) in the simulated scenario shown in Figure 3.19

In order to describe in detail the subjective test, the main features as
well as the results obtained are explained in the following paragraphs.

Generation of the stimuli

In this experiment, both audio signal and noise signal are the same as those
used in Section 3.4.3, this is, an excerpt of the song “Tell me something
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good” by Chaka Khan as the audio signal and a traffic noise as the ambient
noise. Both signals are sampled at fs = 44100 Hz with a duration of 30
seconds. In addition, the audio signal has been weighted in loudness as
Section 3.4.3 described, while the traffic noise has been weighted in order
to provide a SNR of −3 dB regarding the audio signal.

To obtain the different stimulus used in the perceptual test, the system
shown in Figure 3.19 has been simulated. To this end, the real-time acoustic
response of the system have been measured and the microphone of the
real system have been calibrated. Then, using the perceptual equalizer
of Figure 3.15, the SPL level of signal y(n) for the five different profiles
to be evaluated (NM SF, NM Aures, UAS SF, UAS Aures and NONE)
have been obtained. These five simulated signals are the stimulus used in
the perceptual test, but they have been trimmed to five seconds to avoid
the jury to get tired. More specifically, the simulated signals have been
trimmed from the sixth to the eleventh second because the song presents a
high variation of its energy during that period.

In order to provide a more in-depth analysis of the audio signal and the
traffic signal, their spectrograms are presented in Figure 3.22. Since the
traffic noise decreases significantly its power level from 5 kHz on, the spec-
trograms represent the power spectrum of the signals up to that frequency.
In addition, only the five seconds selected are shown.
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(a) Excerpt of the song “Tell me
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(b) Traffic noise signal.

Figure 3.22. Spectrograms of the simulated signals at the microphone

position.
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According to Figure 3.22, the traffic noise presents an stationary be-
havior. In addition, it exhibits the highest power levels at frequencies below
1 kHz in contrast to the audio signal. The power level of the traffic noise
decreases as the frequency increases, specially for frequencies above 3 kHz,
where the lowest power level of the traffic noise is shown. Regarding the
audio signal, it presents a non-stationary behavior, as opposed to the traffic
noise. In addition, in Figure 3.22, a lack of frequency components around
4 kHz for the audio signal can be appreciated since the power level observed
in that range is significant lower than the rest.

Apparatus and design

The perceptual test was carried out in the same room than the tonality ex-
periment of Section 3.3.5. The same setup has been considered: a M-Track
Quad sound card and a pair of Sennheiser HD 600 headphones connected to
a laptop with an Intel i7 processor, 8 GB of RAM and a NVIDIA GeForce
940MX graphics card.

A calibration process is required in order to obtain the corresponding
SPL values. For this purpose, the dummy head Neumann KU100 has been
used in order to measure the sound pressure emitted by the headphones,
as shown in Figure 3.23, in order to match the SPL levels between the
simulated scenario of Figure 3.19 and the scenario of the perceptual test.
Both, the calibration and the perceptual test were implemented on Matlab
software.

Finally, for obtaining the stimulus of the perceptual test, MT and MS

must be indicated in order to determine the frequency resolution that affects
Px,m(k) and consequently the processing to obtain the stimulus. In this
case, Px,m(k) has been estimated averaging two frames of 4096 samples with
an overlap of 50%, that is, MT = 2MS samples and MS = NFFT = 4096
samples.

Participants

The perceptual test was carried out by 13 participants aged between 20 and
40 years. All of them presented normal hearing and five of them were famil-
iarized with the psychoacoustic research field. None of them were discarded
in the results, so the final jury panel was formed by all the participants, 6
males and 7 females.
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Figure 3.23. System used in the perceptual study.

Procedure

The main objective of the perceptual test is to compare the perception of
the different audio signals in presence of the traffic noise for the different
profiles, explained Section 3.4.2. For this purpose, the stimulus obtained
in the simulated system, depicted in Figure 3.19, are reproduced in the
scenario shown in Figure 3.23. These stimulus are compared between them
in order to evaluate different audio features. Therefore, the perceptual test
is performed through a paired comparison among the different stimuli. A
similar test is described in [147], where a jury test evaluated some features
of different sound signals, including the preference.

This test has been performed through an application implemented in
Matlab, whose main interface is shown in Figure 3.24. This Matlab ap-
plication can be found in the Audio Processing group website [134], where
the steps to design a new test, and execute and analyze an existing test are
described. In this case, two features were used to compare the signals: the
preference of the participant and the clarity of the audio signal. The first
feature indicates which of the two signals to be compared the participant
likes most, given the scenario of Figure 3.19. The clarity of the signal in-
dicates which of the two signals to be compared provides a clearer audio
signal in presence of the traffic noise, that is, which one is perceived less
noisy.
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Figure 3.24. Matlab interface for the paired comparison.

The different combinations to be compared are shown in Table 3.3
where the ones assessed in the perceptual test are marked with an “X”,
leading to a total of twelve different comparisons to be evaluated. As Ta-
ble 3.3 shows, some combinations have been discarded in order to avoid a
very extensive test.

NM SF X X

NM Aures X X X

UAS SF X X

UAS Aures X X X

NONE X X

NM SF NM Aures UAS SF UAS Aures NONE

Table 3.3. Combinations of the perceptual test.

Each participant manages the interface shown in Figure 3.24 in order
to evaluate the audio signal perception for each combination of Table 3.3
following the next steps:

1. The participant starts the test with the first combination.

2. The participant pushes the buttons to play each of the two stimulus
in Figure 3.24.

3. After listening to each of the two stimulus, the participant should
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choose one stimuli for every feature, meaning that the chosen stimuli
is preferred, or it sounds clearer, than the other. The participant
must check all the parameter check boxes.

4. Then, the button “Continue with the test” is enabled and the par-
ticipant is able to perform the next comparison, where an interface
identical to Figure 3.24 is presented with the new comparison.

5. Once all the comparisons have been evaluated, the results are auto-
matically saved and the participant finishes the test.

The choice performed by the participants for each comparison will in-
dicate the profiles that present the best improvement of the perception of
the audio signal, as well as the preferred profile by the participants.

Results and discussion

The results of the subjective test are analyzed in the following paragraphs.
In addition, the gain levels provided by each profile are analyzed in order
to support the results of the subjective study. The gain levels over the
test audio fragment are shown in Figure 3.25 where four different critical
bands are shown since each of them presents significant changes in the
power level of the noise signal (see Figure 3.22). For frequencies below
1 kHz, where noise signal presents the highest power level, two critical
bands are used, the third critical band (with a center frequency around 250
Hz) and the tenth critical band (with a center frequency around 1 kHz).
For frequencies included between 1 kHz and 3 kHz, where the noise power
level has decreased with respect to the previous range of frequencies, the
fourteenth critical band (with a center frequency around 2 kHz) has been
used. Finally, for frequencies above 3 kHz, where the noise signal exhibits
its lowest power level, the nineteenth critical band (with a center frequency
around 4 kHz) has been used.

As Figure 3.25 shows, for frequencies below 1 kHz (shown through the
third and tenth critical bands) all the profiles introduce gain levels. This
means that the power level of the traffic noise signal is significantly higher
than the power level of the audio signal for frequencies below 1 kHz. Con-
sequently, all the profiles must introduce a gain level in order to accomplish
their specific objective (see (3.24) and (3.25)). In addition, for the third
critical band, the gain levels estimated through the NM SF profile need
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Figure 3.25. Gains for each profile.

to be limited (15 dB, see Section 3.4.2). For the tenth critical band, the
gain levels introduced by each profile are reduced compared to the previous
critical band. This behavior is caused because from 1 kHz, the noise power
level starts to decrease, causing each profile is able to fulfill its objective
with a lower gain level. The fourteenth critical band presents a very simi-
lar gain levels as the tenth critical band for both NM profiles. Therefore,
the relationship between the masking of audio signal and the energy of the
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noise presents a similar behavior than the tenth critical. In this band, the
UAS SF profile does not introduce any gain level, as it also happens with
the NONE profile, and therefore, the profile does not consider any masking
effect over the audio signal. The last critical band (the nineteenth criti-
cal band) exhibits a behavior very similar to that of the fourteenth band.
However, the UAS Aures profile present lower gains, as expected given the
low power level of the traffic noise at this band (see Figure 3.22).

As Figure 3.25 shows, for the UAS profile, the Aures tonality method
introduces higher gains than the SF method, as opposed to the NM profile
where an opposite behavior is appreciated. An expected behavior since the
Aures tonality method estimates a masking threshold higher than the SF
method (see Section 3.3.5).

The gain levels illustrated in Figure 3.25 provide a different equalization
over the audio signal according to the profile and tonality method used.
Therefore, in order to evaluate this equalization, Figure 3.26 is provided,
where the power spectrum of the equalized audio signal at the microphone
position is shown. This representation have been performed through the
Welch method [112] with an average between the 2nd to the 3rd second,
assuming a hamming window of MS = 4096 samples with an overlap of
50% and NFFT = 4096 samples.

As Figure 3.26 shows, the audio signal is only modified (regarding
the NONE profile) for frequencies below 1 kHz when UAS SF profile is
considered. Regarding the UAS Aures profile, it produces a higher power
level audio signal than the UAS SF profile, although from frequencies above
3 kHz the difference with the UAS SF profile is minimal. Finally, the NM
profiles always cause an increase in the power level of the audio signal
with respect to the NONE profile. These results would seem to imply
that the NM SF causes a higher audio signal and consequently a greater
improvement of the audio signal perception in presence of the noise signal
since it achieves a greater power level in the audio signal, while the UAS
SF profile produces the lowest improvement of the perception of the audio
signal, compared with the rest of the profiles (excluding the NONE profile),
since it provides the lowest power level of the audio signal.

The previous results show a significant difference of the received audio
signal between the NM profiles and the UAS profiles. But, in order to
evaluate the performance correctly, the results of the perceptual test must
be analyzed. The values of merit of this test are shown in Figure 3.27 for
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Figure 3.26. Power level of the equalized audio signal at the microphone

position.

the different features (preference and clarity of the audio signals), which
represent the probability of each profile. That is, the profile with the low-
est or the highest value of merit is the least or the most selected profile,
respectively, for the specific feature. In contrast, similar values of merit
for different profiles indicate that those profiles do not present significant
differences for the specific feature, that is, they are difficult to differentiate
between them. The sum of the values of merit for an specific feature is
equal to 0.

Figure 3.27 shows that the combinations that present greater clarity in
presence of the noise (red bars) are the two based on the NM profile. In
contrast, a lower clarity of the audio signal is achieved when the UAS profile
is considered. According to Figure 3.25, this is an expected behavior since
the NM profiles always introduce gain levels greater than the UAS profile,
causing a higher power level of the audio signal and consequently a greater
masking over the noise. Focusing on combinations based on the NM profile
alone, and according to Figure 3.25, the NM SF produces higher gain levels
and thus a higher masking. Despite this behavior, the NM Aures presents
a better result. This phenomenon is due to the high level of the gains
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Figure 3.27. Values of merit of the perceptual test.

(and consequently of the audio signal). An extremely high level causes the
audio signal to result uncomfortable. This means that the audio signal
suffers a deterioration in its perception, reducing its clarity in presence of
the noise. As a result, the NM SF profile, that introduces a higher gain
levels compared to the NM Aures profile, shows worse values of merit than
those of the NM Aures profile. When UAS profile is implemented, the
combination that presents a better result is the UAS Aures since, as shown
in Figure 3.25, it introduces gain levels greater than those of the UAS SF
profile. Finally, the profile labeled as NONE presents the lowest value of
merit, which means that the noise is significantly perceived compared to
the other profiles.

Regarding the preference (blue bars), the results show a similar behav-
ior to those of the clarity in presence of ambient noise: The best combina-
tion is the NM Aures while the worst combination (excluding the NONE
profile) is the UAS SF.
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3.4.5 Conclusions

In this section, a perceptual application has been implemented with the
main objective of increasing the perception of the audio signal in presence
of noise through the equalization of the audio signal. The equalizer is
performed through a graphic equalizer that is controlled through the gain
levels estimated in the perceptual algorithm, that is based on the masking
threshold algorithm explained in previous sections.

First of all, different masking patterns have been studied in order to
analyze their performance when the perceptual equalizer of this section is
used. The results (see Figures 3.20 and 3.21) show that certain combina-
tions present similar behavior than to that shown with the pattern used
in [7]. In addition, the proposed patterns are independent of the power
level of the specific signal leading to more straightforward methods to esti-
mate the masking threshold. Moreover, the pattern used in this perceptual
equalizer produces a linear addition between the different contributions
(see “Additivity of masking” process in Section 3.2.2), leading to a mask-
ing pattern that presents the most straightforward method for estimating
the masking threshold. This could be particularly interesting when the
perceptual equalizer is extended to multiple users where the received signal
in each microphone is a composition of the emitted signals by each one of
the nodes that compose the ASN. Since the contributions of the nodes can
be seen as an additional energy to each band of the audio signal regarding
the single user case, a masking pattern that produces a linear additivity
and does not depends on the energy of the audio signal, will provide an
easier analysis.

Once the masking pattern has been selected, a perceptual study has
been done in order to analyze the behavior of each one of the profiles
implemented in this equalizer. In this case, two different profiles (estimated
in two different ways) have been compared in the study, the UAS profile
and the NM profile. First of all, a frequency analysis has been done where
the estimated gain levels and the power spectrum of the equalized signals of
each profile has been shown (see Figures 3.25 and 3.26). According to this
data, the NM SF profile provides the best perception of the audio signal in
presence of the traffic noise, while the UAS SF profiles provides the worst.
Finally, the perceptual test results are shown in Figure 3.27, where the
NM Aures profile achieves a significant improvement of the audio signal
perception in presence of traffic noise regarding both UAS profiles. In



96 3. Sound Masking on ASN

contrast, the NM SF profile, that produces the highest gains, provides a
worse result than NM Aures. This behavior is caused because the NM SF
profile generates an uncomfortable audio signal, that is, it generates a very
high gain levels, thus decreasing its performance. Focusing exclusively on
the UAS profiles, the UAS Aures produces an audio signal in presence of
traffic noise clearer than the UAS SF, matching results with the frequency
analysis. Therefore, given these results, the profile (NM or UAS) that uses
the Aures tonality method achieves a better performance for equalizing
audio signals than the same profile using the SF tonality method.

3.5 Smart Active Noise Equalizer

3.5.1 Overview

In the previous section an audio signal is equalized in order to enhance
its perception in presence of ambient noise. In contrast, in this section,
the ambient noise is controlled for the same purpose, that is, enhance the
perception of the audio signal. To this end, algorithms based on Active
Noise Control (ANC) principle are used [148], which are commonly applied
to cancel undesired noise [149, 150]. In particular, ANE (Active Noise
Equalizer) algorithms, that allows to modify the spectral shape of the noise,
are considered [151, 152]. Therefore, instead of canceling the noise, an
equalization of the noise is proposed.

The ANE algorithms could be used in the considered scenario to re-
duce the ambient noise and obtain a specific spectral shape. This new
approach prevents modifying the audio signal, as opposed to the previous
application, avoiding possible undesired effects, such as distortion or sat-
uration of the audio signal, due to a high gain level. Therefore, in this
section, similar to the previous one, an equalizer is performed where main
objective is to enhance the perception of the audio signal in presence of
ambient noise, but with the main difference that the signal to equalize is
the ambient noise instead of the audio signal. As a result, a similar scenario
where headphones are not available, such as the inside of a car or airplane,
is considered. In this case, the scenario shown in Figure 3.28 is considered
to perform the equalizer, where two loudspeakers and two microphones are
used. Each loudspeaker and microphone are group together and defined
a single-channel acoustic node, leading to a two-node ASN with the same



3.5. Smart Active Noise Equalizer 97

number of microphones (M) and speakers (J) than nodes (N). An addi-
tional speaker is also used to emulate the ambient noise, called it “primary
noise source”.

Primary 
Noise 
Source

Node 1 Node 2

Figure 3.28. Scenario used for equalizing the noise.

The ANE algorithm used in this dissertation is based on the algo-
rithm explained in [152, 153], where the equalization is performed over a
multi-frequency noise. According to [152], the multi-frequency noise can be
controlled by adjusting the equalization parameters that control each single
frequency of the noise, denoted as k1 with k1 = 1, . . . ,K being K the total
number of frequency components of the ambient noise. These equaliza-
tion parameters are the attenuation levels (β) and they control each of the
frequencies of the noise in order to modify its spectral shape as required.
Therefore, the equalization of the noise depends on the attenuation levels
that can be estimated in many different ways, same as the gain levels of
the previous section (see Section 3.4.2). That is, different strategies (or
“equalization profiles”) can be used to estimate the attenuation levels.

Therefore, an equalizer based on an ANE algorithm that provides dif-
ferent equalization profiles to modify the spectral shape of the ambient
noise is proposed. Additionally, in order to study the performance of this
equalizer and its different profiles, a perceptual study is designed. This
study evaluates the signals recorded by the microphones of the scenario
shown in Figure 3.28 for the different implemented profiles of the equal-
izer. However, in order to fully understand the perceptual study, firstly the
complete algorithm used for equalizing the ambient noise is explained.
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3.5.2 Active noise equalization algorithm

The block diagram of Figure 3.29 shows the process to equalize the ambient
noise signal. The subscript m in all the signals in Figure 3.29 denote the
mth time frame of duration of MS samples. The audio signal (speech or
music) emitted by all the speakers is s(n), while the anti-noise signal (or
equalized signal) emitted by the speakers (j = 1, . . . , J) is qj,m(n). The
attenuation levels (βk1,m) used to obtain qj,m(n) are estimated through the
audio signal and noise signal at the ith microphone position (ũi,m(n) and
r̃i,m(n) respectively).

Active
Noise 

Equalizer

q1,m(n)

sm(n)

βk  ,m

r1,m(n)u1,m(n),~

qJ,m(n)

. Attenuation
Estimation

...

....

~

Source
Separation

....

y1,m(n)

yM,m(n)

1

c11(n)~ cMJ(n)~. . . .

rM,m(n)uM,m(n),~ ~

Figure 3.29. Block diagram of Smart Active Noise Equalizer.

This process is very similar to the one shown in Figure 3.15, where the
main differences lie on the last block. As Figure 3.29 shows, this algorithm
is also divided in three main steps:

1. Source Separation: Identical block to the one shown in Figure 3.15.
It is used to obtain separately ũi,m(n) and r̃i,m(n).

2. Attenuation Estimation: This block estimates the different attenu-
ation level for each frequency component of the multi-tonal noise,
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βk1,m. Similar to the previous application, different profiles are im-
plemented to provide different configurations to the spectral shape of
the ambient noise.

3. ANE Algorithm: The final block computes the anti-noise signal,
qj,m(n), from the attenuation levels estimated in the previous step
by means of an adaptive filtering.

In order to fully understand each step, in the following paragraphs a
detailed description of each one is made, where for the sake of simplicity, the
subscript m denoting the mth frame is omitted. However, the “Source Sep-
aration” block will not be explained since it has been previously explained
in Section 3.4.2.

Attenuation estimation

Once each contribution (ũi,m(n) and r̃i,m(n)) has been identified in the
“Source Separation” block, the attenuation levels that controls the spec-
tral shape of the anti-noise signal are estimated. These attenuation levels
depends on the profile to be used. Since the main objective of this equalizer
is to attenuate the ambient noise, the implemented profiles aim to reduce
the perception of the ambient noise, that is, they are similar to the NM
profile (see Section 3.4.2). As a result, the profiles must reduce the noise
below a certain threshold. For this reason, two different profiles are im-
plemented: 1) the hearing threshold (HT) profile and 2) perceptual equal-
ization (PEQ) profile. Each profile estimate the attenuation levels through
a different threshold, that is, they perform a different analysis to estimate
βk1 . Therefore, in the following paragraphs each profile is described in order
to present the main different between them.

Hearing Threshold (HT) profile

This profile aims to force the ambient noise below the human hearing
threshold. As a result, the noise power level, Px,m(k), and the standard
curve of the human hearing threshold, LTH(k), must be estimated. The ISO
226 loudness standard [96] is used for estimating LTH(k) since the curve of
0 phon matches the human hearing threshold (see Figure 2.14). The noise
power level at the ith microphone position, Pi,r(k), is estimated through
the process labeled “Spectral Analysis” in Figure 3.1, that is explained in
Section 3.1. Because of the frequency resolution of the FFT (that depends
on fs and NFFT), the frequencies related to Pi,r(k) may not match the
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frequencies of the ambient noise. As a result, Pi,r(k1) is defined as the PS for
the closest frequency of the kth

1 frequency component of the ambient noise.
Similarly, the ISO 226 provides the hearing threshold at certain frequencies
that may not match the frequencies of the ambient noise. Then, LTH(k1)
is defined as human hearing threshold at the closest frequency of the kth

1

frequency component of the ambient noise. Considering these definitions,
the attenuation levels for the HT profile are estimated as:

20 log10 (βi,k1) = min
(
LTH(k1)− P dB

i,r (k1), 0
)
, (3.41)

where βi,k1 is the attenuation level of the kth
1 frequency in linear units such

that 0 < βi,k1 ≤ 1, and LTH(k1) and P dB
r (k1) are defined in dB units.

Perceptual Equalization (PEQ) profile

This profiles aims to to attenuate the ambient noise below the masking
threshold of the audio signal, that is, it aims to mask the ambient noise
through the audio signal. It should be noted that system has the same
objective than the one analyzed in Section 3.4. As a result, the perceptual
analysis explained in Sections 3.2 and 3.3 must be performed in order to
obtain the masking threshold of the audio signal, Ti,u(ν), and the energy
per critical band of the ambient noise signal, EdB

i,r (ν), at the ith microphone
position. Once both parameters have been estimated, the attenuation levels
for the PEQ profile are estimated as:

20 log10 (βi(ν)) = min
(
Ti,u(ν)− EdB

i,r (ν), 0
)
, (3.42)

where βi(ν) are the attenuation levels per critical band obtained from the
signals of the ith microphone and Ti,u(ν) and EdB

i,r are defined in dB units.
Since the attenuation levels must be introduced in the ANE algorithm by
frequency component of the ambient noise (fk1), a reverse mapping from the
Bark domain to frequency domain is required. This conversion is performed
through next relationship:

βi,k1 = βi(ν) , ∀ , fk1 ∈ BWν , (3.43)

where BWν is the bandwidth of the critical band ν in hertz (see (3.1)).
These attenuations are included in the same range than the previous profile,
that is, 0 < βi,k1 ≤ 1.
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According to [153], the attenuation levels are uniform for different mi-
crophones. Therefore, in order to obtain a single attenuation level per
frequency, the most restricted attenuation level is considered, that is:

βk1 = min
i

(βi,k1) . (3.44)

Due to both microphones are close to each other (see Figure 3.28), the
attenuation levels can be considered to be similar. Consequently, the same
attenuation levels can be used for estimating the anti-noise signals of each
speaker.

ANE Algorithm

In this dissertation, the ANE algorithm is not studied in depth since it is
not the main topic to be analyzed. However, for a full understanding of
the whole process, a brief explanation is given in the following paragraphs.
Although, for a deeper understanding of the ANE algorithm, a complete
study is performed in [42]. Additionally, one last aspect to consider in order
to understand perfectly this algorithm is the fact that no audio signal is
reproduced, that is, the microphone only records the noise signal (y(n) =
r(n) in Figure 3.29).

In this case, the ANE algorithm is based on [153], where one adap-
tive filter per frequency component is used. Each filter is composed by
two coefficient referring to the in-phase and quadrature components of the
reference signal (the ambient noise), that is not necessary to obtain since
it can be generated internally if the controlled frequencies are previously
known [152]. These filters are estimated through the multiple-error filtered-
X LMS (MeFxLMS) algorithm [154, 155], where the objective is to minimize
a pseudo-error signal instead of the error signal.

The ANE algorithm is explained through the block diagram of Fig-
ure 3.30 that is based on [152, 153]. It describes the signal processing for
one generic error sensor i and one generic loudspeaker j. The output of
the sinusoidal generator is the reference signal, x(n), composed by K sine
waves denoted by xk1(n) with k1 = 1, . . . ,K.

As Figure 3.30 shows the reference signal is filtered by the adaptive
filters, W (z), in order to obtain the outputs signals, qj(n), that are the
anti-noise signals emitted by each speaker of the network. Therefore, the
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Figure 3.30. Active Noise Equalization block diagram.

main objective is to estimate the adaptive filters, W (z). Firstly, according
to Figure 3.30, the error signal in the ith microphone is obtained as:

ei(n) = di(n) +
J∑
j=1

qj(n) ∗ cij(n) , (3.45)

where ∗ stands for the discrete convolution, cij(n) is the electro-acoustic
path between the jth speaker and the ith microphone and di(n) is the
recorded noise emitted by the primary noise source.

Then, once ei(n) has been estimated, the pseudo-error signal is com-
puted as:

e′k1,i(n) = ei(n) + βk1

J∑
j=1

[qj,k1(n) ∗ c̃ij(n)] , k1 = 1, . . . ,K; j = 1, . . . , J ,

(3.46)
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where c̃ij(n) is an estimate of the impulse response, cij(n), and qj,k1(n)
are the anti-noise signals for each of the k1 frequencies of the reference
signal, xk1(n). Then, the adaptive filters can be estimated through the
pseudo-error signal, as the next expression shows:

wk1,j(n+ 1) = wk1,j(n)− 2ok1

M∑
i=1

e′k1,i(n) [xk1(n) ∗ c̃ij(n)] , (3.47)

where ok1 is the step-size parameter for the frequency fk1 . Once these filters
are estimated, each xk1(n) is filtered by its corresponding adaptive filter,
wk1,j(n), in order to obtain qj,k1(n). Finally, all the filtered signal, qj,k1(n),
are combined, in order to obtain the signal to be reproduced by the jth

speaker, as:

qj(n) =
K∑

k1=1

(1− βk1)qj,k1(n) . (3.48)

3.5.3 Perceptual experiment

In this section, a subjective test has been carried out in order to study the
performance of the different profiles explained in Section 3.5.2. Since the
PEQ profile depends on the masking threshold, a masking pattern must
be determined. In this case, the Schroeder pattern with α = 1 is used
to estimate the masking since according to Section 3.4.3, it is the most
straightforward pattern. In addition, the masking threshold depends on
the tonality method, studied in Section 3.3 through two different methods.
Therefore, the PEQ profile is studied for the two different tonality methods
explained in Sections 3.3.2 and 3.3.3, named hereinafter as “PEQ SF” and
“PEQ Aures” profiles for the sake of clarity. Finally, the profile where no
equalization is performed also has been considered in the perceptual test as
a baseline and it has been labelled as “NONE” profile in the shown results.
As a result, four different profiles are compared in the perceptual test:

1. The HT profile. It is based on the hearing threshold and it does not
depends on the audio signal.

2. The PEQ SF profile. It is based on the masking threshold (3.20)
estimated through the SF tonality method (see Section 3.3.2).
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3. The PEQ Aures profile. It is based on the masking threshold (3.20) es-
timated through the Aures tonality method explained in Section 3.3.3.

4. The NONE profile. A profile where no equalization is performed, that
is, qj(n) = 0 for all the speakers.

In order to describe in detail the subjective test, the main features as
well as the results obtained are explained in the following paragraphs.

Generation of the stimuli

In this experiment, two different audio signals sampled at fs = 44100 Hz
have been used, an excerpt of 30 seconds from the song “Tell me some-
thing good” by Chaka Khan, and an excerpt of 30 seconds from the song
“Numb” by the group Linkin Park. Additionally, the audio signals have
been weighted in loudness as Section 3.4.4 explains in order to make the
perceptual test as comfortable as possible. The multi-frequency noise has
been implemented in order to emulate the engine car noise. More specif-
ically, a synthesized noise sampled at fs = 44100 Hz with K = 10 tones
(that simulate the different periodic components of the engine noise), such
as fk1 = (k1 + 1)47.05 Hz, with k1 = 1, 2, . . . , 9, 11 has been used. This
noise has been weighted in order to provide a SNR of −5 dB regarding the
audio signals.

Both set of signals are introduced in the scenario shown in Figure 3.28,
where synthesized noise is emitted by the primary noise source and the au-
dio signals are emitted by the speakers of the acoustic nodes. Through the
real-time recording and reproduction of these signals and the processing
seen in Figure 3.29, the recorded signals, yi(n), at each microphone are ob-
tained. These recorded signals are the stimulus used in the perceptual test.
However, they have been trimmed to five seconds in the perceptual test
to avoid performing a large test. The recorded signals that belong to the
excerpt of Chaka Khan have been trimmed from the sixth to the eleventh
second, while the recorded signals of the other excerpt have been trimmed
from the tenth to the fifteenth second. In the first excerpt, these five sec-
onds have been selected since the audio signal presents a high variation in
the energy of the signal, due to the introduction of the loud female voice.
The five seconds selected in the second excerpt present a more stationary
behavior, but with a wider spectrum than the first one.

Additionally, the Figure 3.31 shows the spectrograms of each audio
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signal and synthesized noise at the position of the first microphone of Fig-
ure 3.28 during the five seconds selected (from the sixth to the eleventh
second in the “Tell me something good” excerpt and from tenth to the
fifteenth second in the “Numb” excerpt). Because the noise is located at
frequencies below 1 kHz, all the spectrograms of Figure 3.31 have been
represented up to that frequency.
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(a) Excerpt of the song “Numb”.
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(b) Excerpt of the song “Tell me

something good”.
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(c) Recorded engine noise.

Figure 3.31. Spectrograms of the recorded signals at the first

microphone position.

As Figure 3.31 shows, the received noise is a stationary noise composed
by several tonal components with more energy for the frequency compo-
nents below 400Hz. The recorded signal of the excerpt of the song “Tell me
something good” exhibits a non-stationary spectrum with frequency com-
ponents of changing levels depending on the frame. Finally, the excerpt
of the song “Numb” presents a more stationary behavior for frequencies
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below 1 kHz than the previous excerpt. In fact, this excerpt shows a sim-
ilar representation than the received noise in some frequency components,
specially in components around 200 Hz.

Apparatus and design

The apparatus and design of this test is identical to the subsection “Appa-
ratus and design” described in Section 3.4.4.

Participants

The perceptual test was carried out by 14 participants aged between 20 and
40 years. All of them presented normal hearing and five of them were famil-
iarized with the psychoacoustic research field. None of them were discarded
in the results, so the final jury panel was formed by all the participants, 8
males and 6 females.

Procedure

The perceptual test aims to compare the perception of the different audio
signals in presence of the ambient noise for the different profiles, explained
in Section 3.5.2. Therefore, the four different profiles are compared in or-
der to study their performance from a subjective point of view. For this
purpose, the stimulus recorded in the scenario shown in Figure 3.28 are
reproduced in the scenario shown in Figure 3.23 through a paired compar-
ison test, where different combinations are tested. These combinations are
shown in Table 3.4, where the combinations to be compared are identified
by an “X” and the rest are discarded.

PEQ SF X X

PEQ Aures X X X

HT X X

NONE X

PEQ SF PEQ Aures HT NONE

Table 3.4. Combinations of the perceptual test.

From Table 3.4, eight different paired comparisons are appreciated.
However, these combinations only represent the comparisons made for a
single audio signal. Therefore, considering both audio signals (“Numb”
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and “Tell me something good”), a total of sixteen paired comparisons are
carried out in the test.

Same as the perceptual test performed in Section 3.4.4, this one is
based on [147], where the different combinations shown in Table 3.4 are
compared in order to evaluate different features. In this case, same features
than the test performed in Section 3.4.4 are evaluated, this is, the clarity
of the audio signal and the preference. Due to the similarity with the
test explained in Section 3.4.4, same application implemented in Matlab
is used, see Figure 3.24. Each participant manages the interface shown
in Figure 3.24 in order to evaluate the audio signal perception for each
combination of Table 3.4 following the next steps:

1. The participant starts the test with the first combination.

2. The participant reproduce each of the two stimulus in Figure 3.24.

3. After reproducing each of the two stimulus, the participant should
choose one stimuli for every feature, meaning that the chosen stimuli
is preferred, or with a clearer audio signal, than the other. The
participant must check all the parameter check boxes.

4. Then, the button “Continue with the test” is enabled and the par-
ticipant is able to perform the next comparison, where an interface
identical to Figure 3.24 is presented with the new comparison.

5. Once all the comparisons have been evaluated, the results are auto-
matically saved and the participant finishes the test.

The choice performed by the participants for each comparison will indi-
cate the profiles that present the best improvement of the perception of the
audio signal, as well as the preferred profile by the participants. Addition-
ally, to avoid fatigue in the participants (and consequently avoid errors),
the test is divided into two, where each one is focused on a specific audio
signal (“Numb” and “Tell me something good”) leading to two different
test of eight paired comparisons each one.

Results and discussion

The results of the subjective test are analyzed in the following paragraphs.
In addition, the attenuation levels provided by each profile are analyzed
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in order to perform a more complete study. These results are shown in
Figure 3.32 and Figure 3.33 where the first one is focused on the excerpt
of the song “Tell me something good” and the second one is focused on
the excerpt of the song “Numb”. Only four frequency components are
presented since each of them presents differences in the power level of the
received noise (see Figure 3.31. Additionally, each of them represents a
different critical band in the perceptual analysis performed in the PEQ
profile. These results are represented for the five seconds selected in each
signal

Figure 3.32 shows the attenuation levels for the five seconds selected
(from sixth to the eleventh second) when the excerpt of the song “Tell me
something good” is used. For the third and fifth frequency components,
both PEQ profiles produce a similar attenuation levels that are included
between −10 and −20 dB, while for the HT profile an attenuation level
around −30 and −35 dB is presented. Since both PEQ profiles depends on
the audio signal, the attenuation levels present a wide fluctuation due to the
non-stationarity of the audio signal. In contrast, the HT profile presents
very stable attenuation levels compared to those of the PEQ profile due
to the stationary behavior of the ambient noise. For the eighth frequency
component, the attenuation levels are lower than the previous frequency
components since this one has a lower power level (see Figure 3.31). Finally,
for the last frequency component, the PEQ profiles consider a very low
attenuation level, specially the PEQ Aures profile, where we observe a
behavior very similar to that of the NONE profile. This means that the
PEQ Aures profile does not introduce attenuation because it assumes that
audio signal masks the ambient noise in that frequency component.

Nevertheless, the HT profile introduces a higher attenuation than both
PEQ profiles since it considers the human hearing threshold, a threshold
far below the masking threshold of the audio signal. As a result, the HT
profile will produce a higher attenuation on the noise. It should be noticed
that the eighth and tenth components do not presents a stable attenuation
levels in the HT profile. This result is caused because of the estimate of the
electro-acoustic path (c̃(n)) is slightly inaccurate, causing that recorded
noise (r(n)) cannot be completely extracted by using the “Source Sepa-
ration” block (see Figure 3.29). Then, the noise obtained in the “Source
Separation” block contains a small contribution of the audio signal, causing
the fluctuation of the attenuation levels in those components.
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Figure 3.32. Attenuation levels for the excerpt of the song “Tell me

something good”.

Figure 3.33 shows the attenuation levels for the five seconds selected
(from tenth to the fifteenth second) when the excerpt of the song “Numb”
is used. A similar behavior than the attenuation levels shown in Figure 3.32
can be appreciated. That is, the attenuation levels of the HT profile are
higher than the PEQ profiles in any case due to the hearing threshold is
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Figure 3.33. Attenuation levels for the excerpt of the song “Numb”.

a more restrictive curve than the masking of the audio signal. Regarding
the PEQ profiles, both of them present a similar attenuation levels, being
the PEQ Aures the profile that introduces a lower attenuation levels. Same
as the previous results, the attenuation levels are lower as the frequency
increase due to the ambient noise present a lower power level in the last
frequency components (see Figure 3.31). In addition, since this excerpt
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presents a more stationary behavior than the previous one, the attenuation
levels are more stable. Furthermore, both PEQ profile do not introduce
any attenuation for the last two frequency components. This means that
the PEQ profiles consider that audio signal is already masking the ambient
noise for those components. As Figure 3.33 shows, the last component
present a higher attenuation level for the HT profile, disagreeing with the
above argument. This behavior is caused because of the inaccuracy of the
estimate of the electro-acoustic path (c̃(n)), just as the previous results.

These attenuation levels will cause a specific anti-noise that is repro-
duced by the speakers of the acoustic nodes (qj(n), see Figure 3.28) in order
to reduce as much as possible the noise in the microphones and increase the
perception of the specific audio signal. To appreciate the amount of noise
that the microphones receive, Figure 3.34 illustrates the power spectrum
of the noise recorded by the first microphone for the five seconds selected
of each audio signal is shown. The power spectrum has been estimated
through the Welch method [112] with an average between the 2nd to the
3rd second assuming a hamming window of MS samples with an overlap of
50% and NFFT = 4096 samples.
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Figure 3.34. Received noise power level at the first microphone.

As Figure 3.34 shows, the received noise is lower for the PEQ profiles
when the excerpt of “Tell me something good” is used because attenuation
levels are higher in this excerpt. This behavior can be better appreciated
in the frequency components between 200 and 400 Hz where a difference
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around 5 dB between both excerpts can be appreciated. When the HT
profile is considered, the recorded noise presents the highest attenuation
regardless the frequency component and audio signal. It should be noted
that this behaviour is expected since the HT profile introduces the highest
attenuation levels among all the profiles.

The previous results show a significant difference of the received noise
between the HT and both PEQ profiles. But, in order to evaluate the
performance correctly, the results of the perceptual test must be analyzed.
The values of merit for each specific feature (preference and clarity) are
shown in Figure 3.35, which represent the probability of each profile for
each feature. That is, the profile with the lowest or the highest value of
merit is the least or the most selected profile, respectively, for the specific
feature. In contrast, similar values of merit for different profilesindicate that
those profiles do not present significant differences for the specific feature,
that is, they are difficult to differentiate between them. The sum of the
values of merit for an specific feature is equal to 0.
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Figure 3.35. Values of merit of the perceptual test.

According to Figure 3.35, the profile that presents a clearer audio signal
is the HT profile. Therefore, the HT profile achieves the best improvement
of the perception of the audio signal in presence of the ambient noise,
an expected behavior since it introduces the highest attenuation levels.
Regarding the PEQ profiles, the PEQ SF shows a slightly higher values of
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merit than the PEQ Aures, that is, the PEQ SF provides a slightly better
performance than the PEQ Aures. However, a further study should be
carried out since the differences are minimal, specially for the excerpt of
the song “Tell me something good”. This behavior is caused because, as
stated in Section 3.3.5, the SF tonality method estimates a lower masking
threshold than the Aures method, leading in this case to higher attenuation
levels, see (3.42). Finally, the profile labeled as NONE is the profile that
participants less select since no equalization is performed in this profile.

Regarding the preference feature, the participants share a general view
on the clarity in the excerpt of the song “Tell me something good”. Al-
though, certain differences can be appreciated for the PEQ profiles, they
are not relevant since the difference between them is minimal. However, for
the excerpt of the song “Numb” the preference feature presents a different
behavior. In that case, the values of merit of both PEQ profiles and the HT
profile are similar, that is, the participants are equally divided between the
PEQ SF, PEQ Aures and HT profiles. The different views have emerged
due to the spectral composition of this specific audio signal. As Figure 3.31
shows, the excerpt of the song “Numb” presents similar stationary compo-
nents that the noise, specially around 200 Hz. As a result, the attenuation
level also affects to the audio signal causing that the participants are more
declined to the PEQ profiles since they introduce a lower attenuation levels.

Therefore, the HT profile achieves a better increase of the perception
of the audio signal since it introduces a higher gains regarding the PEQ
profiles. However, with a lower attenuation levels the PEQ profiles also
achieves to increase the perception of the audio signal regarding the NONE
profile since when any of the PEQ profiles are compared to the NONE
profile, the participants are able to distinguish them without error.

3.5.4 Conclusions

A second approach for equalizing in order to increase the audio signal per-
ception has been presented in this section. In this case, through the ANE
algorithm, the noise is equalized in order to reduce it according to the im-
plemented profiles. These different profiles are used to provide a specific
spectral shape to the noise, increasing the flexibility of the equalizer.

Similar to the previous section, in order to analyze the performance of
the different profiles, an experimental study is performed. However, firstly
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the attenuation levels for certain frequencies are shown. According to these
results (see Figure 3.32 and Figure 3.33), the HT profile presents the highest
attenuation levels between all the profiles to be compared. Both PEQ
profiles present similar attenuation levels, although the PEQ SF profile
provides slightly higher attenuation levels, an expected behavior since the
PEQ SF profile estimates a lower masking threshold. This behavior leads
to generate a noise in the speakers of the acoustic nodes with a power level
higher for the HT profile in comparison to the PEQ profiles, as Figure 3.34
shows.

In a second stage, a perceptual test between the different profiles has
been performed. A paired caparison test with sixteen different combina-
tions are implemented. The results, shown in Figure 3.35, conclude that all
the profiles (HT, PEQ Aures and PEQ SF) improve the perception of the
audio signal, being the HT profile the best one. However, these results show
that the preference of the participants is more equally distributed when au-
dio signal provides frequency components similar to those of the ambient
noise. Finally, the PEQ Aures and PEQ SF are difficult of differentiate
due to their similar values of merit in both audio signals. This means that
the additional attenuation level introduced in the PEQ SF profile is not
significant because the improvement provided by the PEQ SF cannot be
significantly perceived, in contrast to the improvement provided by the HT
profile.

3.6 Conclusions

In this chapter, the perceptual algorithm based on the masking effect has
been explained in detail and use it in order to implement a perceptual
application over an indoor acoustic environment, such as the cabin of a
car. Since recording and reproduction operations are needed as well as
processing, this scenario is presented through an ASN composed by single-
channel acoustic nodes.

According to Figure 3.1, the masking of a signal is estimated through
two main steps, the process of the upper branch called “Auditory Masking
Model” and the process of the bottom branch called “Tonality Estimator
Model” that are deeply explained along the respective sections. In addi-
tion, since the process of the bottom branch is inaccurate in certain cases
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(such as complex noise signals [120] or speeches [125], in this chapter an
alternative method is proposed, the Aures method [127]. Finally, in order
to compare the conventional method (called in this dissertation as Spec-
tral Flatness method) with the alternative method, a perceptual study is
performed. This study obtains the masking threshold obtained from the
multiple test made by several participants to obtain a real measurement
and compare this result with the analytical results provided by each of the
methods. According to the results of this study (see from Figure 3.12a to
Figure 3.12c) both tonality methods provide a similar masking threshold in
low frequencies than the perceptual results. On the other hand, for middle
and high frequencies, the masking threshold provided by the Aures method
show a better performance than the masking threshold of the Spectral Flat-
ness method, in other words, the results provided by the Aures method fit
better with the perceptual results. Therefore, given these results, the Aures
method can be assumed to be a more accurate method, since he Spectral
Flatness method is inaccurate for middle and high frequencies, just as con-
cluded in [124, 125].

The masking method is used to implement a perceptual analysis in
order to perform an application that aims to enhance the perception of
the audio signal in presence of the noise signal in the acoustic environment
presented above. For this purpose, an equalizer based on the above masking
method is introduced, where two different approaches are implemented.

On one side, an equalization on the audio signal is presented through
a graphic equalizer. For this purpose, the audio signal must be boosted in
order to enhance its perception. This behavior is achieved by using the per-
ceptual analysis to obtain the corresponding gains that will feed the graphic
equalizer. Although, first at all a study to analyze the best masking pat-
tern is performed in order to propose the most straightforward method to
estimate the masking threshold. This method establishes the basis for the
extension of the perceptual equalizer to multiple users (see Section 3.4.4).
On the other hand, using that masking pattern, a perceptual study is per-
formed in order to analyze the performance of the different equalization
profiles performed in this application (see Section 3.4.1). According to the
results of this study, the combinations where masking threshold has been
estimated through the Aures method tonality offers a more comfortable
equalization than the combinations where masking threshold has been esti-
mated through the Spectral Flatness method. In other words, the masking
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threshold estimated through the Aures tonality method achieves a better
performance in this equalizer.

On the other hand, the second approach aims to enhance the perception
of the audio signal in presence of the noise by means of an ANE algorithm
in order to control the spectral shape of the noise. Similar to the previous
approach, a perceptual test has been performed in order to analyze the
different profiles implemented in this application. According to the results,
in this case, the perceptual profile (PEQ) presents very similar behavior
regardless to the tonality method employed, in other words, the difference
between the attenuations of each PEQ profile is not perceptible. On the
other hand, the HT profile presents the best results since it provides the
highest attenuations, in other words, the equalization through the PEQ
profiles is not able to mask the noise signal. This behavior is caused be-
cause the estimated masking threshold does not match perfectly with the
real masking threshold, an expected behavior according to the results of
Section 3.3.5 where the estimated masking thresholds are not identical to
the real masking thresholds. In addition, in this case the noise signal is
composed by more than four tones, unlike the signals considered in Sec-
tion 3.3.5. For this reason, in order to adjust even more the estimated
masking threshold of the broadband signals a further study is proposed.



Analysis of an Android ASN 4
This chapter presents an ASN composed by commercial mobile devices
connected to wireless speakers. The mobile devices use the Android
operating system and the wireless connections are based on Bluetooth
and Wi-Fi protocols. The purpose of this chapter is to study the
synchronization between the mobile devices of the ASN in order to
perform synchronized reproduction through multiple speakers. There-
fore, first at all, the design of the network is explained in order to
present the scenario where synchronization is studied. Once the net-
work is established, all the parameters that affect the audio latency
are described and analyzed. Subsequently, a solution to overcome the
synchronization problems is proposed and evaluated through experi-
ments in a real scenario. Finally, different Personal Sound Zones
(PSZ) applications are presented with the purpose of analyzing the
performance of these applications once the synchronization problems
have been addressed.
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4.1 Acoustic Network Model

In Section 2.2, the mobile devices have been proposed as an acoustic node
since they are equipped with one or more microphones and speakers and a
very powerful processor capable of computing large amount of data. There-
fore, a mobile device is able to play, record and process multimedia data
in order to produce a specific audio performance inside different acoustic
environments. Since the loudspeakers of the mobile device are usually very
poor in quality, then wireless speakers can be added to the network, as it
is shown in Figure 4.1. As it was described in Section 2.2.1, the mobile
devices that form the network use the Android Operating System (OS).

Acoustic Node

Figure 4.1. Example of an ASN composed by mobile devices and

wireless loudspeakers

As shown in Figure 4.1, all the mobile devices are connected to a Wi-Fi
router in order to exchange information between them. The Wi-Fi com-
munication is represented by the gray dotted line in Figure 4.1 and it is
a two-way communication. It can also be appreciated that each mobile
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device is connected to a wireless speaker through the Bluetooth protocol
in order to transmit audio streams with enough quality. The Bluetooth
communication is represented by the blue dotted line and it is a one-way
communication, from the mobile device to the speaker. This last commu-
nication allows separating the microphone and the speaker at any distance
within the coverage area of the Bluetooth link. Due to the characteristics of
Bluetooth connection (A2DP [74]), only one connection can be performed
at the same time, unlike the Wi-Fi protocol where several connections can
be made simultaneously. Therefore, each mobile device manages two differ-
ent wireless connections at the same time: one based on Wi-Fi to exchange
local information through the network and the other based on Bluetooth
in order to reproduce sound over the speaker.

Since a single Bluetooth connection can be performed and mobile de-
vice usually is able of recording single-channel signals, in this dissertation,
each mobile device and speaker will manage single-channel audio signals.
Therefore, the set formed by one mobile device and one speaker combined,
as Figure 4.1 shows, will be considered as a single-channel acoustic node
(see Figure 2.3a). As said before, the network shown in Figure 4.1 can
be used to perform different audio applications involving audio reproduc-
tion [156, 157]. As it is explained in Section 2.1.3, the network shown in
Figure 4.1 can be considered an active ASN.

Reproduction applications over acoustic networks need a precise con-
trol of synchronization between the nodes. When the acoustic nodes are
perfectly synchronized, they can record or play audio signal simultaneously
as a wired system with a single processor would do it. Therefore, per-
fect synchronization of ASN, in particular, ASN over Android devices and
Bluetooth and Wi-Fi connections, is of great interest. Therefore, in order
to perform a detailed analysis on the relevant factors that affects the syn-
chronization, the study of this chapter is focused on a two-node acoustic
network, such as the one shown in Figure 4.2.

The synchronization issue is a well-known design challenge in an ASN
(see Section 2.1.4) because of the uncertainly with wireless communications.
Due to its complexity, in this dissertation, the synchronization challenge is
divided into two problems that will be addressed separately for the sake
of clarity. The first problem to be addressed will be denoted as the clock
synchronization problem [158, 159] because it is related to the different
time at any device clock. The clock synchronization problem causes that
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Figure 4.2. Two-node ASN with two Android devices and two wireless

speakers.

the acoustic nodes are not able to start a task (such as an audio task) at the
same exact time all together. It will be explained in detail in Section 4.3.
The second problem to be addressed is related to physical aspects of the
loudspeakers and microphones (or devices since they are built-in micro-
phones) and the software used. It prevents the audio signals arriving at the
microphones to be temporarily not aligned, even when the first problem
(clock synchronization) is corrected. Due to the different physical locations
and software and hardware between the nodes, the signals emitted by the
speakers do not reach the microphones at the same time. This problem
can be considered as another type of synchronization related to the audio
application when the signals from all the loudspeakers must arrived at the
same time at one particular location. But to prevent confusion with the
other problem, in this dissertation, it is called the temporal alignment
problem and it is addressed in Section 4.4.

Since synchronization deals with the time alignment of the signals emit-
ted by each node, an objective metric to measure the time differences be-
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tween signals is required. For this reason, the parameter called here audio
latency is firstly studied and analyzed in the following section for a full
understanding of the methods employed to solve each of the problems men-
tioned above. The fundamental actions affecting the audio latency will be
explained, and afterwards, each of the above problems, clock synchroniza-
tion and temporal alignment, will be addressed, solved and tested through
experimental measurements. Finally, certain audio applications will be im-
plemented and their performance will be studied. More specifically, as an
specific application of ASN, Personal Sound Zone (PSZ) applications will
be implemented, whose main objective is to generate different audio zones
within the same room.

Finally, the proposed algorithms able to manage the synchronization
between nodes and implement multi-speaker audio reproduction has been
developed over Android and can be installed as an application. Since its use
is not essential for the correct understanding of the issues proposed in this
chapter, the application is explained step by step in Appendix A, where the
block diagram of their different interfaces is shown. The application has
been created with the environment called Android Studio that is specific
for programming Android applications. The application creates the ASN
shown in Figure 4.2 through the corresponding wireless connections. In
addition, it addresses the synchronization of the network regarding the two
problems mentioned above, and finally, it implements the different PSZ
systems explained in Section 4.5.

4.2 Study of the audio latency

4.2.1 Definition of the audio latency

Considering the whole chain of playing and recording an audio signal, the
audio latency is usually defined as the time an audio sample needs to
throughout the whole audio chain [160]. In the context of an acoustic
node as those shown in Figure 4.2, the audio latency, denoted hereafter
by TAL, is defined as the time between sending an audio sample for be-
ing played and the time that the same audio sample is recorded by the
microphone. More specifically, it is the delay that the sound suffers due
to the electro-acoustic path of the system, which includes delays caused
by the software, the wireless link and the sound propagation between the
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speaker and the microphone, as shown Figure 4.3. Since TAL depends on
the specific electro-acoustic path, in the ASN of Figure 4.2 there will be
as many TAL as electro-acoustic paths. In a network of N single-channel
acoustic nodes, there will be N2 electro-acoustic paths, resulting in N2 dif-
ferent TAL. In order to simplify the description of TAL, only one acoustic
node is considered to study the generation of TAL. As it can be seen from
Figure 4.3, the audio latency can be modelled as the sum of four different
delays:

TAL = TDP + TBL + TSP + TA , (4.1)

where TDP is the delay caused by the software and hardware of the mobile
device, TBL is the delay of the Bluetooth link, TSP is the delay caused by
the software and hardware of the wireless speaker and TA is the acoustic
delay.

TDP TSP

TBL

TA

Figure 4.3. Electro-acoustic path for a single acoustic node.

Due to their influence over the total measurement of TAL a compre-
hensive and detailed explanation of each factor is given in the following
paragraphs. All the factors are explained assuming that Android mobile
devices are used as acoustic nodes.

Device Processing Latency

The delay caused by the data processing in the device is represented by TDP.
Basically, it can be assumed that TDP is caused by the Android OS, since
it manages and controls all the processes, including the audio processing.
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Since the device runs both, recording and playing processes, TDP is formed
by the audio output and audio input latency, TDP = TOLD + TIL, where
TOLD is the output latency of the mobile device side and TIL is the input
latency. The input latency, TIL, can be defined as the elapsed time the
system needs to make the audio data accessible in digital form from the
microphone recording, while the output latency, TOLD, can be defined as
the elapsed time the system needs to render a sound from the stored digital
format. In the case of Figure 4.3, where a Bluetooth connection is used,
TOLD is re-defined as the time the Android OS requires to process the sound
and sending it to the Bluetooth link.

On the other hand, as indicated in Section 2.2.2, Android OS is de-
composed into several layers named as the Android stack (see Figure 2.8).
Since only audio tasks are involved in this definition, the stack can be spec-
ified in order to only take into account the important features related with
the audio processing, as it is shown in Figure 4.4 [161], where the different
colors represent the different layers of the stack.

This stack shows the steps that audio signals must follow in order to
be reproduced or recorded, that is, affecting TOLD and TIL. The audio re-
production starts in the “Application Framework” layer where the entire
feature set of the Android OS is available. Then, audio reproduction pro-
ceeds through the intermediate layers, where the core components of the
OS are accessed. The audio reproduction ends in the “Linux Kernel” Layer,
where the drivers of the hardware are managed. The recording process con-
siders the same steps, but in reverse order (from the “Linux Kernel” Layer
to the “Application Framework” layer).

Therefore, TOLD and TIL, and consequently TDP, highly depend on
the performance of the stack shown in Figure 4.4, leading to longer delays
when the performance of the stack is bad. In addition, when a Bluetooth
connection is enabled, additional operations are required [162] in order to
adapt the audio signal to the Bluetooth link, causing an increase of TOLD.
However, as explained in [163], the performance of TOLD can be slightly
controlled through some parameters that are specific for each Android de-
vice model. These parameters are the sample rate (fs), the size or length
of the data buffer [164] (LB) measured in number of audio samples and
the bit-depth defined in bits. The sample rate and the bit-depth are re-
lated with the quality of the sound signal while the buffer length defines
the amount of samples to be processed at the same time (in recording and
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APPLICATION FRAMEWORK

INTERMEDIATE LAYERS

LINUX KERNEL

Definition of  fs , LB and bit depth

Driver Management

Access to the core OS components

Play

Play Record

Record

Figure 4.4. Simplified Android audio stack from [161].

playing). Regarding the bit-depth parameter, the highest value in An-
droid devices corresponds to the floating point data format, but according
to [165], it presents certain disadvantages. For the sake of simplicity, all
the tests performed along this chapter will be carried out with a bit-depth
of 16 bits.

Once the specific value of these three features is established, a chunk of
LB samples (also called audio frame or audio buffer) goes through the differ-
ent layers of Figure 4.4 to be reproduced or recorded at the corresponding
fs. Therefore, TDP is strongly related to fs and LB, specially with LB where
a bigger LB leads to a higher processing cost in each layer, increasing the
value of TDP. In addition, when a Bluetooth connection is used, TDP is
increased due to the additional processing that the device must perform to
adapt the audio signal to the Bluetooth link (such as coding [74, 166]).
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In summary, TDP depends on the performance of the Android stack
shown in Figure 4.4, but it can be slightly controlled through fs and LB.

Bluetooth Link Latency

The Bluetooth link latency, TBL, is the elapsed time between an audio buffer
leaving the mobile device and the same buffer reaching the wireless speaker,
that is, it is the radio propagation delay. Since the distance between the
device and the speaker is within a range of a few meters, the time due to
the propagation of radio waves can be considered negligible compared to
the rest of factors contributing to TAL in Figure 4.3, that is TBL = 0.

Speaker Processing Latency

As it is shown in Figure 4.3, the acoustic node can be composed by a wireless
speaker. When a Bluetooth connection is used, some basic operations such
as data transfer or decoding [74] must be carried out. Moreover, additional
advanced audio processing [167] can be used to enhance the quality of the
reproduced sound, leading to a wide range of TSP values, depending on the
model and manufacturer of the wireless speaker.

At the present, most of the Bluetooth speakers are dummy devices
capable of receiving information to reproduce it, but unable to send back
important control information, such as the LB used or the number of under-
runs [168], which can produce annoying audio glitches due to an unstable
reproduction. If the connection between the device and the loudspeaker in
Figure 4.3 is wired, the audio received by the speaker is an analogue signal
and it can be directly reproduced. Nevertheless, even in this case there can
be small differences depending on the model and the manufacturer of the
loudspeaker.

Acoustic Latency

Finally, we denote by TA the time needed by the sound wave to travel from
the loudspeaker to the built-in microphone of the mobile device, that is, the
acoustic propagation time. It can be estimated through next expression:

TA =
Dms(m)

V (m/s)
, (4.2)

where Dms(m) is the distance between the mobile device and the wireless
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speaker expressed in meters and V (m/s) is the sound speed of the medium
of propagation, which for the air is V (m/s) = 343 [169]. It must be noted
that TA is known once the distance (Dms(m)) is known, as will be considered
in the experiments of Section 4.2.3.

Final Relationship

According to the previous definitions, the audio latency TAL of the acoustic
node shown in Figure 4.3 can be expressed as:

TAL = TDP + TSP + TA , (4.3)

where TDP = TOLD + TIL, being all the delays measured in seconds.

4.2.2 Audio Latency Estimation

The audio latency, TAL, is estimated as the maximum value of the cross-
correlation function between the audio signal reproduced by the speaker and
the audio signal recorded by the microphone of the node of Figure 4.3 [170].
Denoting by x(n) as the signal emitted by the speaker and y(n) as the signal
captured by the microphone, the cross-correlation is defined as:

c(n) = E [x(m+ n)y(m)] =
∞∑

m=−∞
x(m+ n)y(m) , (4.4)

where c(n) is the result of the cross-correlation. In addition, when the
signal to reproduce is the Maximum-Length Sequence (MLS) [171] or the
sine sweep (specifically a logarithmic sweep) [172], the result of the cross-
correlation is equal to the RIR measurement [25]. This parameter provides
information about shape of the system between microphone and speaker
and it can be used to perform different applications, such as a CrossTalk
canceller [173]. For this reason, these signals are proposed to estimate TAL.

Since the cross-correlation function involves a high computational cost,
the Fast Fourier Transform (FFT) is used in order to compute the cross-
correlation efficiently. This approach is expressed as [174]:

c(n) = FFT−1 (Y (k)F (k)) , k = 0, 1, . . . , NFFT − 1 , (4.5)



4.2. Study of the audio latency 127

where Y (k) is the kth frequency bin of the FFT of the recorded signal,
NFFT is the closest power of two of Lx + Ly − 1 with Lx and Ly as the
length of the reproduced and recorded signal respectively and FFT−1 as
the inverse FFT. Regarding F (k), it depends on the reproduced signal to
use. In case of the MLS, F (k) = X∗(k) where X(k) is the kth frequency
bin of the FFT of the MLS signal and (·)∗ means conjugated. When the
sweep signal is used, F (k) is the kth frequency bin of the FFT of the f(n)
signal with f(n) as the reversed time signal of the sweep signal using and
envelope of −6 dB per octave, as [172] explains.

As stated above, the audio latency can be obtained through the position
of the maximum of c(n), as the following expression shows [170]:

pAL = arg max
n

c(n) , (4.6)

where pAL is TAL expressed in samples, that is:

TAL =
1

fs
pAL . (4.7)

In this dissertation, a logarithmic sweep signal is considered since it
provides an estimate better than that of the MLS signal [175]. The Fig-
ure 4.5 shows the RIRs estimated using the two signals, sweep and MLS.
It can be appreciated that the estimated value of TAL is identical for both
signals since their respective maximum values (pAL) are located at the same
sample. However, it can also be noticed how the RIR estimated with the
MLS signal is noisier than that estimated with the logarithmic sweep. In
Section 4.5, the RIR measure is needed to perform the corresponding audio
applications. For this reason, the sweep signal is used in this dissertation
to estimate the value of TAL.

4.2.3 Experimental study

As explained in Section 4.2.1, TAL highly depends on the mobile device
and the speaker used in Figure 4.3. Therefore, an experimental study of
the behavior of TAL is carried out in this section in order to analyze TAL

estimates when Android mobile devices and wireless speakers are used.
For this purpose, different mobile devices and different speakers have been
used and placed at different distances from each other. The mobile devices
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Figure 4.5. Estimated RIR by means of the MLS (blue) and the

logarithmic sweep (red) signals.

and speakers used in the experiment are shown in Table 4.1 where each
mobile device is combined with each of the speakers. Additionally, the
Android version of the mobile device as well as the Bluetooth version of the
loudspeakers are also shown. It should be highlighted that mobile devices
are sorted such that the device with highest computational capability is
located on the top row and the device with lowest computational capability
on the bottom row. In addition, each of these combinations are evaluated
at difference distances, Dms ∈ {0.1, 0.2, 0.5, 1, 2, 5} meters.

The different setups have been evaluated in the same room and the
same day. In addition, each mobile device is located opposite to its cor-
responding speaker and at one meter approximately over the ground, as
Figure 4.6 shows.

Before the sweep signal is reproduced and recorded in order to estimate
TAL, a previous stage must be performed. As [163] explains, the first time
that an audio signal is reproduced or recorded, a certain amount of time is
required in order to warm up the hardware. This stage is based on recording
and playing a specific amount of zero samples (samples whose value is 0)
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Mobile Device Processor Android Version

Samsung Galaxy S3 Snapdragon 820 8.0

HTC Nexus 9 Nvidia Tegra K1 7.0

Motorola Moto G5 Plus Snapdragon 625 8.1

Samsung Galaxy Tab 3 Intel Atom Z2560 4.4.2

(a)

Speaker Bluetooth Version

Yamaha NX P-100 2.1

Sony SRS-X3 2.1

JBL Flip 2 3.0

JBL Charge 4 4.2

(b)

Table 4.1. Description of the different (a) mobile devices and (b)

speakers used for implementing the acoustic nodes.

that will be discarded since they are used only to warm up the hardware
of the elements that form the acoustic node. After some experiments,
the loudspeaker will be emitting zero samples during 3 seconds, thus, an
amount of LW = 3fs zero samples will be emitted before the sweep signal.

As stated in Section 4.2.1, reproduction and recording can be con-
trolled through the parameters fs (sample rate) and LB (buffer length).
In this experimental study fs = 44100 Hz for all the mobile devices and
speakers. However, LB is a parameter that depends on the mobile device,
as Section 4.2.1 stated. The Android OS provides information about the
minimum buffer size to use on the “Application Framework” Layer (see
Figure 4.4) based on the mobile device properties. This buffer size will
be denoted as LB,ref in this dissertation. LB,ref depends on the Bluetooth
connection used to reproduce audio, that means that the Android OS also
considers the type of audio connection to obtain LB,ref . The Table 4.2
shows LB,ref in audio samples when the Bluetooth connection is considered
for each mobile device used. These values are obtained without considering
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20 cm
Mic

(a) Dms = 20 cm.

1 m

Mic

(b) Dms = 1 m.

Figure 4.6. Scenario of the experimental study for a distance between

mobile device and loudspeaker of (a) 20 cm and (b) 1 m.

the speaker model since the Android OS considers the type of connection,
but it does not consider the specific speaker to estimate LB,ref . In Ap-
pendix C a deep study about the optimal LB based on LB,ref is done. That
study concludes that the optimal buffer size considering this scenario is
given for LB =

LB,ref

2 .

Mobile Device LB,ref

Samsung Galaxy S3 10944

Samsung Galaxy Tab 3 10240

Motorola Moto G5 Plus 10800

HTC Nexus 9 12672

Table 4.2. Bluetooth LB,ref (in audio samples).

Once the warm-up stage has been introduced, and the sample rate and
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buffer length have been established for the whole experiment, the method-
ology used to estimate TAL for each device-loudspeaker pair and distance,
is summarized in the next steps:

1. Choose a combination from Table 4.1 and select a distance, Dms.

2. Start the warm-up process reproducing and recording LW = 3fs zero
samples.

3. Reproduce and record the sweep signal. For all the experiments a
sweep signal of LS = 2fs samples has been used.

4. Estimate the RIR through (4.5).

5. Estimate TAL through (4.7).

6. Wait 3 seconds to release resources in the Android OS to avoid inter-
fering with the next test.

7. Repeat steps 2 to 6 and record the measurements 50 times for the
same pair and the same distance.

The previous procedure allows to estimate TAL in terms of the distance
and the device-loudspeaker pair. However, since Dms is known, TA can be
estimated by using (4.2) and extracted from (4.3), that is:

Tnode = TAL − TA = TDP + TSP , (4.8)

where Tnode is the latency caused exclusively by the device-loudspeaker
pair. This metric is illustrated in Figure 4.7 for a specific mobile device,
considering both all the distances and speakers shown in Table 4.1. In
particular, Figure 4.7 shows the average value of Tnode (Tnode) after 50
measurements depending on the distance, Dms. In addition, the standard
deviation of the Tnode measurements (σTnode

) is also represented by using
the error bars in the figure.

Figure 4.7 shows similar results for TAL, for a specific mobile device and
speaker regardless the distance, Dms. Therefore, it can be concluded that
low-quality communications, possibly caused by a large separation between
the mobile device and the speaker, do not significantly affect on Tnode (and
consequently on TAL). This statement is confirmed by the values of the
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(b) Samsung Galaxy Tab 3.
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(c) Motorola Moto G5 Plus.
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(d) HTC Nexus 9.

Figure 4.7. Tnode expressed in ms for each device-loudspeaker pair using

the Bluetooth link.

standard deviation showed in the error bars, since for a specific combination
of mobile device and speaker σTnode

is almost identical for all the distances.
Therefore, it can be assumed that TDP and TSP are the main contributors
to the behavior of Tnode seen in Figure 4.7.

Regarding the analysis of the latency due to the Android OS, TDP, we
focus on the results obtained by the same speaker, that is, we assume that
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the speaker latency is constant and Tnode depends only on TDP. To this
end, the bars with the same colors in the different sub-figures of Figure 4.7
are compared. When the Tnode are compared, a significant difference can
be appreciated between the figures, reaching a maximum difference of 150
ms in the worst case (see the measurements of the Samsung Galaxy Tab
3 and the Motorola Moto G5 Plus mobile devices for the Sony SRS X3
speaker). This behavior leads to assume that two nodes composed by iden-
tical speakers and different mobile devices can be desynchronized up to
150 ms between them. This difference is explained by the fact that the
Android OS implements the audio reproduction and recording processes in
different ways depending on the mobile manufacturer. The main difference
is caused because the processing in each layer of the stack (see Figure 4.4)
is different in each mobile device. In addition, as Table 4.2 shows, each mo-
bile device uses a different buffer length, LB, that can cause a larger delay.
Moreover, a different σTnode

can be appreciated for the different combina-
tions of mobile devices when the same speaker is used. Although in most of
the cases the difference is not significant, in Figure 4.7c the Sony SRS X3
speaker presents a significantly higher σTnode

than in the rest of the figures.

As a final remark, it can be appreciated from the figures that the
Samsung Galaxy Tab 3 device presents the lowest Tnode in average for all
the speakers and distances. Surprisingly, the oldest mobile device featuring
the oldest software and the lowest computational capacity is the fastest
device. This behavior can be explained because an older Android version
can use less processing at each layer of the stack.

Regarding now the analysis of the latency due to the speaker, TSP,
we focus on one of the four sub-figures in Figure 4.7. Then, we assume
that the device latency TDP is constant and Tnode depends only on TSP. In
this case a maximum difference of 200 ms can be appreciated in the worst
case (see the measurements of the Motorola Moto G5 Plus mobile device).
Therefore, when using different speakers with identical mobile devices, the
two acoustic nodes can be desynchronized up to 200 ms. This big difference
in the values of TSP can be explained by differences on the hardware and
on the processes run by each speaker, such as different decoding algorithms
or different processing to enhance the signal quality. Even if the same
decoding method is used in all the speakers (the basic one is called SBC,
Low Complexity Subband Codec [74]), the algorithm can be faster or slower
leading to different processing times. In addition, similar to the mobile
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devices, the speakers can use different buffer lengths, LB, causing a higher
or lower Tnode (and consequently a higher or lower TAL) according to the
LB. As seen in Figure 4.7, the speakers that offer the lower TAL are Yamaha
NX P-100 and JBL Flip 2, whereas the JBL Charge 4 exhibits the longest
Tnode for three of the four mobile devices.

Finally, a remark should be made about the fact that Tnode depends
on both TDP and TSP. This behavior can be explained through the next
example, where an ASN of two acoustic nodes with the same mobile device
and different speakers in each node is considered. When the Samsung
Galaxy S3 device and the JBL Charge 4 and Sony SRS X3 speakers are used,
the difference of Tnode between the different nodes is around 100 ms (see
Figure 4.7a). However, when the mobile device is changed to the Motorola
Moto G5 Plus device, this difference is around 50 ms (see Figure 4.7c).
This behavior demonstrates that Tnode does not depends on TDP and TSP

considered separately, since Tnode (and consequently TAL) depends on how
the mobile device and the speaker collaborate between them.

We would like to analyze this mutual dependence between TDP and
TSP when the mobile device and the speaker are connected through a wire-
less Bluetooth link. For this purpose, we have studied an alternative wired
analog connection between the mobile device and the speaker. For this ex-
periment, the same combinations shown in Table 4.1 and the same method-
ology than in the wireless connection has been used, but assuming a single
distance of Dms = 50 cm, since the distance was not a relevant factor once
TA has been subtracted from TAL. The same buffer length, LB, than for the
Bluetooth connection was used (see Table 4.2). Results are shown in Fig-
ure 4.8, where in this case, Tnode is represented for different mobile devices
instead than of the distance as in Figure 4.7.

Generally speaking, the values of Tnode are lower than for the Blue-
tooth case, specially in the HTC Nexus 9 mobile device where it achieves
the lowest Tnode regardless the used speaker, even providing that in Fig-
ure 4.7 the HTC Nexus 9 presented the highest Tnode in most of the cases.
The JBL Flip 2, Sony SRS X3 and Yamaha NX P-100 show similar Tnode

values for each mobile device, while the JBL Charge 4 speaker produces
a Tnode around 40 ms higher than the other three for any mobile device.
This additional latency could be caused by an additional processing of the
speaker, suggesting that the speakers run some kind of processing indepen-
dently of the connection, wired or wireless. Furthermore, the variability
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Figure 4.8. Tnode expressed in ms for each device-loudspeaker pair using

the wired link.

of the measurements obtained for a wired connection is smaller than that
for the Bluetooth. In this regard, the typical deviation is represented in
Figure 4.8 by the error bars. In most of the cases this behavior is slightly
significant, but the dispersion of the Sony SRS X3 speaker greatly improves
with respect to their ranges shown in Figure 4.7. Therefore, when an analog
wired connection is used, the Tnode (and consequently TAL) measurements
present a higher stability and lower values since the mobile devices and the
speakers perform less processing as well as the audio transmission between
the mobile device and the speaker is faster.

4.2.4 Conclusions

In this section, the latency TAL has been introduced in (4.1) and Figure 4.3.
The parameter TAL models the time elapsed between the Android device
starts the process of reproducing a sound through a wireless speaker con-
nected via Bluetooth and the time the sound is recorded by the microphone
of the device. The latency TAL is made up of the addition of four terms,
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although only three of them have been considered relevant: the time spent
by the Android device to send the audio to the speaker, TDP, the time
spent by the speaker to decode and reproduce the digital audio, TSP, and
the time due to the physical propagation of the sound from the speaker to
the microphone of the device.

An experimental study has been done in order to provide a full anal-
ysis of the behavior of TAL. The results have proven that TAL is highly
dependent on the latencies TDP and TSP, obtaining different values for dif-
ferent combinations of mobile device and speaker, that are illustrated in
Figure 4.7 shows. For this reason, a new latency term, Tnode, formed by
the addition of these two terms have been defined, in order to specifically
characterize the latency of the acoustic nodes. In addition, it has been
shown in Figure 4.7 that Tnode depends on both TDP and TSP. Therefore,
Tnode is not only affected by the individual characteristics of the mobile de-
vice and the speaker, but also by the relationship between them regarding
the audio processing required to make they work in a coordinated way.

As a final step, a similar study on the latency of the audio reproduc-
tion process has been carried out, where the Bluetooth connection has been
replaced by a wired connection. Results in Figure 4.8 show a better per-
formance than in the case of Bluetooth connection. Lower values of Tnode

have been obtained for every device-speaker combination, together with
lower values of their standard deviation, leading to a higher reliability in
the measurements.

Finally, it can be stated that a Bluetooth connection presents a Tnode

values ranging from 350 ms to 650 ms with standard deviations from a few
ms till more than 50 ms. Moreover, given the dependence on the hardware
and software of both the device and speaker, the Tnode values cannot be
controlled, only observed. Therefore, a wireless ASN comprised of acoustic
nodes with Bluetooth connections must estimate the Tnode latency for every
device-speaker pair prior to carry out audio applications where synchronism
between nodes is critical.
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4.3 Clock Synchronization

4.3.1 Background

As it is stated in Section 4.1, in order to carry out distributed audio appli-
cation on different acoustic nodes of the ASN, the synchronization problem
must be addressed. For the sake of clarity, the study on the ASN synchro-
nization will be split in two parts. Along this section, we will focus on how
to achieve the clock synchronization of the Android devices that form the
ASN. For this purpose, a novel approach for wireless networks and Android
devices is proposed. In addition, the proposed method is compared with
previously proposed methods throughout some experiments. Finally, the
accuracy of the achieved synchronism between the devices will be evaluated
when a two-node ASN is used to reproduce a sound simultaneously by both
loudspeakers.

The problem of clock synchronization is a well-known issue that affects
all devices, regardless whether devices are based on Android or not, or even
if all the devices are the same model of the same manufacturer, because
their clocks depend on the hardware of the device and, in general, each
device presents a different timestamp. As a result, in order to perform
simultaneously a task by all the devices inside an ASN, a synchronization
between them is required otherwise the task will probably not be performed
at the same time in each device. This behavior can be appreciated in
Figure 4.9, where a particular task has been scheduled to start on time TI

by the clock of the device labeled as “Device A”. Since “Device A” and
“Device B” present different clocks, the task is performed at different times
in each device. More specifically, “Device A” performs the task at time TA

(that corresponds to TI), while “Device B” performs it at time TB. This
difference between the reference values of the clocks is usually known as
clock offset [176], denoted hereafter as TO.

Consequently, in order to be able to run synchronized operations in dif-
ferent devices, it is essential to compensate the time differences [177, 178].
Several methods have been implemented to address this problem, such
as [179] where an accurate method for middle-large networks is imple-
mented, and [180] where the implemented method is used in two Android
devices in order to measure the stability of the proposed method on the
Android OS. These methods are based on the master-slave architecture,
being the slave (or slaves) the device that requests information to the mas-
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Figure 4.9. Example of clock offset, TO, between two devices when a

scheduled task is carried out in the ASN.

ter in order to compensate its clock time according to the clock time of the
master. To this end, master and slave exchange messages containing their
time information or timestamps. These timestamps are used to estimate TO

and to compensate the different clock times in the devices [181, 182, 183].
Following the scenario shown in Figure 4.9, “Device B” will be able to
compensate its clock according to the clock of “Device A” once TO has
been estimated, causing the task to be performed simultaneously in both
devices. As said before, the devices must communicate and exchange mes-
sages between them through a communication link, such as the Wi-Fi link.

One of the most widely used methods firsts proposed several decades
ago is the network time protocol (NTP) method [184]. Apart from exchang-
ing their timestamps between master and slave, it assumes that master and
slave belong to different networks. For this reason, the slave device requires
an Internet connection to communicate with the master. Despite the solid
results that offers the NTP method, it can provide inaccurate results when
networks are heavily loaded [178], or when the OS of the devices are not
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specifically designed to deal with time-controlled applications [185], such
as Android devices. Even presenting inaccuracies, NTP is still widely used
since it offers synchronization of the order of tens of milliseconds [186],
which is suitable in applications where a tight clock synchronization is not
needed. A native procedure is available in Android OS based on NTP to
synchronize its own clock [187].

New methods have been implemented to improve the accuracy of the
TO estimation, such as the method shown in [188], based on distributed
algorithms, and [189, 190] where different methods to estimate TO are ex-
plained considering the challenges of a SN (specially a WSN). In [191],
the proposed method is used to synchronize the data collected by the dif-
ferent sensors of the WSN and fuse them. Other methods are presented
in [192, 193] as well, whose objective is to increase the reliability and robust-
ness of the offset estimation while keeping the algorithm simple. Despite
all these methods from the literature, the IEEE organization standardized
the precision time protocol (PTP) method, which is detailed in the IEEE
1588 standard [194, 195]. However, in this dissertation, we propose a new
method specially defined for Android devices connected throughout wireless
link.

4.3.2 Proposed Synchronization Time Protocol (STP)

The proposed method is based on the methods described in [193, 194] be-
cause they present a simple design and a great robustness of the estimation
of TO. Therefore, the proposed method will exchange the timestamps be-
tween two devices in order to obtain TO. This method is implemented
over the TCP protocol and takes advantage of the way the protocol TCP
must establish the connection between the devices. The establishment of
the TCP connection is known as the 3-Way Handshake process [196] and
is based on the server-client architecture, where the client requests the
connection and the server receives that request. The establishment of a
TCP connection is shown in Figure 4.10 where three different messages are
exchanged, as explained in the following steps:

1. The Client device sends a request of connection with a sequence num-
ber (Synchronize Sequence Number, SYNC).

2. The Server device answers the request by providing its own sequence
number (SYNC + ACK).
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3. Finally, the Client device sends an ACK to let the Server device know
that the connection has been established.
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Figure 4.10. The 3-Way Handshake process.

In this process, two moments are very significant for the STP method,
shown as pc and ps in Figure 4.10. These two moments refer to the times-
tamps when the Client and Server devices become aware of the connection,
respectively. While the Client is aware after the SYNC+ACK message, the
Server is aware after the 3-Way Handshake process is completed. Therefore,
each device becomes aware of the TCP connection at different times. This
difference is caused by the communication protocol (in this case Wi-Fi),
that is, the time difference between pc and ps is the time that the ACK
frame takes to arrive from the Client device to the Server device.

As explained above, the STP method takes timestamps pc and ps when
each device is aware of the connection, this is, two timestamps are taken
in pc and ps respectively. Assuming that the delay of the ACK frame is
always the same, Figure 4.11 shows the time sequence of the STP method
to estimate the clock offset, TO. For this purpose, four different roles are
defined:

• The “GrandMaster” and “GrandSlave” roles. They indicate which
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device has the reference clock time (GrandMaster) and which one
must compensate its own clock (GrandSlave).

• The “Server” and “Client” roles. They indicate which device requests
the TCP connection and which one listens to the TCP connection.
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Figure 4.11. STP method to estimate the clock offset, TO.

Through these roles, the devices perform the STP method as follows
in order to obtain the time difference between their clocks, TO:

1. The GrandMaster (acting as a Client) requests a connection to the
GrandSlave (SYNC message).
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2. After receiving SYNC+ACK message, the GrandMaster is aware of
the connection. Therefore it sends the ACK message to the Grand-
Slave and it takes a timestamp, τC,1.

3. After receiving the ACK message, the GrandSlave is aware of the
connection and it takes a timestamp, τS,1.

4. First connection is closed and the connection roles (Server and Client)
are switched.

5. The GrandSlave (acting as a Client) requests a connection to the
GrandMaster (SYNC message).

6. The same steps than steps 2 and 3 are repeated, but the timestamps
taken are τS,2 for the GrandMaster and τC,2 for the GrandSlave.

7. Second connection is closed, finishing the STP method.

As Figure 4.11 shows, through this method four different timestamps
are taken such that:

τS,1 − τC,1 = τACK + τO (4.9a)

τS,2 − τC,2 = τACK − τO , (4.9b)

where τACK is the time the last frame takes to be transmitted from the
Client to the Server in any connection, as shown in Figure 4.11, and τO is
the current estimate of the clock offset between devices. Note that τO can be
positive or negative according to the clock of each device. In (4.9), τO shows
a different sign because the connection roles (Server and Client) have been
exchanged. This role switch causes that the GrandMaster and GrandSlave
clock times are reversely subtracted in (4.9a) and (4.9b), and τO presents a
different sign for each expression. On the other hand, τACK is not affected
by this switch since it refers to the time taken by the communication process
between the Client and the Server, regardless of the roles of GrandMaster
or GrandSlave. Assuming this scenario, the clock offset can be estimated
by the difference between (4.9a) and (4.9b), such as:

τO =
(τS,1 − τC,1)− (τS,2 − τC,2)

2
. (4.10)
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The estimate of τO obtained by the STP method of Figure 4.11 is valid
only for a limited time interval because the clock of each device can suffer
a time shift, also known as the clock drift [197], deprecating the current
estimate of τO. Therefore, the STP method must be performed periodically
in order to overcome the drift of the clocks and obtain an accurate estimate
of τO at any time. In addition, with the purpose of reducing as much as
possible the effect of outliers (caused by network errors), all the estimations
are averaged by using an Exponential Moving Average (EMA) [145], as:

TO(n) = ξτO + (1− ξ)TO(n− 1) , (4.11)

where n and (n − 1) are the current and previous iteration, respectively,
TO(n) is the current estimate of the clock offset and ξ is the smoothing
constant. This parameter lies within the range of [0, 1], causing a slow
adaptation to the current value (τO) for low values of ξ and a fast adaptation
for large values of ξ. To minimize the influence of network errors, a slow
adaptation with a value of ξ = 0.1 is considered.

It is important to relate the STP method with the accuracy of the
measurement of the timestamps when the devices use Android OS. In this
case, the highest level of precision of the timestamps in Figure 4.11 is within
the millisecond range [198], thus, the estimate of TO will be also obtained
within the millisecond range.

4.3.3 Node Task Synchronization (NTS) method

Once TO has been estimated through the STP method, the time offset
between the clocks of the two devices is known. This value, TO, is used
to change the clock of the GrandSlave device and thus schedule a task to
be simultaneously performed by all the devices. However, the Android OS
does not allow to change the clock time by third party applications (such
as the used in this dissertation, see Appendix A). Therefore, it should not
be possible to schedule a simultaneous task in multiple devices supporting
Android OS. To overcome this drawback, an additional method denoted by
Node Task Synchronization (NTS) method, is proposed and implemented
in this section.

The NTS method defines two different clocks: 1) the global clock (GC)
and 2) the local clock (LC). The time provided by the GC is shared by
all the nodes of the network, that is, the GC time is known by all the
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nodes. The time provided by the LC corresponds to the system clock of
each acoustic node that cannot be modified by third-party applications.
Considering the definition of TO shown in Figure 4.9 that is estimated
by (4.11), and assuming that device A is the GrandMaster whose clock is
denoted by GC, the relationship between the clocks of both devices A and
B can be expressed as

TLC = TGC + TO , (4.12)

where TLC is the timestamp provided by the device B (considered as LC)
and TGC is the timestamp provided by the device A (considered as GC).
Therefore, using (4.12), any acoustic node of the network can manage a
local and a global, o reference, timestamp, just estimating their local time
offset through (4.11) with respect to the device that provides the GC time.

The proposed NTS method acts as shown in Figure 4.12. First of
all, the “Master” and “Slave” roles have to be defined, where the first one
indicates the node that defines the time to start the task and the second one
the node that receives that time. These two roles should not be confused
with the roles used in the Section 4.3.2 (GrandMaster and GrandSlave),
since they are not used with the same purpose. In fact, the GrandMaster
node can take the Master or the Slave role in the NTS method. Regarding
the NTS method shown in Figure 4.12, the timestamps labeled as TLC,M

and TLC,S indicate the timestamps taken by the LC of the Master and Slave
devices respectively, while the timestamp labeled as T st

GC indicates the exact
time the task must start in reference to the clock of the GrandMaster, GC.

As Figure 4.12 shows, the device with the Master role decides when
the task must start and calculates the corresponding global time, T st

GC, as:

T st
GC = TLC,M − TO,M + ∆M , (4.13)

where TLC,M is the current time of the Master device (taken with its LC),
TO,M is the clock offset of the Master, estimated through (4.11), and ∆M

is a parameter that can be set to any value by the Master, such as one
second.

Once the Master device has estimated T st
GC through (4.13), it sends the

global timestamp to the device with the Slave role and it waits till the time
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Figure 4.12. NTS method to synchronize any task (such as an audio

task) on different devices.

T st
GC is reached. Then, the Slave device receives T st

GC and it uses the global
timestamp to compute the waiting interval (∆S) shown in Figure 4.12 as:

∆S = T st
GC − (TLC,S − TO,S) , (4.14)

where TLC,S is the time, taken by the LC of the Slave, when T st
GC is received

and TO,S is the clock offset of the Slave, estimated through (4.11).

After estimating ∆S, the Slave waits till the time T st
GC is reached. Once

both sides (Master and Slave) reach their corresponding local timestamps,
that corresponds to the global timestamp T st

GC (4.12), they will be able to
start the task simultaneously.

To provide a proper result, the NTS method must accomplish ∆M > τR

in Figure 4.12, where τR is the time needed to transmit the global times-
tamp, T st

GC. If ∆M is lower than τR, the Master will start the task before
the global timestamp reaches the Slave and will prevent the synchroniza-
tion of both devices. Since τR is due to the Wi-Fi link, its range can be
assumed to be a few milliseconds. As a result, setting ∆M long enough,
i.e., ∆M ≥ 1 second, will ensure a correct performance of the NTS method.
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4.3.4 Experimental analysis of the clock offset estimates

Once the NTS method has been introduced, it will be used to analyze
the performance of the estimation of the clock offset, TO. Additionally, in
this section we will compare the estimate of TO obtained through the pro-
posed STP method, shown in Figure 4.11, with the estimate of TO obtained
through the NTP and the PTP methods, explained in Section 4.3.1. Both,
the PTP and NTP methods have been also implemented in Android: the
PTP method is based on the process explained in [199], while the NTP
method is based on the algorithm provided by the Apache Commons Net
library [200].

Each of the three methods will be used in combination with the NTS
method, shown in Figure 4.12, in order to estimate the value of TO between
two mobile devices. For this experiment, the Samsung Galaxy S3 and
HTC Nexus 9 mobile devices are used, although similar results have been
obtained for the other devices.

The experiment has been carried out considering the Samsung Galaxy
S3 device is the GrandMaster and the HTC Nexus 9 is the GrandSlave
for any of the three methods. This experiment is based on obtaining the
local timestamp (through the LC) of each device when both of them are
synchronized, this is, when they reach T st

GC in Figure 4.12. Since the local
time of the GrandMaster device is the global time (GC), the difference of
both timestamps will provide the value of TO, as (4.12) indicates. As a
result, TO is obtained as:

TO = T st
LC,GS − T st

LC,GM , (4.15)

where T st
LC,GS is the exact time the task must start in reference to the LC of

the GrandSlave and T st
LC,GM the exact time the task must start in reference

to the LC of the GrandMaster (that is equal to T st
GC).

This process is repeated 1000 times, being the Samsung Galaxy S3
device the Master in the NTS method the first 500 times, and the HTC
Nexus 9 device the Master in the NTS method the last 500 times. This
role interchange is to evaluate the correct behavior of the NTS method.
Therefore, this experiment stores 1000 local timestamps of each device for
each method, and through (4.15) 1000 values of TO are estimated for each
method.
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Due to the wireless connection between the two devices used in this
experiment, the groundtruth value of TO cannot be obtained, as [201] shows,
where the evaluation of its method is carried out through a wired link.
Therefore, this study will be focused on analyzing the variability of the
TO measurement provided by each of the three methods (STP, PTP and
NTP). In order to analyze the stability of the methods, the mean value of
the 1000 values of TO is subtracted from these values, such as:

∆TO(n) = TO(n)− TO , (4.16)

where n = 1, . . . , 1000 and TO is the mean value of TO(n) that is shown in
Table 4.3 for each method in milliseconds.

Method TO (ms)

STP 4859

PTP 4866

NTP 4878

Table 4.3. The mean value of TO in ms for each method.

Figure 4.13 shows the histogram of the difference, ∆TO(n) in (4.16),
for each method where the bars have a width of 20 ms. In addition the
standard deviation of TO(n) in ms (σTO

) is included in the upper right side
of the figures.

As Figure 4.13c shows, the NTP method presents the highest standard
deviation of the three methods, meaning that TO values estimated by the
NTP method present significant differences (the maximum is 500 ms) with
respect to the average value. Therefore, the NTP can be considered the
less stable method since only 60% of its TO values are included in the range
of TO ± 10 ms. Regarding the PTP method, it shows a standard deviation
smaller than that of the NTP method. The PTP method presents a max-
imum deviation around 200 ms, a standard deviation of σTO

= 21.96 ms
and 90% of its values is within the range of TO ± 10 ms. As a result, the
PTP presents a more stable behavior than the NTP method. Regarding
the STP method, it achieves the narrowest deviation of the three methods,
with a maximum deviation of 30 ms with respect to its average, a standard
deviation of σTO

= 5.65 ms and 94% of its values are within the range of
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(a) Proposed STP method.
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(c) NTP method.

Figure 4.13. Comparison between the three methods.

TO ± 10 ms. Note that the proposed STP method presents a significant
improvement on the maximum extent of the deviation of the estimate (30
ms) with respect to the widely used PTP method (200ms).

Summarizing, the NTP method presents the highest standard deviation
(σTO

), being the least accurate method. Such behavior can be explained
because the devices must communicate with a NTP server that is located
outside of the local network. As a result, the communication with the NTP
server is unpredictable, causing an unstable measurement of TO. The PTP
method overcomes the NTP method because the communications between
the devices are carried out inside the local network. Finally, the STP
method improves the results obtained by the PTP method mainly because



4.3. Clock Synchronization 149

it averages the instantaneous TO estimates through (4.11), and because the
exchanged messages of this method do not require to go through the entire
Android stack, as opposed to the PTP method. As a result, the proposed
STP method has shown to be the most accurate method and it will be used
to estimate TO in the following.

4.3.5 Synchronization evaluation for a reproduction task

In this section, we propose to evaluate the performance of the STP method
to synchronize audio tasks between the different acoustic nodes of an ASN.
For this purpose, the NTS method of Figure 4.12 will be used for repro-
ducing simultaneously the same signal from two devices. The difference
between their respective audio latencies, defined in (4.3) as TAL, will be
used as a metric to evaluate the performance.

As it is explained in Section 4.2.2, the estimation of TAL involves the
recording and playing processes. In order to reduce as much as possible the
influence of the electro-acoustic path (see Figure 4.3), an audio analyzer1

is used, as shown in Figure 4.14. It can be seen how the analogue audio
output of each mobile device is connected through a wire to the analogue
inputs of the audio analyzer, labelled as channels.

Therefore, the audio is directly sent from the devices to the audio
analyzer through a wired channel. This way, the acoustic propagation time,
TA, and the speaker delay, TSP, are removed from TAL in equation (4.3).
In addition, since no recording is carried out by the devices, the input
latency TIL = 0, and the only delay is due to the data processing needed
to reproduce the audio signals, that is, TDP = TOLD. Consequently, in our
experiment the measured audio latency coincides with the latency caused
by the mobile output data processing, TAL = TOLD.

Summarizing, the experiment consists in scheduling the reproduction
task in both devices as shown in Figure 4.14, by applying the NTS method,
and measuring the difference of their respective TAL by means of the audio

1The audio analyzer is the R&S UPV Analyzer from Rohde & Schwarz. Specifications

can be found in: https://scdn.rohde-schwarz.com/ur/pws/dl downloads/dl commo

n library/dl brochures and datasheets/pdf 1/UPV dat sw en 0758-1306-22 v0400

.pdf

https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/UPV_dat_sw_en_0758-1306-22_v0400.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/UPV_dat_sw_en_0758-1306-22_v0400.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/UPV_dat_sw_en_0758-1306-22_v0400.pdf
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Figure 4.14. Experiment setup to evaluate the accuracy of the

synchronization method.

analyzer. This difference is denoted as ∆T and can be expressed as:

∆T = TAL,1 − TAL,2 , (4.17)

where TAL,1 and TAL,2 are the audio latencies of the devices connected to
the first and the second channel of the audio analyzer respectively.

The difference ∆T range is within [−∞,∞], where positive differences
mean that the first device provides a bigger TAL than the second one and
negative differences means the opposite case, being ∆T = 0 the case of
perfect synchronization. The value ∆T is directly measured using the audio
analyzer with the help of its markers. Figure 4.15 shows the screen of the
audio analyzer when the two input signals are captured and depicted versus
time. It can be seen how the markers can provide precise information of
the specific point where the markers are located. Moreover, the audio
analyzer can also estimate the difference of the markers of the different
channels. This difference is displayed in the upper-left side of the screen as
∆X for the difference of the horizontal axis, and ∆Y for the difference of
the vertical axis. In this case, ∆X is the temporal difference of the audio
signals captured by each channel, that is, ∆X = ∆T. Therefore, the audio
analyzer estimates directly the synchronization error between both devices.

In order to reduce as much as possible the differences due to the physical
components, same wires with the same length are used to connect the audio
output (3.5 mm mini-jack port) of the mobile devices with the analogue
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Second Channel First Channel

MarkersMarkers 
Difference

Figure 4.15. Example of a measure in the audio analyzer.

inputs of the audio analyzer. As it is explained in Section 4.2.3, the audio
latency, TAL, depends on the type of mobile device. Therefore, different
pairs of devices have been used in the experiment. These pairs are shown
in Table 4.4, where the first column corresponds to the devices of the first
channel of the audio analyzer and the second column corresponds to the
devices of the second one. It should be note that, the listed devices have
different hardware and software, which causes differences in the Android
stack, and consequently in TAL, as Section 4.2.3 discussed.

Device CH1 Device CH2

Samsung Galaxy S3 Samsung Galaxy S3

Samsung Galaxy S3 HTC Nexus 9

Samsung Galaxy S3 Samsung Galaxy Tab 3

Samsung Galaxy Tab 3 HTC Nexus 9

Table 4.4. Pairs of devices used in the experiment.

In order to facilitate the precise measurement of ∆T, a tone located at
1 kHz with a length of 2 seconds has been selected. Similarly to the study
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of Section 4.2.3, the mobile devices must decide their sample rate, fs, and
its data buffer size, LB. The sample rate is set to fs = 48000 Hz, whereas
the buffer size is set to LB =

LB,ref

2 , as it was derived from the analysis in
Appendix C. The LB,ref values that correspond to a wired connection are
shown in Table 4.5. It should be noted that these values are lower to the
ones obtained for the Bluetooth connection (see Table 4.2).

Mobile Device LB,ref

Samsung Galaxy S3 4032

Samsung Galaxy Tab 3 4096

Motorola Moto G5 Plus 4080

HTC Nexus 9 2048

Table 4.5. Buffer size, LB,ref , for wired connections (in audio samples).

The NTS method is used in order to schedule the reproduction of the
tone on both mobile devices and thus measuring ∆T. As it was described in
Section 4.2.3, a warm-up stage must be performed before the reproduction
of the tone signal in order to warm up the circuits and provide an accurate
measurement of TAL. Consequently, once the NTS has finished, the warm-
up stage followed by a reproduction of the tone is carried out.

Assuming that the GrandMaster is the device connected to the first
channel, the next steps are followed in order to measure the synchronization
error between two Android devices performing audio reproduction tasks:

1. Select a combination of Table 4.4.

2. The GrandMaster acts as the Master in the NTS method of Fig-
ure 4.12 in order to schedule the reproduction task using ∆M = 1
second.

3. Once the NTS method has been completed, each device starts the
reproduction process generating the corresponding single tone signal
and previously performing the warm-up stage.

4. The audio analyzer samples both tones using a sample rate of 400 kHz
(that corresponds to a temporal resolution of 2.5 us) and displays
them.
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5. Obtain the time when each signal starts by using the markers. In this
case, the maximum of the first period of the tone is selected as the
initial time.

6. By using the audio analyzer, the difference ∆T is estimated, such that
∆T = ∆X.

7. Repeat from step 2 this process 50 times.

8. Repeat all the previous steps (from step 2 to step 7) considering now
the device of the second channel as the GrandMaster.

For the different pairs shown in Table 4.4, 100 measurements of ∆T are
performed, where the first 50 measurements are obtained assuming that the
GrandMaster is the device connected to the first channel, while the other 50
measurements are performed assuming that the GrandMaster is the device
connected to the second channel. The normalized histograms of ∆T (in ms)
are shown in Figure 4.16 where each sub-figure corresponds to a different
device combination and each bar expands 10 ms. In addition, the standard
deviation (σ∆T

) and the mean (∆T) of the 100 measurements of ∆T are
included in the upper right side of the figures.

Figure 4.16a illustrates the measures obtained when two identical de-
vices Samsung Galaxy S3 are used in both channels of the audio analyzer.
The results produce a dispersion of ∆T around ±25 ms regarding the mean
value (∆T). It is the only figure whose mean value is almost 0 ms, which
is a reasonable result since both devices are identical in hardware and soft-
ware. Regarding the range of values of ∆T in Figure 4.16a, it is due to
slightly differences between the Android OS of each mobile device. Since
the Android OS is focused on multiple tasks for the proper operation of the
mobile device others than the reproduction task, the starting time of the
reproduction task can significantly oscillate between two different measure-
ments. In this regard, the number of tasks implemented in each mobile can
be different (even with same hardware and software), each Android OS can
run the reproduction task at a slightly different time than expected, caus-
ing the reproduction task to be delayed differently on each mobile device
and resulting in the scattering shown in Figure 4.16a.

Figures 4.16b to 4.16d represent the results when different mobile de-
vices are used in each channel of the audio analyzer. Similarly to the results
shown in Figure 4.16a, all these measures present a similar dispersion in
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Figure 4.16. Results of the experimental study.

∆T, caused because of the same reasons explained above. However, their
mean value ∆T is different. This means that, the reproduction task pro-
duces a different TAL in each device (as it was concluded in Section 4.2.3),
resulting in a different ∆T depending on the combination of devices. This
is caused by: 1) different software, that is, different Android version in each
device, and 2) different hardware components. In addition, Figures 4.16b
and 4.16d that use the HTC Nexus 9 present a higher mean value of ∆T

because its stack (see Figure 4.4) is implemented differently on the lower
layers.
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Finally, from the previous combinations, the next relationship can be
obtained assuming that TAL,Nex refers to TAL of the HTC Nexus 9 device
and TAL,S3 and TAL,ST3 refer to TAL of Samsung Galaxy S3 and Samsung
Galaxy Tab 3 devices respectively (4.17):

∆T,S3Nex −∆T,S3ST3 = (TAL,S3 − TAL,Nex)− (TAL,S3 − TAL,ST3)

= TAL,ST3 − TAL,Nex

= ∆T,ST3Nex .

(4.18)

This relationship must be satisfied otherwise the STP method and the
NTS method would not provide a satisfactory performance in the estima-
tion of TO. As Figure 4.16 shows, ∆T,S3Nex ≈ 120 ms and ∆T,S3ST3 ≈
50 ms, which results in a difference of 70 ms, a value that corresponds to
∆T,ST3Nex shown in Figure 4.16d. Therefore, an accurate performance of
the STP method for reproduction tasks can be assumed, although there is
always a random delay that cannot be controlled and ranges a few millisec-
onds around the respective mean values of ∆T. Summarizing, results in
Figure 4.16 show that even addressing the clock synchronization problem,
the acoustic nodes cannot perform simultaneous reproduction because the
performance of the Android OS is significantly different, even for devices
with identical software and hardware.

4.3.6 Conclusions

The clock synchronization problem has been addressed in this section by
using the proposed STP method to compensate the clock difference between
devices, TO. The proposed STP method has been presented step by step
in order to describe how TO is obtained. Additionally, the Node Task
Synchronization (NTS) method has been described to schedule a task such
that it is carried out simultaneously in multiple devices.

At this point, with the purpose of validate the performance of the STP
method, an experimental comparison has been done with the two most
used methods nowadays: the PTP and the NTP methods. The results of
this comparison have shown that the proposed STP method is the most
stable accurate to estimate TO. As a result, the STP method will be used
throughout this dissertation.

Finally, with the purpose of analyzing the performance of the STP
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method in the context of audio applications, an experiment has been carried
out. The experiment involves two devices connected to an audio analyzer
through their analogue audio outputs, so that the audio latency TAL of each
device depends only on the device processing. The results obtained when
different pair of devices were used show very similar standard deviation
values (σ∆T

), but quite different mean values (∆T). The differences in
∆T are caused because of the Android OS and hardware differences of
the devices. In addition, ideal synchronization, that is ∆T = 0, cannot be
reached even when hardware and software are the same, since each Android
OS decides to run the reproduction task at slightly different times. In
summary, addressing the clock synchronization problem through the STP
method does not solve the synchronization problem for audio applications
due to the hardware and software differences of mobile devices.

4.4 Audio Latency Compensation

4.4.1 Overview

The Android OS is currently the most widely used system for mobile de-
vices, as it is illustrated in Figure 2.7. Its popularity is mainly due to the
fact that the Android OS can be implemented on a large number of devices
from different companies. However, this feature also presents a drawback
for synchronizing audio tasks when Android devices are used as nodes in an
ASN. Due to the hardware and software differences among devices, a syn-
chronous reproduction between two Android devices cannot be achieved,
even when the clock synchronization problem has been addressed. Thus, on
a typical scenario, such as the one illustrated in Figure 4.2, where the audio
latency TAL depends on more factors than the latency of device (TOLD), a
synchronous reproduction between two devices can not be achieved either.

Furthermore, in the considered scenario of Figure 4.2, TAL depends
on the acoustic latency, TA (4.3). Therefore, in this section, the main
objective is to compensate the audio latency, TAL, of two devices so that
a signal emitted by two loudspeakers is synchronized at a specific point
in the space, more specifically, where the microphone of one of the nodes
is located. Figure 4.17 shows an example of a reproduction through two
speakers whose audio signals reach the microphone simultaneously, that is,
the audio signals are temporally aligned in the microphone of the first node.
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The synchronization at a specific point in the space must be addressed in
order to implement sound-field applications such as the CrossTalk canceller
presented in Section 4.5.

Device1

Device 2

Speaker 1

Speaker 2

Figure 4.17. Synchronization in the microphone of the first node of two

signals emitted by the two speakers.

According to the results shown in Figure 4.16 the reproduction task
cannot be perfectly synchronized between two devices, which means that
the audio signals emitted by each mobile device are not temporally aligned.
As it was stated above, this behavior is due to the difference on TOLD of both
devices, denoted in the results as ∆T. Therefore, for the scenario shown in
Figure 4.2, the difference ∆T could be even higher than the one obtained in
the scenario illustrated in Figure 4.14, since TAL depends on more factors
(see (4.3)), causing that the synchronization of the audio signals at the
specific point of the space cannot be achieved. In order to improve the
synchronization level achieved, an additional method is required. Since ∆T

depends on the TAL of each acoustic node, the method explained in this
section aims to estimate both TAL and then to align them.
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4.4.2 The audio latency compensation (ALC) method

The method explained in this section, from now on the audio latency com-
pensation (ALC) method, estimates the value of TAL of both nodes. For
this purpose, a sweep signal of LS samples is simultaneously reproduced
and recorded in order to estimate TAL of each node as Section 4.2.2 ex-
plains. Since simultaneously reproducing the sweep signal through both
devices would interfere between them, the signal used to estimate TAL has
been slightly modified, as shown in Figure 4.18, where the desired probe
signal is composed of three parts:

1. LS samples of the sweep signal or zeroes. The node labeled as the
first node will reproduce the sweep signal and the node labeled as the
second one will reproduce zeroes.

2. LZ samples of zeroes to avoid overlapping between both recorded
sweeps.

3. LS samples of the sweep signal or zeroes. Similar to the first part,
but exchanging the nodes. In this case the second node is the node
that reproduces the sweep signal.

LXLZLX

Node 1

Node 2

Figure 4.18. Designed probe signal for each acoustic node.

LZ is necessary to separate the second sweep from the first one in the
recorded signals. As the results of Figure 4.7 show, the value of TAL can
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present differences up to 300 ms between devices. For this reason, it seems
reasonable to design a time gap of 1 second, that is, LZ = fs samples. In
addition, both sweep parts last 2 seconds each, thus LS = 2fs samples.

When the signals in Figure 4.18 are reproduced, the microphone of
each device will record a signal similar to that shown in Figure 4.19, where
for the sake of simplicity the effect of the room is not represented. The
Figure 4.19 shows the free-field recorded signal in the ith microphone,
where the first part corresponds to the sweep that is reproduced by the
first speaker and the second part corresponds to the sweep of the second
speaker. Due to each part correspond to a different electro-acoustic path,
two audio latencies, TAL, can be estimated. The first one, pAL,i1, is the la-
tency of the electro-acoustic path between the ith microphone and the first
speaker in samples (4.6), and the second one, pAL,i2 is the latency of the
electro-acoustic path between the ith microphone and the second speaker
in samples.

LX + LZ

+ pAL;i2

pAL;i1

Figure 4.19. Example of a free-field recorded signal in the ith

microphone.

Once the reproduction and recording of the sweep signals have been
finished, TAL is estimated as Section 4.2.2 indicates. It has to be noticed
that TAL can vary for each different recording and reproduction process.
In order to overcome this drawback, the audio loop of reproducing and
recording must remain open in Android OS. Therefore, each node must
perform both processes (reproduction and recording) without any pause.
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Figure 4.20 shows the proposed audio latency compensation (ALC)
method to deal with the estimation and compensation of the difference
between the audio latencies, TAL, of two or more devices. It uses the NTS
method of Figure 4.12 to schedule the recording and reproduction tasks,
assigning the same roles, Master and Slave, during the whole duration of
the ALC process, where Master and Slave correspond to the nodes labelled
as “Node 1” and “Node 2” respectively in Figure 4.18. The implementation
of the ALC method is shown in Figure 4.20, whose steps are detailed in the
following:

1. The Master starts the NTS method where global time is defined
(T st

GC1).

2. Once both nodes reach the global time, T st
GC1, each one starts the

“Warm-Up” stage (explained in Section 4.2.3), where LW samples of
zeroes are played and recorded.

3. Afterwards, the nodes start the “Set-Up” stage defined as the repro-
duction and recording of the signals presented in Figure 4.18, where
2LS + LZ samples are reproduced and recorded at each node.

4. The “Audio Processing” stage estimates all the possible TAL such that
every node estimates two values of audio latency: those corresponding
to the audio loop between two loudspeakers and its own microphone.
Afterwards, the estimate values of TAL are exchanged between the
two nodes through the Wi-Fi link. While the processing is enabled,
both nodes keep on recording and reproducing zeroes.

5. The Slave notifies the Master when it finishes the “Audio Processing”
stage.

6. Once the Master has received the message from the Slave and having
finished its own “Audio Processing” stage, it starts a second NTS
process where a second global time is defined (T st

GC2).

7. Once both nodes reach the second global time, T st
GC2, they compute

the time in the number of samples from the beginning of the “Audio
Processing” stage, denoted by NM for the Master and NS for the
Slave.
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8. At this moment, the ALC method reaches its final stage (“Audio Bal-
ance”), which compensates the possible mismatch of samples between
NM and NS. For this purpose, both nodes start to reproducing and
recording LW samples (same number of samples as the “Warm-Up”
stage) and the Master sends the value of NM to the Slave.

9. When the Slave receives NM from the Master, it modifies its samples
to be reproduced from LW to LW + (NM −NS), in order to compen-
sate the excess or lack of samples with respect to the Master.

10. Once the “Audio Balance” stage is finished, the nodes are able to
perform a synchronous reproduction.

Slave

Master

Global Time

Processing

Processing

End of 
Processing

00 ...0 Double 
Sweep

00 ...0 Double 
Sweep

00 ...0 00 ...0 00 ...0

00 ...0 00 ...0 00 ...0

NM samples

00 ...0

00 ...0

NM

Warm-Up
 (LW 
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Set-Up
(2LS+LZ 
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Audio 
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LW

LW- (NM-NS)

NTS 
Method

NTS 
Method

NS samples

Global Time
TGC1

st TGC2
st

TGC1
st TGC2

st

Figure 4.20. Implementation of the Audio Latency Compensation

(ALC) method.

As shown in Figure 4.20, one of the most important stages is the “Audio
Processing” stage since it estimates all the values of TAL in the ASN. In
addition, in this stage the necessary audio signal processing for different
applications can be performed, such as that described in Section 4.5.
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In contrast to the “Warm-Up” and the “Set-Up” stages, the number
of samples to be reproduced and recorded in the “Audio Processing” stage
are unknown since the elapsed time to perform the necessary operations
in that stage are unknown beforehand. In addition, the processing time of
this stage can differ between different mobile devices, even for devices with
identical software and hardware. In Figure 4.20 this difference is indicated
in the Slave side through a larger “Audio Processing” stage indicating that
Slave is slower than the Master, but it can also happen the opposite.

Therefore, due to these factors, both devices are desynchronized again.
As a result, a second NTS method is implemented in order to synchronize
both devices again. As Figure 4.20 shows, the reproduction and record-
ing tasks are implemented in a different processing thread to that of the
processing task, where the NTS method is carried out. This means that
the thread of the processing task must communicate to the thread of the
reproduction and recording tasks that the NTS method has finished. How-
ever, as a brief reminder how Android OS works, the communication time
between the threads can be different in each device, as the red arrows show
in Figure 4.20. Therefore, even with the second NTS method, the devices
will not be synchronized. For this reason, the “Audio Balance” stage is
required. This last stage balances the difference of reproduced samples
between both devices, causing the two of them to be synchronized.

As Figure 4.20 shows, the node that acts as the Slave corrects the differ-
ence of samples reproducing LW−(NM −NS) instead of LW samples. That
is, the Slave is the node that must adapt the reproduced (and recorded)
samples accordingly to the Master. However in order to be able to perform
this stage correctly, two main constraints must be considered:

1. LW ≥ (NM −NS), otherwise the Slave will not be able to compensate
the excess or lack of samples regarding the Master.

2. LW−(NM −NS) must be greater than the time to send the value NM

from the Master to the Slave.

Therefore, according to these constraints, since NM and NS cannot be
modified, LW must be big enough to: 1) obtain a positive value of samples
to be reproduced and recorded at the Slave side for the “Audio Balance”
stage and 2) give the Slave enough time to receive the message of the



4.4. Audio Latency Compensation 163

Master. Empirical experiment have provided the value of LW = 3fs, that
is, the same value as the “Warm-Up Stage” (see Section 4.2.3).

4.4.3 Performance of the ALC method

In this section, the performance of the ALC method is evaluated by mea-
suring the degree of synchronization achieved between two Android devices.
For this purpose, a wireless ASN comprised of two Android devices con-
nected through a Bluetooth link to two speakers (see Figure 4.2) will be
used to execute the ALC method shown in Figure 4.20. Once the “Audio
Balance” stage has finished, the devices will reproduce and record an audio
signal specifically designed to facilitate the measurement of the difference
between their respective audio latencies, TAL (4.3).

As it was stated in Section 4.4.1, the temporal alignment can only
be solved for one of the two positions where the microphones are located.
Without loss of generality, the first microphone has been selected to eval-
uate the temporal alignment, being identical the process for the second
microphone. Since the first microphone is chosen, the audio compensa-
tion is carried out through the estimation of TAL,11 and TAL,12 in number
of samples instead of seconds, being TAL,1j the audio latency of the con-
nection between the jth loudspeaker and the first device. Consequently,
along this section, it will be estimated the audio latency according to the
method described in Section 4.2.2, thus, the variable used to describe this
magnitude in samples will be pAL (4.6).

The experiment designed to evaluate the accuracy of the ALC method
is the following: both devices will perform simultaneously the ALC method
of Figure 4.20 and once the “Audio Balance” stage is finished, a particu-
lar audio signal will be reproduced and recorded at each device. These
particular audio signals must be designed to accurately estimate the audio
latencies of both devices, but they should also avoid to interfere with each
other. The signals reproduced are shown in Figure 4.21, where the only
difference regarding the signals shown in Figure 4.19 is the addition of a
time period of ∆p(0) zero samples, where ∆p(0) is calculated as:

∆p(0) = p
(0)
AL,11 − p

(0)
AL,12 , (4.19)

where p
(0)
AL,11 and p

(0)
AL,12 are the audio latencies in samples (4.6), between the
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first and the second speaker respectively to the first microphone, estimated
in the “Audio Processing” stage of Figure 4.20.

LZLX "p(0)
LX

Node 1

Node 2

Figure 4.21. Signals to reproduce after “Audio Balance” stage.

As Figure 4.21 shows, ∆p(0) affects exclusively the starting time of the
sweep signal of the second node (the Slave in the ALC method). Therefore,
once the particular signals of Figure 4.21 have been reproduced, the first
device estimates the corresponding audio latencies in samples, pAL,11 and
pAL,12 through (4.6), and the final difference between the audio latencies
can be estimated as:

∆p = p
(1)
AL,11 − p

(1)
AL,12 . (4.20)

The difference ∆p represents the degree of synchronization (in number
of samples) that can be achieved in the WASN of Figure 4.2, that is, ∆p is
the measured synchronization error of the ALC method.

As it was stated above, two Android devices and two speakers are
needed at the same time to perform this study. The mobile devices and
speakers have been placed symmetrically in order to provide similar dis-
tances between the microphones and the speakers, reducing the difference
between the delay due to the physical propagation of the sounds as much as
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possible. A picture of the physical disposition of the devices and loudspeak-
ers is shown in Figure 4.22, where distances between all the elements are
approximately 50 cm. In addition, as Figure 4.22 shows, all the elements
have been placed over cardboard boxes to avoid the influence of the table
vibration.

Device 1

Speaker 1

Device 2

Speaker 2

Figure 4.22. Devices and loudspeakers disposition in the scenario of the

experimental validation.

Although in Figure 4.22 a homogeneous combination with identical
mobile devices and speakers is shown, in this section different combinations
of both elements are used, since the audio latency, pAL, depends on the
mobile device and the speaker, as it was concluded in Section 4.2.3. These
combinations are shown in Table 4.6, where in the second node the mobile
device is combined as many times as speakers are listed in the SPK sub-
table, that is, each mobile device of the second node is combined with
four different speakers. Therefore, in this study a total of 16 different
combinations are used.

Similarly to the study of Section 4.2.3, the mobile devices must decide
its sample rate, fs, and its data buffer size, LB. The sample rate is set to
fs = 44100 Hz, whereas the buffer size is set to LB =

LB,ref

2 (using LB,ref as
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First Node Second Node

Samsung Galaxy S3 &

Yamaha NX P-100

Samsung Galaxy S3 & SPK

HTC Nexus 9 & SPK

Motorola Moto G5 Plus & SPK

HTC Nexus 9 &

Yamaha NX P-100
Motorola Moto G5 Plus & SPK

(a) First and second node configurations.

SPK

Yamaha NX P-100 Sony SRS X3 JBL Flip 2 JBL Charge 4

(b) Speakers of the second node.

Table 4.6. Combinations of the study.

Table 4.2 indicates), as a result of the study performed in Appendix C.

Considering all these scenarios and constraints, the next steps are fol-
lowed in order to measure the synchronization error at the control point of
an Android-based WASN:

1. Select a combination of the first and second node from Table 4.6.

2. Perform the ALC method of Figure 4.20, establishing first node as
the Master and the second node as the Slave and assuming ∆M = 1
second in the NTS method shown in Figure 4.12.

3. In the “Audio Processing” stage:

(a) The first node estimates p
(0)
AL,11 and p

(0)
AL,12 and its difference

∆p(0).

(b) The first nodes sends the value ∆p(0) to the second node and each
one generates the corresponding audio signal of Figure 4.21.

4. Signals in Figure 4.21 are reproduced once the “Audio Balance” stage
finishes.
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5. The estimation of p
(1)
AL,11 and p

(1)
AL,12 is carried out in the first de-

vice from the signal recorded at its microphone. Afterwards, ∆p is
estimated through (4.20).

6. Return to step 2 and repeat the process 50 times.

7. Return to step 1 in order to select a different combination.

The results obtained from the previous procedure have been classified
by speaker combination. According to this classification and Table 4.6, four
different groups of results are presented: 1) Yamaha NX P-100-Yamaha
NX P-100, 2) Yamaha NX P-100-Sony SRS X3, 3) Yamaha NX P-100-JBL
Flip 2 and 4) Yamaha NX P-100-JBL Charge 4. The results depicted in
Figures 4.23-4.26 show the normalized histograms of ∆p for each speaker
combination.

Figure 4.23 presents the results when the Yamaha NX P-100 speaker
is used in both nodes. In this case, the temporal difference between both
nodes is −2±1 samples whatever the mobile device combination is. That is,
the differences in hardware and software between the mobile devices do not
affect the ALC synchronization method, as opposed to the results shown in
Section 4.3.4. Despite this behavior, a slightly inaccurate synchronization
can be appreciated in all the cases of Figure 4.23, since ∆p = −2 samples
with a deviation of ±1 sample, which in seconds represent 45± 22 µs.

The results where the Yamaha NX P-100 and Sony SRS X3 are used
as the speakers of the acoustic nodes are shown in Figure 4.24. Similar to
the results shown in Figure 4.23, ∆p does not show difference between the
different mobile device combinations. In fact, the only difference with the
previous results is the value of ∆p, being in this case 2±1 samples. Although
the change of sign is explained below, this behavior means that the change
of the speaker has a significant impact over the temporal difference between
the signals emitted by each node since it does not change for the different
mobile device combinations, but it changes when the speaker combination
is changed. Nevertheless, the results of this speaker combination confirm a
very stable behavior of the ALC method, as in the previous case, since in
both speaker combinations the deviation of ∆p is ± 1 sample.

Figure 4.25 shows the histogram of the ∆p values when the Yamaha NX
P-100 and the JBL Flip 2 are used as the speakers of the acoustic nodes. In
this case a very different behavior can be appreciated since the difference
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(b) Samsung Galaxy S3 - HTC Nexus 9.
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(d) HTC Nexus 9 - Motorola Moto G5.

Figure 4.23. Synchronization error using the Yamaha NX P-100 -

Yamaha NX P-100 speaker combination.

between the nodes reaches 800 samples, an extremely high value of ∆p
compared to the previous results. Notice that the bars of the histogram
represent a width of 15 samples. Since the only difference compared to
the previous scenarios is the integration of the JBL Flip 2 speaker in the
second node, the high synchronization errors are caused by the JBL Flip 2
speaker. Despite this average error of 800 samples (17 ms), a similarity with
the previous combinations can be appreciated in the sense that the average
value of ∆p is the same regardless of the mobile device combination.
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(b) Samsung Galaxy S3 - HTC Nexus 9.
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(d) HTC Nexus 9 - Motorola Moto G5.

Figure 4.24. Synchronization error using the Yamaha NX P-100 - Sony

SRS X3 speaker combination.

Finally, Figure 4.26 shows the results where the Yamaha NX P-100 and
the JBL Charge 4 are used. In this case, the results show a high dispersion
of the synchronization error (around 250 samples or 5.7 ms). However, for
this combination of speakers, the average value of ∆p is smaller than that
of Figure 4.25, that is, the WASN synchronization is better. Summarizing,
the value of ∆p is high and unstable for the two last speaker combinations.
Their behavior shown in Figures 4.25 and 4.26 confirm that they are not
suitable for implementing simultaneous audio applications over ASN.
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(b) Samsung Galaxy S3 - HTC Nexus 9.
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(d) HTC Nexus 9 - Motorola Moto G5.

Figure 4.25. Synchronization error using the Yamaha NX P-100 - JBL

Flip 2 speaker combination.

Given all these results, a perfect synchronization between nodes for
audio tasks cannot be guaranteed since ∆p 6= 0 in any case. According
to these results, ∆p suffers an offset, preventing both nodes from carry-
ing out synchronized audio tasks. Since the offset suffered by ∆p changes
significantly when the commercial speaker combination is changed, it is
considered that the offset depends on the speakers. Due to ∆p is estimated

through the difference between p
(1)
AL,11 and p

(1)
AL,12, this offset can only be
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(b) Samsung Galaxy S3 - HTC Nexus 9.
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(d) HTC Nexus 9 - Motorola Moto G5.

Figure 4.26. Synchronization error using the Yamaha NX P-100 - JBL

Charge 4 speaker combination.

caused because one of these two reasons: 1) pAL,11 or pAL,12 suffer an offset
between the first and the second estimation (exclusively one of them) or 2)
both of them suffer an offset between the first and the second estimation,
but each one suffers a different one. In this regard, in the following para-
graphs, a more in-depth study is performed in order to analyze the offset
suffered by pAL. To do this, two additional steps are carried out in addi-
tion to the steps of the previous study. Figure 4.27 illustrates the whole
procedure performed in this new study.
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test
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Figure 4.27. Procedure to study the offset suffered by pAL.

According to Figure 4.27, after the steps of the previous study, a repro-
duction and recording of NM +LW zero samples is carried out. Afterwards,
the reproduction and recording of the signals of Figure 4.21 is performed

again. These steps result in a third estimation of the audio latencies p
(2)
AL,11

and p
(2)
AL,12 through (4.6). The use of NM +LW zero samples in Figure 4.27

is required in order to keep the same conditions between the estimation of

∆p(0) and ∆p and the estimation of ∆p and the values of p
(2)
AL,11 and p

(2)
AL,12.

The third estimation is required because between the “Set-Up” stage (where

p
(0)
AL,11 and p

(0)
AL,12 are obtained) and the reproduction and recording of the

signals of Figure 4.21 (where p
(1)
AL,11 and p

(1)
AL,12 are obtained), the Android

OS controls both audio and processing tasks simultaneously. This behavior



4.4. Audio Latency Compensation 173

can affect the computation time of the audio tasks since the Android OS
needs to share the available resources. Therefore, a third estimation with
no processing is used in order to obtain the offset suffered by each link
between the second and the third estimation of pAL, which is estimated as:

∆p11 = p
(2)
AL,11 − p

(1)
AL,11

∆p12 = p
(2)
AL,12 − p

(1)
AL,12 .

(4.21)

Same disposition shown in Figure 4.22 is used in this study. Addi-
tionally, since the previous results showed similar ∆p values regardless the
combination of mobile devices, for the sake of simplicity, only one combi-
nation is analyzed in the following. More specifically, the Samsung Galaxy
S3 device is used in both nodes.

The results of this study are shown in Figure 4.28 for the 50 tests
carried out. The offset suffered by pAL,11 (∆p11) is shown on the left Y axis
in blue line, and the offset suffered by pAL,12 (∆p12) is shown on the right
Y axis in red line. Each Y axis has its own scale due to the different values
of the offset of ∆p11 and ∆p12, specially for the two last combinations.

As Figure 4.28 shows, the offset suffered by pAL,11 and pAL,12 is always
different, even when identical speakers are used in Figure 4.28a. In this
case the difference between them match the results seen in Figure 4.23,
where a difference of −2 ± 1 samples was shown. The offset in pAL,11

and pAL,12 is due to the fact that TDP and TSP present a behavior that
is not constant, resulting in a reproduction that is not continuous and
consequently modifying pAL,11 and pAL,12. However, the offset on pAL,11

and pAL,12 is very low and stable and it can be predicted and compensated,
thus improving the synchronization between the acoustic nodes. When
different speakers are used, two different cases can be appreciated. The
first case, when the Yamaha NX P-100 and Sony SRS X3 speakers are
used, presents a very similar behavior than the previous case. In fact the
only difference is that ∆p12 is lower than ∆p11, causing the change of sign
seen in Figure 4.24. The second case, when the Yamaha NX P-100 and
any of the JBL speakers are used, shows that ∆p12 is significantly different
than ∆p11, as opposed to the previous cases. In addition, the value of ∆p12

match the results of ∆p shown in Figures 4.25 and 4.26. That is, the high
value and the unstable behavior seen in those results are caused exclusively
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(b) Yamaha NX P-100 - Sony SRS X3.
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(d) Yamaha NX P-100 - JBL Charge 4.

Figure 4.28. Latency offset using the Samsung Galaxy S3 device in both

nodes.

by the JBL speakers since the value of ∆p11 is similar to the previous cases.

Contrary to what might be assumed, ∆p11 and ∆p12 are different when
identical mobile and speakers are used, as it is shown in Figure 4.28a.
According to [202], two devices (even with identical hardware and software)
suffer an offset between them due to slightly differences in the value of
their actual sample rate fs. This offset is caused by hardware components,
more specifically, by the clock of the digital to analog converter (DAC).
This difference causes the signals to be sampled at slightly different sample
rates, producing an offset over time. In the particular case that the results
are obtained from the microphone of the first node, the reference is given
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by the first node and as a result the latency from the speaker of the second
node (pAL,12) suffers an additional offset that in this case is positive. This
additional offset is called Sample Rate Offset (SRO) [202].

In Figure 4.28b, when different speakers are used, a slightly difference
between ∆p11 and ∆p12 can be appreciated as well. However, in this case,
this difference may not be caused exclusively by the SRO, but by additional
offsets introduced by other differences between the speakers, such as the
buffer length, LB. In contrast to the previous speaker combination (see Fig-
ure 4.28a), an independent measurement of these additional offsets cannot
be carried out. Therefore, their impact cannot be accurately demonstrated.
Nevertheless, the additional offset suffered by ∆p12 demonstrates to be low
and stable, resulting in a similar performance to that shown by the com-
bination of identical speakers. Regarding to the combinations where the
JBL speakers are used, the SRO is also present, but due to the unstable
behavior it cannot be easily detected.

The results of Figure 4.28 show that the offset suffered by pAL,11 and
pAL,12 highly depends on the speaker. Combinations using the Yamaha NX
P-100 and Sony SRS X3 loudspeakers show a very stable behavior and a
high level of synchronization, but those using the JBL speakers show a poor
level of synchronization and a high dispersion of the synchronization error.

A deeper study on the behavior of this offset has been developed and it
will be explained in the following. For this purpose, we have implemented
all the experiments performed to obtain the results shown in Figures 4.23 -
4.28, but replacing the Bluetooth link by a wired link. Additionally, for the
sake of simplicity, only a two-speaker combinations and two mobile device
combinations have been considered. For the loudspeakers combination: 1)
the Yamaha NX P-100 speaker is used in both speakers and 2) the Yamaha
NX P-100 speaker and the JBL Flip 2 are used. For the mobile device
combination: 1) the Samsung Galaxy S3 is used in both nodes and 2) the
Samsung Galaxy S3 and the HTC Nexus 9 have been used.

The synchronization error, ∆p, obtained in this new experiment is
shown in Figures 4.29 and 4.30, where each figure represents different
speaker combination. The first row of each figure shows the normalized
histograms of ∆p for each speaker combination with a bar width of one
sample. The second row of each figure shows the offset that suffer pAL,11

(∆p11) and pAL,12 (∆p12).
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(d) Samsung Galaxy S3 - HTC Nexus 9.

Figure 4.29. Results using Yamaha NX P-100 as speakers in both

nodes, where (a) and (b) show ∆p and (c) and (d) show ∆p11 and ∆p12

respectively.

Figure 4.29 represents the results when Yamaha NX P-100 is used in
both nodes. In this case, when identical mobile devices are used, the SRO
is clearly detected since pAL,11 does not suffers any offset, as opposed to
pAL,12. In fact, the variations in the value of the offset ∆p12 are exclusively
caused by the SRO since the Bluetooth link has been replaced by a wired
link. Regarding Figure 4.29a where identical devices are used, it can be
appreciated how the synchronization error is 1 sample (22 µs) the 70% of the
times and 0 the rest, which s a very good result and can also be explained by
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the SRO. However, when two different devices are used (Figure 4.29b), ∆p
changes unlike the results when the Bluetooth link is used. That is, when
wired connection is used, the mobile device combination has an impact
on the value ∆p. Similar to the case where identical mobile devices are
used, in this case the offset suffered by pAL,12 is caused because of slightly
differences between the acoustic nodes, such as fs. Although in this case
the mobile device affects the offset as well, other parameters could have
a certain influence, although they cannot be measured individually in this
scenario.
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(d) Samsung Galaxy S3 - HTC Nexus 9.

Figure 4.30. Results using Yamaha NX P-100 and JBL Flip 2 speakers,

where (a) and (b) shows ∆p and (c) and (d) ∆p11 and ∆p12 respectively.
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Figure 4.30 shows the results when the Yamaha NX P-100 and JBL
Flip 2 speakers are used. In this case a similar performance to that shown
in Figure 4.29 can be appreciated. In fact, when different mobile devices are
used, the behavior is identical to the results shown in Figure 4.29. However,
when mobile devices are the same, a slightly difference compared with the
results shown in Figure 4.29 can be appreciated. This difference is caused
by an additional offset, apart from SRO, that suffers pAL,12 due to the pro-
cessing of the speaker when a wired connection is used, that is, TSP. In the
combination of two different devices, the SRO is also present, but additive
offsets due to different hardware and software may also affect the result,
causing the same offset of Figure 4.29. Nevertheless, Figure 4.30 shows
that the offset suffered by pAL,12 is significantly lower than that shown in
Figure 4.28. In addition, the dispersion of the synchronization error shown
in Figure 4.28 has disappeared, resulting in an ASN that presents a very
stable offset between the acoustic nodes.

Given these results, we can conclude that the additional factor that
causes the offset in pAL,11 and pAL,12 is the processing burden needed by
the Bluetooth connection. This increase on the processing time causes
an unstable reproduction process that changes pAL between different es-
timations. For this reason, the change in pAL depends on this Bluetooth
processing and in particular on the speaker that performs that processing.
In this regard, a lower and more stable offset is obtained when the Yamaha
and Sony loudspeakers are used in the nodes and a higher and more unsta-
ble offset is obtained when nodes are composed by JBL loudspeakers.

4.4.4 Conclusions

The temporal alignment problem has been addressed in this section and
the ALC method has been proposed to perform a simultaneous recording
and reproduction between two devices. The ALC method compensates
the audio latency (TAL) between two devices, and performs a synchronized
reproduction at a specific point in the space, more specifically, where the
microphone of one of the devices is located. This approach will be the
solution to some critical applications such as the CrossTalk canceller of
Section 4.5.

With the purpose of validate the performance of the ALC method, two
experiments has been carried out. The first experiment consists in two de-
vices connected through a Wi-Fi link between them and connected each one
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through a Bluetooth link to a wireless speaker. With the aim of determine
very precisely the offset due to the devices and speakers features, a second
experiment has been carried out. That experiment considers the same set
up that in the first one, but replacing the Bluetooth links by wired ones.
The results of the first experiment showed that synchronization error, ∆p,
significantly depends on the combination of the speakers. The combinations
using the Yamaha NXP-100 and Sony SRS X3 loudspeakers presented a low
value and a very stable behavior of ∆p, while the combinations using the
JBL loudspeakers presented a high value and an unstable behavior of ∆p.
However, the ALC is not able to achieve ∆p 6= 0 since the latencies of the
links, between the two loudspeakers and the first device, suffer an offset.
This offset is different for each loudspeaker, causing a different value for
the synchronization error, ∆p, for each combination of speakers, which in
the case of the JBL speakers, results in an unstable behavior. Regarding
the results of the second experiment, ∆p showed a low value and a stable
behavior for all the combinations of speakers. When the loudspeakers are
connected via a wired link, the combination that uses the Yamaha speakers
was able to achieve perfect synchronization 30% of the times the experiment
was run. As a result, we can conclude that the offset suffered by pAL,11 and
pAL,12 and, consequently, the behavior of ∆p, depends significantly on the
processing burden needed by the speakers when using Bluetooth connec-
tions. Therefore, for audio applications implemented on a wireless ASN
composed by Android devices and wireless speakers, the processing burden
of the speakers is critical for the synchronization problem.

4.5 Personal Sound Zone (PSZ)

4.5.1 Introduction

In this section, the synchronization algorithms of the previous sections will
be used to implement a real-time reproduction application known as Per-
sonal Sound Zone (PSZ) [203], where the main objective is to reproduce
different audio signals to different users in the same room with minimum
interference between them without using headphones [204]. To this end,
a set of filters for each audio signal and each loudspeaker considering the
local RIRs of the zones to cover is considered [5].

When dealing with a single audio signal, the aim of a PSZ system
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is usually the generation of two zones: the bright zone, where the sound
can be perceived, and the dark zone, where the sound is attenuated [205].
For the multi-sound zone reproduction problem, where different sounds are
rendered to multiple users (generating multiple bright zones), the superpo-
sition of multiple bright and dark zones is required [206]. An early example
of this approach is the Cross-Talk canceller application [207], where the left
and the right channel of an stereo sound are the audio signals and the two
bright zones would be the ears of the listener. In the following, the basic
model of a PSZ system with a bright and a dark zone will be explained.

Consider the PSZ system of Figure 4.31 that is composed by J speak-
ers and M microphones, where the bright zone is delimited by MB mi-
crophones, and the dark zone is delimited by MD microphones, such that
M = MB +MD. The RIR between the jth speaker and the ith microphone
is modelled as the finite impulse response (FIR) filter:

cij =
[
cij(0) cij(1) · · · cij(Lc − 1)

]T
, (4.22)

where i = 1, . . . ,M , j = 1, . . . , J and Lc is the maximum length in samples.

According to Figure 4.31, the signals recorded by the microphones,
yi(n), can be expressed in terms of the signals reproduced by the speakers,
vj(n), as:

yi(n) =
J∑
j=1

cij ∗ vj(n) i = 1, . . . ,M , (4.23)

where ∗ stands for the discrete-time convolution.

As it was stated above, the PSZ system requires a set of filters in order
to achieve the corresponding effect at each zone. The sound source in the
PSZ system, s(n), is the input to that set of filters modelled as FIR filters
of Lh coefficients, such as

hj =
[
hj(0) hj(1) · · · hj(Lh − 1)

]T
j = 1, . . . , J. (4.24)
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Figure 4.31. PSZ System of J speakers and M microphones.

Considering the filters, hj , the expression (4.23) can be rewritten as:

yi(n) =
J∑
j=1

cij ∗ hj ∗ s(n) = gi ∗ s(n) , (4.25)

where gi =
∑J

j=1 cij ∗ hj is the global room impulse response between the

source s(n) and the ith microphone with Lg = Lc + Lh − 1 coefficients.

In order to produce the bright and the dark zone in the same room,
the filters of each speaker (hj) must be designed such that gi fulfills a
certain requirement in each zone. The filters can be designed using a time-
domain approach [208] or a frequency-domain approach [209]. We will
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use the frequency-domain approach since it requires lower computational
cost [210, 211].

Let us define Cij(k) and Hj(k) as the FFT of cij and hj respectively
at the kth frequency bin. The matrix including the room transfer functions
between all the speakers (J) and all the microphones (M) can be defined
as

C(k) =


C11(k) C12(k) · · · C1J(k)
C21(k) C22(k) · · · C2J(k)

...
...

. . .
...

CM1(k) CM2(k) · · · CMJ(k)

 , (4.26)

and the frequency responses of all the filters are defined as

h(k) =
[
H1(k) H2(k) · · · HJ(k)

]T
, (4.27)

where k = 0, . . . , NFFT − 1 and NFFT is the FFT size.

In the frequency domain, the FFT (Gi(k)) of the global room transfer
functions (see (4.25)) can be computed as a simple matrix multiplication:

g(k) = C(k)h(k) , (4.28)

where g(k) = [G1(k) G2(k) · · · GM (k)].

Therefore, considering that the global impulse responses have a length
of Lg samples, the FFT size must be at least of that length, that is,
NFFT ≥ Lg. As it was stated above, the global responses g(k) must ac-
complish a specific objective in order to generate a bright and a dark zone.
Let us define the objective global impulse response as

d(k) =



D1(k)
D2(k)

...
DMB

(k)
0
...
0


, (4.29)
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where the bright zone is defined through Di(k) with i = 1, . . . ,MB and the
dark zone is defined by zeroes for the rest of the microphones (MD) since
s(n) must be cancelled there. Therefore, the filters h(k) are designed such
that the global impulse responses g(k) are equal to d(k). To this end, the
optimal coefficients of h(k) must minimize the following cost function:

J(h(k)) =
∥∥g(k)− d(k)||2 + β||h(k)

∥∥2
. (4.30)

where β is a regularization parameter [212]. The solution to the minimiza-
tion of (4.30) is given by [212, 213]:

h(k) =
(
CH(k)C(k) + βI

)−1
CH(k)d(k) , (4.31)

where I is the identity matrix.

When the PSZ system aims to generate two bright zones instead of
one bright and one dark zones, a superposition between two bright and two
dark zones must be carried out. In this sense two different PSZ systems
of one bright and one dark zones each one are designed. The first PSZ
system considers that the first zone is the bright zone and the second zone
is the dark one, while the second PSZ system considers the opposite case.
Then, the combination of both PSZ systems will provide a PSZ system
with two bright zones. Consequently, the expression in (4.31) must be
solved twice, each one with a different objective vector d(k). However, the
same solution expressed in (4.31) can be used for the case of two bright
zones but considering H(k) = [h1(k) h2(k)] and D(k) as:

D(k) =
[
d1(k) d2(k)

]
=



D1(k) 0
D2(k) 0

...
...

DMB
(k) 0

0 DMB+1(k)
...

...
0 DMB+MD

(k)


, (4.32)

where h1(k) and d1(k) are the filters and the global room response related
to the first PSZ system and h2(k) and d2(k) are the filters and the global
room response related to the second PSZ system.
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4.5.2 PSZ system in a two-node Android wireless ASN

PSZ systems can be implemented in an ASN using its nodes to generate
the sound zones [214]. This approach is shown in Figure 4.32, where a two-
node ASN formed by commercial devices is used. In this ASN, each node
is composed by a single microphone and a single speaker, thus, M = 2 and
J = 2. Since the objective is to generate two bright zones, there are two
filters per loudspeaker in Figure 4.32, that can be expressed as:

hjz =
[
hjz(0) hjz(1) · · · hjz(Lh − 1)

]T
j = 1, . . . , J , (4.33)

where the subscript z = 1, 2 refers to its input signal sz(n). To generate
two bright zones in the scenario of Figure 4.32, one microphone per zone
must be used, that is, MB = MD = 1. The first zone is represented by
the microphone of the first device (“Device 1”) and the second zone is
represented by the microphone of the second device (“Device 2”).

Particularizing (4.25) for this scenario, the recorded signals are given
by expressed as:

y1(n) = c11 ∗ v1(n) + c12 ∗ v2(n)

y2(n) = c22 ∗ v2(n) + c21 ∗ v1(n) ,
(4.34)

The reproduced signals v1(n) and v2(n) can be expressed as:

v1(n) = h11 ∗ s1(n) + h12 ∗ s2(n)

v2(n) = h21 ∗ s1(n) + h22 ∗ s2(n) ,
(4.35)

where hjz correspond to the filter of the jth speaker when system is solved
using dz(k). These filters are estimated through (4.31), leading to:

H(k) =
(
CH(k)C(k) + βI

)−1
CH(k)D(k) . (4.36)

As it was stated above, different objectives stated through d(k) result in
different sound perceptions at each zone. For this reason, in the following
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Figure 4.32. Implementation of a PSZ system over a two-node ASN of

commercial devices.

paragraphs we define three different audio applications characterized by
their own objective matrix D(k):

-CrossTalk Cancellation Application (XTC). It aims to cancel
the contributions of the cross paths without altering the direct paths [211].
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Therefore, this application aims to match the pressure captured by the
microphones with its corresponding audio signals propagated by their direct
paths, such that:

y1(n) ≈ c11 ∗ s1(n)

y2(n) ≈ c22 ∗ s2(n) .
(4.37)

As a result, the cross contributions are reduced as much as possible.
For this purpose, the objective matrix D(k) in (4.36) is denoted by D0(k)
and defined as

D0(k) =

C11(k)e
−j2πk Lh/2

NFFT 0

0 C22(k)e
−j2πk Lh/2

NFFT

 , (4.38)

where the electro-acoustic paths have been delayed Lh/2 samples to assure
causality [208].

-Pressure Matching Application (PM). The main objective of the
pressure matching algorithm is to generate a desired sound field in the
bright zone [215]. That allow to us to render the audio signals s1(n) and
s2(n) to their corresponding bright zones as if they would have been orig-
inated from a particular speaker. To this end, the objective matrix D(k)
in (4.36) that will be used in this application are denoted by D1(k) when
the objective relates to the first speaker:

D1(k) =

C11(k)e
−j2πk Lh/2

NFFT 0

0 C21(k)e
−j2πk Lh/2

NFFT

 , (4.39)

and D2(k) when the objective relates to the second speaker:

D2(k) =

C12(k)e
−j2πk Lh/2

NFFT 0

0 C22(k)e
−j2πk Lh/2

NFFT

 . (4.40)
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4.5.3 Implementation of the PSZ applications

As seen before, the PSZ applications only require the knowledge of the
involved room impulse responses cij to estimate the filters hjz and then
obtain their output signals vj(n). In order to use the ALC procedure with
the PSZ applications to assure the best possible synchronization of the
reproduced signals vj(n), we can observe at what stage of the ALC pro-
cedure shown in Figure 4.20 the estimated RIRs are available. It can be
appreciated that the estimation of the RIRs is carried out in the ”Audio
Processing” stage, after the recording of the double sweep signal. There-
fore, the “Audio Processing” stage will include now the processing needed
to compute the filters and their output signals. To this end, all the esti-
mated RIRs cij are started at a same time given by the minimum of the
four audio latencies TAL (4.7) minus 25 ms, that is, the common position
to start trimming the estimated RIRs is:

pmin = (min(pAL,ij))− 0.025fs i = 1, 2, j = 1, 2 , (4.41)

where pmin is expressed in samples.

Additionally, TAL must also be considered to set the common length
of the RIRs involved, Lc, since it must be large enough to include most of
the energy content of all impulse responses, which means that all possible
values of pAL must be included in Lc. As it is illustrated in Figure 4.7,
the difference between the average audio latency TAL of different acoustic
nodes can be higher than 300 ms. Since these results show averages, even
bigger differences can be measured. From experimental results, we have
selected Lc to last 500 ms as a compromise between the computational cost
and the accurate estimation of the RIRs. For the sake of simplicity, the
length of the filters have been selected as Lh = Lc. Additionally Lc has
been rounded up to the nearest power of two and the length of the FFT is
given by NFFT = 2Lc > Lc + Lh − 1.

Therefore, the “Audio Processing” stage of Figure 4.20 has been ex-
tended to include PSZ applications by carrying out the following steps:

1. Estimate the RIRs cij by means of the method explained in Sec-
tion 4.2.2.
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2. Obtain the pAL,ij of each electro-acoustic path and exchange them
between the nodes.

3. Estimate pmin (4.41).

4. Trim the impulse responses according to the values of pmin and Lc.

5. Exchange the corresponding impulse responses cij between nodes.

6. Estimate the corresponding filters hjz according to the selected PSZ
application by means of (4.36) and the corresponding objective ma-
trix D0(k) (4.38), D1(k) (4.39) or D2(k) (4.40).

7. Generate the output signals vj(n) (4.35).

4.5.4 Experimental validation

An experimental study of the performance of the PSZ applications accord-
ing to the synchronization between nodes is performed in this section. For
this study, the real scenario shown in Figure 4.22 (that is represented in the
scheme of Figure 4.32) is used, where the distance between the microphone
and the speaker of the same node is 50 cm and the distances between both
microphones and both speakers are 30 cm.

Since the PSZ applications aim to generate two bright zones, two dif-
ferent speech signals are selected: s1(n) is a male speech signal, and s2(n)
is a female speech signal. These signals are filtered by the corresponding
filters and their output signals vj(n) are then synchronously reproduced by
the loudspeaker of the corresponding node. Afterwards, the signals yi(n)
are recorded in order to evaluate the performance of the PSZ applications.
In addition, the best and the worst case scenarios are presented, where:

• The best case scenario is the computer simulation of the correspond-
ing PSZ application.

• The worst case scenario is obtained by reproducing the clean speech
signals, s1(n) and s2(n), instead of the output signals v1(n) and v2(n)
without using the ALC method.

For the performance comparison, we will use the PESQ2 score [216].
The PESQ value is defined between [−0.5 , 4.5], where a high score indicates

2Perceptual Evaluation of Speech Quality.
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a high quality of the speech. To estimate the PESQ value, two signals are
required: 1) the original signal, or clean speech, which in our case should be
s1(n) or s2(n) and 2) the degraded signal, which corresponds to the recorded
signal, y1(n) or y2(n) respectively. The PESQ is defined for signals sampled
at 8000 or 16000 Hz [216], thus all the signals involved have been resampled
to 16kHz.

As said before, the PESQ score provides information related to the de-
terioration suffered by a speech signal with respect to the recorded signal.
However, in this case, the comparison of s1(n) and s2(n) with y1(n) and
y2(n) respectively will be unfair since y1(n) and y2(n) include the effect of
the selected RIR, as it can be seen from the definitions of D0(k) (4.38),
D1(k) (4.39) or D2(k) (4.40). In order to analyze the performance of the
PSZ applications exclusively related to the synchronization between nodes,
the influence of the electro-acoustic path between microphones and speak-
ers should not be considered. To this end, the original signals that are used
in the PESQ procedure are the objective signals designed for each PSZ ap-
plication (pressure matching, PM, or crosstalk, XTC) according to (4.38),
(4.39) and (4.40) respectively:

xXTC
or,i (n) = cii ∗ si(n)

xPM1
or,i (n) = ci1 ∗ si(n)

xPM2
or,i (n) = ci2 ∗ si(n)

i = 1, 2 , (4.42)

where xor,i(n) refers to the original signal introduced in the PESQ pro-
cedure and the superscript refers to the PSZ application where PM1 and
PM2 refer to the pressure matching (PM) application taking loudspeakers
1 and 2 as references, respectively.

The same speaker and mobile device combinations used in Section 4.4.3
are used here to analyze the performance of the PSZ applications thus,
there will be 16 different ASNs obtained from the combinations exhibited
in Table 4.6. A sample rate, fs = 44100 Hz, and a buffer data length,
LB =

LB,ref

2 , are used, and the length of the impulse responses are set to
Lc = 32768 samples.

Our study has been carried out through the following steps:

1. Select one combination from Table 4.6 .
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2. Perform the ALC method of Figure 4.20, but including in the “Audio
Processing” stage the computation of the filters H(k) (4.36) and the
filter output signals vj(n) (4.35).

3. Emit signals, v1(n) and v2(n) through the corresponding loudspeak-
ers. Record the received signals at the corresponding microphones.
These will be the degraded signals for the computation of the PESQ.

4. Obtain the original signals needed for the PESQ and shown in (4.42).

5. Obtain the worst case scenario by reproducing and recording the
speech signals s1(n) and s2(n) without any latency compensation.
The best case scenario is computed at the devices, although their
resulting signals are simulated, not recorded.

6. Obtain the PESQ parameter comparing the original and degraded
signals for the three PSZ applications and the best and worst case
scenarios.

7. Return to step 1 to select other combination.

The results of this study are depicted in Figures 4.33 and 4.34, where
the first one corresponds to the PESQ score of the male speech (the first
node) and the second one refers to the PESQ score of the female speech
(the second node). The results are classified by the selected loudspeaker
combination, as the caption of each sub-figure shows. Each sub-figure rep-
resents the PESQ score for the three PSZ applications. The best and worst
case scenarios are represented by the “+” and the “�” markers and de-
noted by “Ideal System” and “System off” respectively, while each mobile
device combination is represented by the “◦” marker using a different color
per combination.

According to the results shown in Figures 4.33 and 4.34, the PESQ
score presents a similar value to that achieved in the best case scenario
when the Yamaha NX P-100 speaker is used in both acoustic nodes, inde-
pendently of the PSZ application, although the best combination of mobile
devices may differ. In particular, for the male speech signal, the best case
scenario presents a PESQ score of 3.4, 3.7 and 3.1 for the XTC, PM1
and PM2 applications respectively, while the PESQ score for the real cases
ranges between [3 , 3.1], [3.3 , 3.5] and [2.8 , 2.9] for each application respec-
tively. In contrast, for the female speech signal, best case scenario presents
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Figure 4.33. The PESQ score for the male speech signal.

a PESQ score of 3, 2.7 and 3.3, while the PESQ score for the real cases
ranges between [2.9 , 3.2], [2.7 , 2.9] and [3.3 , 3.5] for each application re-
spectively. This good value of the PESQ score can be explained by the
small offset between the acoustic nodes (shown in Figure 4.23) achieved by
the ALC procedure. As a result, the performance of the PSZ applications
in a real scenario is very similar to the performance of an ideal scenario.
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(d) Yamaha NX P-100 - JBL Charge 4.

Figure 4.34. The PESQ score for the female speech signal.

When the JBL speakers are used (JBL Flip 2 or JBL Charge 4), cer-
tain combinations show that the PESQ score is worse than the worst case
scenario where no synchronization and no filtering is performed. In Fig-
ure 4.33c, the best case scenario presents a PESQ score of 3.1, 3.7 and
3.3 and the worst case presents a PESQ score approximately of 2 for the
XTC, PM1 and PM2 applications respectively, while the PESQ score for
the real cases ranges between [1.5 , 1.8], [2 , 2.1] and [1.5 , 1.6]. In contrast,
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in Figure 4.34a, the best case scenario presents a PESQ score of 3.3, 2.8
and 3.1 and the worst case presents a PESQ score approximately of 2.2,
while the PESQ score for the real cases ranges between [1.5 , 1.9], [1.3 , 1.4]
and 1.8 for each application respectively. When JBL Charge 4 is used, see
similar performance can be appreciated for both speech signals. This low
value is caused because of the high offset between the acoustic nodes and
unstable behavior of the offset (shown in Figures 4.25 and 4.26). Therefore,
for the JBL speakers, the performance of the PSZ applications is reduced
significantly regardless the mobile device combination.

The results in Figures 4.33 and 4.34 show that the performance of
the PSZ applications for the speaker combination Yamaha NX P-100 -
Sony SRS X3 is worse than expected given the small ∆p obtained in Fig-
ure 4.24. In this case, the PESQ values of the real cases are significant
different than the PESQ values of the best case scenario. In particular,
for the male speech signal, the PESQ values of real scenario are included
between [2 , 2.2], [2.6 , 2.7] and [2.1 , 2.2], while the PESQ values of the best
case scenario are 3, 3.6 and 3.3 for the XTC, PM1 and PM2 applications
respectively. In contrast, for the female speech, the PESQ values of the
real cases are included between [2.5 , 2.8], [1.9 , 2.1] and [2.6 , 2.7] while the
PESQ values of the best case scenario are 3.4, 2.7 and 3.3 for the XTC,
PM1 and PM2 applications respectively. This impairment could be caused
because of some kind of equalization of the Sony SRS X3 speaker, that
avoids the cancellation of the interfering signals.

Additionally, the results show that, for any combination, the PESQ
score in the male speech signal is higher than the PESQ score in the female
speech signal for the PM1 application, while an opposite behavior is ap-
preciated for the PM2 application. This outcome is caused because of the
objective matrix D(k) used in each application. In the PM1 application,
the direct path c11 is used for the male speech signal, while the cross path
c21 is used for the female speech signal. In the PM2 application, the direct
path c22 and the cross path c12 are used for the female speech signal and the
male speech signal, respectively. Therefore, the PM1 application considers
in the first zone (male speech signal) a greater energy than in the second
zone (female speech signal), while PM2 considers the opposite. Regarding
the XTC application, both male and female speech signals show similar
PESQ score, an expected behavior since in this application both direct
paths, c11 and c22, are used in the objective matrix D(k) (see (4.38)).
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These results have shown that the synchronization between nodes is
critical for the implementation of high quality audio applications over wire-
less ASNs. In order to show the dependence of the audio applications per-
formance with the synchronization between nodes, a set of degraded signals
have been simulated such that a varying delay has been added to one of
the filtered signals. Therefore, expression (4.34) has been rewritten as:

y1(n) = c11 ∗ v1(n− τa) + c12 ∗ v2(n)

y2(n) = c22 ∗ v2(n) + c21 ∗ v1(n− τa) ,
(4.43)

where τa is the additional delay, expressed in samples, whose values have
been set to τa ∈ {±5,±4,±3,±2,±1, 0}.

The results of this study have been obtained using the Yamaha NX
P-100 speaker on both nodes (as in the Figures 4.33a and 4.34a) and the
Samsung Galaxy S3 in both nodes as well. Since all the degraded sig-
nals have been simulated, in order to obtain a correct PESQ score, the
original signals used for obtain the PESQ score have been also simulated
(see (4.42)). Figure 4.35a represents the PESQ score of the signal of the
first node (the male speech) and Figure 4.35b represents the PESQ score
of the signal of the second node (the female speech). Similar to the previ-
ous results, the ideal case (τa = 0) has been represented through the “+”
marker. In addition, the “�” marker represents the positive delays and the
“◦” marker represents the negative delays. Therefore, the delays differ in
their colors and positive and negative delays differ in their markers. The
rest of features are identical to the results shown in Figures 4.33 and 4.34.

As Figure 4.35 shows, the PESQ value decreases as |τa| increases, which
is an expected result since the lack of synchronism mainly affects to the
cancellation of the interference. However, no significant differences can be
appreciated in the performance of the PSZ applications regarding the sign
of the delay, since the PESQ obtained is quite the same for ±τa. A com-
parison between these PESQ values and the real PESQ values illustrated
Figures 4.33a and 4.34a is shown in Table 4.7, where the value of ∆PESQ is
represented according to τa. The value of ∆PESQ represents difference be-
tween the averaged PESQ values of the three applications in Figures 4.33a
and 4.34a (using the Samsung Galaxy S3 in both nodes) and the averaged
PESQ values of the three applications in Figure 4.35 for τa ∈ {0 1 2 3 4 5}.
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(b) Ideal PESQ of the female speech.

Figure 4.35. Ideal PESQ with different delays between the acoustic

nodes.

τa = 0 τa = 1 τa = 2 τa = 3 τa = 4 τa = 5

Male

Speech
-0.336 -0.172 0.085 0.275 0.438 0.557

Female

Speech
0.158 0.217 0.347 0.486 0.607 0.71

Table 4.7. ∆PESQ for different values of τa.

In Table 4.7, only positive values of τa have been considered since, as
it was stated before, the PESQ score is quite the same for ±τa. The results
for the male speech signal show that the ∆PESQ values are negatives for
τa < 2 samples, meaning the simulated system presents a performance
better than the real system, that is, an expected behavior. However from
τa ≥ 2 samples the values are positive, that is, the real scenario presents
a better performance. In contrast, for the female speech, the ∆PESQ
values are positive from the start (τa = 0 samples). According to the
values of ∆PESQ, a desynchronization of a few of samples results in a
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lower PESQ score, causing a higher ∆PESQ value. Consequently higher
values of τa than those shown in Table 4.7, such as τa = 10 samples (225 µs)
or τa = 20 samples (450 µs), can reduce significantly the performance of
the PSZ applications, as shown in Figures 4.33 and 4.34 when JBL speakers
are used.

4.5.5 Conclusions

The synchronization methods explained in sections 4.3 and 4.4 have been
used in order to analyze the performance of two PSZ applications. The
PSZ applications have been tested in a 2x2 wireless ASN and the PESQ
score (ITU standard P.862 [216]) of the recorded speech signals have been
computed.

The experiment consisted in two devices connected through a Wi-Fi
link between them and connected each one through a Bluetooth link to a
wireless speaker. Then, using the ALC method, the filtered signals, v1(n)
and v2(n) in (4.35) are reproduced and recorded. The results showed that
the PESQ score is higher for the combinations that include the Yamaha NX
P-100 speakers and lower for those using the JBL speakers, thus, the speech
quality is higher as the synchronization between nodes is better, as shown
in Figures 4.33 and 4.34. In contrast, the Yamaha NX P-100 - Sony SRS X3
speaker combination, that exhibited a similar synchronization error (∆p)
to that of the Yamaha NX P-100 - Yamaha NX P-100 speaker combination,
presented a low PESQ score. This behavior is assumed to be caused by the
internal signal processing performed by the Sony SRS X3 speaker.

In order to measure more accurately the dependency of the PSZ per-
formance with the lack of synchronization, a computer simulation of the
experiment using the real acoustic paths cij was performed, where differ-
ent delays, τa, were used in order to simulate the lack of synchronization
between nodes. The results have shown that the PESQ score, thus, the
perceived quality of the resulting speech, is seriously affected and it gets
worse as |τa| is higher.
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4.6 Conclusions

In this chapter, a wireless ASN composed by Android commercial devices
and Bluetooth speakers has been presented and its performance has been
studied. Within the ASN each mobile device is connected to one speaker
through a Bluetooth link and the mobile devices are connected between
them through a Wi-Fi link. Based on this scenario, the main objective is
to generate an environment where any audio application can be carried out
over in the different acoustic nodes of the ASN with the lowest synchro-
nization mismatch between nodes. To this end, a deep analysis about the
synchronization problem has been along this chapter.

As an initial stage, the audio latency, denoted as TAL, has been intro-
duced. This parameter provides temporary information about the audio
processes implemented in the acoustic nodes. After a detailed description
of TAL and a brief explanation about its estimation, an experiment to an-
alyze the behavior of TAL has been carried out. Different combinations of
mobile devices and wireless speakers have been used and placed at different
distances from each other. The results of this experiment showed that the
averaged values of TAL range from 350 ms to 650 ms, concluding that the
value of TAL depends highly on the processing of the mobile device and the
speaker, that is TDP and TSP respectively.

The synchronization problem has been studied separately throughout
this chapter to facilitate its analysis. Initially, the difference between the
time clock of the devices, denoted as TO, has been studied. This difference
causes that two (or more) devices are not able to start an audio task simul-
taneously. To solve this drawback, the STP method has been introduced
(see Figure 4.11) in order to compensate TO. After a detailed description
of the STP method, an experimental comparison with the NTP and PTP
methods is carried out. The results of this comparison showed that the
proposed STP method is the most accurate to estimate TO. Afterwards,
in order to evaluate the performance of the STP method in the context
of audio applications, a second experiment has been proposed. Two mo-
bile devices connected to an audio analyzer are used in this experiment
to obtain the difference between their respective audio latencies, ∆T. The
results showed that the STP method does not solve the synchronization
problem due to the significant differences in hardware and software of the
mobile devices that cause audio latencies to be different, and thus ∆T 6= 0.
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According to the previous results, due to the difference between TAL

of the devices, the audio applications cannot be simultaneously performed
unless a precise delay compensation is carried out. In this sense, the audio
latency compensation (ALC) method has been presented in this chapter
(see Figure 4.20). After a detailed description of the ALC method, an ex-
periment has been carried out in order to evaluate its performance. Similar
to the previous experiment, two mobile devices connected between them
and connected to a wireless speaker each have been used to obtain the
difference between their respective audio latencies in samples, ∆p. The
results have shown that ∆p depends significantly on the processing burden
performed by the speakers since ∆p is different according to the speakers
used, being in some cases very unstable. However, in the cases that ∆p
presents a low value and a stable behavior, it can be predicted and com-
pensated, resulting in an almost perfect synchronization with a maximum
audio latency of 1 sample for a sample rate of 44100 Hz.

Finally, two personal sound zone (PSZ) applications have been imple-
mented in order to analyze the influence of the synchronization mismatch
and the benefit of the ALC method on the perceived speech quality at
each zone. The results have shown that the PESQ score is higher as the
synchronization error between the nodes is lower, whereas low PESQ val-
ues are obtained for the speaker combinations that presented a high value
and an unstable behavior of ∆p. Moreover, the PESQ results obtained for
the pair of loudspeakers Yamaha NX P-100 - Sony SRS X3 in both PSZ
applications is very low and does not correspond to the high degree of syn-
chronization presented in the ALC experiment. This behavior is assumed to
be caused by the audio processing performed by the Sony SRS X3 speaker,
which seems to depend on the signal to be reproduced. However, when
the Yamaha NX P-100 speaker is used in both nodes, the ALC method
demonstrates to increase significantly the synchronization performance for
the PSZ applications, obtaining PESQ values similar to the ones obtained
in the computer simulation.



Conclusions 5
This chapter summarizes the findings of this work, reviewing the main
objectives set out in the introduction chapter. At the beginning of this
chapter, a review of the contents of the studies of the dissertation is
done to outline the main conclusions drawn from each chapter. The
next section presents different recommendations for future research.
The final part contains a list of works published during the course
of candidature for the doctoral degree. Additionally, institutional ac-
knowledgments supporting this work are given.

5.1 Summary

In this dissertation, we have focused on performing two different groups
of sound-field applications using an ASN in order to analyze their per-
formance. The first group considers that environmental sounds (such as
ambient noise) negatively affect to the sound emitted by the ASN (such as
music), resulting in a worse perception threshold of the music. To overcome
this drawback, equalization and psychoacoustic techniques are used in or-
der to improve the perception threshold of the sounds emitted by the ASN.
The second group is focused on performing a synchronous reproduction of
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all the acoustic nodes of the ASN. Specifically, in this dissertation PSZ
applications are implemented, where the main goal is to generate different
acoustic zones with a different sensation in each zone through a synchronous
reproduction of the nodes of the ASN.

In Chapter 3, an ASN composed by traditional microphones and speak-
ers is considered in order to perform a perceptual audio application. In
this dissertation, a perceptual equalization with two different approaches
is proposed. However, in a first stage the masking threshold algorithm is
explained in detail since it provides the perceptual analysis needed in the
equalization application. The explanation of this algorithm is completed
with a perceptual test that analyzes the tonality factor (required for the
estimation of the masking threshold) calculated by three methods. The
results in Figure 3.12 shows that the proposed method provides a more
accurate estimation of the masking threshold since its values are closer to
those obtained in the perceptual test. Afterwards, the masking threshold
has been used to perform the perceptual equalization application with the
two different approaches. In the first one, the equalization is performed
on the music, while the second one the equalization is performed on the
ambient noise using ANC techniques. Each approach is explained step by
step through a block diagram to fully understand the process of each equal-
ization. Finally, each approach is evaluated by a perceptual test performed
by several participants in order to study the performance of each one. The
results in Figures 3.27 and 3.35 show that the proposed solutions are able
to increase significantly the perception threshold of the music in presence
of ambient noise. Finally, an important fact to highlight is that the second
approach (equalization over ambient noise) provides a better performance
than the first approach (equalization over music) because the equalization
is based on reducing the power level of the noise instead of increasing the
power level of the music, avoiding non-linear effects, such as saturation or
distortion of the music signal.

In Chapter 4 an ASN composed by commercial Android mobile devices
and Bluetooth speakers is proposed to perform a reproduction application,
more specifically a PSZ application, simultaneously. To this end, an accu-
rate control of the synchronization between the acoustic nodes of the ASN
must be ensured. For this reason, a deep analysis of the synchronization
between the acoustic nodes is performed throughout the Chapter 4. As
a first step, the audio latency (TAL) parameter is explained in deep, con-
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cluding this section with an experimental study where TAL is estimated for
different acoustic nodes. The results in Figure 4.7 show that TAL is depen-
dent on the hardware and software of both mobile device and Bluetooth
speaker. Next, to synchronize the different acoustic nodes, the synchro-
nization time protocol (STP) is proposed to estimate the clock difference,
TO. Additionally, an study is carried out, comparing the STP method with
PTP and NTP methods, the most commonly used synchronization methods
nowadays. The results in Figure 4.13 demonstrate that the STP method
is the most stable in estimating TO and therefore the method used in this
dissertation. A second experiment is proposed, where the STP is used to
simultaneously reproduce a tone signal by two devices. The results of this
experiment, shown in Figure 4.16, conclude that devices cannot perform a
simultaneous reproduction because of the difference of TAL. For this rea-
son, a last method is implemented to consider the difference of TAL, called
in this dissertation as the audio latency compensation (ALC) method. The
ALC method has been evaluated in an experiment using different combi-
nations of mobile devices and speakers. The results from Figures 4.23 to
4.30 show that the achieved synchronization between nodes is higher to
that of the previous test. Despite this behavior, a perfect synchronization
is not possible because of the processing when the Bluetooth connection
is enabled leading to the conclusion that the synchronization depends on
the performance of such processing. Finally, a last study has been per-
formed in order to measure the performance of the PSZ application, where
synchronization is critical. The results in Figures 4.33 to 4.35, present a
better performance in the PSZ application as the synchronization between
nodes is more accurate, that is, the perception of the sounds in each zone
is improved as the synchronization is higher.

5.2 Future Work

The research produced in this thesis opens up different interesting fronts to
be considered for future research. In this case, the main lines of research
open are:

• In Chapter 3 a perceptual study has been carried out in order to
analyze different tonality methods of the masking threshold algo-
rithm. Since the signals to be tested have been multi-tonal signals
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and narrow-band noise signals, an interesting study to be performed
is the same perceptual study, but using signals with more spectral
content in order to study the masking threshold for signals with a
wider bandwidth.

• In Chapter 3 the first perceptual equalizer is performed considering a
single-user. However, in order to benefit from all the features provided
by an ASN, an equalizer for multiple users should be considered. This
study can be based on the preliminary study of the optimal masking
pattern for multiple users performed in this dissertation.

• Finally, in Chapter 3, two different equalizers are used to study the
perceptual algorithms. However since the equalizers act on different
signals, the combination of the two should be considered in order to
implement a single equalizer that is able to act on both signals at the
same time.

• The ASN used in Chapter 4 was focused on a two-node network to
minimize the complexity of the algorithms. In practice, however,
larger ASN are usually considered in order to increase the perfor-
mance of the audio applications. Therefore, an interesting issue to
evaluate would be to perform same studies used in this dissertation,
but increasing the number of nodes of the ASN in order to study the
scalability of the synchronization methods and the performance of the
PSZ applications.

• The ASN used in Chapter 4 only uses a Bluetooth connection to con-
nect the mobile device and the speaker. But, in real scenarios, a Wi-Fi
connection usually presents a better approach since this connection
is faster. For this reason, a new approach can be proposed using Wi-
Fi speakers. However, since the current Wi-Fi speakers only can be
used with proprietary software, the use of a Rasberry Phi or Arduino
is proposed. Assuming that this additional device can be connected
through a wire to a speaker, a Wi-Fi speaker can be implemented.
Thus, through the Wi-Fi connection, the mobile device will be able
to send the audio signal to the Rasberry Phi or Arduino in order to
reproduce the signal through the speaker.
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ceptual Active Equalization of Multi-Frequency Noise”. 18th Interna-
tional Conference on Signal Processing and Multimedia Applications
(SIGMAP), Online Streaming, 6–8 July 2021. https://doi.org/10

.5220/0010648100390047

National Journal Conferences
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A Android Application

An Android application has been implemented with the purpose of provid-
ing an interactive tool to perform the PSZ systems explained in Section 4.5.
The app presents several graphical interfaces related to the main tasks of
the PSZ applications. Figure A.1 shows the structure of the Android appli-
cation together with the connections between the graphical interfaces. The
interfaces are assigned the following tasks:

• Main Interface (MI): It addresses the clock synchronization problem
by using the proposed method (see Section 4.3.2).

• Bluetooth Interface (BI): It generates an acoustic node through the
connection between the mobile device and speaker. This task is op-
tional, providing for the case that a former Bluetooth connection
between device and loudspeakers exists.

• Network Interface (NI): It generates the network through the connec-
tion between the acoustic node and the router device.

• Sound Interface (SI): It performs the different PSZ applications (see
Section 4.5) using the ALC method, explained in Section 4.4.2.

Since each task is performed by a different interface, each one can be
reached and configured independently from the rest. However, the An-
droid app presents two internal restrictions in order to create the PSZ
applications without errors. Regarding to the first restriction, the Android
application will not allow to address the clock synchronization problem un-
less the acoustic node is connected to a Wi-Fi network. As for the second
restriction, the Android application will not allow to carry out the PSZ
applications unless the clock synchronization problem has been addressed.
Therefore, the Android application will guide the user through the differ-
ent interfaces to correctly perform the audio applications. For this reason,
in the following, a briefly description of how to deal with each interface is
given.

Main Interface (MI)

This is the first interface that appears when the Android application is
called. Figure A.2 shows its appearance, where the rest of interfaces can



A. Android Application 209

Bluetooth Interface 
(BI)

Network Interface 
(NI)

Main Interface 
(MI)

Sound Interface 
(SI)

Figure A.1. Structure of the Android application.

be accessed by pressing the corresponding button located at its upper-right
corner. This interface is responsible for addressing the clock synchroniza-
tion problem (deeply studied in Section 4.3) once the device has been con-
nected to a router device through the Network Interface. Therefore, the
first step that must be carried out is to access the Network Interface to
connect to the underlying Wi-Fi network.

Assuming that a Wi-Fi connection is already done, the magnifying
glass icon allows the node to search for other nodes in the network and to
perform the clock synchronization between them. It has to be noticed that
the Android OS does not provide any direct method to perform this kind of
device search, thus a new procedure has been developed for this purpose in
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Figure A.2. Main Interface.

this dissertation, and it is explained in Appendix B. Once a node is found,
some properties of the node are shown, as indicated in Figure A.2, as the
name and the Android version of the device. In order to identify the nodes
that are synchronized, a green icon at the left indicates that clock synchro-
nization has been addressed with that node, while a red icon indicates the
opposite. By pressing any device with a red icon, the clock synchronization
will be addressed automatically for that specific acoustic node. Once the
Wi-Fi network has been successfully created, the Sound Interface (SI) can
be accessed in order to implement different audio applications.

Bluetooth Interface (BI)

This interface is shown in Figure A.3 and can be accessed in order to pair
a wireless loudspeaker to the acoustic node. The connection between the
mobile device and the wireless speaker is carried out through the A2DP
profile [74], which allows for the transmission of audio streams between
devices.

As Figure A.3 shows, the interface presents a list where two different
groups of loudspeakers are identified, “Paired” and “Nearby”. In the Blue-
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Figure A.3. Bluetooth Interface.

tooth protocol, a “pairing” process is done before the connection process.
This pairing process is used to ensure a secure communication between the
device and the speaker [217]. Therefore, the BI distinguishes between the
speakers that have carried out the pairing process (the “Paired” group) and
those that have not (the “Nearby” group).

Same as in Figure A.2, the magnifying glass icon is used to search for
Bluetooth speakers, but in this case the searching procedure is provided by
the Android OS as described in [218]. Once a speaker is found, its name
and its media access control (MAC) are shown. Finally, the connection to
the selected speaker is carried out by pressing on its name in the inter-
face, where in a few moments its state will change from no connected (red
Bluetooth icon) to connected (blue Bluetooth icon).

Network Interface (NI)

Figure A.4 shows the NI interface, whose main objective is to connect
the acoustic node to a Wi-Fi network through an existing router device.
According to Figure A.4, once the NI is accessed, a list of available net-
works is visualized. Same as BI, the search to find different network is
performed through the magnifying glass icon using the method specified
in [219]. When a network is found, the name of the network and the
encryption method [220, 221] are shown. Identically to MI and BI, the
connection is performed by pressing the name of the network. To identify
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the network connected to the node, a green icon indicates that node is
connected to that network, while a gray color indicates no connection.
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Figure A.4. Network Interface.

Sound Interface (SI)

This interface is shown in Figure A.5 and it is the responsible for performing
the different audio applications presented in Section 4.5 through the ALC
method of Section 4.4. The interface is able to configure and perform an
audio test, select the directory to save the audio information achieved from
the audio test or even to represent the most important information of the
test, as Figure A.5 shows.

This interface starts with the blank screen showed in Figure A.5a since
no information can be represented yet. By pressing the button labeled
as “Audio Test”, the interface will show a box with different fields, as
Figure A.5b shows. In this box, the configuration of the audio test, such
as the type of the PSZ application (see Section 4.5) or sample rate, is
selected. The audio test is configured in both of them using the connection
between the nodes. Once the audio test of the selected PSZ application
is finished, a graphical representation of the most important parameters
pressing the ”paint brush” icon can be carried out. The plot can depict
the impulse responses of the ASN acoustic paths (shown in Figure A.5c)
and the filters of the PSZ application and their corresponding frequency



A. Android Application 213

Audio 
Test

Working 
Directory

Represent 
parameters

(a) Default screen.

PSZ 
Application

Bitdepth

Sample 
Rate

Signal to 
reproduce

(b) Audio Test configuration.

Parameters to represent

Time/Frequency
domain

(c) Representation Mode screen.

Figure A.5. Sound Interface.

responses. Finally, the selection of the working directory is enable through
the “folder” icon of the SI. Since the audio signals to reproduce and record
have to be located in the memory of the mobile device, this information is
necessary.
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B Procedure to search acoustic nodes inside the net-

work

The connections between the acoustic nodes are one of the most important
procures to carried out in an ASN in order to implement different audio
applications. But, as opposed to the Bluetooth search or the network search
(see Appendix A), the Android OS does not provide any direct procedure
to search for devices on a network. As a result, in this dissertation we
have designed a method to perform this search. Since this method is used
to search mobile devices (or acoustic nodes), we have called it the Node
Network Searching (NNS) method.

The Wi-Fi connections between devices only require two parameters:
1) the connection port and 2) the IP address of the device to be connected
with. The first parameter is predetermined by the Android application,
that is, all the acoustic nodes know the connection port. The IP address,
which is different for different devices of the same network can be introduced
in the application by the user, but in order to automate the connections,
the NNS is proposed.

The NNS method uses the “multicast” communications that allows to
send information from one or multiple devices to multiple devices without
knowing the specific IP address of each device. Therefore a device can
communicate with a group of devices in order to obtain information from
them, such as their IP. To accomplish this objective, first at all a group
must be generated. The groups are defined through a special IP address
(included in the range between [224.0.0.0 - 239.255.255.255]). In the case
of the NNS method, the IP address 224.1.2.3 has been chosen to generate
the group. Once the group has been created, all the acoustic nodes join the
group in order to receive information from any device of to the group.

Since the NNS method is implemented in the Main Interface of the
application (see Appendix A), it is designed in order to provide a human-
readable information. As a result, in addition to the IP address, the features
shown in Figure B.1 are exchanged between the nodes.

According to Figure B.1, the frame is divided into three fields. The
first field is the name of the mobile device (i.e. “Samsung Galaxy Tab 3”),
together with the last octet of its IP address in order to avoid confusions
when identical devices are found. The second field is the IP address of the
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IP Address
(X.Y.W.Z)

Additional
Features

Figure B.1. Frame sent by the nodes.

specific device. Finally, the third field is additional information, such as
the Android version.

Assuming all the nodes have joined the specific group, defined by the
address 224.1.2.3, the NNS method is carried out as Figure B.2 shows.
First, a specific node, denoted as “Node A”, sends the frame of Figure B.1
to the IP address of the group. The rest of the nodes (B, C, . . . ) receive
that frame and each one sends the frame of Figure B.1 with their own
information to the Node A, as Figure B.2b shows. Finally, “Node A”
receives as many frames as nodes belong to the group, thus obtaining all
the IP addresses of the ASN.

Node A Rest of Nodes(B,C...)

Frame(224.1.2.3)

(a) First step.

Node A Node B

Frame 

(IP Node A)

(b) Second step.

Figure B.2. The NNS method.

The multicast communications are based on the UDP protocol, which
means that the information exchanged between the nodes can be lost. As
a result, in order to increase robustness against network errors, the frame
shown in Figure B.2a is sent 15 times at intervals of 1 second, while the
frame shown in Figure B.2b is sent 5 times.
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C Optimal Buffer Length for Android acoustic nodes

The acoustic tests performed in Chapter 4 are designed with an audio
configuration that is explained in each test, such as the test performed in
Section 4.2.3. This configuration is mainly based on the characterization
of the sample rate, fs, and the buffer size (LB). Since LB is a parameter
with a large number of options (as opposed to fs, where the most common
options are 44100 or 48000 Hz), its optimal value will be discussed in the
following.

The Android OS estimates a buffer length according to the mobile de-
vice features. This buffer size has been denoted in this dissertation by LB,ref

and it is used to configure the recording and playing programming objects.
After this initial configuration, the playing and recording operations can
use a different size than LB,ref . This size is denoted in this dissertation by
LB. Therefore, the Android devices can use two different sizes:

1. The buffer size to create the audio programming objects, LB,ref , that
is estimated by the Android OS.

2. The buffer size to perform the recording and playing operations, LB,
that can be set to any value.

As Section 4.4.3 shows, TAL (4.3) suffers an offset due to the processing
performed by the Bluetooth connection. Since the processing time is also
related to the LB value, as Section 4.2.1 explains, this appendix studies the
dependence of the offset of TAL with the value of LB for a single acoustic
node. For this purpose, the same combinations of speaker and mobile device
shown in Table 4.1 are used, leading to a study with 16 combinations.

Regarding the possible values of LB, a large number of values could
be used, but for the sake of simplicity, only four values will be considered.
Since the Android OS provides the reference size LB,ref , three of these values

are based on this reference, specifically: 1) LB = LB,ref , 2) LB =
LB,ref

2

and 3) LB =
LB,ref

3 . In addition, according to [163], the native buffer size
is considered, that is, LB = LB,native. Since the parameters LB,ref and
LB,native depend on the specific mobile device, the values of each one (in
samples) are given in Table C.1, where LB,ref is shown in terms of LB,native.

The scenario used to perform the study is based on Figure 4.6 where
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Mobile Device LB,ref LB,native

Samsung Galaxy S3 57LB,native 192

Samsung Galaxy Tab 3 10LB,native 1024

Motorola Moto G5 Plus 45LB,native 240

HTC Nexus 9 99LB,native 128

Table C.1. Buffer sizes (in samples unit) of each mobile device.

fs = 44100 Hz and the mobile device and the speaker are separated a
distance of 50 cm. It has to be noticed that, as Section 4.2.3 concludes, the
separation distance is not a relevant factor in TAL. Since this study aims
to analyze the offset that suffers TAL, similarly to the study carried out in
Section 4.4.3, multiple sweeps are recorded and reproduced. In this case, a
total of five sweeps are reproduced and recorded, resulting in four different
measurements of the offset. In addition, the sweeps are not sequentially
recorded and reproduced between them, but a period of LP zeroes samples
will be reproduced and recorded in order to produce a similar behavior that
seen in Section 4.4.3. Therefore, the study is performed as follows:

1. Select an acoustic node from Table 4.1.

2. Select a size for LB.

3. Perform the warm-up stage, that reproduces and records LW samples
of zeroes, being LW = 3fs.

4. Reproduce and record a sweep signal of LS samples, being LS = 2fs.

5. Reproduce and record LP zeroes. Since in Section 4.4.3 the elapsed
time in the “Audio Processing” stage is around 10 seconds, LP = 10fs

samples of zeroes.

6. Repeat four times steps 4 and 5.

7. Close recording and reproduction and estimate pAL (4.6) through the
method explained in Section 4.2.2 for the five sweep signals.

8. Return to step 3 and repeat the process 20 times.
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9. Return to step 2, change the value of LB and repeat steps 2 to 8.

10. Return to step 1, change the combination and repeat steps 1 to 9.

As Section 4.4.3 states, the offset that suffers pAL can be obtained
through the difference between two consecutive sweeps, such as

∆p(n) = p
(n+1)
AL − p(n)

AL , (1)

where n = 1, . . . , 4 is the number of the estimation and ∆p indicates the
offset that suffers pAL (or TAL). When the four values of ∆p(n) have been
estimated, the standard deviation (σp) is calculated in order to observe the
stability of ∆p. Since the process for each acoustic node and buffer size is
performed 20 times (step 8), σp is estimated 20 times, and its maximum
value is saved for comparison. In this way, the saved value of σp represents
the worst performing case for that combination and is the limiting case for
that acoustic node an LB.

The results are shown in Table C.2, Table C.3, Table C.4 and Table C.5,
where each table refers to a different speaker. For each table, the best
options have been highlighted in bold typeface.

Mobile Device

Buffer

size (LB)

Samsung

S3

HTC

Nexus 9

Motorola

Moto G5

Samsung

Tab 3

LB,ref 188.35 191.83 184.16 1881

LB,ref/2 4.50 0.57 3.68 0.50

LB,ref/3 6.35 0.57 4.19 0.50

LB,native 6.35 0.57 4.27 0.50

Table C.2. Maximum value of σp for the Yamaha NX P-100 speaker.

Table C.2 shows the maximum value of σp when the Yamaha NX P-
100 speaker is used in the acoustic node. Results show that the stability
exhibited by LB sizes

LB,ref

2 ,
LB,ref

3 and LB,native is equal for the HTC Nexus

9 and Samsung Tab 3 devices, whereas
LB,ref

2 is slightly better than
LB,ref

3
and LB,native for the other two devices. However, the stability significantly
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decreases when LB = LB,ref , reaching a value of 1880 samples in the worst
case. This means that TAL can change up to 42 ms even if reproduction and
recording are carried out in a continuous way. One plausible explanation
for this result is because of the large size of LB and the large number of
samples that have to be processed at once, causing an unstable reproduction
process.

Mobile Device

Buffer

size (LB)

Samsung

S3

HTC

Nexus 9

Motorola

Moto G5

Samsung

Tab 3

LB,ref 297.20 191.83 192.16 20.12

LB,ref/2 3.10 0.57 0.50 0.57

LB,ref/3 3.10 0.57 0.50 0.57

LB,native 3.20 0.57 0.50 0.57

Table C.3. Maximum value of σp for the Sony SRS X3 speaker.

Table C.3 shows the maximum value of σp when the Sony SRS X3
speaker is used in the acoustic node. Results show a similar behavior to
those shown in Table C.2. That is, a very stable ∆p is obtained when
options from

LB,ref

2 to LB,native are used. Therefore, these three options
indicate that the offset that suffers TAL is low and stable. Additionally, the
option of LB,ref continues to provoke an unstable behavior because of the
same reason as explained above.

Mobile Device

Buffer

size (LB)

Samsung

S3

HTC

Nexus 9

Motorola

Moto G5

Samsung

Tab 3

LB,ref 363.68 686.63 359.12 198.26

LB,ref/2 183.33 417.18 398.47 192.26

LB,ref/3 176.02 363.38 443.24 193.07

LB,native 133.37 376.75 444.96 389.75

Table C.4. Maximum value of σp for the JBL Flip 2 speaker.
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Table C.4 shows the maximum value of σp when the JBL Flip 2 is used
in the acoustic node. Results show that all the possible sizes of LB present
a very unstable behavior and a clear option on the best LB size cannot be
concluded. Indeed the best value of LB is different for each mobile device, as
opposed to the results shown in Tables C.2 and C.3. Results in Table C.4
show that, regardless to the size of LB, a high deviation is unavoidable,
thus, the offset suffered by TAL is unpredictable, confirming the bad results
of Figure 4.28. Consequently, none of the available options of LB is better
than the other.

Mobile Device

Buffer

size (LB)

Samsung

S3

HTC

Nexus 9

Motorola

Moto G5

Samsung

Tab 3

LB,ref 214.54 175.03 151.17 10.46

LB,ref/2 42.35 50.94 27.41 13.93

LB,ref/3 63.90 40.93 30.74 9.94

LB,native 43.93 56.19 70.25 10.24

Table C.5. Maximum value of σp for the JBL Charge 4 speaker.

Finally, Table C.5 shows the maximum value of σp when the JBL
Charge 4 is used in the acoustic node. In this case, a better behavior
compared to the results in Table C.4 can be appreciated and the offset
suffered by TAL is less unstable. However, the results in Table C.5 are still
very high compared to those provided by Tables C.2 and C.3. Regarding
the worst stability option, it is caused when LB = LB,ref , while the other
three options present similar behavior.

To conclude, the option LB = LB,ref should be avoided as an optimal
buffer size since it represents the worst results for all the acoustic nodes.
The other three options (

LB,ref

2 ,
LB,ref

3 and LB,native) present a similar stable
offset for the loudspeakers of Tables C.2 and C.3, whereas for the JBL 4
Charge speaker of Table C.5, they improve the stability of the offset of TAL

compared to LB = LB,ref . As a result, any of these three options could

be chosen as the optimal buffer size, but a buffer size of
LB,ref

2 has been
considered in this dissertation.
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[7] J. Rämö, V. Välimäki, M. Alanko, and M. Tikander, “Perceptual
frequency response simulator for music in noisy environments,” in
Audio Engineering Society Conference: 45th International
Conference: Applications of Time-Frequency Processing in Audio.
Helsinki, Finland: Audio Engineering Society, 1-4 Mar. 2012, pp.
216–225.

[8] H. Kim, S. J. Lee, J. W. Choi, H. Bae, J. Lee, J. Song, and I. Shin,
“Mobile maestro: Enabling immersive multi-speaker audio
applications on commodity mobile devices,” in UbiComp 2014 -
Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, Seattle, WA, US, 13-17 Sep.
2014, pp. 277–288.

[9] M. Cobos, J. J. Perez-Solano, Ó. Belmonte, G. Ramos, and A. M.
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[38] V. Molés-Cases, G. Piñero, A. Gonzalez, and M. De Diego,
“Providing spatial control in personal sound zones using graph
signal processing,” in European Signal Processing Conference. A
Coruna, Spain: European Signal Processing Conference, EUSIPCO,
2-6 Sep. 2019, pp. 1–5.

[39] A. Flammini, P. Ferrari, D. Marioli, E. Sisinni, and A. Taroni,
“Wired and wireless sensor networks for industrial applications,”
Microelectronics Journal, vol. 40, no. 9, pp. 1322–1336, sep 2009.

[40] J. Segura-Garcia, S. Felici-Castell, J. J. Perez-Solano, M. Cobos,
and J. M. Navarro, “Low-cost alternatives for urban noise nuisance
monitoring using wireless sensor networks,” IEEE Sensors Journal,
vol. 15, no. 2, pp. 836–844, feb 2015.



226 Bibliography

[41] J. C. Szurley, “Distributed signal processing algorithms for acoustic
sensor networks,” Ph.D. dissertation, Katholieke Universiteit (KU)
Leuven, Oude Markt 13, 3000, Leuven, Belgium, June 2015.
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