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 Abstract: Eurocodes give guidance how to design built-up columns having effective bending 

stiffness, smeared shear stiffness and local bow imperfection amplitude e0 = L/500 under 

compression. The guidance is valid only for columns supported by hinges at their ends. The 

second order theory is presented, which allows analysis of the battened and laced built-up 

columns with initial imperfection under combined compression and bending with the bottom end 

fixed and the upper one free in the case of in-plane buckling. The application of the theory in 

several numerical examples is given in Part II. 

 
 Keywords: Built-up columns, Stability, Second order analysis, Steel, Aluminum alloy 

1. Introduction 

 Every point on a beam-column axis undergoes displacements as a consequence of 

loads or restraints. The beam-column axis moves to a new, deformed position. 

Displacement distribution describes the shape of the function of the displacement 

components along the beam-column axis. Displacement distribution for the 

displacement components perpendicular to the beam-column axis are called deflection 

curves. To determine the exact shape and the internal forces, it is necessary to integrate 

the corresponding differential equations that link the given actions with dispacement 

required. 

 The behavior of the battened and laced built-up beam-columns with sway and bow 

initial imperfections under combination of different external actions with various 

boundary conditions is investigated because the current Eurocode [1] give the rules only 
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for limited cases. Another reasons why the built-up columns are investigated are the 

facts that the published numerical examples: are not complete; contain incorrect 

verification of out-of-plane buckling resistance of the column under combination of the 

axial and horizontal forces, do not solve built-up columns under combination of axial 

force and biaxial bending; do not solve built-up columns made from aluminum alloys.  

2. Differential equations for straight uniform beam-column  

under in-plane loading 

2.1. Non-linear differential equation of the large elastic displacements theory  

 Behavior of the column under axial compression force F with the large elastic 

dispacements may be described by the following non-linear differential equation: 

 𝜅(𝑥) = −
𝑤″(𝑥)

{1+[𝑤′(𝑥)]2}
3
2

, 𝑀(𝑥) = 𝐸𝐼𝜅(𝑥) , 𝐸𝐼
𝑤″(𝑥)

{1+[𝑤′(𝑥)]2}
3
2

= −𝑀(𝑥),  (1) 

where EI is the bending stiffness; M is the bending moment; w is the deflection and κ is 

the curvature. For the column with the length L, the bottom end (x = 0) fixed and the 

upper end (x = L) free the bending moment is 

𝑀(𝑥) = −𝐹[𝑤𝐿 − 𝑤(𝑥)]. (2) 

 The solution of the non-linear Eq. (1) leads to the solution of the Eq. (3) enabling the 

calculation of the displacement w(x) also for the axial force F greater than the critical 

force Fcr. The following equation contains complete elliptic integral of the first kind. It 

is called complete if the upper bound equals π/2. The quantity φ is called amplitude of 

elliptic integral and )sin( is called module of elliptic integral 

∫
d𝜙

√1−[sin(𝜙)]2[sin(𝜗)]2
−

𝜋

2
√

𝐹

𝐹𝑐𝑟

𝜋

2
0

= 0.  (3) 

 The solution of Eq. (3) may be performed with Computer Algebra System (CAS). In 

the past it was necessary to use special tables of elliptic integrals. For F/Fcr=1.01 the 

solution of (3) gives the value  = 8.074. The relative horizontal dispacement of the 

column top wL/L may be then calculated as follows: 

𝑤𝐿

𝐿
= 2 sin( 𝜗)

2

𝜋
√

𝐹𝑐𝑟

𝐹
= 0.178. (4) 

 The curvature κ in (1) may be for building and civil engineering structures 

approximated by (5) first part because 1+(w`)2 ≈ 1.000. Designers in the practice 

therefore work with the differential Eq. (5) second part describing behavior of the beam 

with the small elastic dispacement 
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𝜅(𝑥) ≈ −𝑤″(𝑥),  𝐸𝐼𝑤″(𝑥) = −𝑀(𝑥). (5) 

 The procedure using (1) is sometimes called the theory of the third order, what is not 

very convenient. In this theory non-linearity of static expressions and geometrical 

equations are utilized and the functions cos(φ), sin(φ) and tan(φ) are not 

approximated by the values 1, φ respectively, as it is supposed in the theory of the 

second order. The theory of large displacements (theory of the third order) may be 

necessary to perform when analyzing very flexible systems, e.g. cable-net structures.  

2.2. Differential equation of the small elastic displacements theory with effect of shear 

forces  

 In the second order theory it is supposed: an equilibrium is fulfilled on the due 

loading deformed structure; the geometrical expressions are linearized (6); the elasticity 

expressions, e.g. (7), are linear; and the approximations (8) are accepted, 

𝜅(𝑥) = −
𝑤″(𝑥)

{1+[𝑤′(𝑥)]2}
3
2

≈ −𝑤″(𝑥), 𝜀𝑥 = 𝑢′(𝑥) +
1

2
{[𝑢′(𝑥)]2 + [𝑤′(𝑥)]2} ≈ 𝑢′(𝑥),(6) 

𝑀(𝑥) = 𝐸𝐼𝜅(𝑥), (7) 

cos(𝜑)  ≈  1, sin(𝜑)  ≈  𝜑, tan(𝜑)  ≈  𝜑. (8) 

 Differential equation of the small elastic displacements theory with effect of the 

shear forces is: 

𝑤″(𝑥) = −𝜅(𝑥) + 𝛾𝑣
′(𝑥), 𝑤″(𝑥) = −

𝑀(𝑥)

𝐸𝐼
+

𝑉′(𝑥)

𝐺𝐴𝑉
, (9) 

where GAV is the shear stiffness; V is the shear force and γv is the shear strain. 

Compared with (5) the quantity w   in (9) is increased due to the effect of the shear 

forces. The relevant shear areas are defined by the formulae 

𝐴Vz =
𝐼𝑦

2

∫ [
𝑆𝑦(𝑠)

𝑡(𝑠)
]
2

d𝐴𝐴

, 𝐴Vy =
𝐼𝑧

2

∫ [
𝑆𝑧(𝑠)

𝑡(𝑠)
]
2

d𝐴𝐴

.  (10) 

2.3. General differential equation of the small elastic dispacement theory 

 The above differential equations of the second order may be written in the form of 

the differential equations of the fourth order (12). The following one in the most general 

form is frequently used in engineering practice for a lot of various problems: beams 

with shear stiffness GAV or without the effect of shear forces (GAV = ∞ kN); beams with 

the transverse loading (e.g. q) without or with axial tension force (N is positive); beams 

with the transverse loading (e.g. q) with or without axial compression force (N is 

negative); eventually beams on the elastic foundation (kf ≠ 0 kNm-2). Thanks to the 
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analogies of different differential equations of the various problems this type of 

differential equation (11) may be used also for the special problems of mixed, warping 

or uniform (St. Venant) torsion, distortion, pipelines under earth pressure or cylindrical 

shells under rotational symmetrical loading,  

𝑤𝐼𝑉(𝑥, 𝑡) −

𝑁

𝐸𝐼
+

𝐸𝐼

𝐺𝐴𝑣

𝑘𝑓

𝐸𝐼

1+
𝑁

𝐸𝐼

𝐸𝐼

𝐺𝐴𝑉

𝑤″(𝑥, 𝑡) +

𝑘𝑓

𝐸𝐼

1+
𝑁

𝐸𝐼

𝐸𝐼

𝐺𝐴𝑉

𝑤(𝑥, 𝑡) =
𝑞(𝑥)

𝐸𝐼

1+
𝑁

𝐸𝐼

𝐸𝐼

𝐺𝐴𝑉

, (11) 

where kf [kNm-2] is the modulus of the foundation; t [s] is the time. With dimensionless 

quantities: 

  𝜉 =
𝑥

𝐿
, 𝜀2 =

𝑁

𝐸𝐼
𝐿2, 𝜅 =

𝐸𝐼

𝐺𝐴𝑉

1

𝐿2 , 𝜌2 =
𝑘𝑓

𝐸𝐼
𝐿4, 𝜍 =

1

2

𝜀2+𝜅𝜌2

1+𝜅𝜌2 , 𝜂 = √|
𝜌2

1+𝜅𝜌2| . (12) 

Eq. (11) may be rewritten in the following forms (13) or (14): 

  𝑣𝐼𝑉(𝜉, 𝑡) −
𝜀2+𝜅𝜌2

1+𝜅𝜀2 𝑣″(𝜉, 𝑡) +
𝜌2

1+𝜅𝜀2 𝑣(𝜉, 𝑡) =
1

1+𝜅𝜀2

𝑞(𝜉)

𝐸𝐼
𝐿4, (13) 

𝑣𝐼𝑉(𝜉, 𝑡) − 2𝜍𝑣″(𝜉, 𝑡) + sign(𝜌2)𝜂2𝑣(𝜉, 𝑡) =
1

1+𝜅𝜀2

𝑞(𝜉)

𝐸𝐼
𝐿4. (14) 

2.4 Differential equation for the bending moment  

 In the case of stability problems and similar issues, it is no longer possible to 

consider all displacement components as small, and the equilibrium conditions must be 

formulated for the deformed structural system (the second-order theory). The 

superposition law no longer applies to these problems. Similarly, the superposition law 

does not apply to problems with material non-linearity (e.g. the elastic-plastic and rigid-

plastic systems).  

 The differential equation of the beam with local bow initial imperfection under 

transverse loadings (e.g. q) and compression axial force N has for the bending moment 

M the form [2]: 

𝑀″(𝜉) + 𝜀𝑣
2𝑀(𝜉) = −𝛾[𝑞(𝜉)𝐿2 + 8𝑁𝑒0 + 𝑁𝐿2𝜅𝑒], (15) 

where e0 is the amplitude of the local bow initial imperfection in the form of the 

quadratic parable (very similar to sinus) and κe is the given curvature, e.g. from the 

change of the temperature. The new dimensionless parameters are the beam shear factor 

γ and the beam factor εV , which are used in the second-order analysis. In the case of the 

first-order theory ε = 0. If the effect of the shear forces is negligible γ = 1 because the 

shear stiffness Sv = GAV → ∞ kN:   

𝛾 =
1

1−
𝑁

𝑆𝑣

, 𝜀𝑣 = 𝐿√
𝛾𝑁

𝐸𝐼
= √𝛾𝜀. (16) 



  5 

 It is supposed that the normal force N and the shear stiffness Sv = GAV are constants.  

3. The methods for calculation of internal forces and displacements 

 There are many computer programs, which may be used for calculation of internal 

forces and displacements. Nevertheless, for explanations of the mutual relations 

between quantities, for creating and applying differential equations, for understanding 

and education of load-bearing behavior and for verification of computer results, the 

following methods and procedures may be convenient and helpful. They are based on: 

virtual work; iterative calculation; equivalent horizontal forces; amplification factors; 

solution of differential equations.  

 The principle of virtual work and iterative calculation methods will not be discussed 

in this paper. 

3.1. Equivalent horizontal forces 

 Appropriate allowances should be incorporated in the structural analysis to cover the 

effects of imperfections, including residual stresses and geometrical imperfections, 

which can be a lack of verticality, a lack of straightness, a lack of flatness and a lack of 

fit eccentricities present in joints of the unloaded structure. According to [1], [2] 

equivalent geometric imperfections should be used with values, which reflect the 

possible effects of all type of imperfections unless these effects are included in the 

resistance formulae for column design. The following imperfections should be taken 

into account: global imperfections for frames and bracing systems; local imperfections 

for individual columns.  

 The global initial sway imperfections and the local initial bow imperfection 

amplitude may be determined according to the clause 5.3.2, Figure 5.4 in [1].  

3.2. Amplification factors, critical force and shear stiffness 

 The internal forces and moments may generally be determined using either: first-

order analysis, using the initial geometry of the structure or second-order analysis, 

taking into account the influence of the displacement of the structure. The effects of the 

deformed geometry (second-order effects) should be considered if they increase the 

action effects significantly or modify significantly the structural behavior. First order 

analysis may be used for the structure, if the increase of the relevant internal forces or 

moments or any other change of structural behavior caused displacements can be 

neglected. This condition may be assumed to be fulfilled, if the following criterion is 

satisfied: 

  𝛼𝑐𝑟 =
𝐹𝑐𝑟

𝐹𝐸𝑑
≥ 10, for elastic analysis,

𝛼𝑐𝑟 =
𝐹𝑐𝑟

𝐹𝐸𝑑
≥ 15, for plastic analysis,

 (17) 
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where αcr is the factor by which the design loading would have to be increased to cause 

elastic instability in a global mode; FEd is the design loading on the structure and Fcr is 

the elastic critical buckling load for global instability mode based on initial elastic 

stiffness.  

 The second order effects may be calculated by using an analysis appropriate to the 

structure (including step-by-step or other iterative procedures). For frames where the 

first sway buckling mode is predominant first order elastic analysis should be carried 

out with subsequent amplification of relevant action effects (bending moments, shear 

forces, displacements) by appropriate amplification factor, 

𝑘𝐼𝐼 =
1

1−
1

𝛼𝑐𝑟

=
𝛼𝑐𝑟

𝛼𝑐𝑟−1
. (18) 

 The quantities of the second order theory may by calculated by amplifying quantities 

of the first order theory by amplifying factor kII,  

𝑀𝐼𝐼 = 𝑘𝐼𝐼𝑀𝐼 , 𝑉𝐼𝐼 = 𝑘𝐼𝐼𝑉𝐼 , 𝑤𝐼𝐼 = 𝑘𝐼𝐼𝑤𝐼 .  (19) 

 The formulae (19) give: exact values of MII, VII, wII if the shape of displacement due 

to loading obtained in the first order analysis is affine to the shape of the buckling 

mode; approximate values of MII, VII, wII, if the similarity of the shape of displacement 

due to loading obtained in the first order analysis with the shape of the buckling mode is 

at least quantitative; otherwise the formulae must not be used.  

 The exactness of the approximate values of MII, VII, wII may be increased by the 

well-known Dischinger’s factors δ and δw 

𝑀𝐼𝐼 ≈
1+𝛿

1−
1

𝛼𝑐𝑟

𝑀𝐼 , 𝑉𝐼𝐼 ≈
1+𝛿

1−
1

𝛼𝑐𝑟

𝑉𝐼 , 𝑤𝐼𝐼 ≈
1+𝛿𝑤

1−
1

𝛼𝑐𝑟

𝑤𝐼 . (20) 

 The critical force Ncr,v should be calculated according to Eq. (22), if the effect of the 

shear forces is taken into account: 

𝑘𝐼𝐼,𝑣 =
1

1−
1

𝛼𝑐𝑟,𝑣

=
𝛼𝑐𝑟,𝑣

𝛼𝑐𝑟,𝑣−1
, 𝛼𝑐𝑟,𝑣 =

𝐹𝑐𝑟,𝑣

𝐹𝐸𝑑
, (21) 

  
1

𝑁𝑐𝑟,𝑣
=

1

𝑁𝑐𝑟
+

1

𝑆𝑣
, 𝑁𝑐𝑟,𝑣 =

𝑁𝑐𝑟

1+
𝑁𝑐𝑟
𝑆𝑣

. (22) 

 The shear stiffness for the individual single column is Sv = GAV. The relevant shear 

areas AV are defined in (10). The shear stiffness GAV of the individual single columns 

relatively large and therefore the influence of shear forces is usually neglected. But its 

influence is necessary to take into account in the cases with extremely large tension 

axial forces. This is the case of warping torsion of thin-walled closed profiles where the 

large torsional stiffness GIt plays in analogy an extremely large fictitious axial tension 

force.  
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 The following shear stiffness for the battened and laced built-up members is defined 

in Eurocode [1]. The shear stiffness of battened built-up members is  

𝑆𝑣 =
24𝐸𝐼𝑐ℎ,𝑧

𝑎2[1+
2𝐸𝐼𝑐ℎ,𝑧

𝑛𝑏𝐼𝑏

ℎ0
𝑎

]
,  𝑆𝑣,𝑚𝑎𝑥

2𝜋2𝐸𝐼𝑐ℎ,𝑧

𝑎2 , (23) 

where EIch,z is the bending stiffness of the chord; nb and Ib are the number of battens in a 

panel and the second moment of the batten, respectively; h0 is the distance of the 

centers of gravities of the chords and a is the distance of the battens. The shear stiffness 

of lacings of built-up columns is given in Figure 6.9 [1]. 

 The shear stiffness of the laced built-up columns is usually greater than the shear 

stiffness of the battened built-up columns due to larger value of the distance of the 

centers of gravities of the chords. 

 The critical force of the flexural buckling may be calculated from the basic formula 

𝑁𝑐𝑟 =
𝜋2𝐸𝐼

𝐿𝑐𝑟
2 , 𝐿𝑐𝑟 = 𝑘𝐿, (24) 

where Lcr is the buckling length. The value of k, the buckling length factor for columns, 

should be assessed from knowledge of the end conditions. Unless a more accurate 

analysis is carried out, the value of k from Table 1 may be used.  

Table 1. Buckling length factor k* compared with theoretical k values 

End conditions: a) rotation; b) displacement Scheme k* k 

1. a): clamped-clamped; b): fixed-fixed  0.7 0.5 

2. a): clamped-hinge; b): fixed-fixed  0.85 0.7 

3. a): hinge-hinge; b: fixed-fixed  1.0 1.0 

4. a): clamped-clamped; displacement: fixed-free 
 

1.25 1.0 

5. a): clamped-partially restrained; b): fixed-free 
 

1.5 ?1) 

6. a): clamped-free; b): fixed-fixed (cantilever)  2.1 2.0 

7. a): hinge-elastically clamped; b): fixed-free  ≥ 2.11) 2.0 

 1) Depends on stiffness at the clamped end 

 Buckling length factors k* are increased for columns with fixed end(s) in 

comparison with theoretical values k. The comparisons of k* values with theoretical 

ones k are presented in Table 1. 

 In the most European countries are used the theoretical k values in the design 

practice but for example in UK and Australia are used the increased k* values. 

Eurocode [1] uses the theoretical k values.  

 The critical force Ncr,v should be calculated according to Eq. : 

𝑁𝑐𝑟,𝑣 < 𝑁𝑐𝑟 , 𝐿𝑐𝑟,𝑣 > 𝐿𝑐𝑟 .   (25) 
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3.3. Solutions of differential equation by Rubin  

 Rubin published in [2] the formulae for calculation of beam bending moments M(x), 

shear forces V(x), displacement w(x) and rotation φ(x). There are formulae there for 12 

various actions, including effect of global and local initial imperfections, non-uniform 

temperature and unit discontinuities and dispacements. These formulae are applicable 

for 4 different boundary conditions: 

Case 1: rotation and translation are fixed at both ends (Item 1 in Table 1 is called 

Euler’s case 4);  

Case 2: rotation and translation are fixed at one end, rotation is free and translation 

is fixed at other end (Item 2 in Table 1 is called Euler’s case 3);  

Case 3: rotation is free and translation is fixed at both ends (Item 3 in Table 1 is 

called Euler’s case 2);   

Case 4: rotation and translation are fixed at one end, both are free at other end (Item 

6 in Table I is called Euler’s case 1).  

 Rubin’s formulae give exact values for both theories: theory of the first or the 

second order and they take or do not take into account the influence of shear forces. 

These formulae are very convenient for performing large parametrical studies.  

 If the column with global sway initial imperfection Φ has the boundary conditions 

defined by the case 6 given in Table 1 and it is loaded by the combination of external 

axial compression force NEd located in the point xN = L m (ξ N = xN/L = 1.0); horizontal 

force HEd located in interval 0 m ≤ xH ≤ L m (0 ≤ ξ H = xH/L ≤ 1.0) and bending 

moment MEd,e located in 0 m ≤ xM ≤ L m (0 ≤ ξ M = xM/L ≤ 1.0), the following 

formulae may be used for the calculation of the bending moment and shear force. 

 The bending moment due to horizontal force HEd,tot for ξ ≤ ξH is: 

𝑀𝐸𝑑
𝐻 (𝜉) = {

𝛾 sin[(1−𝜉𝐻)𝜀] sin(𝜉𝜀)

𝜀 𝑠𝑖𝑛(𝜀)
−

−
𝛾 sin[(1−𝜉)𝜀]

sin(𝜀)

sin(𝜀)−sin[(1−𝜉𝐻)𝜀]

𝜀 cos(𝜀)

} 𝐿𝐻𝐸𝑑,𝑡𝑜𝑡 . (26) 

The bending moment due to horizontal force HEd,tot for ξ > ξH is: 

𝑀𝐸𝑑
𝐻 (𝜉) = {

𝛾 sin(𝜉𝐻𝜀) sin[(1−𝜉)𝜀]

𝜀 sin(𝜀)
−

−
𝛾 sin[(1−𝜉)𝜀]

sin(𝜀)

sin(𝜀)−sin[(1−𝜉𝐻)𝜀]

𝜀 cos(𝜀)

} 𝐿𝐻𝐸𝑑,𝑡𝑜𝑡 , (27) 

𝐻𝐸𝑑,𝑡𝑜𝑡 = 𝐻𝐸𝑑 + 𝑁𝐸𝑑𝛷. (28) 

 The bending moment due to external bending moment MEd,e for ξ ≤ ξM is:  

𝑀𝐸𝑑
𝑀 (𝜉) = {

−
cos[(1−𝜉𝑀)𝜀] sin(𝜉𝜀)

sin(𝜀)
−

−
sin[(1−𝜉)𝜀]

sin(𝜀)

cos[(1−𝜉𝑀)𝜀]

cos(𝜀)

} 𝑀𝐸𝑑,𝑒 . (29) 
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The bending moment due to external bending moment MEd,e for ξ  > ξM is:  

𝑀𝐸𝑑
𝑀 (𝜉) = {

cos(𝜉𝑀𝜀) sin[(1−𝜉)𝜀]

sin(𝜀)
−

−
sin[(1−𝜉)𝜀]

sin(𝜀)

cos[(1−𝜉𝑀)𝜀]

cos(𝜀)

} 𝑀𝐸𝑑,𝑒 ,   (30) 

𝑀𝐸𝑑(𝜉) = 𝑀𝐸𝑑
𝐻 (𝜉) + 𝑀𝐸𝑑

𝑀 (𝜉). (31) 

 If the column with local bow initial imperfection has the boundary conditions 

defined by the case 3 given in Table I and it is loaded by the combination of external 

axial compression force NEd located in the point xN = L m (ξ N = xN/L = 1.0); horizontal 

force HEd located in interval 0 m ≤ xH ≤ L m (0 ≤ ξH = xH/L ≤ 1.0); bending moment 

MEd,e,1 located in interval 0 m ≤ xM1 ≤ L m (0 ≤ ξM1 = xM1/L ≤ 1.0) and bending 

moment MEd,e,2 located in the inetrval 0 m ≤ xM2 ≤ L m  (0 ≤ ξM2 = xM2/L ≤ 1.0), the 

following formulae may be used for the calculation of the bending moment and shear 

force distributions. 

 The bending moment due to horizontal force HEd for ξ ≤ ξH is: 

𝑀𝐸𝑑
𝐻 (𝜉) = {

𝛾 sin[(1−𝜉𝐻)𝜀] sin(𝜉𝜀)

𝜀 sin(𝜀)
} 𝐿𝐻𝐸𝑑 . (32) 

The bending moment due to horizontal force HEd for ξ > ξH is: 

𝑀𝐸𝑑
𝐻 (𝜉) = {

𝛾 sin(𝜉𝐻𝜀) sin[(1−𝜉)𝜀]

𝜀 sin(𝜀)
} 𝐿𝐻𝐸𝑑 . (33) 

The bending moment due to external bending moment MEd,e,1 for ξ ≤ ξM1 is:  

𝑀𝐸𝑑
𝑀1(𝜉) = {

−
cos[(1−𝜉𝑀1)𝜀] sin(𝜉𝜀)

sin(𝜀)
−

−
sin[(1−𝜉)𝜀]

sin(𝜀)

cos[(1−𝜉𝑀1)𝜀]

cos(𝜀)

} 𝑀𝐸𝑑,𝑒,1 .  (34) 

The bending moment due to external bending moment MEd,e,1 for ξ > ξM1 is:  

𝑀𝐸𝑑
𝑀1(𝜉) = {

cos[(𝜉𝑀1𝜀)] sin[(1−𝜉)𝜀]

sin(𝜀)
−

−
sin[(1−𝜉)𝜀]

sin(𝜀)

cos[(1−𝜉𝑀1)𝜀]

cos(𝜀)

} 𝑀𝐸𝑑,𝑒,1. (35) 

The bending moment due to external bending moment MEd,e,2 for ξ < ξM2 is:  

𝑀𝐸𝑑
𝑀2(𝜉) = {

−
cos[(1−𝜉𝑀2)𝜀] sin(𝜉𝜀)

sin(𝜀)
−

−
sin[(1−𝜉)𝜀]

sin(𝜀)

cos[(1−𝜉𝑀2)𝜀]

cos(𝜀)

} 𝑀𝐸𝑑,𝑒,2. (36) 
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The bending moment due to external bending moment MEd,e,2 at the bottom end for ξ ≥ 
ξM2 is:  

𝑀𝐸𝑑
𝑀2(𝜉) = {

cos[(𝜉𝑀2𝜀)] sin[(1−𝜉)𝜀]

sin(𝜀)
−

−
sin[(1−𝜉)𝜀]

sin(𝜀)

cos[(1−𝜉𝑀2)𝜀]

cos(𝜀)

} 𝑀𝐸𝑑,𝑒,2. (37) 

The bending moment due to the local bow initial imperfection with the amplitude e0 is: 

𝑀𝐸𝑑
𝑒0 (𝜉) =

𝛾

𝜀2 {
cos[(0.5−𝜉)𝜀]

cos(0.5𝜀)
− 1} (−8𝑁𝐸𝑑𝑒0). (38) 

 The shape of the local bow initial imperfection which well approximates the shape 

of buckling mode may be sinus (see (39) first row) or parable of the second order (see 

(39) second row),  

𝑤0(𝜉) = 𝑒0 sin( 𝜋𝜉),

𝑤0(𝜉) = 𝑒04(𝜉 − 𝜉2),
0 ≤ 𝜉 =

𝑥

𝐿
≤ 1, (39) 

Eq. (38) supposes that initial imperfection has the shape of parable of the second order.  

3. Conclusions 

 The formulae for calculation of internal forces of the column with initial 

imperfection take into account the shear stiffness Sv of battened or laced built-up 

columns by using parameter γ. They allow performing parametrical study with the first 

or second order theory. The applications of the formulae (26)-(31) in numerical 

examples, which are part of results of the large parametrical study, may be found in Part 

II of the paper. 
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Table 1 

 

End conditions: a) rotation; b) displacement Scheme k* k 

1. a): clamped-clamped; b): fixed-fixed  0.7 0.5 

2. a): clamped-hinge; b): fixed-fixed  0.85 0.7 

3. a): hinge-hinge; b: fixed-fixed  1.0 1.0 

4. a): clamped-clamped; displacement: fixed-free 
 

1.25 1.0 

5. a): clamped-partially restrained; b): fixed-free 
 

1.5 ?1) 

6. a): clamped-free; b): fixed-fixed (cantilever)  2.1 2.0 

7. a): hinge-elastically clamped; b): fixed-free  ≥ 2.11) 2.0 

 1) Depends on stiffness at the clamped end 
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Legend to table  

 

Table 1. Buckling length factor k* compared with k  values 

 

 


