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Abstract: The aim of this paper is to derive some common best proximity point results in partial metric
spaces defining a new class of symmetric mappings, which is a generalization of cyclic φ-contraction
mappings. With the help of these symmetric mappings, the characterization of completeness of
metric spaces given by Cobzas (2016) is extended here for partial metric spaces. The existence of a
solution to the Fredholm integral equation is also obtained here via a fixed-point formulation for
such mappings.
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1. Introduction

The study of best proximity point theory has attracted the attention of several re-
searchers over the last few decades. Extensive study is continuing in this area by different
researchers with a view to applying the proximity point theory in various practical fields,
viz., variational inequality problems, dynamical programming problems, solutions to dif-
ferential and integral equations, matrix equations, etc. Recently, in [1], Isik et al. discussed
the φ-best proximity point for (F, φ)-proximal contraction mappings demonstrating its ap-
plication in a variational inequality. In [2], Usurelu et al. discussed the best proximity point
of (EP)-operators, presenting a qualitative analysis with solid computational numerical
simulation. All such recent developments suggest the significant importance of the study
of proximity point analysis in different spaces.

The origin of the concept of proximity theory goes back to the classical best approxi-
mation theorem introduced by Fan [3] in 1969. After that, many extensions of Fan’s results
were derived in different directions [2,4,5]. In 2011, Basha et al. [6] showed the existence of
common best proximity points in metric spaces. Various interesting works on common
fixed point and common best proximity point theory in metric spaces can be found in the
literature [7–9].

Motivated by these works, in this paper, we define a new class of mappings that are
termed T-GKT cyclic φ-contraction mappings. We see that this new class of mappings is
also symmetric in nature. Using such mappings, we establish some common best proximity
point results in partial metric spaces and show some applications. The paper is arranged in
the following sections.

In Section 2, the preliminary definitions and results are presented from the literature to
obtain main results. In Section 3, the best proximity point results of the above-mentioned newly
defined mappings are established in both a partial metric space and a metric space. In Section 4,
one of the obtained results is employed to show the characterization of completeness of metric
space and another result is applied to show the existence of a solution to the Fredholm integral
equation. Finally, a conclusion is drawn in Section 5.
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2. Preliminaries and Definitions

In this section, we present the basic definitions and results that are required to obtain
the main results.

Definition 1 ([10]). Let X be a non-empty set and p : X× X −→ [0, ∞) be a mapping such that
for all x, y, z ∈ X

(P1) p(x, x) = p(y, y) = p(x, y) if and only if x = y,
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

Then p is said to be a partial metric and the pair (X, p) is called a partial metric space.

For example, on the setR of real numbers, p1(x, y) = 1+ |x− y|, p2(x, y) = max{|x|, |y|},

p3(x, y) =

{
1, x = y
l > 1, x 6= y

; for all x, y ∈ X, are partial metrics.

Each partial metric p on a non-empty set X generates a T0-topology λp on X with the
family of open p-balls,

{Bp(x, ε) : x ∈ X : ε > 0},

where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}, for all x ∈ X and ε > 0, as a base of
λp [10,11].

Remark 1. In a partial metric space (X, p) the limit of a sequence need not be unique. However, if
{xn} and {yn} are sequences in a partial metric space (X, p) such that xn → x and yn → y then
p(xn, yn) need not converge to p(x, y), i.e., p need not be continuous [11].

Definition 2 ([10]). In a partial metric space (X, p),

(i) a sequence {xn} is said to be convergent to a point x in X if and only if limn→∞ p(xn, x) =
p(x, x),

(ii) a sequence {xn} is called a Cauchy sequence if and only if limn,m→∞ p(xn, xm) exists and
is finite.

A partial metric space (X, p) is called complete if and only if every Cauchy sequence {xn} in
X is convergent, with respect to the topology λp, to a point x ∈ X such that

p(x, x) = lim
n,m→∞

p(xn, xm).

Definition 3 ([10]). For a partial metric space (X, p), a mapping dp : X × X −→ [0, ∞) de-
fined by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y), for all x, y ∈ X,

is a metric and it is called the induced metric.

Lemma 1 ([10]). For a partial metric space (X, p),

(i) a sequence {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the
metric space (X, dp),

(ii) (X, p) is complete if and only if (X, dp) is complete.

Given two non-empty subsets A and B of a partial metric space (X, p), Zhang et al. [12]
defined the distance p between A and B as

p(A, B) = in f {p(x, y) : x ∈ A, y ∈ B}.

Definition 4 ([12]). Let A, B be two subsets of a partial metric space (X, p) and consider a
mapping S : A −→ B. A point x ∈ A is called a best proximity point of S if p(x, Sx) = p(A, B).



Symmetry 2021, 13, 1098 3 of 13

Example 1. Consider the partial metric space (X, p) with X = R+ and p(x, y) = max{x, y}, for
all x, y ∈ X . For A = [2, 4] and B = [0, 1], define S : A −→ B by

S(x) =
x− 2

2
.

Then, p(2, S(2)) = p(2, 0) = 2 = p(A, B), i.e., 2 is a best proximity point of S in A.

In 2011, Basha et al. [6] discussed common best proximity points in a metric space.
Later in 2014, Zhang etal. [12] studied best proximity points in a partial metric space. In a
similar manner, here we define the common best proximity point in a partial metric space
as follows.

Definition 5. Let A and B be two non-empty subsets of a partial metric space (X, p). For two
mappings S,T : A −→ B, a point x ∈ A is said to be a common best proximity point of S and T if

p(x, Tx) = p(x, Sx) = p(A, B).

Example 2. Consider two subsets A = [1, 2], B = [0, 1
2 ] of X = R+ with partial metric

p(x, y) = max{x, y}. Define S, T : A −→ B by

Sx =
1

1 + x
and Tx =

1
1 + 2x

for all x ∈ A.

Then, p(1, S1) = p(1, T1) = p(A, B) = 1, i.e., 1 is a common best proximity point of S, T.

Definition 6 ([13]). A mapping S : A ∪ B −→ A ∪ B is cyclic if S(A) ⊆ B, S(B) ⊆ A.

Example 3. Consider the partial metric space (X, p) with X = R2 and the partial metric

p((x1, x2), (y1, y2)) = 1 + max{|x1 − y1|, |x2 − y2|}, for all (x1, x2) = (y1, y2) ∈ X.

Let A, B be two non-empty subsets of X such that A = {(x, 1) : 0 ≤ x ≤ 1} and
B = {(x,−1) : 0 ≤ x ≤ 1}. Suppose S : A ∪ B −→ A ∪ B be defined by

S(x1, x2) =

{
(x1, 1), (x1, x2) ∈ B;
(x1,−1), (x1, x2) ∈ A.

Then S is a cyclic mapping on A ∪ B.

3. Main Results

In [7], Basha et al. defined generalized cyclic contraction and showed the existence of
common best proximity points in a metric space. Generalizing this notion, we introduce
the following type of mappings in a partial metric space.

Definition 7. Let A and B be two-non empty subsets of a partial metric space (X, p) and φ :
[0, ∞) −→ [0, ∞) be a strictly increasing continuous mapping. For a self-mapping T on A ∪ B,
a cyclic mapping S : A ∪ B −→ A ∪ B is said to be a T-generalized Kannan-type (GKT) cyclic
φ-contraction on A ∪ B with respect to p if the following conditions are satisfied:

(T1) p(Tx, Ty) ≥ φ(p(Tx, Ty))− φ(p(A, B)) ≥ 0,
(T2) p(Sx, Sy) ≤ (1−λ)[p(Tx, Ty)+φ(p(A, B))−φ(p(Tx, Ty))] + λ′

2 [p(Tx, Sx)+ p(Ty, Sy)];

for all x ∈ A, y ∈ B and for some λ, λ′ ∈ [0, 1).

Remark 2. If T = I, then S reduces to a generalized Kannan-type (GKT) cyclic φ-contraction
mapping, which was defined in [14]. Moreover, for T = I and λ′ = 0, this mapping reduces
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to a Banach contraction mapping. In addition, every cyclic Kannan contraction mapping is a
T-generalized Kannan-type (GKT) cyclic φ-contraction taking T and φ as the identity mappings.
Considering contraction mappings, there are many interesting results in the literature with different
applications. In [15], Mlaiki et al. established some fixed-point results of the contraction mappings
in a C∗-algebra valued partial b-metric space and applied these results to show the existence
of a solution to the Fredholm integral equation. Since our newly defined mapping is a type of
generalized contraction mapping, in the context of [15], fixed-point and proximity-point results can
be investigated for mappings as defined in 7 in the case of C∗-algebra valued partial metric as well
as b-metric spaces with different practical applications.

Remark 3. As another remark, we also emphasize the symmetric nature of the above defined type
of mappings on the set A ∪ B.

Example 4. Consider the partial metric space (X, p) with X = R+ and the partial metric
p(x, y) = max{x, y}. Let φ(x) = x

2 , A = [1, 2], and B = [3, 5]. The mappings S, T : A ∪ B −→
A ∪ B are defined by

Sx =

{
2x+5

2 , x ∈ [1, 2];
x−1

2 , x ∈ [3, 5],
and Tx =

{
5, x ∈ [1, 2];
2, x ∈ [3, 5].

Then S is a T-GKT cyclic φ-contraction for λ = 3
10 and λ′ = 3

5 .

Example 5. Consider X = {0, 1, 2, 3, 4} with p : X× X −→ [0, ∞) defined by:

p(0, 0) = p(1, 1) = p(2, 2) = p(3, 3) = p(4, 4) = 0,

p(1, 2) = p(2, 1) =
1

15
, p(1, 3) = p(3, 1) =

1
12

,

p(1, 4) = p(4, 1) =
1

11
, p(3, 4) = p(4, 3) =

1
10

,

p(2, 3) = p(3, 2) =
1

14
, p(2, 4) = p(4, 2) =

1
13

,

p(0, 1) = p(1, 0) =
1
9

, p(0, 2) = p(2, 0) =
1
8

,

p(0, 3) = p(3, 0) =
1
7

, p(0, 4) = p(4, 0) =
1
6

.

Let A = {0, 1, 3} and B = {2, 4}. Define S, T : A ∪ B −→ A ∪ B by

Sx =

{
2, x ∈ A;
1, x ∈ B,

and

Tx =

{
4, x ∈ A;
0, x ∈ B.

Then S is a T-GKT cyclic φ-contraction for λ = 1
5 and λ′ = 3

5 with φ(x) = 1 + x. Considering a
metric space (X, d), we can define the following version of T-GKT cyclic φ-contraction with respect
to d.

Definition 8. Let A and B be two non-empty subsets of a metric space (X, d) and φ : [0, ∞) −→
[0, ∞) be a strictly increasing continuous mapping. For a self-mapping T on A ∪ B, a cyclic
mapping S : A ∪ B −→ A ∪ B is said to be a T-GKT cyclic φ-contraction on A ∪ B with respect to
d if the following conditions are satisfied :

(T1) d(Tx, Ty) ≥ φ(d(Tx, Ty))− φ(d(A, B)) ≥ 0,
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(T2) d(Sx, Sy) ≤ (1− λ)[d(Tx, Ty) + φ(d(A, B))− φ(d(Tx, Ty))]
+ λ′

2 [d(Tx, Sx) + d(Ty, Sy)]; for all x ∈ A, y ∈ B and for some λ, λ′ ∈ [0, 1).

Example 6. Consider X = R with d(x, y) = |x− y| for all x, y ∈ X. Let φ(x) = x2

1+x , A = [1, 3]
and B = [4, 6]. Let the mappings S, T : A ∪ B −→ A ∪ B be defined by

Sx =

{
4, x ∈ A;
3, x ∈ B,

and Tx =

{
6, x ∈ A;
1, x ∈ B.

Then S is a T-GKT cyclic φ-contraction for λ = λ′ = 1
2 .

In all the subsequent results, we consider the partial metric p to be continuous, i.e., if
xn → x and yn → y then p(xn, yn)→ p(x, y).

In the following theorem, we prove the existence of a common best proximity point
for a T-GKT cyclic φ-contraction in a partial metric space under adequate conditions. Here
we consider that S and T commute, i.e., STx = TSx for all x ∈ A ∪ B.

Theorem 1. Let (X, p) be a complete partial metric space and A, B be two non-empty subsets of
X with B closed in (X, p). Let T be a self mapping on A ∪ B, φ : [0, ∞) −→ [0, ∞) be a strictly
increasing continuous mapping and S be a T-GKT cyclic φ-contraction mapping on A ∪ B with
respect to p for some λ = λ′ ∈ [0, 1). If B is sequentially compact with respect to the induced
metric dp, and the following conditions are satisfied:

(i) S(A) ⊆ T(A) ⊆ B ,
(ii) S and T commute and T is continuous,

then there exists a common best proximity point of S and T in B.

Proof. From (i), for x0 ∈ A, there exists x1 ∈ A such that

S(x0) = T(x1).

Again, since S(x1) ∈ T(A), there exists x2 ∈ A such that

S(x1) = T(x2).

In this way, we obtain a sequence {xn} in A with

S(xn) = T(xn+1).

Now, B being sequentially compact in (X, dp), there exists a convergent sub-sequence
{Sxnk} of {Sxn} in B. Clearly, {Sxnk} is a Cauchy sequence in (X, dp) and so by Lemma
1(i), {Sxnk} is a Cauchy sequence in (X, p). (X, p) being complete, {Sxnk} converges to
some y ∈ B. Thus Sxnk → y and also Txnk → y as k→ ∞.

By the continuity of T,

TSxnk → Ty and TTxnk → Ty as k→ ∞.

Since S and T commute, we have limk→∞ TSxnk = limk→∞ STxnk .
Now,

p(Sxnk , STxnk ) ≤ (1− λ)[p(Txnk , TTxnk ) + φ(p(A, B))− φ(p(Txnk , TTxnk ))]

+
λ

2
[p(Sxnk , Txnk ) + p(STxnk , TTxnk )],
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i.e.,

(1− λ)φ(p(Txnk , TTxnk )) ≤ (1− λ)[p(Txnk , TTxnk ) + φ(p(A, B))]+
λ

2
[p(Sxnk , Txnk ) + p(TSxnk , TTxnk )]− p(Sxnk , STxnk )

≤ (1− λ)[p(Txnk , TTxnk ) + φ(p(A, B))]− p(Sxnk , TSxnk )+

λ

2
[p(Sxnk , Txnk ) + p(TSxnk , Sxnk ) + p(Sxnk , TTxnk )

− p(Sxnk , Sxnk )].

Taking k → ∞ in the above inequality (since the limit exists by the continuity of p
and φ),

(1− λ) lim
k→∞

φ(p(Txnk , TTxnk )) ≤ (1− λ)[p(y, Ty) + φ(p(A, B))]− p(y, Ty)+

λ

2
[p(y, y) + p(Ty, y) + p(y, Ty)− p(y, y)]

⇒ lim
k→∞

φ(p(Txnk , TTxnk )) ≤ φ(p(A, B)).

Again, φ(p(A, B)) ≤ φ(p(Txnk , TTxnk )).
Therefore, limk→∞ p(Txnk , TTxnk ) = p(y, Ty) = p(A, B).
Using Definition 7 we obtain,

p(Sxnk , Sy) ≤ (1− λ)p(Txnk , Ty) +
λ

2
[p(Sxnk , Txnk ) + p(Sy, Ty)]. (1)

Taking k→ ∞ on both sides of (1) (the existence of the limit is again followed by the
continuity of p),

p(y, Sy) ≤ (1− λ)p(y, Ty) +
λ

2
[p(y, y) + p(Sy, Ty)]

≤ (1− λ)p(A, B) +
λ

2
[p(Ty, y) + p(Sy, y)]

⇒ p(y, Sy) ≤ p(A, B).

Therefore, p(y, Sy) = p(A, B) = p(y, Ty). Hence, y is a common best proximity point
of S and T.

Let us exemplify the above theorem with the following example.

Example 7. Consider the partial metric space (X, p) with X = R2 and the partial metric
p((x, x′), (y, y′)) = 1 + max{|x− y|, |x′ − y′|}. Let φ(x) = x, A = {(0, x) : 0 ≤ x ≤ 1}, and
B = {(2, x) : 0 ≤ x ≤ 1}. Let S, T : A ∪ B −→ A ∪ B be defined as

S((x, y)) =

{
(2, x

2 ), (x, y) ∈ A;
(0, x

2 ), (x, y) ∈ B,
andT((x, y)) =

{
(2, x), (x, y) ∈ A;
(0, x); (x, y) ∈ B.

It can be seen that S is a T-GKT cyclic φ-contraction for λ = λ′ = 0. It can also be seen that
all the conditions of Theorem 1 are satisfied. Therefore, S and T have a common best proximity point,
which is clearly (2, 1) here.

It is easy to see that a similar result also holds in the case of a T-GKT cyclic φ-contraction with
respect to d.

Theorem 2. Let A, B be two non-empty subsets of a metric space (X, d) with B sequentially
compact. Let T be a self-mapping on A ∪ B, φ : [0, ∞) −→ [0, ∞) be a strictly increasing
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continuous mapping and S be a T-GKT cyclic φ-contraction mapping on A ∪ B with respect to d
for some λ = λ′ ∈ [0, 1). If the following conditions are satisfied:

(i) S(A) ⊆ T(A) ⊆ B ,
(ii) S and T commute and T is continuous,

then there exists a common best proximity point of S and T in B.

The continuity property of the mapping T and commutativity of S and T in the above
results can be replaced by the following property, which we term the sequentially proximal
equivalence property ((SPE) property) of S and T with respect to a partial metric p.

(SPE) property: For non-empty closed subsets A and B of a complete partial metric
space (X, p), let, for some x in A and y in B, p(x, y) = p(A, B). If there exists a sequence
{xn} in A with

lim
n→∞

Sxn = y = lim
n→∞

Txn,

and a sequence {yn} in B with

lim
n→∞

Syn = x = lim
n→∞

Tyn,

then p(Sx, x) = p(Tx, x) and p(Sy, y) = p(Ty, y).

Example 8. For X = R with partial metric p(x, y) = 1 + |x− y| for all x, y ∈ X, let A = [1, 2],
B = [−2,−1]. Define S, T : A ∪ B −→ A ∪ B by

S(x) =

{
−x, x ∈ A;
1, x ∈ B,

T(y) =

{−y−3
4 , y ∈ A;
−y, y ∈ B.

It is easily seen that S, T are non-commutative.

Now, p(A, B) = 3. In addition, p(x, y) = 3 such that x ∈ A, y ∈ B implies x = 1 and
y = −1.
For a sequence {xn} in A, where xn = (1 + 1

n ),

Sxn = S(1 +
1
n
) = −(1 + 1

n
) and Txn = T(1 +

1
n
) =
−1− 1

n − 3
4

.

Therefore, limn→∞ Sxn = limn→∞ Txn = −1 = y.

In addition, for a sequence {yn} in B with yn = −(1 + 1
n ),

Syn = S(−(1 + 1
n
)) = 1 and Tyn = T(−(1 + 1

n
)) = 1 +

1
n

.

Therefore, limn→∞ Syn = limn→∞ Tyn = 1 = x.
Now, p(Sx, x) = p(S(1), 1) = 3 and p(Tx, x) = p(T(1), 1) = 3, i.e., p(Sx, x) = p(Tx, x). In
the same way, we obtain, p(Sy, y) = p(Ty, y). Thus, S and T satisfy the (SPE) property with
respect to p.

Theorem 3. Let (X, p) be a complete partial metric space and A, B be two non-empty closed
subsets of (X, p). Let T be a self-mapping on A ∪ B, φ : [0, ∞) −→ [0, ∞) be a strictly increasing
continuous mapping and S be a T-GKT cyclic φ-contraction mapping on A ∪ B with respect to p
for some λ = λ′ ∈ [0, 1). If A, B are sequentially compact with respect to the induced metric dp,
and the following conditions are satisfied:

(i) S(A) ⊆ T(A) ⊆ B and S(B) ⊆ T(B) ⊆ A,
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(ii) S and T satisfy the (SPE) property with respect to p,

then there exists a common best proximity point of S and T.

Proof. For x0 ∈ A, as in Theorem 1, we can show that {Sxnk} is a Cauchy sequence in
(X, p) and so, for some y ∈ B, Sxnk → y and Txnk → y.

Similarly, taking a point y0 ∈ B and constructing the sequence Syn = Tyn+1, for all
n ∈ N, we see that there exists some x ∈ A with Synk −→ x and Tynk −→ x.

Now,
p(Sxnk , Synk ) ≤ (1− λ)[p(Txnk , Tynk ) + φ(p(A, B))− φ(p(Txnk , Tynk ))]+

λ

2
[p(Txnk , Sxnk ) + p(Tynk , Synk )]

i.e., (1− λ)φ(p(Txnk , Tynk )) ≤ (1− λ)[p(Txnk , Tynk ) + φ(p(A, B))]+
λ

2
[p(Txnk , Sxnk ) + p(Tynk , Synk )]− p(Sxnk , Synk ) (2)

Taking the limit as k→ ∞ on both sides of (2),

(1− λ) lim
k→∞

φ(p(Txnk , Tynk )) ≤ (1− λ)[p(x, y) + φ(p(A, B))] +
λ

2
[p(y, y) + p(x, x)]

− p(x, y)

≤ (1− λ)[p(x, y) + φ(p(A, B))] + λp(x, y)− p(x, y)

≤ (1− λ)φ(p(A, B)), (3)

Thus,

lim
k→∞

φ(p(Txnk , Tynk )) = φ(p(A, B))⇒ lim
n→∞

p(Txnk , Tynk ) = p(x, y) = p(A, B).

Therefore, by the (SPE) property, p(Sx, x) = p(Tx, x) and p(Sy, y) = p(Ty, y).
Now,

p(Sx, Synk ) ≤ (1− λ)[p(Tx, Tynk ) + φ(p(A, B))− φ(p(Tx, Tynk ))]+

λ

2
[p(Tx, Sx) + p(Tynk , Synk )]

⇒ (1− λ)φ(p(Tx, Tynk )) ≤ (1− λ)[p(Tx, Tynk ) + φ(p(A, B))]+
λ

2
[p(Tx, Sx) + p(Tynk , Synk )]− p(Sx, Synk ) (4)

Taking the limit as k→ ∞ on both sides of (4),

(1− λ) lim
k→∞

φ(p(Tx, Tynk )) ≤ (1− λ)[p(Tx, x) + φ(p(A, B))] +
λ

2
[p(Tx, Sx) + p(x, x)]−

p(Sx, x)

≤ (1− λ)[p(Tx, x) + φ(p(A, B))] +
λ

2
[p(Tx, x) + p(Sx, x)]−

p(Sx, x)

= (1− λ)[p(Tx, x) + φ(p(A, B))] + λp(Tx, x)− p(Tx, x),

[ since p(Sx, x) = p(Tx, x)]

= (1− λ)φ(p(A, B)) (5)

Therefore, p(Sx, x) = p(Tx, x) = p(A, B). Hence, x is a common best proximity point of S
and T. In a similar way, y is also a common best proximity point of S and T.

We note that a self-mapping S : X −→ X can be viewed as a T-GKT cyclic φ-
contraction self-mapping taking A = B = X in Definitions 7 and 8. We now derive



Symmetry 2021, 13, 1098 9 of 13

the following fixed-point result considering such T-GKT cyclic φ-contraction self-mapping,
which will be used in the application part of the paper.

Theorem 4. Let (X, p) be a complete partial metric space, φ : [0, ∞) −→ [0, ∞) be a strictly
increasing continuous mapping, and S be a T-GKT cyclic φ-contraction self-mapping on X with
T = I (identity mapping on X) with respect to p for some λ′ = λ ∈ [0, 1). If (X, dp) is also
sequentially compact and S is continuous, then S has a fixed point in X.

Proof. For x0 ∈ X, we construct the sequence {xn} with

xn+1 = Sxn, for all n ∈ N∪ {0}.

As in Theorem 1, it is easy to show that {xnk} is a Cauchy sequence in (X, p). Therefore,
there exists some x ∈ X such that xnk → x.

Now,

p(xnk , Sx) = p(Sxnk−1, Sx)

≤ (1− λ)p(xnk−1, x) +
λ

2
[p(xnk , xnk−1) + p(Sx, x)]. (6)

Taking the limit as k→ ∞ on both sides of (6), we obtain,

p(x, Sx) ≤ (1− λ)p(x, x) +
λ

2
[p(x, x) + p(Sx, x)]

i.e., p(x, Sx) ≤ p(x, x).

Therefore, p(x, Sx) = p(x, x).
Similarly we obtain, p(Sx, Sx) = p(x, x) = p(Sx, x), which implies that Sx = x, i.e., x

is a fixed point of S.

For a metric space (X, d), we have the following result.

Theorem 5. Let (X, d) be a complete metric space, φ : [0, ∞) −→ [0, ∞) be a strictly increasing
continuous mapping, S be a T-GKT cyclic φ-contraction self-mapping on X with T = I with
respect to d for some λ′ < λ ∈ (0, 1), and φ(x) ≤ x. Then S has a fixed point in X.

Again, for A = B = X and taking S, T as two self-mappings on X, Theorem 1 gives
the following result.

Theorem 6. Let (X, p) be a complete partial metric space, T be a self-mapping on X, φ : [0, ∞) −→
[0, ∞) be a strictly increasing continuous mapping and S be a T-GKT cyclic φ-contraction self-
mapping on X with respect to p for some λ′ = λ ∈ [0, 1). If (X, dp) is also sequentially compact
and the following conditions are satisfied:

(i) S(X) ⊆ T(X) ,
(ii) S and T commute and S is continuous,

then there exists a common fixed point of S and T in X.

Proof. Proceeding as in Theorem 1 we obtain p(y, Ty) = p(X, X) = p(y, Sy).
By the definition of a partial metric,

p(X, X) ≤ p(y, y) ≤ p(y, Ty) = p(X, X).

Similarly,
p(X, X) ≤ p(Ty, Ty) ≤ p(y, Ty) = p(X, X).

Therefore, p(y, y) = p(Ty, Ty) = p(y, Ty), which implies that Ty = y = Sy. Hence, y
is a common fixed point of S and T.
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4. Applications
4.1. Characterization of Completeness

Considering the contraction mapping, Hu [16] gave the proof of the characterization
of completeness of metric spaces as follows.

Theorem 7 ([16]). A metric space (X, d) is complete if and only if every contraction on closed
subsets Y of X has a fixed point in Y.

Cobzas [17] also showed the characterization of completeness of uniformly Lipschitz
connected metric spaces as given below.

Theorem 8 ([17]). A uniformly Lipschitz connected metric space (X, d) is complete if and only if
it has the fixed point property for contractions.

In line with the above results, next we show the completeness of partial metric spaces
applying T-GKT cyclic φ-contraction mappings on the induced metric space (X, dp).

Theorem 9. Let (X, p) be a partial metric space, T be a self-mapping on X, and φ : [0, ∞) −→
[0, ∞) be a strictly increasing continuous mapping. If for every closed subset Y of the induced
metric space (X, dp), each T-GKT cyclic φ-contraction self-mapping on Y with respect to dp with
T = I and φ(x) ≤ x for all x ∈ [0, ∞) has a fixed point in Y, then (X, p) is complete.

Proof. We know that (X, p) is complete if and only if (X, dp) is complete. Let {xn} be an
arbitrary Cauchy sequence in (X, dp). The proof will be complete if we can show that it
has a convergent sub-sequence. Suppose, on the contrary, that {xn} does not have any
convergent sub-sequence. Then

β(xn) = in f {dp(xn, xm), m > n} > 0 for all n ∈ N.

For λ′ ∈ (0, 1), we can construct {xnk} such that

dp(xi, xj) <
λ′

2
β(xnk−1) for all i, j ≥ nk.

Therefore, Y = {xnk : k ∈ N} is a closed subset of (X, dp).
Defining S : Y −→ Y by Sxnk = xnk+1 for all k ∈ N. It is clear that S does not have a

fixed point.
Now, for φ(x) ≤ x,

dp(Sxnk , Sxnk+1) = dp(xnk+1 , xnk+2)

<
λ′

2
β(xnk )

≤ λ′

2
dp(xnk , xnk+1)

=
λ′

2
dp(Sxnk , xnk )

≤ λ′

2
[dp(Sxnk , xnk ) + dp(Sxnk+1 , xnk+1)]

+ (1− λ)[dp(xnk , xnk+1)− φ(dp(xnk , xnk+1))].

Therefore, S is a T-GKT cyclic φ-contraction self-mapping on Y with T = I and
λ′ < λ where λ, λ′ ∈ [0, 1), having no fixed point. This is a contradiction. Hence (X, dp) is
complete, and so, by Lemma 1, (X, p) is complete.
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4.2. Existence of a Solution to the Fredholm Integral Equation

On the set X = C([a, b],R) of all continuous real-valued functions defined on [a, b],
we take the metric d on X defined by d(m, n) = supt∈[a,b] |m(t)− n(t)| for all m, n ∈ X.

Consider the following Fredholm integral equation:

m(t) = f (t) +
∫ b

a
F(t, s, m(s))ds (7)

for each t ∈ [a, b], where f : [a, b] −→ R and F : [a, b]× [a, b]×R −→ R are continuous
functions.

Let S : X −→ X be defined by

Sm(t) = f (t) +
∫ b

a
F(t, s, m(s))ds (8)

for each t ∈ [a, b], satisfying the condition
(A) |F(t, s, m(s)) − F(t, s, n(s))| ≤ 1

4(b−a) sups∈[a,b] |m(s) − n(s)|, for all m, n ∈ X,
s ∈ [a, b].

Theorem 10. If the operator F satisfies the condition (A), then Equation (7) has a solution.

Proof. Let S be the self-mapping on X as defined in (8). We take φ as the identity mapping.
The solution of the integral equation is exactly the fixed point of S. Therefore, the existence
of a fixed point of S guarantees the existence of a solution to the integral Equation (7).

For arbitrary m, n ∈ X,

d(Sm, Sn) = sup
t∈[a,b]

|Sm(t)− Sn(t)|

= sup
t∈[a,b]

| f (t) +
∫ b

a
F(t, s, m(s))ds− f (t)−

∫ b

a
F(t, s, n(s))ds|

= sup
t∈[a,b]

|
∫ b

a
F(t, s, m(s))ds−

∫ b

a
F(t, s, n(s))ds|

≤ sup
t∈[a,b]

∫ b

a
|F(t, s, m(s))− F(t, s, n(s))|ds

≤ sup
t∈[a,b]

∫ b

a

1
4(b− a)

sup
s∈[a,b]

|m(s)− n(s)|ds

= sup
t∈[a,b]

∫ b

a

1
4(b− a)

d(m, n)ds

=
1

4(b− a)
d(m, n) sup

t∈[a,b]

∫ b

a
ds

=
1
4

d(m, n)

≤ 1
4
[d(m, Sm) + d(Sm, Sn) + d(Sn, n)]

⇒ d(Sm, Sn) ≤ 1
3
[d(m, Sm) + d(Sn, n)]

≤ (1− λ)[d(m, n) + φ(d(X, X))− φ(d(m, n))] +
λ′

2
[d(Sm, m) + d(Sn, n)],

(taking λ′ =
2
3

and λ =
3
4

)
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Hence all the conditions of Theorem 5 are satisfied. Therefore, S has a fixed point, i.e.,
the integral Equation (7) has a solution.

5. Conclusions

In this paper we have established some existence results of common best proximity
points in partial metric spaces. Similar results are mentioned in the case of metric spaces.
An obtained result has been applied to characterize the completeness of partial metric
spaces. Moreover, the existence of a solution to the Fredholm integral equation is shown
using the established result. There are many other important aspects and applications of
proximity point theory as well as fixed point theory in different directions [18,19]. In 2020,
Karapinar et al. [20] discussed the sufficient conditions for the existence and uniqueness of
a solution for a coupled system of fractional hybrid differential equations. The application
of our established results for solving fractional hybrid differential equations as well as
nonlinear matrix equations provides scope for future discussion. In [21], Choudhury et al.
obtained some best proximity point results and applied these in finding coupled best
proximity points in partially ordered metric spaces. In view of this, the applicability of our
results in the case of partially ordered metric spaces is another possible scope for future
development in this area.

Author Contributions: Conceptualization, N.G., R.R., V.N.M., and L.M.S.R.; investigation, N.G.,
R.R., V.N.M., and L.M.S.R.; writing-review editing, N.G., R.R., V.N.M., and L.M.S.R. All authors
contributed equally and significantly in writing this article. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Isik, H.; Sangurlu Sezen, M.; Vetro, C. φ-best proximity point theorems and applications to variational inequality problems. J.

Fixed Point Theory Appl. 2017, 4, 3177–3189. [CrossRef]
2. Usurelu, G.I.; Turcanu, T. Best proximity points of (EP)-operators with qualitative analysis and simulation. Math. Comput. Simul.

2021, 187, 215–230. [CrossRef]
3. Fan, K. Extensions of two fixed point theorems of F. E. Browder. Math. Z. 1969, 112, 234–240. [CrossRef]
4. Alghamdi, M.A.; Shahzad, N.; Vetro, F. Best proximity points for some classes of proximal contractions. Abstr. Appl. Anal. 2013,

2013, 713252. [CrossRef]
5. Bejenaru, A.; Pitea, A. Fixed point and best proximity point theorems on partial metric spaces. J. Math. Anal. 2016, 4, 25–44.
6. Sadiq Basha, S.; Shahzad, N.; Jeyaraj, R. Common best proximity points: Global optimization of multi-objective functions. Appl.

Math. Lett. 2011, 24, 883–886. [CrossRef]
7. Sadiq Basha, S.; Shazad, N. Common best proximity point theorems: Global minimization of some real-valued multi-objective

functions. J. Fixed Point Theory Appl. 2016, 3, 587–600. [CrossRef]
8. Aghayan, S.M.; Zireh, A.; Ebadian, A. Common best proximity points in complex valued metric spaces. Bull. Int. Math. Virtual

Inst. 2017, 7, 549–560. [CrossRef]
9. Choudhury, B.S.; Bandyopadhyay, C. Suzuki type common fixed point theorem in complete metric space and partial metric space.

Filomat 2015, 29, 1377–1387. [CrossRef]
10. Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [CrossRef]
11. Ninsri, A.; Sintunavarat, W. Toward a generalized contractive condition in partial metric spaces with the existence result of fixed

points and best proximity points. J. Fixed Point Theory Appl. 2018, 20. [CrossRef]
12. Zhang, J.; Su, Y. Best proximity point theorems for weakly contractive mapping and weakly Kannan mapping in partial metric

spaces. Fixed Point Theory Appl. 2014, 50. [CrossRef]
13. Karapinar, E. Best proximity points of cyclic mappings. Appl. Math. Lett. 2012, 25, 1761–1766. [CrossRef]
14. Roy, R.; Goswami, N. Some results on best proximity points for generalized Kannan type cyclic φ-contraction mappings on metric

spaces. Bull. Calcutta Math. Soc. 2019, 111, 99–112.
15. Mlaiki, N.; Mohammad, A.; Mohammad, I. C*-Algebra valued partial b-metric spaces and fixed point results with an application.

Mathematics 2020, 8, 1381. [CrossRef]
16. Hu, T.K. On a fixed-point theorem for metric spaces. Amer. Math. Mon. 1967, 74, 436–437. [CrossRef]
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