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A B S T R A C T   

In this paper, a closed-form approximate formula for estimating the maximum resonant response of beam bridges 
on viscoelastic supports (VS) under moving loads is proposed. The methodology is based on the discrete 
approximation of the fundamental vertical mode of a non-proportionally damped Bernoulli–Euler beam, which 
allows the derivation of closed-form expressions for the fundamental modal characteristics and maximum 
amplitude of free vibration at the mid-span of VS beams. Finally, an approximate formula to estimate maximum 
resonant acceleration of VS beams under passage of articulated trains has been proposed. Verification studies 
prove that the approximate closed-form formula estimates the resonant peaks with good accuracy and is a useful 
tool for preliminary assessment of railway beam bridges considering the effect of soil-structure interaction at 
resonance. In combination with the use of full train signatures through the Residual Influence Line (LIR) method, 
the proposed solution yields good results also in the lower range of speeds, where resonant sub-harmonics are 
more intensely reduced by damping.   

1. Introduction 

The train-induced vibration analysis of railway bridges has been 
extensively studied by many researchers, including Frýba [1], Weaver 
et al. [2], Olsson [3], Yang et al. [4], Michaltsos [5] and Savin [6], 
among others [7–13]. Due to the periodic nature of the train loading, a 
railway bridge may experience resonance effects. Resonance in railway 
bridges occurs when the train loading frequency, i.e. the ratio between 
the train speed and the characteristics axle distance, coincides with the 
fundamental frequency of the bridge [1,14–15]. Under resonance con
dition, the bridge decks may experience extreme vibration levels due to 
the incessant accumulation of the free-vibration oscillations generated 
by the consecutive moving loads. On the other hand, the cancellation 
phenomenon implies that either the free vibrations of the bridge caused 
by each single load cancel at particular speeds, or the free vibrations 
caused by the successive moving loads negate each other. [6,7,12,13]. 

A number of researchers have studied the moving load problem for 
simply supported (SS) beams and elastically supported (ES) beams with 
the aim of finding approximate closed-form formulas that can estimate 
the peak resonant response of the system under moving load. Frýba [8] 
proposed approximate formulas for estimating the amplitudes for 

maximum displacement, acceleration and bending moment of a simply 
supported bridge due to resonance of the fundamental mode. Savin [6] 
derived approximate expressions to compute the peak vertical deflection 
and acceleration of beams with classical boundary conditions, intro
ducing a spectrum of the train which is almost equal to the so-called 
dynamic signature presented by the LIR (Residual Influence Line) 
method in the framework of the ERRI D-214 Committee [14]. The 
resonance and cancellation phenomena of ES beams has been analysed 
by Yau et al. [10] and Yang et al. [11] using an approximate expression 
of the first bending mode. Xia et al. [12] studied in depth the different 
cancellation and resonance phenomena, both for single loads and series 
of successive loads. Museros et al. [13] comprehensively studied the 
maximum free vibration and cancellation conditions for SS and ES 
beams under a moving load, and developed as well an approximate 
formula to estimate peak vertical accelerations of simply supported 
beams under passing articulated trains. 

In all aforementioned previous solutions, the classical boundary 
conditions for the beam are considered, assuming that the system is 
proportionally damped and characterized by classical normal modes. In 
the presence of foundation damping as in a viscoelastically supported 
(VS) beam, however, this approximation may not be valid as the energy 
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dissipation is not distributed uniformly over the system, rendering the 
modes non-classical and complex [16,17]. The frequency content and 
amplitude of the vibrations in the resonant response of railway bridges is 
governed by the modal characteristics (natural frequency and damping 
ratio) of the structural system. Hence, to predict the resonant response 
with reasonable accuracy, it is important to properly estimate the modal 
characteristics of the structural system, considering the effect of the 
flexibility and dissipation capacity of the supporting foundation-soil 
system. In this regard, several studies on the dynamic soil-structure 
analysis of railway beam bridges [18–22] revealed that the modal 
properties and resonant response of bridges might be considerably 
affected by the flexibility and dissipation capacity of the supporting 
foundation-soil system. 

Romero et al. [18] studied the effect of Soil-Structure Interaction 
(SSI) on the resonance response of a simple beam bridge supported by 
half-space medium using a fully three dimensional (3D) multi-body 
boundary element-finite element model formulated in the time 
domain. The authors concluded that both the period and damping ratio 
of the fundamental bending mode of the system are higher when SSI is 
considered. On the basis of numerical simulations, Doménech et al. [19] 
studied the effect of SSI on the fundamental modal properties and 
maximum free vibration and cancellation phenomena of simple beams 
founded on a homogenous half-space medium under a single moving 
load by using a 3D Boundary Element-Finite Element coupled model 
(BEM-FEM). The analysis showed that considering soil effects leads to a 
reduction of the bridge maximum free vibration amplitudes and train- 
induced resonant response as a consequence of the inherent damping 
of the soil due to wave radiation. The study concluded that the effect of 
SSI increases as the ratio between the beam flexural stiffness and the 
foundation-soil stiffness becomes higher. In [23], Svedholm et al. 
developed an analytical solution for complex mode superposition anal
ysis of a Bernoulli-Euler beam supported by viscoelastic supports which 
used to study the effects of SSI on modal properties of reinforced con
crete bridges with ballasted tracks supported on half-space medium 
[20]. The results presented in the study showed that the expected 
foundation damping ratio for the 1st bending mode of the system is 
between 0.1% and 6% for a long span bridge (L = 60 m) supported by a 
dense soil and for a short span bridge (L = 5 m) supported by a loose soil, 
respectively. Zangeneh et al. [21] proposed closed-form expressions for 
calculating the dynamic characteristics of the fundamental bending 
mode of single span beam bridges on viscoelastic supports using a 2 
degree of freedom (2DoF) discrete model. This model was used to study 
the effect of the dynamic stiffness of the foundation on the modal pa
rameters (e.g. natural frequency and damping ratio) of railway beam 
bridges. It was shown that the effect of SSI depends not only on the ratio 
between the flexural stiffness of the bridge and the dynamic stiffness of 
the foundation-soil system but also on the ratio between the resonant 
frequency of the soil layer and the fundamental frequency of the bridge. 
If the fundamental frequency of the beam is lower than the resonance 
frequency of the supporting soil stratum, the radiation damping capacity 
of the soil deposit is almost zero. Consequently, the dynamic response of 
the system becomes close to an elastically supported beam and the effect 
of supports flexibility may become detrimental [11,22]. 

To investigate the effect of soil-structure interaction on the resonant 
response of railway beam bridges in a systematic manner, the derivation 
of closed-form formulas for computing fundamental modal character
istics and free vibration amplitude of the bridge-foundation-soil system 
is useful. Hence, the objective of this paper is to propose a novel closed- 
form expression for computing the maximum free vibration amplitude of 
viscoelastically supported beams traversed by a single load as shown in 
Fig. 1. The methodology based on the approximation of a VS beam by a 
two DoF discrete model [21] is used as a starting point. Subsequently, an 
approximate formula to estimate maximum resonant acceleration of VS 
beams under the passage of articulated trains is proposed. The accuracy 
and applicability of the proposed closed-form expressions will be veri
fied through comparison with the analytical solutions. 

Certainly, the train-induced vibration analysis of VS beams could be 
solved by a commercial FE package; however, the proposed closed-form 
expressions can be used to: (a) accurately compute the fundamental 
modal characteristics, maximum free vibration amplitude and cancel
lation of viscoelastically supported beams at very low computational 
cost, (b) gain physical insight into the nature of SSI effects by studying 
how resonant response of beam bridges changes when SSI is included or 
excluded, (c) approximate the peak resonant acceleration of beam 
bridges generated by high-speed trains straightforwardly in the pre
liminary stages of bridge design, considering SSI effect, and (d) provide a 
computationally efficient tool suitable for screening of railway bridge 
networks using probabilistic analysis and Monte Carlo simulations. 

This paper is organized as follows. In section 2, a brief overview of 
the governing equations of the 2DoF discrete model proposed in [21] for 
vibration analysis of viscoelastically supported beams and closed-form 
expressions for computing fundamental modal characteristics of the 
studied system is given. Then, the derivation of a novel closed-form 
expression for estimating peak mid-span free vibration amplitude of a 
VS beam passing by a single moving load is presented, followed by the 
verification of the proposed solution against analytical solutions. Sec
tion 3 proposes an approximate formula for estimating the maximum 
mid-span acceleration due to resonance of the fundamental mode of a VS 
beam passing by regular or articulated trains; also, the role of shear 
deformation and additional bending modes is discussed in the last sub
section therein. In Section 4, the practical applicability and validity of 
the proposed approximate formula is examined for different case 
studies. Concluding remarks are presented in Section 5. 

2. Free vibration of viscoelastically supported beam under a 
single moving load. 

As shown in Fig. 1, a single–span 2D Bernoulli-Euler beam supported 
by two viscoelastic supports of stiffness kv and damping cv at the two 
ends is considered. The beam is traversed by a constant valued load F 
moving at constant speed v and assumed to have a length L and a uni
form cross-section with flexural rigidity EI, mass per unit length m, and 
structural damping ratio ξb. 

2.1. Proposed discrete model, equations of motion and system matrices 

As shown by Zangeneh et al. [21], the fundamental vertical bending 
mode shape of the studied continuous system can be well approximated 

Fig. 1. Moving load problem of a viscoelastically supported (VS) beam.  

Fig. 2. Model of free vibration mode shape of viscoelastically supported beam 
as a superposition of (a) simply supported beam and (b) rigid beam on visco
elastic supports. 
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by the superposition of the flexural sine mode of a simply supported 
beam (Fig. 2a) and the rigid body mode shape of the beam supported by 
viscoelastic supports, as shown in Fig. 2b. Hence, the displacement field 
u(x,t) of the equivalent 2 degrees of freedom system can be expressed as 
Eq. (1). 

u(x, t) = N.d ≅
[

1 sin(
πx
L
)
]{ uf(t)

ub(t)

}

(1)  

where N represents the vector of assumed shape functions, d is the 
vector of generalized coordinates of the vibration shapes, and uf (t) and 
ub (t) are the displacements at the supports and the mid-span, 
respectively. 

Following the procedure in [21], the equation of motion for the free 
response of the discrete 2DoF system can be written as follows: 

Md̈+Cḋ+Kd = 0 (2)  

where 

d =

{
uf (t)
ub(t)

}

,M = mL
[

1 1/π
2/π 1/2

]

,C =

[
2cv 0
0 0

]

,

K =

[
2kv 0
0 π4EI

/
2L3

]

It should be noted that in the derivation of system matrices, the struc
tural damping of the beam is neglected and only the foundation damping 
is considered. Structural damping is later introduced in the following 
subsection. Detailed information about the derivation of system 
matrices can be found in [21]. Employing similar superposition 
assumption for the fundamental vertical mode shape (see Fig. 2), the 
governing differential equation of motion for the 2DoF linear system 
under a single moving load can also be written as Eq. (3). 

Md̈+Cḋ+Kd = − FP(t) (3)  

where P(t) =

[

1 sinπvt
L

]T
. 

2.2. Fundamental frequency, modal damping ratio and complex 
eigenvector 

By assuming a solution for the free vibration of the system of the form 
u = ϕeλt, the complex modal characteristics of the discrete system for 
mode n can be found as the solution of the quadratic eigenproblem in Eq. 
(4). 
[
K + λnC + λ2

nM
]
φn = 0 (4)  

where λn and φT
n =

[
ϕf,n ϕb,n

]
are the complex-valued eigenvalue and 

corresponding eigenvector of mode n. Provided that the desired mode of 
vibration is underdamped —as in most practical applications—, eigen
values always occur as pairs of complex conjugate roots [24] as in Eq. 
(5), and thus the free response is a decaying oscillatory motion. 

λn = − ξnωn ± iωn

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√

(5)  

where ωn denotes the undamped natural frequency and ξn is the modal 
damping ratio. 

Zangeneh et al. [21] showed that by introducing the system matrices 
from Eq. (2) into Eq. (4) and analytically solving a quartic polynomial 
equation, the closed-form expressions for the natural frequency and 
modal damping ratio for fundamental vertical mode of studied system 
(disregarding the structural damping of the beam itself) can be obtained 
as Eq. (6) and Eq. (7), respectively. 

ω0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

η|S| − π2β
2(π2 − 8)γ

)2

+ |S|2 +
p
2
+ η q

4|S|

√

(6)  

ξ0 =
1

ω0

(
π2β

2(π2 − 8)γ
− η|S|

)

(7)  

where subscript “0′′ denotes the fundamental mode (lowest unerdamped 
vertical mode) of the system and γ, D, β, p, q, S, η are functions of 
geometrical and material properties of the beam and its viscoelastic 
supports, as presented in Appendix A. Detailed information about the 
derivation of closed-form expressions can be found in [21]. 

As it was mentioned before, in the derivation of the closed-form 
expressions, the structural damping of the beam is disregarded. Subse
quently, the effect of structural damping can be approximately intro
duced into Eq. (7) [25], and thus the total modal damping ratio for the 
fundamental vertical mode of system obtained as per Eq. (8). 

ξ0 ≈ ξb

(
ω0

ωSS
0

)2

+
1

ω0

(
π2β

2(π2 − 8)γ
− η|S|

)

(8)  

where ξb and ω0
SS are the structural damping ratio and the fundamental 

natural frequency of the beam on ideal simple supports with zero flex
ibility, respectively. The validity of the preceding assumptions for the 
analysis of actual simply-supported bridges will be demonstrated in 
Section 2.5.2. 

Having closed-form expressions for ω0, ξ0 and thus λ0, the ratio be
tween complex eigenvectors of the fundamental vertical mode can be 
easily obtained as a solution of the Eq. (4): 

ϕf,0

ϕb,0
= −

2mLλ2
0

π(2kv + 2λ0cv + mLλ2
0)

(9) 

With all complex modal characteristics of the desired vibration mode 
in hand, obtaining an analytical solution to the resonant response of 
beam at mid-span by using complex mode superposition is now possible. 

2.3. Complex mode superposition 

First, the governing differential equation of motion of 2DoF discrete 
system in Eq. (3) is transformed into the state-space form as following: 

Aẏ+By = − FQ(t) (10)  

where y =

[
ḋ
d

]

, A =

[
0 M
M C

]

, B =

[
− M 0

0 K

]

, Q(t) = Q(t) =

⎡

⎣

[
0
0

]

P(t)

⎤

⎦

Letting dn = φneλnt for nth mode of vibration results in yn = ψneλnt 

where ψn =

[
λnφn
φn

]

is the state complex eigenvector of mode n, of di

mensions 4 by 1. 
Provided that the studied system has always 4 sets of unique non- 

repeatable eigenvalues, the state complex eigenvector matrix Ψ is 
invertible and the equation of motion in state-space form can be con
verted to the modal basis as follows: 

ΨTAΨẏ+ΨTBΨy = − FΨTQ(t) (11) 

As proved by Zhao et al. [26], the uncoupled equation of motion for 
mode n can be then written as Eq. (12) by letting y = Ψz and substituting 
it into Eq. (11). 

żn(t) − λnzn(t) = −
F
αn

φT
n P(t) (12)  

where z is the modal amplitude vector, zn is the nth modal amplitude and 
αn = 2λnφT

nMφn + φT
nCφn. 
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2.4. Amplitude of the free vibration due to the fundamental vertical mode 

For the fundamental vertical mode, the differential equations that 
govern the modal amplitude of the system can be written as follows: 

ż0(t) − λ0z0(t) = −
F
α0

(
ϕf,0 + ϕb,0sinΩt

)
, 0⩽t⩽L

/

v (13a)  

ż0(t) − λ0z0(t) = 0, t > L
/

v (13b)  

where Ω = πv
L and α0 = ϕ2

b,0

(

2mLλ0(
1
2 +

4
π

ϕf,0
ϕb,0

+
ϕ2

f,0

ϕ2
b,0
) + 2cv

ϕ2
f,0

ϕ2
b,0

)

is ob

tained from Eq. (12). 
The solution to Eq. (13b) is a damped sinusoid of initial amplitude z0, 

free. This initial amplitude can be calculated from the analytical solution 
to Eq. (13a) at time t = L/v. Considering the system initially at rest, 
analytical solution of Eq. (13a) gives: 

z0(t) = −
F
α0

ϕb,0

(λ2
0 + Ω2)

(

(eλ0 t − 1)
(
λ2

0 + Ω2) ϕf,0

λ0ϕb,0
+ eλ0 tΩ − λ0sinΩt

− ΩcosΩt
)

, 0⩽t⩽L
/

v (14) 

Then, when the load leaves the beam at precise time t = L/v; 

z0,free = z0

(
L
v

)

= −
ϕb,0F

α0(λ2
0 + Ω2)

((

e
λ0 L

v − 1
)
(
λ2

0 + Ω2) ϕf,0

λ0ϕb,0
+ Ω

(

e
λ0 L

v + 1
))

, t

= L
/

v

(15) 

Due to the pair-wise conjugacy of the computed eigenpairs, the 
response of the studied underdamped mode becomes real-valued when 
the mode and its conjugate are summed. Consequently, the time history 
of forced and free vibration of midspan vertical displacement and ac
celeration can be computed as follows: 

ub,0(t) = 2R(ϕb,0z0(t)) 0⩽t⩽L/v (16a)  

ub,0(t) = 2R
(
ϕb,0z0,freeeλ0(t− L/v) ) t⩾L

/
v (16b)  

ab,0(t) = 2R(ϕb,0 z̈0(t)) 0⩽t⩽L/v (17a)  

ab,0(t) = 2R
(
λ2

0ϕb,0z0,freeeλ0(t− L/v) ) t⩾L
/

v (17b)  

where the eigenvalue in the complex form isλ0 = λ0r + iλ0i. Thus, one 
can rewrite Eq. (17b) as 

ab,0(t) = 2eλ0r(t− L/v)R(λ2
0ϕb,0z0,freeeiλ0i(t− L/v)) (18) 

Subsequently, the product λ2
0ϕb,0z0,free is expressed in the exponential 

form with phase angle θ. 

ab,0(t) = 2eλ0r(t− L/v)R(
⃒
⃒λ2

0ϕb,0z0,free
⃒
⃒eiθeiλ0i(t− L/v)) (19) 

The phase angle θ is not of relevance if one is only interested in the 
maximum amplitude of the damped acceleration ab,0(t), which can be 
finally written as 

ab,0(t) = 2
⃒
⃒λ2

0ϕb,0z0,free
⃒
⃒eλ0r(t− L/v)cos(λ0i(t − L/v) + θ) (20) 

Therefore, a closed-form expression for the peak mid-span acceler
ation amplitude during free vibration period can be obtained as per Eq. 
(21) below. It represents the maximum achievable acceleration when 
one load leaves the beam, and is a key result to superimpose the damped 
effect of consecutive loads, as it will be shown in section 3 of the paper. 

amax,free,b,0 = 2
⃒
⃒λ2

0z0,freeϕb,0

⃒
⃒ =

2F

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

λ2
0

(
(
e

λ0 L
v − 1

)(
λ2

0 + Ω2) ϕf,0
λ0ϕb,0

+ Ω
(
e

λ0 L
v + 1

)
)

(

2mLλ0

(

1
2 +

4
π

ϕf,0
ϕb,0

+
ϕ2

f,0
ϕ2

b,0

)

+ 2cv
ϕ2

f,0
ϕ2

b,0

)

(λ2
0 + Ω2)

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(21) 

The approximation of Eq. (21) to the exact values will be discussed in 
section 2.5.3 of the paper, where a very good agreement will be shown. 
It should be noted that, Eq. (21) can be also used for displacement 
instead of acceleration, simply by removing λ0

2. 

2.5. Verification 

In this section, the accuracy of the proposed discrete model and 
closed-form expressions is verified against the analytical solution for 
non-proportionally damped continuous beams with general end condi
tions under moving loads, developed by Svedholm et al. [23]. 

2.5.1. Definition of case studies 
Referring to Fig. 1, four representative viscoelastically supported 

beam bridges of spans L = {8, 12, 16, 20} m are considered. The mass 
per unit length m and the flexural rigidity EI were assumed to vary with 
span length L and estimated based on collected data from existing single- 
track ballasted concrete bridges [27], see Table 1. According to refer
ence standards (Eurocode 1 [15]), for prestressed concrete bridges of 
span longer than 20 m the structural damping should be taken equal to 
ξb = 1% in a dynamic analysis. A progressive increase of damping is 
envisaged in [15] for the shorter spans, but in what follows a constant ξb 
= 1% will be used in all spans for simplicity. 

The selected beam bridges are assumed to be supported by a shallow 
foundation, underlying by a homogenous half-space. The shear wave 
velocity of the subsoil is assumed to be Vs = 350 m/s, which is a realistic 
subsoil stiffness in the case of shallow foundations. Poisson’s ratio and 
mass density of the soil medium are assumed constant at vs = 1/3 and ρs 
= 1800 kg/m3, respectively. Identical 3.5 × 7 m2 rigid massless foun
dations are considered. The dynamic stiffness of the foundation-soil 
system, kv (ω), and corresponding damping coefficient, cv (ω), are 
generally frequency-dependent variables and represented as impedance 
functions. However, the frequency dependent impedance functions can 
indeed often be reasonably approximated by frequency independent 
ones. In the case of a shallow foundation with practical dimensions (Lf/ 
Bf = 2 to 3) supported by a unsaturated homogenous half-space, the 
vertical dynamic stiffness and radiation damping coefficients of the 
studied foundation-soil system can be approximated by their static 
values (ω ≈ 0) using the following equations [28,29]. 

kv ≈
ρsV2

s Af

2Bf(1 − νs)
(0.73 + 1.54(

Bf

Lf
)

0.75
) = 3.8 GN/m (22)  

cv ≈ ρs
3.4Vs

π(1 − νs)
Af = 25 MN.s/m (23)  

where Vs is the shear wave velocity of the soil layer and Bf, Lf and Af are 
the semi-width, semi-length and the area of the foundation, respectively. 

In the case of foundations underlain by layered soil stratum or of pile 
groups, the impedance functions are strongly frequency dependent and 
using static values can fail. Nevertheless, when the resonant response of 

Table 1 
Cross-sectional data for studied single-span beam bridges.  

L (m) 8 12 16 20 
m (ton/m) 9.99 12.31 14.63 16.95 
EI (GNm2) 5.68 12.55 22.56 36.05 
f0,SS* (Hz) 18.51 11.01 7.62 5.73  

* The natural frequency of the simply-supported (SS) beam on rigid supports. 
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the structural system is predominantly governed by its fundamental 
mode, as in the case of the studied system, the constant values for kv (ω0) 
and cv (ω0), computed at ω0, can be used [22]. Since the fundamental 
frequency of the studied system itself depends on kv and cv, an iterative 
procedure should be used to calculate the constant values for kv (ω0) and 
cv (ω0). The general steps of the iterative procedure can be summarized 
as follows: 

1. Initial estimation of the fundamental natural frequency of the sys
tem, ω0, as equal to the natural frequency of the corresponding 
simply supported beam, ω0,SS. 

2. Pick constant values for spring stiffness kv(ω0) and dashpot coeffi
cient cv(ω0) from frequency-dependent impedance function at the 
discrete frequency point ω0.  

3. Compute the updated fundamental natural frequency of the system 
using kv(ω0) and cv(ω0) through closed-form expression in Eq. (6). 

The procedure repeats steps 2 to 3 until convergence is achieved. 

2.5.2. Fundamental modal characteristics 
A comparison between computed complex modal characteristics of 

the 1st vertical bending mode of the studied cases are presented in 
Table 2. As can be seen, the calculated undamped natural frequency and 
modal damping ratio using the closed-form expressions in Eq. (6) and 
Eq. (8) are in perfect agreement with the reference results from the 
analytical solutions. 

2.5.3. Maximum free vibration and cancellation phenomena under a single 
moving load 

A comparison between the estimated maximum free vibration am
plitudes by Eq. (21) and the reference solution [23] is shown in Fig. 3. 
The exact results has been obtained by computing the time history of the 
mid-span free vibration of the corresponding continues VS beam [23] 
and getting the peak value at each travelling speed, considering only the 
fundamental vertical mode of vibration. As can be seen, the predicted 
peak free vibration amplitudes by the proposed closed-form expression 
are in a very good agreement with the reference solution. As shown in 
Fig. 3, the pattern of cancellation and maximum free vibration situations 
in the studied viscoelastically supported beams is similar to that of the 
simply supported or elastically supported cases in their fundamental 
mode [13,19]. When the load passes over the beam at a certain speed 
close to the cancellation condition, the amplitudes of free vibration 
response become very low. Conversely, between two consecutive can
cellations, the maximum free vibration levels occur. 

Using Eqs. (17), the variation of maximum total and maximum free 
vibration acceleration amplitudes for one of case study beams (L = 12 
m), as a function of moving load speed is plotted in Fig. 4. As shown, the 
maximum free vibration amplitudes are generally close or even higher 
than the maximum forced vibration amplitudes except in the vicinity of 
cancellations points where the forced vibration amplitudes prevails. The 
computed time histories of midspan acceleration of the case study beam 
(L = 12 m), travelled by a single load at speed v = 244 km/h and v = 316 
km/h, are presented in Fig. 5a and 5b, respectively. As can be seen, the 
predicted time histories by the approximate discrete model are in a very 
good agreement with the reference solution considering only the 

fundamental vertical mode of vibration. 

3. Approximate formula for train-induced vertical acceleration 
at resonance 

The railway bridge decks traveled by high-speed trains may experi
ence extreme vibration levels due to the periodic nature of the axle 
loads, particularly under resonance condition [14]. Resonance occurs 
when the train load frequency coincides with a multiple of the funda
mental frequency of the bridge. The jth resonant speed of a railway 
bridge traveled by a row of equidistant loads can thus be estimated by 
Eq. (24) [1,6,15]: 

νr
j =

f0d
j

(24)  

where f0 is the fundamental frequency of the bridge, d is the charac
teristic axle distance and j is an integer multiple that indicates the 
resonant sub-harmonic for j > 1. 

Typically, the bridge deck acceleration level is the critical parameter 
in the case of short-to-medium span simple beam bridges [15,30–31]. 
Hence, it is of great interest to derive a simple formula to estimate the 
value of this parameter during the initial design stages. The strategy is to 
add the contributions of the successive passing loads at resonance, each 
of which generates free vibrations of amplitude given by Eq. (21). 
During the passage of a train of loads, the peak free vibrations, as shown 
in Fig. 3, may add and create a strong resonance as the spacing d be
tween consecutive axles is such that Eq. (24) holds for some particular j. 
The smaller the value of j, the higher the resonance peak is to be ex
pected. Hence, if the amplitude of the free vibrations generated by the 
loads will be close to or higher than its forced vibrations, as shown in 
Fig. 4, then a good estimation at resonance can be achieved by super
imposing only the free vibrations of all the train loads. A similar 
approach was previously employed by Museros et al. [13] to develop an 
approximate formula to estimate peak vertical accelerations of simply 
supported beams. 

3.1. Addition of free vibrations of damped amplitude (superposition 
factor FS) 

The total damped free vibration generated by a regular train con
sisting of N equidistant loads can be obtained by applying the principle 
of superposition. In the case of a beam traversed by a regular train at the 
jth resonance speed, the maximum acceleration due to the combination 
of the free vibrations will occur when the last load has left the beam [13] 
and the vibration generated by this group reaches its maximum. Museros 
et al. [13,32] showed that the effects of N equidistant loads at the jth 

resonance can be simply added by using the superposition factor, FS, 
which is the particular expression of the train signature at the corre
sponding speed: 

FS(ξ0,N, j) =
e2πξ0 j − e− 2πξ0 j(N− 1)

e2πξ0 j − 1
(25) 

For very high values of N, the maximum Fs is obtained as the second 
term in the numerator of Eq. (25) approaches zero. In this way, an 
asymptotic value, Fs,max(ξ0,∞, j) that provides a measure of the 
maximum expected intensity of each subresonance j can be obtained. 
From Eq. (25) it can be shown that bridges where damping is lower than 
some 1.5–2.0% generally need to be crossed by long trains to build up 
resonance of the first sub-harmonics near its maximum achievable 
amplitude [32]. 

3.2. Combined effects of closely spaced loads (Bogie factor FB) 

According to Eurocode [15], train-induced vibration analysis of 
high-speed railway bridges should be performed using HLSM-A load 

Table 2 
Comparison between computed fundamental modal characteristics.  

L (m) Reference solution [21] Closed-form formula 

f0 (Hz) ξ0 (%) f0(1) (Hz) ξ0
(2) (%) 

8  17.81  3.65  17.83  3.63 
12  10.66  2.30  10.67  2.29 
16  7.42  1.73  7.43  1.73 
20  5.60  1.46  5.60  1.46 
(1) Eq. (6), (2) Eq. (8)  
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models. HLSM-A train models belong to the type of articulated trains, 
which share a bogie located between each pair of coaches. Hence, the 
repetitive loads which generates resonance are set in pairs. Generally, in 
the case that the loads are arranged in closely spaced pairs, there will be 
only a slight decay of structural vibration between consecutive loads in 
each bogie [13]. As shown by Museros et al. [32] and other researchers 
(see [32] and the references therein), the effects of two consecutive 
loads in one bogie travelling at speed v can be represented exactly by the 
spectrum or signature of the bogie, which here will be referred to as 
Bogie factor, FB, defined in Eq. (26). This factor take values between zero 
(perfect bogie cancellation by subtraction of the effects of each axle) and 
two (perfect in-phase addition, or bogie resonance). 

FB(b,ω0, ξ0, v) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + e− 2bξ0ω0/v + 2e− bξ0ω0/vcos
bω0

v

√

(26)  

where b is the bogie wheelbase. 

3.3. Maximum vertical acceleration at resonance under articulated train 
load models 

Finally, by combining Eqs. (21), (25) and (26), an approximate 
closed-form expression is derived to estimate the maximum mid-span 
acceleration due to resonance of the fundamental mode of a VS beam 
passing by an articulated train. 

ares = amax,free,b,0FS(ξ0,N, j)FB(b,ω0, ξ0, v) (27) 

As will be shown in section 4.1 and 4.2, there may be some cir
cumstances when the true maximum acceleration is achieved during the 
forced vibration period. Besides, as the power cars and the end pas
senger coaches interrupt the repetitive pattern of intermediate passen
ger cars, the peak response due to the combination of the free vibrations 
may not occur exactly when the last load leaves the bridge. However, the 
major part of the response in case of resonance will be generated by the 
repetitive passenger coaches, and this effect will be captured by Eq. (27). 
Thus, the estimated values by Eq. (27) are still valuable and reasonable 
for a preliminary dynamic assessment of beam bridges considering SSI. 
Because in certain cases Fs,max will only be grasped by larger number of 
N, for practical applications it may be on the safe side to artificially 
increase the number of N, avoiding underestimation of resonant peaks 
using Eq. (27). 

As a more accurate and versatile alternative, the maximum accel
eration can be estimated by the LIR method [14] using the full train 
spectrum (signature) as per Eq. (28). 

ares = amax,free,b,0G(di, v,ω0, ξ0) (28) 

In Eq. (28), the term G(di,v,ω0,ξ0) is the train spectrum with constant 
unit axle loads (Fi = 1) and has the following form: 

Fig. 3. Free vibration amplitude of the fundamental mode as a function of speed: Approximate formula in Eq. (19) (solid lines) , reference solutions [21] 
(dashed lines). 

Fig. 4. Maximum vibration levels due to a single load passing over VS beam (L 
= 12 m). Overall maximum (black solid line); maximum during the free vi
bration period (grey solid line). 

Fig. 5. Midspan acceleration time histories of a VS beam (L = 12 m) travelled by a single load F = 100 kN. Reference solution [21] (− − − ), approximate discrete 
model Eqs. (17) (grey solid line). 
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G(ω0, ξ0, di, v) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∑k

i=1
cos
(

ω0(dk − di)
v

)

e− 2ξ0ω0(dk − di)/v

)2

+

√

(
∑k

i=1
sin
(

ω0(dk − di)

v

)

e− 2ξ0ω0(dk − di)/v

)2 (29)  

where k is the total number of loads in the train and every di(m) distance 
associated to each axle load which is measured from the first load, in 
such a way that d1 = 0. 

Using Eq. (28), the effect of different characteristic axle distances 
between coaches and locomotives on the resonance phenomenon can be 
considered—providing that Eq. (29) applies for all possible subtrains. 
Although the LIR method is more versatile than the proposed approxi
mate formula in Eq. (27), its mathematical expression is rather involved 
and thus deriving a closed-form expression for G(di,v, ω0,ξ0) becomes 
unfeasible. 

3.4. Influence of shear deformation and additional bending modes: 

Because the approximate formula proposed in subsection 3.3 is based 
on the contribution of the fundamental bending mode obtained from 
Bernoulli-Euler beam theory, a discussion is deserved regarding the 
potential influence of both shear deformation and additional longitu
dinal bending mode shapes. 

The resonant vibration of SS, single-track railway bridges with non- 
skewed supports is governed by longitudinal bending modes as long as 
the deck has a vertical symmetry plane that contains the axis of the 
track. In those structures, loading takes place in that symmetry plane 
and excitation of the torsion modes is only due to track irregularities, 
providing that the (elastic or rigid) supports are also symmetric. Since 
this article is focussed specifically in the appearance of resonant vibra
tion, track irregularities are disregarded. Other less relevant effects 
capable of exciting torsional or transverse modes, such as rolling or 
yawing motions of the sprung masses, are also neglected. 

Even if only longitudinal bending modes prevail, damping ratios of 
the various modes could be significantly different, which is of great 
importance for assessing the maximum levels of vibration. The following 
tables show some representative results for the examples described in 
section 2.5: Tables 3-5 present a comparison between modal properties 
for different beam theories, based on the finite element solution using 
commercial software COMSOL v5.6 [33]. The beams are discretized 
using quadratic elements with an element sized of 0.5 m. 

Table 3 shows a comparison between computed fundamental modal 
properties and the estimated error between solutions based on different 
beam theories. As can be seen, considering the shear deformation using 
Timoshenko beam theory generally lowers the fundamental frequency 
and modal damping ratios. However, the difference between computed 
fundamental frequency and damping ratios for the studied short-span VS 
beams based on the two theories is negligible (around 1–2%). 

Moreover, Tables 4 and 5 present a comparison between computed 
higher-order modal properties of the short-span VS beams (L = 8 m & L 
= 12 m) and the estimated error between solutions based on different 
beam theories. As expected, the effect of shear deformation on the modal 
properties of higher order modes with higher frequencies becomes more 
important. However, in the presence of viscoelastic supports and non- 
proportional damping, these higher order modes are much more dam
ped than the fundamental mode of vibration and consequently their 
contribution to the total resonant response becomes much weaker than 
in the case of a simply supported beam on rigid supports. 

A quantification of the large difference between the amplifications at 
resonance expected for those modes is obtained directly from Eq. (25). 
For such a purpose, a train with short carriages that is able to excite sub- 
harmonics as close as possible to the first one is preferable. Considering a 
train of carriage length d = 13.5 m, and the natural frequencies in 
Table 5 for Timoshenko beam theory, one can look for realistic resonant 
speeds below 400 km/h by means of Eq. (24). In so doing it can be seen 
that the second sub-harmonic (j = 2) of the first mode will be reached at 
257 km/h. In such case, for a train of 15 equidistant loads a resonant 
superposition factor FS = 4.0 would be obtained. Analogously, the sec
ond mode would develop a fifth sub-harmonic (j = 5) at 397 km/h, with 
FS = 1.1, which means that virtually no resonance amplification exists 
for the second mode. That same (augmented) situation repeats for 
higher sub-harmonics, and then also for the third mode—notice also 
that, within realistic speeds, higher sub-harmonics are favoured by 
longer train carriages. Therefore, higher bending modes benefit from a 
substantial amplitude reduction that arises from their high damping 
ratios. 

It is also of interest to recall that previous studies have confirmed 
that, even for SS beams with no SSI (beams on rigid supports), the first 
bending mode is prevalent and provides a good estimate of the peak 
resonant acceleration if the same damping is assigned to all modes ([13], 
section 6.5). 

To close subsection 3.4, it should be emphasised that the preceding 
conclusions are in accordance with relevant field measurements where 
the prevalence of the first bending mode at resonance has been 
observed. The well-known ballast instability problems observed in the 
pioneering Paris-Lyon TGV were due to resonance of the fundamental 
mode [14], and similar resonant behaviours were later observed in the 
Hanover-Wurzburg line [34] and Madrid-Sevilla lines [35]. However, in 
the two latter cases no destabilization of ballast was observed, but strong 
impact factors were recorded. Also, a field test conducted in Germany on 
the SS Erfttal filler beam bridge, of span 24.6 m, revealed resonant vi
bration at 250 km/h under the passing of an ICE-3 [36]. Recently in 

Table 3 
Comparison between computed fundamental modal properties of studied VS 
beams based on different beam theories using FE.  

L 
(m) 

Bernoulli-Euler theory Timoshenko 
Theory 

Timoshenko/B- 
E error 

Closed-form 
formula 

FE-solution FE-solution 

f 1 

(Hz) 
ξ 2 

(%) 
f (Hz) ξ (%) f (Hz) ξ (%) Δf 

(%) 
Δξ 
(%) 

8  17.83  3.63  17.81  3.65  17.6  3.57 − 1.2 − 2.2 
12  10.67  2.29  10.66  2.30  10.57  2.26 − 0.8 − 1.7 
16  7.43  1.73  7.42  1.73  7.36  1.71 − 0.8 − 1.2 
20  5.60  1.46  5.6  1.46  5.56  1.45 − 0.7 − 0.7  

1 Eq. (6). 
2 Eq. (8). 

Table 4 
Comparison between computed higher order modal properties of short-span VS 
beam (L = 8 m) based on different beam theories using FEA.  

Mode Bernoulli-Euler 
theory 

Timoshenko 
Theory 

Timoshenko/ B-E 
error 

f (Hz) ξ (%) f (Hz) ξ (%) Δf (%) Δξ (%) 

1st bending  17.81  3.65 17.6  3.57 − 1.2 − 2.2 
2nd bending  72.4  8.35 69  7.78 − 4.7 − 6.8 
3rd bending  166.1  8.77 149.9  7.7 − 9.8 − 12.2  

Table 5 
Comparison between computed higher order modal properties of short-span VS 
beam (L = 12 m) based on different beam theories using FEA.  

Mode Bernoulli-Euler 
theory 

Timoshenko 
Theory 

Timoshenko/B-E 
error 

f (Hz) ξ (%) f (Hz) ξ (%) Δf (%) Δξ (%) 

1st bending  10.66  2.3 10.57  2.26 − 0.8 − 1.7 
2nd bending  42.4  8.04 40.8  7.51 − 3.8 − 6.6 
3rd bending  97.9  9.62 90  8.58 − 8.1 − 10.8  
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Spain, a clear resonant behaviour of a 15 m SS prestressed girder bridge 
was monitored when a Renfe Class S103 train crossed the structure at 
279 km/h [37]. That same year, a visible resonance peak was observed 
during the tests of a SS composite bridge of span 19.5 m under the cir
culation of an ICE4 [38]. These cases of strong vibration were all of them 
related to the fundamental bending mode. No ballast instability prob
lems were reported. 

4. Practical application and validation 

In the following subsections, the accuracy and applicability of the 
proposed approximate formula (Eq. (27)) for estimating the maximum 
acceleration generated by high-speed trains is examined through com
parison with the analytical solutions developed by Svedholm et al. [23]. 
In the following, the same case studies as defined in section 2.5.1 are 
used. 

4.1. Maximum vertical acceleration under series of equidistant loads 
(regular train) 

The accuracy of the proposed closed-form formula in Eqs. (27) for 
estimating the maximum mid-span acceleration in free vibration 
response after the passage of a regular train (series of N equidistant 
loads) is investigated here. A comparison between the exact maximum 
acceleration at bridge mid-span and the approximated ones by Eq. (27) 
is presented in Fig. 6, considering two different sets of regular trains. As 
mentioned in section 3.1, the maximum acceleration due to the com
bination of the free vibrations occurs when the last load has left the 
beam and the acceleration created by this group reaches its maximum 
[13]. Hence, for verification purposes, the maximum acceleration 
computed by the reference solution is picked from the free vibration 
period. As expected, the resonant peaks are very well estimated by the 
proposed formula. 

Fig. 7 presents a comparison between the maximum total and 
maximum free vibration acceleration for two of the case study bridges. 
As one can expect, the total maximum acceleration does not coincide 
with the free vibration one for all train speeds, but the resonant peaks of 
the regular train are very well captured in both examples. Though some 
small differences are found at 390 km/h in Fig. 7a and 550 km/h in 
Fig. 7b, they will not be relevant for initial assessments of bridges, where 
Eqs. (27) and (28) will be used. Conversely, more refined and time- 
consuming numerical models will typically be used in the final stages 
of design, in order to obtain the peak responses with the greatest 
possible accuracy. 

4.2. Maximum vertical acceleration under HSLM load models 
(Articulated trains) 

As a particularly useful application, an estimate of the peak accel
eration due to the free vibrations generated by high-speed HSLM-A load 
models can be obtained by applying Eq. (27). A comparison between the 
exact maximum total acceleration at bridge mid-span and the one 

approximated by Eqs. (27) is presented in Fig. 8. As shown, the pre
dominant resonant peaks are very well approximated except for higher 
order resonant sub-harmonics in Fig. 8a/8b (lower speeds) and low 
order resonant sub-harmonics in Fig. 8c/8d (higher speeds). 

In addition to the cases when the maximum acceleration of one 
single passing load is achieved, during the forced vibration period, the 
main reason for the discrepancies observed in Fig. 8 between the values 
approximated by Eq. (27) and the reference solution is the disregarded 
effect of the full train spectrum (effect of the last power car), which 
modifies to some extent the resonant phenomenon. But as can be seen in 
Fig. 8, by using the full train spectrum through the LIR method, much 
better agreement is achieved between the estimated peak values, Eq. 
(28), and the reference solution, in all peaks that are significant for a 
preliminary structural design. 

In comparison with a full time integration of the equations of motion, 
it should be emphasized that Eqs. (27) as well as (28) will have much 
lower computational cost, which is of importance for screening various 
different alternatives in a particular bridge design, as well as carrying 
out parametric studies for series of bridges. 

4.2.1. Additional validation for short spans 
Because the behaviour of bridges is largely dependent on the span, it 

is preferable to analyse one additional example of span between 8 m and 
12 m. For such short spans, the dependency of frequency on the squared 
length, as well the influence in the response of L/d ratios between span 
and coach length, will be better captured by including the results of that 
further example. For such purpose, a bridge of span 10 m has been 
selected and the results of its analysis are shown in Fig. 9. As in the 
previous section, it can be seen that all peak responses that may be 
relevant for an initial design are well captured by using the full train 
spectrum through the LIR method, even for the lower speeds below 200 
km/h. 

5. Conclusions 

In this paper a novel closed-form expression for estimating the 
maximum free vibration amplitude of viscoelastically supported beams 
under single moving load has been proposed. The methodology is based 
on the discrete approximation of the fundamental vertical mode of a 
non-proportionally damped Bernoulli–Euler beam that allows the deri
vation of closed-form expressions for the modal properties of the system. 

Having the complex modal characteristics of desired vibration mode, 
an analytical solution for the free vibration response of the beam under 
single moving load is developed using complex mode superposition. 

Lastly, an approximate formula to estimate maximum mid-span ac
celeration of VS beams at resonance under passage of regular and arti
culated trains has been proposed. After extensive numerical testing, it 
has been proved to be a useful tool for a preliminary dynamic assessment 
of beam bridges, taking into account flexibility and dissipation capacity 
of the supporting soil-foundation system. The low computational cost of 
approximate formulas is essential in the initial stages of bridge design, as 
well as for the screening of railway bridge networks. 

Fig. 6. Maximum vertical acceleration during free vibration period under an arbitrary regular train, (a) N = 18, d = 18 m, F = 170 kN, (b) N = 11, d = 27 m, F = 210 
kN. (• ares approximated by Eqs. (27) while FB = 1). 
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Appendix A 

In this appendix, the definition for different terms in closed-form expressions of Eq. (6), Eq. (7) and Eq. (8) are presented. 

Fig. 7. Maximum vertical acceleration of a case study beam under an arbitrary regular train, (a) L = 8 m, N = 18, d = 18 m, F = 170 kN, (b) L = 20 m, N = 11, d = 27 
m, F = 210 kN. (• ares approximated by Eqs. (27) while FB = 1). 

Fig. 8. Response of case study bridges to 5 HSLM-A train load models, (a) L = 8 m, (b) L = 12 m, (c) L = 16 m, (d) L = 20 m (• resonance values approximated by Eq. 
(27), o resonance values estimated by Eq. (28) using full train spectrum). 

Fig. 9. Response of case study bridge L = 10 m to 5 HSLM-A train load models 
(• resonance values approximated by Eq. (27), ο resonance values estimated by 
Eq. (28) using full train spectrum). 
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