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ABSTRACT 

The active bending concept provides a new perspective for a well-established structural type which has been used 
at various scales: the beam-string, consisting of a beam with an attached lower tie in tension and bracing struts 
balancing the forces between them. The idea goes back to the gutter beams of the Crystal Palace and has been 
widely used to the present for large-scale structures. When a slender beam is used, the tension in the tie induces 
curvature in the beam and increases the structural depth of the system; this opens new formal possibilities and 
results in lightweight structures at the expense of increasing their overall flexibility. Systems of this kind fall within 
the realm of active bending. We name them bending-active braced arches. The target shape of the system follows 
the tensioning process and needs to be pre-determined by means of a specific analysis, typically involving dynamic 
relaxation or optimization-based methods. In this paper, we propose an analytical method to generate shapes for 
bending-active braced arches. It assumes that each segment of the activated rod between deviators behaves as a 
segment of elastica; this enables the use of closed-form expressions to evaluate the shape and induced stress level 
in the active member. Taking advantage of this idea, it is possible to devise a procedure to carry out the shaping 
process in a sequential way by adequately choosing the design parameters. When alternative choices for the 
parameters are selected, the problem becomes non-linear and can be solved using suitable techniques. Some 
examples with different design constraints have been reproduced to illustrate the possibilities of the method. 

Keywords: Bending-active structures, Beam-string system, Braced arch, Form finding, Euler’s elastica 

1. INTRODUCTION
Curved shapes are often used to achieve better 
structural performance with less material 
consumption. Shells and arches are examples of this 
paradigm and have been successfully built with 
various materials throughout history.  From the last 
quarter of the 20th century to our days a new way to 
erect curved structures has been introduced; it is 
based on using bending as the way to achieve 
curvature. Structures built by using this principle are 
called bending-active structures. In the core of the 
active bending concept, we recognize the 
advantageous idea of erecting a structure using the 
simplest possible building blocks: straight structural 
members pre-assembled on a flat surface; the 
assembly is pushed (or pulled) thereafter until the 
planned shape is achieved and the system is 
stabilized along the boundary and/or using additional 

structural members. There are excellent examples of 
domes built using this principle [1], [2], [3], [4]. 
Some of them are made of timber members; others 
use GFRP tubes, because of the high strength-to-
rigidity ratio of these materials.   

Looking back into the history of construction, we 
recognize a famous construction in which the 
bending-active principle was used, albeit in a less-
spectacular way and for a very practical reason: we 
are referring to Paxton’s Crystal Palace [5], built in 
1851, and more specifically, to the gutter beams built 
therein (Paxton’s gutters). They are U-shaped timber 
elements supported at both ends, with two cast-iron 
struts placed below and a lower tensioning wrought 
iron rod passing under them and attached to end 
shoes. The tension in the rod produced a pre-camber 
in the U-shaped timber element thanks to which 
water flowed to the drainage downpipes. The system 
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became a sort of inverted truss, much more rigid and 
strong than the original timber beam [6]. Large-scale 
and more complex versions of Paxton’s gutter beam 
have been built all along the world, but without 
making use of active bending: we are referring to the 
so-called beam-string structural system, which has 
been successfully used for roofing structures and 
even bridges [7]. It consists of a beam with an 
attached lower tie in tension and bracing struts 
(deviators) balancing the forces between them. 

If the beam of the beam-string system is very slender, 
the tension in the tie induces curvature in the beam, 
thereby changing the geometry of the system; this 
opens new formal possibilities and results in 
lightweight structures at the expense of an increased 
overall flexibility. Systems of this kind fall within 
the realm of active bending. We will refer to them as 
bending-active braced (or tied) arches: a simple 
planar structure composed of a continuous flexible 
member that is activated by the action of main cables 
pulling at both ends of the rod, and secondary struts 
(deviators) that deviate the main cable and act at 
certain cross-sections of the rod (Fig. 1). Secondary 
members will be referred to as deviators; they 
generally work in compression. The structure is 
activated by tensioning the cables and is stable under 
a certain state of self-stress. The geometry of the 
activated system cannot be fully prescribed in 
advance because it depends on the length and 
bending stiffness of the rod, as well as on the forces 
introduced by the deviators and the cable system. 

 
Figure 1: Bending-active braced arch 

Configuration-finding constitutes a crucial part of 
the design process of bending-active structures and 
has been subject of intensive research in the last 
decades. Two main computational strategies have 
emerged: forward configuration search and inverse 
configuration search. The first one starts from stress-
free flexible members which are pulled at certain 
locations by virtual cables or imposed movements to 
achieve a certain target shape by means of a non-
linear FE simulation [8], [9]; the stress-free 
configuration must be defined in advance in a 
tentative process, often with the help of physical 
models. In the inverse configuration search strategy, 

a tentative deformed configuration, possibly (but not 
necessarily) close to the target, is first defined; then, 
it is relaxed to achieve equilibrium. This process is 
in many cases carried out with the Dynamic 
Relaxation strategy with a convenient underlying 
mechanical model, as in [10], [11], [12], [13], [14] to 
cite just some. In other cases, energy minimization 
[14], [15] or optimization techniques have been 
applied [14], [16]. 

This article deals with the configuration-finding of 
bending-active braced arches with an arbitrary 
number of deviators, including the shape and rigidity 
of the bent member, the geometry of deviators and 
the geometry and forces in the cables. Instead of 
using one of the general methods described in the 
previous paragraph, an analytical method oriented to 
this specific structural system has been developed. 
The flexible member is assumed to be made of a 
linear elastic material and to have segment-wise 
constant cross-section; axial and shear deformability 
are neglected. The self-weight of all structural 
elements is also neglected at this stage. With all these 
assumptions, equilibrium of structural members and 
nodes, and compatibility of rotations at nodes can be 
established in a straightforward way. The 
equilibrium configuration depends on the bending 
rigidity of the rod, but it is independent of the 
deformability of the cable and the deviators. The 
novelty resides in the fact that no limitation is posed 
to the magnitude of the deformation of the flexible 
member; therefore, instead of using the linear beam 
theory to model bending, the structural response of 
the flexible rod is modelled using Euler-Love’s 
solution for the non-linear bending of a slender rod 
subject to end forces. The shape resulting from this 
theory is called elastica and has a closed but non-
trivial mathematical expression. An alternative 
approach using the elastica theory was proposed by 
the authors in [17]. In addition, discrete 
approximations for the elastica were also used in [16] 
for shape finding of elastic gridshells.  

Hence, our method starts from the fundamental 
assumption that each segment of the activated rod 
between deviators behaves as a segment of 
inflexional elastica. Consequently, to each elastica 
segment corresponds a cable segment, the axis of 
which joins the ideal inflexions of the corresponding 
elastica segment (Fig. 2). Of course, each segment of 
rod plus the corresponding cable segment “belong” 
to a different elastica, and the global shape follows 
from the compatibility of rotations at the nodes. 
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Figure 2: Full (notional) elastica semi-wave 

corresponding to rod section i 

Taking advantage of this idea, it is possible to devise 
an analytical method to generate shapes for bending-
active braced arches in a sequential way by 
adequately choosing the design parameters (initial 
data). Interestingly, in this case we can find solutions 
of the (non-linear) form-finding problem without 
solving any system of equations. However, in a 
general case, it may be convenient to choose a 
different set of initial parameters; then, the solution 
requires solving a system of non-linear equations. 

The outline of the paper is as follows: in Section 2 
we include a short review of Euler-Love’s 
inflexional elastica and how elastica-shapes are 
scaled depending on the compressive force and the 
bending rigidity of the cross section. Section 3 starts 
with the definition of all design parameters, 
comprises the development of the equilibrium and 
compatibility equations and ends discussing the 
number of possible free initial parameters. Section 4 
describes the direct method to generate equilibrium 
configurations in a sequential manner. Section 5 
extends the method to consider form-finding 
problems with different constraints using an 
evolutionary solver. Both, Sections 4 and 5 include 
examples to demonstrate the application of the 
method. Finally, Section 6 concludes the article. 

 

2. A BRIEF REVIEW OF THE INFLEXIONAL 
ELASTICA 
The problem of planar bending of an initially straight 
rod subject to compressive forces at its ends, 
assuming non-extensibility and non-shear 
deformability, and neglecting self-weight is known 
as the elastica problem. It was first studied by Euler, 
based on Bernoulli’s assumption of proportionality 
between flexural moments 𝑀 and centerline 
curvatures 𝜅 at each cross-section. The full 
development of this theory can be found in the 
classical work by Love [18]. 

 
Figure 3: Inflexional elastica. Defining variables 

The constitutive equation for the elastica is 𝑀 = 𝐸𝐼 𝜅 (1)

where the curvature is 𝜅 = d𝜃 d𝑠⁄ , 𝑠 is an arc-length 
parameter, θ is the cross-section rotation and 𝐸𝐼 the 
flexural rigidity (Fig. 3). The analytical solution for 
the arc-length is: 

𝑠 = 12 ඨ𝐸𝐼𝑃 න 1ටsinଶ 𝜃଴2 − sinଶ 𝜃2  d𝜃ఏ
ିఏబ  (2)

where 𝑃 is the magnitude of the compressive force. 
The applicability of this expression is bounded into 
the interval −𝜃଴ ≤ 𝜃 ≤ 𝜃଴,  where 𝜃଴ is the cross-
section rotation at the inflexion. To handle this issue, 
Love [18] introduced the variable 𝜔, defined by: 𝜔 = sin 𝜃2 sin 𝜃଴2൘  (3)

Substituting in (2), the expression for the arc-length 
reads as follows: 

𝑠 = ඨ𝐸𝐼𝑃 න 1ඥ1 − 𝑘2sin2𝜔𝜔
−𝜋/2  d𝜔 (4)

In this expression, 𝑘 = sin 𝜃଴2  (5)

is the reference parameter of the dimensionless 
solution of the elastica. The solution (4) can 
reproduce arbitrarily long elasticas because the new 
variable 𝜔 is not bounded. It can be expressed in 
terms of the incomplete and the complete elliptic 
integrals of the first kind: 𝖥(𝜔, 𝑘) = න d𝜔√1 − 𝑘ଶsinଶ𝜔ఠ

଴  

(6)𝖪(𝑘) = න d𝜔√1 − 𝑘ଶsinଶ𝜔଴
ି஠/ଶ  
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as: 

𝑠(𝜔, 𝑘) = ඨ𝐸𝐼𝑃  ൫𝖥(𝜔, 𝑘) + 𝖪(𝑘)൯ (7)

2.1. Geometry of the elastica 
Using the incomplete and complete elliptic integrals 
of the second kind 𝖤(𝜔, 𝑘) = න ඥ1 − 𝑘ଶsinଶ𝜔ఠ

଴  d𝜔 
(8)𝖤(𝑘) = න ඥ1 − 𝑘ଶsinଶ𝜔గ/ଶ

଴  d𝜔 

the coordinates of the elastica are expressed as 
follows (note the difference in nomenclature 
between 𝐸 and 𝖤 ): 

𝑥(𝜔, 𝑘) = 2 ඨ𝐸𝐼𝑃  ൫𝖤(𝜔, 𝑘) + 𝖤(𝑘)൯ − s(𝜔, 𝑘) 

𝑦(𝜔, 𝑘) = 2 ඨ𝐸𝐼𝑃 𝑘 cos 𝜔 (9)

2.2. Section forces 
Normal forces and shear forces are obtained as 
projections of the compressive force, and bending 
moments as the product of the compressive force 
times the elastica ordinate: 𝑁 = −𝑃 cos 𝜃 

(10)𝑉 = 𝑃 sin 𝜃 𝑀 =  −𝑃𝑦 

They can be expressed in terms of the elastica 
parameters as: 𝑁(𝜔, 𝑘) = −𝑃(1 − 2𝑘ଶsinଶ𝜔) 

(11)𝑉(𝜔, 𝑘) = −2𝑃𝑘 sin 𝜔ඥ1 − 𝑘ଶsinଶ𝜔 𝑀(𝜔, 𝑘) = −2√𝑃 √𝐸𝐼 𝑘 cos 𝜔 

2.3. Scalability of the solution 
We introduce the parameter critical length: 

𝑙௖ = 𝜋ඨ𝐸𝐼𝑃  (12)

It is defined as the length of a rod with bending 
rigidity 𝐸𝐼 for which 𝑃 is Euler's critical load —this 
definition was previously introduced by the authors 

in [17]. Using it, the arc-length and the coordinates 
of the elastica can be expressed as dimensionless 
quantities: 𝜁 = 𝑠/𝑙௖ 

(13)𝜉 = 𝑥/𝑙௖ 𝜂 = 𝑦/𝑙௖ 

Therefore, the non-dimensional arc-length parameter 
becomes: 𝜁(𝜔, 𝑘) = 1𝜋 ൫𝖥(𝜔, 𝑘) + 𝖪(𝑘)൯ (14)

and the non-dimensional coordinates are: 𝜉(𝜔, 𝑘) = 2𝜋 ൫𝖤(𝜔, 𝑘) + 𝖤(𝑘)൯ − ζ(𝜔, 𝑘) 

𝜂(𝜔, 𝑘) = 2𝜋 𝑘 cos 𝜔 (15)

These equations show that the shape of an elastica is 
fully determined by the parameter 𝑘 (Eq. 5) —or in 
other words, by the angle at the inflexion (Fig. 4). On 
the other hand, the size of the elastica is determined 
by the critical length 𝑙௖, which acts as a scaling 
parameter. 

 
Figure 4: Elasticas (in non-dimensional coordinates) for 𝜃଴ = 𝑛𝜋/20 and 𝑛 ∈ {2,3, … , 17, 18} 

 

Finally, from equation (10) it can be noted that 
section forces 𝑁, 𝑉 are directly scaled by the 
compressive force 𝑃, and bending moments 𝑀 are 
scaled by the factor 𝑃𝑙௖/𝜋. 

To sum up, the shape of the elastica —defined by the 
parameter 𝑘— is fully determined by the angle at the 
inflexion 𝜃଴ and is independent of the value of the 
compressive force 𝑃 or the bending rigidity 𝐸𝐼. Once 
the shape is obtained, the size of the elastica can be 
scaled by means of the critical length 𝑙௖ (Eq. 12). It 
involves the relation between the bending rigidity 𝐸𝐼 
and the compressive force 𝑃. 

For example, once 𝑙௖ has been fixed, the magnitude 
of the internal forces can be chosen by selecting 𝑃, 
and the bending rigidity 𝐸𝐼 should then be adjusted
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Figure 5: Notation 

 

to be consistent with 𝑙௖: 𝐸𝐼 = 𝑃 ൬𝑙௖𝜋൰ଶ
 (16)

Alternatively, 𝐸𝐼 may be prescribed and the 
magnitude of the forces will be given by: 𝑃 = 𝜋ଶ 𝐸𝐼𝑙௖ଶ  (17)

 

3. SELF-STRESS STATES IN BENDING-
ACTIVE TIED ARCHES 
The simulation of the activation process of bending-
active structures is of crucial importance for their 
design. Due to the non-linearity of the structural 
response, it is often not possible to predefine in 
advance the equilibrium configuration and 
computational form-finding methods are required for 
modelling the bending effect. However, in the case 
of bending-active tied arches, the fact that the rod 
segments between deviators behave as elastica 
segments enables the use of closed-form expressions 
to evaluate the stress level due to activation forces. 
The purpose of this section is to determine the 
sufficient and necessary conditions for obtaining the 
self-stress state of the arch using the equations of the 
exact solution of the elastica. 

3.1. Notation 
An intermediate node 𝑖 on the rod separates two 
sections of the rod that are referred to as section 𝑖 −1 and section 𝑖. Variables associated to the section 𝑖 
of the rod are denoted by the superscript 𝑖 (Fig. 5). 

Each section 𝑖 of the rod is part of an elastica defined 
by the parameter 𝑘௜, the magnitude of the 
compressive force 𝑃௜ and the flexural rigidity 𝐸𝐼௜ 
(see Fig. 2). 

As each cable segment and the corresponding 
elastica section are in equilibrium, the compressive 
force acting on the elastica and the traction in the 
cable must have the same magnitude: 𝑃௜ = 𝑇௜. 
Because of this, rod sections 𝑖 − 1 and 𝑖 exert forces 𝑇௜ିଵ and 𝑇௜ (as well as moments 𝑀௜ିଵ and 𝑀௜) on 
node 𝑖; these forces have the direction of the 
corresponding cable segments (see Fig. 6). 

Angles between cable segments 𝑖 − 1, 𝑖 and elastica 
tangents at each side of node 𝑖 will be referred to as 𝜃௜௜ିଵ and 𝜃௜௜. Therefore, a given elastica section 𝑖 
starts with an angle 𝜃௜௜ and ends with 𝜃௜ାଵ௜ , both 
angles referred to the orientation of cable 𝑖. The 𝜔 
variables (see Eq. (3)) corresponding to the elastica 
sections 𝑖 and 𝑖 + 1 are 𝜔௜௜ and 𝜔௜ାଵ௜ . 

The angles formed by each cable segment 𝑖 − 1, 𝑖 
and the prolongation of the axis of the deviator are 
denoted 𝛼௜, 𝛽௜. The angular difference between cable 
segments is denoted as 𝛽௜. Then, the relation between 
angles at node 𝑖 is: 𝛼௜ + 𝛽௜ + 𝜑௜ = 𝜋 (18)

3.2. Equilibrium and compatibility conditions 
at joints 
Figure 6 shows the various equilibrium conditions at 
nodes. Equilibrium of moments at joints requires that 𝑀௜௜ିଵ = 𝑀௜௜.  

 
Figure 6: Equilibrium of nodes and elastica sections (I) 
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Figure 7: Equilibrium of nodes and elastica sections (II) 

 

Substituting the expression for moments from Eq. 
(11): √𝑇௜ିଵ√𝐸𝐼௜ିଵ 𝑘௜ cos 𝜔௜௜ିଵ =√𝑇௜√𝐸𝐼௜ 𝑘௜ cos 𝜔௜௜  (19)

equivalently: 𝑇௜ିଵ𝐸𝐼௜ିଵ൫𝑘௜ିଵ൯ଶ൫1 − sinଶ𝜔௜௜ିଵ൯ =𝑇௜𝐸𝐼௜൫𝑘௜൯ଶ൫1 − sinଶ𝜔௜௜൯  
(20)

Introducing the definition of 𝜔 and rearranging, the 
equilibrium condition can be expressed in terms of 
the rotations: 𝑇௜ିଵ𝐸𝐼௜ିଵ ൬൫𝑘௜ିଵ൯ଶ − sinଶ ఏ೔೔షభଶ ൰ =𝑇௜𝐸𝐼௜ ൬൫𝑘௜൯ଶ − sinଶ ఏ೔೔ଶ ൰  

(21)

An alternative expression using critical lengths is: 1𝜋ଶ ൫𝑇௜ିଵ൯ଶ൫𝑙௖௜ିଵ൯ଶ ቆ൫𝑘௜ିଵ൯ଶ − sinଶ 𝜃௜௜ିଵ2 ቇ 

= ଵగమ ൫𝑇௜൯ଶ൫𝑙௖௜ ൯ଶ ൬൫𝑘௜൯ଶ − sinଶ ఏ೔೔ଶ ൰  
(21)

The equilibrium of forces at each node on the elastica 
is defined by the compressive forces acting on each 
segment 𝑃௜ିଵ, 𝑃௜and the force in the deviator 𝑄௜. The 
triangle of forces at this node is the same as the 
triangle of forces at the corresponding node joining 
cable segments and deviator, acted by forces 𝑇௜ିଵ, 𝑇௜, 𝑄௜.  The law of sines 𝑇௜ିଵsin 𝛽௜ = 𝑇௜sin 𝛼௜ = 𝑄௜sin 𝜑௜ (23)

leads to the following equilibrium equations: 𝑇௜ିଵ sin 𝛼௜ = 𝑇௜ sin 𝛽௜ (24)𝑇௜ିଵ sin 𝜑௜ = 𝑄௜ sin 𝛽௜ 
Compatibility of tangents to the elastica at both sides 

of a joint requires: 𝜃௜௜ = 𝜃௜௜ିଵ + 𝜑௜ (25)

A problem with 𝑛 elastica sections, and therefore 𝑛 − 1 intermediate nodes in the rod, is considered. 
Following the previous discussion, the intervening 
variables are classified into three groups. The first 
group is reflected in Table 1 and gathers variables 
which are directly related to the self-stressing state: 
angles between cables and between deviators and 
cables, cable forces relative to the force in the first 
cable and deviator forces relative to the same 
magnitude. They can be visualized by means of a 
force polygon composed by cable forces and 
deviator forces (Fig. 7). Note that the choice of the 
magnitude of the force 𝑇଴ determines the scale of the 
force polygon. 

 
Table 1: Variables related to self-stressing forces 

Type Notation  Number of 
variables 

Angle 𝜑௜ 𝑖 ∈ {1 … 𝑛 − 1} 𝑛 − 1 

Angle 𝛼௜ 𝑖 ∈ {1 … 𝑛 − 1} 𝑛 − 1 

Force 𝑇௜/𝑇଴ 𝑖 ∈ {1 … 𝑛 − 1} 𝑛 − 1 

Force 𝑄௜/𝑇଴ 𝑖 ∈ {1 … 𝑛 − 1} 𝑛 − 1 

Total   4(𝑛 − 1) 

 

The second group (Table 2) comprises the variables 
that define the geometry (shape and relative size) of 
the sequence of elasticas: elastica parameters, critical 
lengths relative to the critical length of the first 
elastica section and angles at both sides of a node. 

The third group (Table 3) is formed by the size and 
force scaling parameters: the critical length of the 
first elastica section and the force in the first cable. 
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Table 2: Variables related to the form of the elastic rod 

Type Notation Number of 
variables 

Angle 𝜃௜௜ିଵ, 𝜃௜௜ 𝑖  ∈ {1 … 𝑛 − 1} 2(𝑛 − 1) 

Angle-
related 𝑘௜ 𝑖  ∈ {0 … 𝑛 − 1} 𝑛 

Length 𝑙௖௜ /𝑙௖଴ 𝑖  ∈ {1 … 𝑛 − 1} 𝑛 − 1 

Total   4(𝑛 − 1) + 1
Table 3: Size and force scaling variables 

Type Notation Number of 
variables 

Length 𝑙௖଴  1 

Force 𝑇଴  1 

Total   2 

 

Altogether, there are 8𝑛 − 5 variables defining the 
configuration: 4(𝑛 − 1) self-stress related variables; 4(𝑛 − 1) + 1 rod form related variables; one 
parameter 𝑙௖଴ to define the size of the structure, and 
one parameter 𝑇଴ to define the magnitude of internal 
forces and bending rigidity of the rod. 

As for the equations, there are three equilibrium 
equations and one compatibility condition at each 
intermediate node of the rod (Table 4). This makes a 
total of 4(𝑛 − 1) equations. Therefore, a given 
configuration is defined by choosing 4(𝑛 − 1) + 3 
parameters: 4(𝑛 − 1) + 1 for determining the shape, 
one for setting the size and one for selecting the 
magnitude of forces and flexural rigidity of cross-
sections. 

Table 4: Equilibrium and compatibility equations 

Type(*) 
/ Eq. no. 

Equation Number of 
equations 

E  /  (24) 𝑇௜ିଵ sin 𝛼௜ = 𝑇௜ sin 𝛽௜ 𝑛 − 1 

E  /  (24) 𝑇௜ିଵ sin 𝜑௜ = 𝑄௜ sin 𝛽௜ 𝑛 − 1 

E  /  (21) 

(𝑇௜ିଵ)ଶ(𝑙௖௜ିଵ)ଶ ൬(𝑘௜ିଵ)ଶ −sinଶ ఏ೔೔షభଶ ൰ =(𝑇௜)ଶ(𝑙௖௜ )ଶ ൬(𝑘௜)ଶ − sinଶ ఏ೔೔ଶ ൰  

𝑛 − 1 

C  /  (25) 𝜃௜௜ = 𝜃௜௜ିଵ + 𝜑௜ 𝑛 − 1 

Total  4(𝑛 − 1) 
(*) E means equilibrium; C means compatibility.

4. DIRECT DETERMINATION OF SELF-
STRESS CONFIGURATIONS 

In this section a direct method to obtain self-stress 
configurations of bending-active tied arches is 
presented. This method is direct in the sense that a 
solution for the 4(𝑛 − 1) unknowns is obtained in a 
sequential manner, after selecting 4(𝑛 − 1) + 3 =4𝑛 − 1 parameters and does not require to solve any 
system of equations.  

Observing that the 2(𝑛 − 1) force equilibrium 
equations (24) at intermediate nodes only involve the 4(n − 1) self-stress related variables of Table 1, the 
following procedure solves the problem: 

1. Define a value for 𝑇଴. 
2. Define values for 𝛼௜, 𝜑௜,  𝑖 ∈ {1 … 𝑛 − 1}. In 

this step, 2(𝑛 − 1) parameters are set. 

3. Compute 𝑇௜ and 𝑄௜ for, 𝑖 ∈ {1 … 𝑛 − 1} using 
force equilibrium equations (24). This is a direct 
computation considering that 𝛽௜ = 𝜋 − 𝛼௜ − 𝜙௜. 

4. Define values for 𝜃௜௜ିଵ,  𝑖 ∈ {1 … 𝑛 − 1}. With 
this step 𝑛 − 1 parameters are additionally set. 

5. Compute 𝜃௜௜ using compatibility equations (25). 

6. Define values for 𝑘଴ and 𝐸𝐼௜ for 𝑖 ∈ {0 … 𝑛 −1}. This step sets 𝑛 + 1 additional parameters. 

7. Compute 𝑘௜ for 𝑖 ∈ {1 … 𝑛 − 1} using moment 
equilibrium equations (21). 

8. Compute local coordinates of elastica 𝑖 using 
equations (9). 

9. Place each elastica segment by translating it to 
the end of the previous one and rotating it to 
preserve tangents at intermediate nodes. 

It is worth noting that steps 1 to 3 are equivalent to 
the definition of the force polygon that corresponds 
to the system of cables and deviators. This graphical 
approach has been already used by Boulic et al. [19], 
who proposed a graphical method for the design of 
hybrid bending-active structures composed of active 
elements with non-constant stiffness and tensile 
cable nets. Particularly, their method makes use of a 
force diagram to obtain the non-constant distribution 
of bending rigidity along the active members for a 
certain target bent geometry under given loads. 

Step 5 requires checking that angle 𝜃௜௜ is smaller than 𝜃௜ିଵ௜ . If this condition is not met, the elastica 𝑖 will 
be wrongly computed with a reversed orientation; to 
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avoid this, 2𝜋 should be added to 𝜃௜௜. In step 6, 𝑘଴ is 
related to the angle between cable and elastica 
tangent at the start of the structure. In addition, 
setting the 𝑛 values of flexural rigidity 𝐸𝐼௜ is 
equivalent to setting the 𝑛 values of critical length 𝑙௖௜  
because forces 𝑇௜ are already known. 

Once a configuration is found, its size and the 
magnitude of the forces can be adjusted to the 
desired values by changing 𝐸𝐼଴ and 𝑇଴. 

A convenient procedure is to initially set 𝑇଴ = 1 and 𝐸𝐼଴ = 1/𝜋ଶ, so that 𝑙௖଴ = 1. After computing the 
solution and the coordinates of the structure, the size 
of the structure can be scaled to the desired value. If 
the scale factor is assumed as l; then the first critical 
length shall be 𝑙௖଴ = 𝑙. If 𝐸𝐼଴ = 𝐸𝐼 is chosen as a 
desired value, then all forces shall be scaled by 𝑇଴ =𝜋ଶ𝐸𝐼/𝑙ଶ. Another possibility is to choose the 
magnitude of forces by setting 𝑇଴ = 𝑇 and then 
obtain the required flexural rigidity scale factor as 𝐸𝐼଴ = 𝑇𝑙ଶ/𝜋ଶ. Table 5 summarizes the prescribed 
variables and the computed variables for this direct 
method. 
Table 5: Prescribed and computed variables in the direct 

method 

Prescribed Computed 

Variable Number Variable Number 𝑇଴ 1 𝑇௜ 𝑛 − 1 𝜑௜ 𝑛 − 1 𝑄௜ 𝑛 − 1 𝛼௜ 𝑛 − 1   𝜃௜௜ିଵ 𝑛 − 1 𝜃௜௜ 𝑛 − 1 𝑘଴ 1   𝐸𝐼௜ 𝑛 𝑘௜ 𝑛 − 1 

Total 4𝑛 − 1 Total 4𝑛 − 4 

4.1. Examples 
Generic case. A generic case with 𝑛 = 5 elastica 
sections generated with the sequential procedure is 
shown in Fig. 8. 

 
Figure 8: Example of a generic structure with n = 5 
elastica sections shaped with the sequential method 

Initial prescribed parameters are 𝑇଴ = 1 and 𝐸𝐼௜ =1/𝜋ଶ for all 𝑖. Then, a set of angles 𝛼௜ and 𝜑௜, 
together with 𝑘଴ have been chosen (The value of 𝑘଴ 
corresponds to an initial angle 𝜃଴ = 40 deg.) Their 
values and the remaining parameters, calculated with 
the sequential procedure, are included in Table 6. 

 

Perpendicular deviators. Perpendicularity between 
deviators and rod can be prescribed adding the 
following condition: 𝜃௜௜ିଵ = 𝜋/2 + 𝛼௜ (26)

The result is represented in Fig. 9. 

 
Figure 9: Generic bending-active tied arch with 𝑛 = 5 

elastica sections and perpendicular deviators 

 

Symmetric structure with even number of rod 
sections. The following additional conditions lead to 
a symmetric solution for an even number 𝑛 of 
elastica sections: 

 Conditions on the polygon of forces: 𝜑௡ି௜ = 𝜑௜ 𝑖 ∈ {1 … 𝑛/2 − 1} 𝛼௡/ଶ = ൫𝜋 − 𝜑௡/ଶ൯/2 (27)𝛼௡ି௜ = 𝜋 − 𝜑௜ − 𝛼௜ 𝑖 ∈ {1 … 𝑛/2 − 1} 
 Conditions on the geometry of the rod: 𝜃௡ି௜௡ି௜ିଵ = −𝜃௜௜ 𝑖 ∈ {1 … 𝑛/2 − 1} 𝜃௡/ଶ௡/ଶିଵ = −𝜑௡/ଶ/2 (28)𝐸𝐼௡ି௜ିଵ = 𝐸𝐼௜ 𝑖 ∈ {1 … 𝑛/2 − 1} 
Therefore, symmetry adds 𝑛 − 1 conditions to the 
force polygon and n conditions to the form of the 
rod. This leaves (4𝑛 − 1) − (2𝑛 − 1) = 2𝑛 free 
variables to determine a configuration. (A different 
approach to symmetry would be to reduce the 
number of unknowns and equations from scratch.) In 
the symmetric case with even number of elastica 
sections there are 4n − 2 variables. 
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Table 6: Prescribed variables and computed unknowns for the generic case 
Variable Prescribed Computed Variable Prescribed Computed 𝑇଴ 1  𝜃ଵ଴ 30𝜋/180  𝑇ଵ  0.9430 𝜃ଶଵ 10𝜋/180  𝑇ଶ  0.9623 𝜃ଷଶ −5𝜋/180  𝑇ଷ  0.9595 𝜃ସଷ −15𝜋/180  𝑇ସ  0.8601 𝜃ଵଵ  0.2616 𝑄ଵ  0.2600 𝜃ଶଶ  0.0435 𝑄ଶ  0.1261 𝜃ଷଷ  −0.1742 𝑄ଷ  0.1258 𝜃ସସ  −0.5229 𝑄ସ  0.2572 𝑘଴ sin ൬12 ∙ 40𝜋180൰  𝜑ଵ −15𝜋/180  𝑘ଵ  0.2645 𝜑ଶ −7.5𝜋/180  𝑘ଶ  0.2482 𝜑ଷ −7.5𝜋/180  𝑘ଷ  0.2625 𝜑ସ −15𝜋/180  𝑘ସ  0.3532 𝛼ଵ −70𝜋/180  𝐸𝐼଴ 1/𝜋ଶ  𝛼ଶ −95𝜋/180  𝐸𝐼ଵ 1/𝜋ଶ  𝛼ଷ −275𝜋/180  𝐸𝐼ଶ 1/𝜋ଶ  𝛼ସ −60𝜋/180  𝐸𝐼ଷ 1/𝜋ଶ  

   𝐸𝐼ସ 1/𝜋ଶ  

 
Table 7: Prescribed variables and computed unknowns corresponding to the generic case with perpendicular deviators 

Variable Prescribed Computed Variable Prescribed Computed 𝑇଴ 1  𝜃ଵ଴ 30𝜋/180  𝑇ଵ  0.8964 𝜃ଶଵ 10𝜋/180  𝑇ଶ  0.8836 𝜃ଷଶ −5𝜋/180  𝑇ଷ  0.9016 𝜃ସଷ −15𝜋/180  𝑇ସ  1.0056 𝜃ଵଵ  0.2616 𝑄ଵ  0.2681 𝜃ଶଶ  0.0435 𝑄ଶ  0.1172 𝜃ଷଷ  −0.2182 𝑄ଷ  0.1182 𝜃ସସ  −0.5229 𝑄ସ  0.2696 𝑘଴ sin ൬12 ∙ 40𝜋180൰  𝜑ଵ −15𝜋/180  𝑘ଵ  0.2697 𝜑ଶ −7.5𝜋/180  𝑘ଶ  0.2580 𝜑ଷ −7.5𝜋/180  𝑘ଷ  0.2743 𝜑ସ −15𝜋/180  𝑘ସ  0.3451 𝛼ଵ  −1.0471 𝐸𝐼଴ 1/𝜋ଶ  𝛼ଶ  −1.3962 𝐸𝐼ଵ 1/𝜋ଶ  𝛼ଷ  −1.6579 𝐸𝐼ଶ 1/𝜋ଶ  𝛼ସ  −1.8316 𝐸𝐼ଷ 1/𝜋ଶ  

   𝐸𝐼ସ 1/𝜋ଶ  
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Table 8 shows the splitting between prescribed and 
computed variables with the direct method. The 
equations and their number are shown in Table 9. 

 
Table 8: Prescribed and computed variables in a 

symmetric structure with even number of elastica sections 
(direct method) 

Prescribed Computed 

Variable Number Variable Number 𝑇଴ 1 𝑇௜ 𝑛/2 − 1 𝜑௜ 𝑛/2 𝑄௜ 𝑛/2 𝛼௜ 𝑛/2 − 1 𝛼௡/ଶ 1 𝜃௜௜ିଵ 𝑛/2 − 1 𝜃௡/ଶ௡/ଶିଵ 1 𝑘଴ 1 𝜃௜௜ 𝑛/2 − 1 𝐸𝐼௜ 𝑛/2 𝑘௜ 𝑛/2 − 1 

Total 2𝑛 Total 2𝑛 − 4 

 

Let's consider a structure with 𝑛 = 4 rod sections. 
Table 10 includes the 2𝑛 = 8 prescribed parameters 
and the 2𝑛 − 1 =  7 computed unknowns following 
the procedure described in the preceding section. 
The resulting geometry is represented in Figure 10. 

Figure 10: Symmetric bending-active tied arch with 𝑛 = 4 
elastica sections 

Table 9: Equations in a symmetric structure with even 
number of rod sections 

Type(*) 
/ Eq. no. Equation Number of 

equations 

E  /  (24) 𝑇௜ିଵ sin 𝛼௜ = 𝑇௜ sin 𝛽௜ 𝑛/2 − 1 

E  /  (24) 𝑇௜ିଵ sin 𝜑௜ = 𝑄௜ sin 𝛽௜ 𝑛/2 − 1 

S  /  (27) 𝛼௡/ଶ = ൫𝜋 − 𝜑௡/ଶ൯/2 1 

E  /  (24) 
𝑇௡/ଶିଵ sin 𝜑௡/ଶ= 𝑄௡/ଶ sin 𝛽௡/ଶ 1 

E  /  (21) 

(𝑇௜ିଵ)ଶ(𝑙௖௜ିଵ)ଶ ൬(𝑘௜ିଵ)ଶ −sinଶ ఏ೔೔షభଶ ൰ =(𝑇௜)ଶ(𝑙௖௜ )ଶ ൬(𝑘௜)ଶ − sinଶ ఏ೔೔ଶ ൰  

𝑛/2 − 1 

C  /  (25) 𝜃௜௜ = 𝜃௜௜ିଵ + 𝜑௜ 𝑛/2 − 1 

S  /  (28) 𝜃௡/ଶ௡/ଶିଵ = −𝜑௡/ଶ/2 1 

Total  2𝑛 − 1 
(*) E means equilibrium; C means compatibility; S means symmetry. 

 

 

Table 10: Prescribed variables and computed unknowns in the symmetric example 
Variable Prescribed Computed Variable Prescribed Computed 𝑇଴ 1  𝜃ଵ଴ 30𝜋/180  𝑇ଵ  0.9659 𝜃ଵଵ  0.2617 𝑄ଵ  −0.2588 𝜃ଶଵ  0.0654 𝑄ଶ  −0.1263 𝑘଴ sin ൬12 ∙ 40𝜋180൰  𝜑ଵ −15𝜋/180  𝑘ଵ  0.2622 𝜑ଶ −7.5𝜋/180  𝐸𝐼ଵ 1/𝜋ଶ  𝛼ଵ 105𝜋/180  𝐸𝐼଴ 1/𝜋ଶ  𝛼ଶ  1.6362    
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Symmetric structure with odd number of rod 
sections. This case can be solved using the following 
additional constraints: 𝜑௡ି௜ = 𝜑௜ 𝑖 ∈ {1 … (𝑛 − 1)/2}  𝛼௡ି௜ = 𝜋 − 𝜑௜ − 𝛼௜ 𝑖 ∈ {1 … (𝑛 − 1)/2} 

(29) 𝜃௡ି௜௡ି௜ିଵ = −𝜃௜௜ 𝑖 ∈ {1 … (𝑛 − 1)/2} 𝐸𝐼௡ି௜ିଵ = 𝐸𝐼௜ 𝑖 ∈ {1 … (𝑛 − 1)/2}  

Alternatively, a reduced number of variables and 
equations can be used. Variables and equations can 
be found in Tables 11 and 12. 

 
Table 11: Prescribed and computed variables in a 

symmetric structure with odd number of elastica sections 
(direct method) 

Prescribed Computed 

Variable Number Variable Number 𝑇଴ 1 𝑇௜ (𝑛 − 1)/2 𝜑௜ (𝑛 − 1)/2 𝑄௜ (𝑛 − 1)/2 𝛼௜ (𝑛 − 1)/2   𝜃௜௜ିଵ (𝑛 − 1)/2   𝑘଴ 1 𝜃௜௜ (𝑛 − 1)/2 𝐸𝐼௜ (𝑛 + 1)/2 𝑘௜ (𝑛 − 1)/2 

Total 2𝑛 + 1 Total 2𝑛 − 2 

 
Table 12: Equations in a symmetric structure with odd 

number of rod sections 

Type(*) 
/ Eq. no. Equation Number of 

equations 

E  /  (24) 𝑇௜ିଵ sin 𝛼௜ = 𝑇௜ sin 𝛽௜ (𝑛 − 1)/2 

E  /  (24) 𝑇௜ିଵ sin 𝜑௜ = 𝑄௜ sin 𝛽௜ (𝑛 − 1)/2 

E  /  (21) 

(𝑇௜ିଵ)ଶ(𝑙௖௜ିଵ)ଶ ൬(𝑘௜ିଵ)ଶ −sinଶ ఏ೔೔షభଶ ൰ =(𝑇௜)ଶ(𝑙௖௜ )ଶ ൬(𝑘௜)ଶ − sinଶ ఏ೔೔ଶ ൰  

(𝑛 − 1)/2 

C  /  (25) 𝜃௜௜ = 𝜃௜௜ିଵ + 𝜑௜ (𝑛 − 1)/2 

Total  2𝑛 − 2 
(*) E means equilibrium; C means compatibility. 

 

5. COMPUTATION OF SELF-STRESS 
CONFIGURATIONS UNDER ADDITIONAL 
CONSTRAINTS 
In Section 4 it was shown that 4(𝑛 − 1) + 3 = 4𝑛 −1 variables can be independently selected in a 
general case.  

The remaining 4(𝑛 − 1) = 4𝑛 − 4 unknown 
variables that define a configuration can be 
calculated using the same number of equations: 3(𝑛 − 1) equilibrium and 𝑛 − 1 compatibility 
equations. 

If additional constraints are imposed, the number of 
independent parameters decreases. For instance, 
when searching symmetric configurations or 
solutions with perpendicularity between rod and 
deviators (see previous section). Moreover, when the 
choice of parameters is different from the one 
explained in Section 4, the problem non-linearity 
requires suitable solution techniques. 

Among the set of search strategies, heuristic 
algorithms are well known for providing good 
approximate solutions to problems that cannot be 
solved easily using other techniques. Within 
heuristics, evolutionary algorithms have been deeply 
developed in the last decade. They mimic the theory 
of evolution using the same trial-and-error 
procedures that nature uses to arrive at an optimized 
outcome. Using this idea, Rutten [20] created a tool 
called Galapagos, which facilitates this process 
within Grasshopper (a graphical algorithm editor). 
Starting from the definition of the form-finding 
variables and constraints, this evolutionary solver 
finds the solution of the problem (or at least, a near-
optimal solution) in an iterative manner. In the 
following, we present three examples to illustrate the 
method. 

Example 1. In this first example, the target is to find 
the shape of a symmetric bending active arch with 
four rod sections n = 4 of equal flexural rigidity and 
length. Cable forces are prescribed, as well as the 
angle between first cable and first tangent to the rod. 

Firstly, it will be checked that the number of 
prescribed variables and conditions allows to find a 
solution. As shown in the previous section, a 
symmetric bending active arch with even number of 
rod sections leaves 2𝑛 =  8 parameters to be 
chosen. 𝑇଴ = 1 and 𝐸𝐼଴ = 1/𝜋ଶ are chosen as 
starting values; they will be adjusted at the end of the 
process to achieve the desired size of the structure. 
This leaves freedom to define six additional 
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parameters and/or conditions. Once 𝑇଴ has been 
chosen, the other forces 𝑇ଵ, 𝑄଴ and 𝑄ଵ and the angle 𝛼ଶ are determined if the angles 𝜑ଵ, 𝜑ଶ and 𝛼ଵ are 
selected, as shown in the example of the previous 
section. Table 13 shows the values of angles and 
forces. 

Three conditions remain to be set to find the solution: 

 The angle between the first cable and the first 
tangent: 𝜃଴଴ = −40𝜋/180 (30)

Therefore: 𝑘଴ = sin ൬12 40𝜋180൰ (31)

 Equal flexural rigidity in all rod sections:      𝑛/2 − 1 = 1 condition. 𝐸𝐼ଵ = 𝐸𝐼଴(= 1) (32)

 Equal length in all rod sections: 𝑛/2 − 1 = 1 
condition. 𝑙ଵ = 𝑙଴ (33)

From Eq. (7), the lengths of each elastica segment 
can be expressed as follows: 

𝑙଴ = ඨ𝐸𝐼଴𝑇଴ ቀ𝖥(𝜔ଵ଴, 𝑘଴) + 𝖪(𝑘଴)ቁ 

(34) 𝑙ଵ = ඨ𝐸𝐼ଵ𝑇ଵ ቀ𝖥(𝜔ଶଵ, 𝑘ଵ) − 𝖥(𝜔ଵଵ, 𝑘ଵ)ቁ 

Therefore, from Eqs. (33) and (34): 𝑇ଵ ቀ𝖥(𝜔ଵ଴, 𝑘଴) + 𝖪(𝑘଴)ቁ− 𝑇଴ ቀ𝖥(𝜔ଶଵ, 𝑘ଵ)− 𝖥(𝜔ଵଵ, 𝑘ଵ)ቁ = 0 

(35)

with: sin 𝜔ଵ଴ = 1𝑘଴ sin 𝜃ଵ଴2   

sin 𝜔ଵଵ = 1𝑘ଵ sin 𝜃ଵଵ2  (36)

sin 𝜔ଶଵ = 1𝑘ଵ sin 𝜃ଶଵ2  

The previous equations together with: (a) the 
moment equilibrium equation; (b) the compatibility 
condition in node 1 and (c) the symmetry condition 

in node 2, 𝑇଴(𝑘଴)ଶ(1 − sinଶ 𝜔ଵ଴)− 𝑇ଵ(𝑘ଵ)ଶ(1 − sinଶ 𝜔ଵଵ)= 0 
 

𝜃ଵଵ = 𝜃ଵ଴ − 𝜑ଵ (37)𝜃ଶଵ = 𝜑ଶ/2 

allow to calculate the four unknowns 𝜃ଵ଴, 𝜃ଵଵ, 𝜃ଶଵ and 𝑘ଵ. In this case, the solution has been found iterating 
over 𝜃ଵ଴ using the plug-in Galapagos until: 𝑙ଵ − 𝑙଴ = 0 (38)

The result is shown in Fig. 11 and Table 13. 

 
Figure 11: Symmetric bending-active tied arch with 𝑛 = 4 

elastica sections of equal length (Example 1) 

 

Example 2. Here, the objective is to reproduce the 
first example adding the condition of 
perpendicularity between deviators and rod. Due to 
this condition, the solution can be found iterating 
over αଵ instead of θଵ଴. The solution is shown in Fig. 
12 and Table 14. 

 
 

Figure 12: Symmetric bending-active tied arch with 𝑛 = 4 
elastica sections corresponding to Example 2 

 

 

Example 3. In the last example, the purpose is to 
form-find the shape of a symmetric bending active 
arch with 𝑛 = 5 rod sections, with perpendicular 
deviators and same distance between deviator-rod 
joints projected over the x-axis. The cable and rod 
forces as well as the angle between first cable and 
first tangent to the rod are prescribed. Relations 𝐸𝐼଴/𝐸𝐼ଵ and 𝐸𝐼଴/𝐸𝐼ଶ  are iteratively searched in 
two steps using Galapagos until the following 
conditions are met: 
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𝑑௫ଵ𝑑௫଴ = 𝑥ଶ − 𝑥ଵ𝑥ଵ − 𝑥଴ = 1 
(38)𝑑௫ଶ = 𝑑௫଴/2 

 
Figure 13: Symmetric bending-active tied arch with 𝑛 = 5 

elastica sections corresponding to Example 3 

 

6. CONCLUSION 
We have developed an analytical method to find the 
configuration of bending-active braced arches. They 
are a hybrid between a tied arch and a cable-strut 
beam: a planar structure composed of a continuous 
flexible rod that is activated by the action of lower 
ties (cables) and secondary struts that deviate the tie 
sections and provide balance between rod and ties. 
The target shape of the system is achieved as a result 
of the tensioning process. As the problem is non-
linear, it cannot be specified a priori. 

Neglecting self-weight of the structure, right after 
the activation, each section of the flexible rod in the 
braced arch is acted by a constant compressive force; 
this force has the same direction as the corresponding 
section of cable. Consequently, we may assume that 
each rod section behaves as part of an inflexional 
elastica if shear and axial deformation are neglected. 
Using Love’s closed-form solution of Euler’s 
elastica theory, it is possible to systematically 

formulate the equilibrium and compatibility 
equations of the system to determine the shape and 
induced internal forces in the rod, struts and cables 
after the activation. 

A sequential calculation process based on the 
scalability of solutions and on a suitable choice of 
free design parameters allows to determine all design 
variables without solving non-linear equations. 
Several examples have been included to illustrate the 
sequential process. When other sets of design 
parameters are selected, the problem requires the 
solution of a non-linear system of equations. We 
have used a heuristic algorithm to solve the resulting 
system, and some examples with different design 
constraints have been included to show the 
possibilities of the method to define self-stressed 
configurations. 

The proposed method has been specifically designed 
for a particular structural type. The lack of generality 
is compensated by its efficiency: the fact that closed 
solutions of the non-linear form finding problem can 
be directly obtained by means of a sequential process 
allows a fast and accurate generation of self-stressed 
shapes. This makes it especially suitable for applying 
heuristic tools to direct the search of optimal 
configurations for this lightweight structural system. 
Finally, although the direct extension of this method 
for general 3D configurations is not possible (as 
there are no general closed-form expressions for the 
3D elastica curve), it could be applicable for 
approximating spatial configurations where the out-
of-plane deformation is small. 

 

 
Table 13: Prescribed variables and computed unknowns in Example 1 (Section 5) 

Variable Prescribed Computed Variable Prescribed Computed 𝑇଴ 1  𝜃ଵଵ  0.3202 𝑇ଵ  0.9659 𝜃ଶଵ  0.0654 𝑄ଵ  −0.2645 𝜃ଵ଴  0.5880 𝑄ଶ  −0.1262 𝑘଴ sin ൬12 ∙ 40𝜋180൰  𝜑ଵ −15𝜋/180  𝑘ଵ  0.2440 𝜑ଶ −7.5𝜋/180  𝐸𝐼ଵ 1/𝜋ଶ  𝛼ଵ 105𝜋/180  𝐸𝐼଴ 1/𝜋ଶ  𝛼ଶ  1.6361    
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Table 14: Prescribed variables and computed unknowns in Example 2 (Section 5) 

Variable Prescribed Computed Variable Prescribed Computed 𝑇଴ 1  𝜃ଵ଴  0.5868 𝑇ଵ  0.8769 𝜃ଵଵ  0.3191 𝑄ଵ  0.2785 𝜃ଶଵ  0.0654 𝑄ଶ  −0.1460 𝑘଴ sin ൬12 ∙ 40𝜋180൰  𝜑ଵ −15𝜋/180  𝑘ଵ  0.2513 𝜑ଶ −7.5𝜋/180  𝐸𝐼ଵ 1/𝜋ଶ  𝛼ଵ  −0.9839 𝐸𝐼଴ 1/𝜋ଶ  𝛼ଶ  1.6361    

 

Table 15: Prescribed variables and computed unknowns in Example 3 (Section 5) 

Variable Prescribed Computed Variable Prescribed Computed 𝑇଴ 1  𝜃ଵ଴  0.5236 𝑇ଵ  0.8963 𝜃ଵଵ  0.2609 𝑇ଶ  0.8835 𝜃ଶଵ  0.1745 𝑄ଵ  0.2688 𝜃ଶଶ  0.0432 𝑄ଶ  0.1174 𝑘଴ sin ൬12 ∙ 40𝜋180൰  𝜑ଵ −15𝜋/180  𝑘ଵ  0.1719 𝜑ଶ −7.5𝜋/180  𝑘ଶ  0.1423 𝛼ଵ −60𝜋/180  𝐸𝐼଴ 1/𝜋ଶ  𝛼ଶ −80𝜋/180  𝐸𝐼ଵ  0.4466 

   𝐸𝐼ଶ  0.5029 
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