

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/181801

Galindo-Jiménez, CS.; Pérez-Rubio, S.; Silva, J. (2021). Slicing unconditional jumps with
unnecessary control dependencies. Lecture Notes in Computer Science. 12561:293-308.
https://doi.org/10.1007/978-3-030-68446-4_15

https://doi.org/10.1007/978-3-030-68446-4_15

Springer-Verlag

Slicing Unconditional Jumps
with Unnecessary Control Dependencies

Carlos Galindo[0000−0002−3569−6218], Sergio Pérez[0000−0002−4384−7004], and
Josep Silva[0000−0001−5096−0008]

VRAIN
Universitat Politècnica de València

Camı́ de Vera s/n
E-46022 València, Spain

{cargaji,serperu,jsilva}@dsic.upv.es

Abstract. Program slicing is an analysis technique that has a wide
range of applications, ranging from compilers to clone detection soft-
ware, and that has been applied to practically all programming lan-
guages. Most program slicing techniques are based on a widely extended
program representation, the System Dependence Graph (SDG). How-
ever, in the presence of unconditional jumps, there exist some situations
where most SDG-based slicing techniques are not as accurate as possible,
including more code than strictly necessary. In this paper, we identify
one of these scenarios, pointing out the cause of the inaccuracy, and de-
scribing the initial solution to the problem proposed in the literature,
together with an extension, which solves the problem completely. These
solutions modify both the SDG generation and the slicing algorithm.
Additionally, we propose an alternative solution, that solves the prob-
lem by modifying only the SDG generation, leaving the slicing algorithm
untouched.

Keywords: Program analysis, Program slicing, Unconditional jumps

1 Introduction

Program slicing [20, 18] is a technique for program analysis and transformation
whose main objective is to extract from a program the set of statements that
affect a given set of variables in a specific statement, the so-called slicing crite-
rion. The programs obtained with program slicing are called slices, and they are
used in many areas such as debugging [1], program specialization [2], software
maintenance [7], code obfuscation [13], etc.

There exist several algorithms and data structures to represent programs
that can be used to compute slices, but the most efficient and broadly used data
structure is the system dependence graph (SDG), introduced by Horwitz et al.
[9]. It is computed from the program’s source code, and once built, a slicing
criterion is chosen and mapped to the graph, that is then traversed with the
algorithm proposed in [9] to compute the corresponding slice.

2 Carlos Galindo, Sergio Pérez, and Josep Silva

The SDG is the result of assembling a set of graphs that represent information
about a program. Figure 1 depicts how the SDG is built using the control-flow
graph (CFG) as the starting graph. First, using the CFG of each function def-
inition in the code, two different graphs are built: (i) the control dependence
graph (CDG) [6] and (ii) the data dependence graph (DDG) [19, 6]. The union
of both graphs results in the program dependence graph (PDG) [14, 6], which
represents all data and control dependencies inside a concrete function. Finally,
PDG’s function calls, definitions and their parameters are linked with interpro-
cedural arcs, generating the final SDG. The SDG can be traversed from a slicing
criterion to produce a slice in linear time with the algorithm proposed in [9].

CFG

CDG

DDG

PDG SDG Slice

Fig. 1. Sequence of graphs generated to build the SDG.

As all the aforementioned graphs conforming the SDG represent different
relationships of the program, an improvement in the accuracy of these graphs
results in a direct impact on the accuracy of the SDG. Throughout the years, the
SDG has been augmented with different dependencies, and several techniques
have been defined to properly represent complex situations: interprocedural al-
ternatives to compute executable slices [4], extensions of the CFG to represent
interprocedural control dependencies [17], object-oriented language representa-
tions and slicing [12], or program slicing in concurrent environments [10, 5] are
some examples of the evolution of the SDG.

For the purpose of this paper, we are interested in the evolution of the un-
conditional control flow treatment for program slicing. In this specific area, the
initial proposal was the one introduced by Ball and Horwitz [3]. In their work,
the authors considered a simplified language with scalar variables and constants,
assignment statements, jump statements (goto, break, halt, etc.), conditional
statements (if-then, if-then-else), and loops (while and repeat). Despite
the simplicity of the given programming language, the ideas proposed can be
applied to any kind of unconditional jumps present in other programming lan-
guages. In this paper, we provide examples using the break statement in the
Java programming language, even though the problem presented and its solu-
tion can be applied to any statement that represents an unconditional jump.
The following example illustrates the problem identified by Ball and Horwitz
after their proposal.

Example 1 (Unconditional jump subsumption [3]). Consider the Java method
shown below on the left-hand side:

Slicing Unconditional Jumps with Unnecessary Control Dependencies 3

1 public void f() {
2 while (X) {
3 if (Y) {
4 if (Z) {
5 A;
6 break;
7 }
8 B;
9 break;

10 }
11 C;
12 }
13 D;
14 }

1 public void f() {
2 while (X) {
3 if (Y) {
4 if (Z) {
5

6 break;
7 }
8

9 break;
10 }
11 C;
12 }
13

14 }

1 public void f() {
2 while (X) {
3 if (Y) {
4

5

6

7

8

9 break;
10 }
11 C;
12 }
13

14 }

Original program SDG slice Minimal slice

This method contains a while statement, from which the execution may
exit naturally or through any of the break statements. To represent the rest
of statements and conditional expressions, uppercase letters are used; and, for
simplicity, we can assume that there are no data dependencies between them.

Now consider statement C as the slicing criterion: each input that produces a
computation in the original program that reaches C must produce a computation
in the slice that also reaches C. Note that C is only executed when X is true and
Y is false.

The code in the centre displays the computed slice by Ball and Horwitz’s
approach; the code on the right-hand side is the minimal slice. As can be ob-
served, the break in line 6 and its surrounding if statement (if (Z)) have been
unnecessarily included in the slice, since the evaluation of Z does not influence
the execution of a break after being the Y statement evaluated to true. Their
inclusion would not be specially problematic, if it were not for the condition of
the if statement (Z), which may include extra data dependencies that are un-
necessary in the slice and that may lead to include other unnecessary statements,
making the slice even more imprecise.

The rest of the paper is structured as follows: Section 2 illustrates the ra-
tionale behind the problem shown in Example 1, detailing how dependencies
are generated, identifying when the problem shows up, and describing the so-
lution proposed by Kumar and Horwitz in [11], where the authors introduced
changes in two steps of the process shown in Figure 1. Section 3 proposes an
alternative solution that is simpler and does not need to change the slicing algo-
rithm, lowering the time complexity while preserving completeness at all times.
Section 4 explains the problem in presence of switch statements and how to
represent them to solve the problem. Section 5 outlines our implementation of
the proposed solution. Finally, Section 6 concludes the article outlining the main
contributions.

2 Unconditional jumps and the PPDG

To keep the paper self-contained, we start with the definition of control flow
graph.

4 Carlos Galindo, Sergio Pérez, and Josep Silva

Definition 1 (Control-flow graph). Given a program P , the control flow
graph of P is a graph (N,A) where N is a set of nodes that contains one node
for each statement in the program, and A are arcs that represent the execution
flow between the nodes:

Statement node. Any statement that is not a conditional jump. These nodes
have one outgoing edge pointing to the next statement of the program.

Predicate node. Any conditional jump statement, such as if, while, etc.
These nodes have two outgoing edges labelled true and false, leading to the
statements that would be executed regarding the condition evaluation.

The CFG of the Original program in Example 1 is shown in Figure 2 (left),
where we can ignore the dashed red arcs for now, since they are not part of the
CFG. In this graph, all nodes with just one outgoing arc represent statements,
while all nodes with two outgoing arcs labeled with T or F represent predicates.
In the graph, unconditional jumps, such as break are represented with a node
whose outgoing arc leads to the statement that will be executed after the jump.
Other representations of unconditional jumps, such as representing them with a
single arc connecting the previous statement with the jumps’ target are inade-
quate for program slicing, as we require a mapping from each statement in the
source code to a node in each graph.

start

while (X)

if (Z)

if (Y)

B

C

D end

break

A

break

start

while (X)

B breakA break

D

if (Y)

if (Z) C

T

T

T

T

T F

F

F

F

F

Fig. 2. ACFG (left) and CDG (right) of the code in Example 1.

The control flow graph is the basis to calculate control dependencies in a
program and, thus, the control dependence graph.

Definition 2 (Control dependence). Let G be a CFG. Let X and Y be nodes
in G. A node Y post-dominates a node X in G if every directed path from X to

Slicing Unconditional Jumps with Unnecessary Control Dependencies 5

the End node passes through Y . Node Y is control dependent on node X if and
only if Y post-dominates one but not all of X’s CFG successors.

Definition 3 (Control dependence graph). Given a program P and its as-
sociated CFG GCFG = (N,A), the control dependence graph (CDG) of P is a
graph GCDG = (N,A′) where (x, y) ∈ A′ if and only if node y ∈ N is control-
dependent on node x ∈ N .

Unconditional jump statements distort the usual understanding of control
dependence, and they invalidate the standard representation of control depen-
dencies in the CDG. Example 2 shows that the standard definition of control
dependence is insufficient in presence of unconditional jumps.

Example 2 (Control dependencies induced by unconditional jumps). Consider the
following code on the left-hand side and the slicing criterion x in the last line.

1 x = 0;
2 while (true) {
3 x++;
4 if (x>10)
5 break;
6 }
7 print(x);

1 x = 0;
2 while (true) {
3 x++;
4 if (x>10)
5

6 }
7 print(x);

Original program Wrong slice

The slice of this code is the whole code (everything is needed to reach the
slicing criterion). Nevertheless, according to Definition 2, the break statement
in line 5 does not control any other statement, that is, no statement depends on
the break statement. Therefore, the (wrong) slice computed with the standard
definition of control dependence would be the code on the right. This is an infinite
loop that never reaches the slicing criterion. Clearly, the execution of print(x) is
in some way controlled by the execution of break and, thus, unconditional jumps
induce some kind of control dependencies that are not captured in Definition 2.

To deal with this problem (i.e. unconditional control flow statements), Ball
and Horwitz [3] proposed a modification of the CFG in presence of unconditional
control flow statements, which result in a CDG with augmented dependencies.
This approach is the most popular one and the one used in most of the subsequent
literature [15, 11, 16]. The main modification applied to the CFG consists in the
introduction of a third category of nodes in the definition of the CFG:

Pseudo-predicates. Unconditional jumps (i.e. break, goto, return1, etc.) are
treated like predicates, where the outgoing edge labelled false is marked
as non-executable—because there is no possible execution where such edge
would be possible, according to the definition of the CFG [8]. For uncondi-
tional jumps, the true edge leads to the statement at the jump destination,
and the false edge to the statement that would be executed if the jump was
skipped.

6 Carlos Galindo, Sergio Pérez, and Josep Silva

The graph obtained from adding the false arcs to the pseudo-predicate nodes
of a CFG is called the Augmented CFG (ACFG). As a consequence of the ap-
pearance of pseudo-predicate nodes, in an ACFG every statement between an
unconditional jump and its destination is control-dependent on it (see Defini-
tion 2), as can be seen in Example 3.

Example 3 (Control dependencies generated by unconditional jumps). Consider
again the ACFG in Figure 2 (left), which represents the code in Example 1. Here,
solid arrows represent edges that come out from statements, predicates, and true
pseudo-predicate branches; and dashed red arrows represent the non-executable
(false) branches of pseudo-predicates. When we transform this ACFG to a CDG,
we obtain the CDG in Figure 2 (right), where the slice with respect to variable
C is represented with grey nodes.

Even though Ball and Horwitz solved the exposed problem with the defini-
tion of the ACFG, there was still a problem they were not able to solve. This
problem is represented in the code of Example 1. It appears when there are two
different unconditional jumps with the same jump destination. Due to the false
pseudo-predicate arcs in the ACFG, all the statements between the first uncon-
ditional jump and the second one become directly control-dependent on the first
jump, including the second one. Similarly, all the statements located between the
second jump and the destination statement become directly control-dependent
on the second jump. As a result of the transitive dependence, when any state-
ment between the second jump and the destination statement is required, the
inclusion of both unconditional jump statements in the slice is unavoidable. The
inclusion of the first jump statement will increase the size of the slice with all
its dependencies, leading to an imprecise slice. The solution proposed in [3] is
complete, but not as accurate as it was expected to be.

Ball and Horwitz were aware of the aforementioned problem and, some years
later, Kumar and Horwitz proposed a solution in [11]. Their solution was based
on two main modifications:

1. A new definition of control dependence in the presence of pseudo-
predicates. “Node Y is control-dependent on node X if and only if Y post-
dominates, in the CFG, one but not all of X’s ACFG successors”. The re-
sulting graph was called the pseudo-predicate PDG (PPDG).

2. A new slicing algorithm. The new algorithm established some restrictions
in the slicing traversal. “To compute the slice from node S, include S itself and
all of its data and control-dependence predecessors in the slice. Then follow
backwards all data-dependence edges, and all control-dependence edges whose
targets are not pseudo-predicates; add each node reached during this traversal
to the slice.”

By the introduction of these novelties, the accuracy of the slice was improved,
since it is not possible to add in the slice two pseudo-predicate nodes that jump

1 The target of the jump in a return statement is the End or Exit node of the
procedure it’s in, from which control will be handed back to the previous procedure
in the call stack.

Slicing Unconditional Jumps with Unnecessary Control Dependencies 7

to the same destination unless one of them is the slicing criterion itself. This
approach solved the problem of Example 1, proposed in [3].

3 Alternative solution: unnecessary control dependencies

In this section, we propose an alternative solution to the unconditional jump
problem shown in the previous section. The key idea of our approach is to identify
which edges of the CDG are responsible for the inaccurate slices and define a
method to avoid building them in the graph generation process.

To properly reason about the accuracy of our approach, we provide a formal
definition of slicing criterion and slice.

Definition 4 (Slicing criterion). Let P be a program. A slicing criterion C
of P is a tuple 〈s, v〉 where s is a statement in P and v is a set of variables that
are used or defined in s.

Definition 5 (CDG slice). Given a CDG G = (N,A) and a slicing criterion
〈s, v〉, where n ∈ N represents s in G, a CDG slice of n is a subgraph G′ =
(N ′, A′) such that:

1. N ′ ⊆ N .
2. ∀n′ ∈ N ′, n is control dependent on n′ and n′ is needed to execute n the same

number of times as in G (the original program).
3. A′ = {(x, y) ∈ A | x, y ∈ N ′}.

The standard slicing algorithm, denoted slice(G ,C), collects all nodes that
are reachable from the node in G associated with the slicing criterion C traversing
backwards the CDG arcs.

We have identified a general situation in which some control dependencies
should be omitted. If those control dependencies are removed from the CDG,
then the standard slicing algorithm is still complete and precision is kept the
same or improved. Consider a CDG G with two unconditional jump statements
x and y that jump to the same destination, with an arc (x, y) in G. There exists
a CDG G′ with the same set of nodes and a set of arcs obtained by deleting
all the control arcs in G with y as target, that produces more accurate program
slices.

Theorem 1. Let G = (N,A) be a CDG. Let x ∈ N be any unconditional jump
statement. Let y ∈ N be an unconditional jump statement without any variable
use or definition that jumps to the same destination as x. Let G′ = (N,A′) where
A′ = (A \ {(w, y) | w ∈ N}). For all slicing criteria C, slice(G ′,C) is a CDG
slice.

Proof. We prove the theorem by means of a generic code that captures all possi-
ble scenarios that can happen under the conditions of the theorem. We consider
two unconditional jump statements, x as the first jump statement and y as the
second one. First, x and y cannot be sequential statements because in that case

8 Carlos Galindo, Sergio Pérez, and Josep Silva

y would be dead code. This forces us to enclose x inside a conditional structure.
As y does not define or use any variable, we add the statement s1 and place an
external conditional structure to also prevent it to be dead code. This generic
code is depicted in Figure 3 (left). Any statement or groups of them added to
this code before or after x or y would produce a similar topology that would not
affect the proof. The reason is that any statement represented by a set of nodes
has only one successor in the CFG and can never be the source of a control
dependence (see Section 2.3 in [3]).

We graphically illustrate this proof by means of figures 3 and 4. Figure 3
represents the ACFG (centre) of the aforementioned code with the ACFG extra
arcs represented with dashed red arrows, and its associated CDG (right). Figure 4
represents the same CDG removing two control dependence arcs (dashed red
arcs). The figure represents two program slices with respect to two different
slicing criteria: x (left) and s1 (right).

…
cond1{

cond2
x

y
}
s1
… x y

cond2

cond1

T

T F

x

y

cond2

cond1

s1

F

s1end

… …

Fig. 3. Piece of code (left), its ACFG (centre) and its associated CDG (right).

We distinguish two possible scenarios according to the slice computed by
slice(G ′,n):

(i) y 6∈ slice(G ′,n) (Figure 4, left). In this case, node y is not needed to
execute n and, thus, the removal of the arcs that end in y do not affect the
computation of slice(G ′,n) because they are never traversed. Therefore, all
nodes needed to execute n belong to the slice (condition 2 in Definition 5)
and also all arcs induced by them are kept in the slice (condition 3 in
Definition 5). Hence, slice(G ′,n) is a CDG slice.

(ii) y ∈ slice(G ′,n) (Figure 4, right). First, according to Definition 4, node
y cannot be selected as slicing criterion, as it does not define or use any
variables of the program according to the theorem conditions imposed on

Slicing Unconditional Jumps with Unnecessary Control Dependencies 9

x

y

cond2

cond1

s1

x

y

cond2

cond1

s1

Fig. 4. CDG of our approach and CDG slices w.r.t. x (left) and s1 (right).

y. Then, because no data dependence exists on y, the only possibility to
include y in slice(G ′,n) is because some statement between y and the jump
destination of y is included in the slice (s1 in our graph in Figure 4 (right)).
Because of that, there is an execution path where y affects the execution
of this statement. In the case that cond1 was a loop, y would be control
dependent on cond1 itself, including cond1 in slice(G ′,n) but, in this case,
we would obtain the same result because s1 is also control dependent on
cond1 and thus, included in slice(G ′,n).
We have two possible scenarios to execute n (see the ACFG in Figure 3
(centre)):

– s1 is executed. Then, cond1 is false and cond2, x, and y are not executed
(they can be excluded from slice(G ′,n)).

– Either x or y are executed. As the result of executing x and y is func-
tionally the same (the program execution continues at the destination
of y), there is no difference between taking one path of cond2 or another.
Therefore, cond2, x and y can be replaced by y without modifying the
behaviour of the program; making the control dependency arcs from
cond2 and x to y unnecessary.

In the three cases, the removal of the arcs that end in y ensure that the
three conditions in Definition 5 hold. Thus, slice(G ′,n) is a CDG slice.

�

Theorem 1 proves that slices produced with this solutions are complete, as
their result is a CDG slice. Additionally, due to the fact that the same nodes,
but fewer arcs exist, all slices produced from G′ will be equal or smaller than
those generated from the original CDG G, thus guaranteeing that our solution
is, at least, as correct as the previous solution. Finally, a CDG with fewer arcs

10 Carlos Galindo, Sergio Pérez, and Josep Silva

means that the input size for the slicing algorithm is smaller, therefore lowering
the time required to slice the graph once generated.

Algorithm 1 CDG Generation Algorithm

Input: An ACFG G = (N,A).
Output: A CDG G′ = (N ′, Ac).
1: Ac = genControlArcs(G)
2: for all (ns, ne) ∈ Ac do
3: if (ns, ne ∈ un jumps ∧ jumpDest(ns) == jumpDest(ne)) then
4: Ac = Ac \ (x, ne) ∀ x ∈ N
5: end if
6: end for
7: N ′ = N \ {End}
8: G′ = (N ′, Ac)

Algorithm 1 formalizes the new CDG generation process, which removes the
unnecessary arcs. To perform that task, the algorithm uses an ACFG as the
starting point. The algorithm uses the following functions and sets:

– genControlArcs\1. It inputs an ACFG and outputs all control arcs that can
be obtained according to Definition 2.

– unjumps . This is a set with all nodes that represent an unconditional jump.
– jumpDest\1. This function inputs a CDG node n that represents an uncon-

ditional jump statement and outputs the destination of the jump.

Algorithm 1 first generates all control dependencies in the ACFG. Then,
each control dependency n → n′ is inspected to determine whether both n and
n′ are unconditional jumps with the same destination. If this is the case, then
all control arcs that target node n′ are removed. This forms the set A′. Finally,
N ′ is calculated by removing the End node from N and the CDG G′ = (N ′, A′)
is obtained.

With this generation process, the CDG produced is more accurate than the
one produced by Ball and Horwitz. For instance, the CDG associated to the
Original program in Example 1 is shown in Figure 5. The CDG slice associated to
the slicing criterion C is shown in grey, and it corresponds to the Minimal slice in
Example 1. As can be seen, nodes break and if(Z) are no longer part of the slice.
The structure of this graph represents now a more realistic control dependence,
where unconditional jumps to common destinations are not dependent on each
other.

It is worth remarking the main difference between the solution presented
in [11] and our approach: the amount of steps of the slicing process that are
modified. Both approaches introduce a modification in the CDG generation pro-
cess. While the amount of arcs generated by Kumar and Horwitz may be lower
or greater than the amount of arcs generated in the initial proposal by Ball
and Horwtiz [3], the amount of arcs generated in our approach is always equal

Slicing Unconditional Jumps with Unnecessary Control Dependencies 11

start

while (X)

A break

D

if (Y)

if (Z) breakB

C

Fig. 5. CDG obtained by applying Algorithm 1 to the code in Example 1.

or lower than in the initial proposal. In addition, the approach by Kumar and
Horwitz needs to change the standard SDG-traversal algorithm, introducing an
overhead when calculating slices. On the contrary, in our approach the SDG-
traversal algorithm remains untouched, keeping the slicing process as a graph
reachability problem and ensuring the slicing cost proposed by Ottenstein and
Ottenstein in [14].

4 The representation of switch statements

Another frequent structure where this problem appears is the switch statement.
It is considered good practice to terminate each case with an unconditional
jump, such as return or break. This creates an environment where there are
multiple unconditional jumps with the same target, a perfect example of the
situation where our technique applies.

In comparison with Kumar and Horwitz’s approach, ours behaves in the same
way, with one caveat: it includes the appropriate case statements, while theirs
ignores them.

switch statements can be represented in many ways. Regarding its control-
flow representation for program slicing, the following patterns are applied (where
s is the switch statement):

– The selector or argument of s (e.g. switch (a)) is connected to each case

statement. Additionally, if s has no default case, it is connected to the first
instruction after s. Otherwise, it is connected to the first instruction after s
via a non-executable arc.

– Each case c is connected to the first instruction that will be executed if
the selector matches it, which is typically the first instruction in its body.2

2 Multiple languages allow chaining case statements.

12 Carlos Galindo, Sergio Pérez, and Josep Silva

Furthermore, c is connected via a non-executable arc to the default case, if
present, or otherwise to the first instruction after s.

– Statements within a case are represented as they would be in any other
part of the program. The only caveat is: let s be the last statement of a case

(c) statement’s body, and s′ the first statement in the following case (c′)
statement’s body; if s does not jump, the following instruction would not be
c′, but s′. As an example; in the sequence of statements a = 10; case 1;

b = 1;, the first will only be connected to the third, and not to the case

statement. Thus, any unconditional jump at the end of a case, which is
a common construct, will have a non-executable arc connected to the first
instruction of the following case statement.

All these rules follow two maxims: (1) executable control-flow arcs connect
instructions that may be executed sequentially and (2) non-executable control-
flow arcs connect i to j, where i is any instruction and j is the instruction that
would be executed in the case that i was a no-operation (a blank instruction
that affects nor control, neither data). Regarding the control dependence graph,
each part of the switch statement has sensible control dependencies:

– The selector is the source of data dependencies towards all instructions in
its body, and this is the desired outcome: the selector is included if any case

is; or in other words, the selector affects the execution of each case.

– Each case is the source of data dependencies towards the instructions in its
body, and towards the default case (if present). The effect a case has on
its body is clear, but the one on the default case may not be, though it
is present. Consider a switch with n case statements and a default case.
If any were removed, the default case would be affected, as the executions
that previously passed through the deleted statement will now traverse the
default case. Thus, the presence of each case statement affects the number
of times the default case is run.

– Statements within a case c are control dependent on c, and possibly on
unconditional jumps in previous case statements.

Example 4. Comparison of our technique against Kumar and Horwitz’s in a
simple switch statement

Consider the code displayed in Figure 6, where a simple switch statement
is declared. On the right-hand side, its slice with respect to S3 (line 11). Only
one of the break statements is necessary, as they perform an equivalent effect
on the slicing criterion.

Figure 7 shows the augmented control-flow graph of this simple procedure,
with non-executable arcs shown with dashed edges. Figure 8 shows the result-
ing SDG built using our technique, and the slice obtained matches the one in
Figure 6. Finally, Figure 9 shows the result of applying Kumar and Horwitz’s
technique. Note how their approach, though it generates more arcs, traverses
fewer of them, leading them to the same result as ours.

Slicing Unconditional Jumps with Unnecessary Control Dependencies 13

1 public class Switch {
2 void f() {
3 switch (cond) {
4 case e1:
5 S1;
6 break;
7 case e2:
8 S2;
9 break;

10 case e3:
11 S3;
12 break;
13 }
14 }
15 }

1 public class Switch {
2 void f() {
3 switch (cond) {
4
5
6
7
8
9 break;

10 case e3:
11 S3;
12 break;
13 }
14 }
15 }

Fig. 6. A program with a simple switch statement and its slice with respect to S3.

5 Implementation

Both our approach and Kumar and Horwitz’s have been implemented in an
open-source Java slicer, available at the URL https://github.com/mistupv/

JavaSDGSlicer. In the branch TAPAS-2020, one can generate graphs using our
approach with the flag “-t TSDG”, and using Kumar and Horwitz’s with “PSDG”.

The specific implementation can be seen in the following classes for our ap-
proach:

TapasPDG Extends the implementation of the Augmented PDG (a PDG based
on the ACFG), applying Algorithm 1 after generating the control depen-
dency arcs.

TapasSDG Extends the implementation of the Augmented SDG (a SDG based
on the APDG), by basing it instead on the aforementioned TapasPDG.

CFGBuilder, ACFGBuilder They implement the creation of the control-
flow graph, specifically regarding the handling of the switch statement. The
specific change can be seen in commit 3c771a29.

As for Kumar and Horwitz’s approach, it is implemented in the following classes:

PPDG Extends the implementation of the APDG, replacing the generation of
control dependencies with their own.

PSDG Extends the ASDG to use PPDGs instead of APDGs, and uses a com-
patible slicing algorithm instead of the classic one.

PseudoPredicateSlicingAlgorithm Extends the classic slicing algorithm, with
the additional restriction added in this approach.

6 Conclusions

Ball and Horwitz proposed the first program slicing technique with a specific
treatment for unconditional jumps. Even though their technique produces com-
plete slices in all cases, they were aware that accuracy could be improved, and

14 Carlos Galindo, Sergio Pérez, and Josep Silva

ENTER void f()

switch (cond)

Exit

case e1

case e2

case e3

S1;

break;

S2;

break;

S3;

break;

Fig. 7. The CFG obtained with our technique (common to both Kumar and Horwitz’s
and our technique).

they proposed a challenging example (analogous to Example 1) where the com-
puted slice was bigger than needed. Some years later, Kumar and Horwitz solved
this accuracy problem changing the definition of control dependencies and re-
defining the standard slicing algorithm.

In this paper, we propose an alternative approach that solves the problem
performing fewer changes to the standard approach. Our approach only needs to
change the CDG produced, and all the other phases of program slicing (including
SDG traversal) remain unchanged. We have theoretically proven the correctness
of our approach.

Slicing Unconditional Jumps with Unnecessary Control Dependencies 15

ENTER void f()

switch (cond)

case e1

case e2

case e3

S1; break;

S2;

break;

S3;

break;

Fig. 8. The SDG and slice (gray nodes) w.r.t. to S3, obtained by applying our tech-
nique.

ENTER void f()

switch (cond)

case e1

S1;

*

break;

*

case e2

S2;

*

break;

*

case e3

S3;

*

break;

*

Fig. 9. The SDG and slice (gray nodes) w.r.t. to S3, obtained by applying Kumar and
Horwitz’s technique.

16 Carlos Galindo, Sergio Pérez, and Josep Silva

7 Acknowledgements

This work has been partially supported by the EU (FEDER) and the Spanish
MCI/AEI under grants TIN2016-76843-C4-1-R and PID2019-104735RB-C41, by
the Generalitat Valenciana under grant Prometeo/2019/098 (DeepTrust), and
by TAILOR, a project funded by EU Horizon 2020 research and innovation
programme under GA No 952215.

References

1. C. ai Sun, Y. Ran, C. Zheng, H. Liu, D. Towey, and X. Zhang. Fault localisation
for WS-BPEL programs based on predicate switching and program slicing. Journal
of Systems and Software, 135:191 – 204, 2018.

2. M. Aung, S. Horwitz, R. Joiner, and T. Reps. Specialization slicing. ACM Trans.
Program. Lang. Syst., 36(2):5:1–5:67, June 2014.

3. T. Ball and S. Horwitz. Slicing programs with arbitrary control-flow. In Proceedings
of the First International Workshop on Automated and Algorithmic Debugging,
AADEBUG ’93, pages 206–222, London, UK, UK, 1993. Springer-Verlag.

4. D. Binkley. Precise executable interprocedural slices. ACM Letters on Program-
ming Languages and Systems, 2(1-4):31–45, March 1993.

5. Z. Chen and B. Xu. Slicing concurrent java programs. SIGPLAN Not., 36(4):41–47,
Apr. 2001.

6. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and
Systems, 9(3):319–349, 1987.

7. A. Hajnal and I. Forgács. A demand-driven approach to slicing legacy COBOL
systems. Journal of Software Maintenance, 24(1):67–82, 2012.

8. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation, PLDI ’88, pages 35–46, New York, NY,
USA, 1988. ACM.

9. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Transactions Programming Languages and Systems, 12(1):26–60,
1990.

10. J. Krinke. Static slicing of threaded programs. SIGPLAN Not., 33(7):35–42, July
1998.

11. S. Kumar and S. Horwitz. Better slicing of programs with jumps and switches.
In Proceedings of the 5th International Conference on Fundamental Approaches to
Software Engineering (FASE 2002), volume 2306 of Lecture Notes in Computer
Science (LNCS), pages 96–112. Springer, 2002.

12. L. Larsen and M. J. Harrold. Slicing object-oriented software. In Proceedings of the
18th international conference on Software engineering, ICSE ’96, pages 495–505,
Washington, DC, USA, 1996. IEEE Computer Society.

13. A. Majumdar, S. J. Drape, and C. D. Thomborson. Slicing obfuscations: Design,
correctness, and evaluation. In Proceedings of the 2007 ACM Workshop on Digital
Rights Management, DRM ’07, pages 70–81, New York, NY, USA, 2007. ACM.

14. K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a soft-
ware development environment. SIGSOFT Software Engineering Notes, 9(3):177–
184, 1984.

Slicing Unconditional Jumps with Unnecessary Control Dependencies 17

15. T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. SIGSOFT
Softw. Eng. Notes, 19(5):11–20, December 1994.

16. T. Reps and G. Rosay. Precise interprocedural chopping. In Proceedings of the
3rd ACM SIGSOFT Symposium on Foundations of Software Engineering, pages
41–52, New York, NY, USA, 1995. Association for Computing Machinery.

17. S. Sinha, M. J. Harrold, and G. Rothermel. System-dependence-graph-based slicing
of programs with arbitrary interprocedural control flow. In Proceedings of the 1999
International Conference on Software Engineering (IEEE Cat. No.99CB37002),
pages 432–441. IEEE, May 1999.

18. F. Tip. A survey of Program Slicing techniques. Journal of Programming Lan-
guages, 3(3):121–189, 1995.

19. R. A. Towle. Control and Data Dependence for Program Transformations. PhD
thesis, USA, 1976. AAI7624191.

20. M. Weiser. Program Slicing. In Proceedings of the 5th international conference
on Software engineering (ICSE ’81), pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

