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Abstract

The information contained in this paper will be of interest not only
to bridge engineers, but also to train manufacturers. The article provides
practical insight into the degree of coverage of real articulated trains (ATs)
that Eurocode EN1991-2 guarantees. In both the design of new railway
bridges, as well as in the assessment of existing ones, the importance of
a detailed knowledge of the limits of validity of load models cannot be
overemphasised. Being essential components of the rail transportation
system, the capacity of bridges to withstand future traffic demands will
be determined precisely by the load models. Therefore, accurate defini-
tion of the limits of validity of such models reveals crucial when increased
speeds and/or increased axle loads are required by transportation press-
ing priorities. The most relevant load model for a significant portion of
the bridges in high-speed railway lines is the so-called HSLM-A model,
defined in EN1991-2. Their limits of validity are described in Annex E of
such code. For its singular importance, the effects of vibrations induced
by HSLM-A are analysed in this paper with attention to the response of
simply supported bridges. This analysis is carried out in a view to deter-
mine whether the limits of validity given in Annex E of EN1991-2 cover
the largest part of cases of interest. Specifically, the vibration effects of
HSLM-A are compared with those of the ATs described in such Annex
E, and the response is analysed in depth for simply supported bridges,
which are structures especially sensitive to passing trains at high speeds.
New theoretical approaches have been developed in order to undertake
this investigation, including a novel, simplified expression of the train sig-
nature for ATs that is convenient for its low computational cost. The
mathematical proofs are included in the first part of the paper and two
separate appendices.

load model, high-speed train, dynamic influence line, train spectrum, sub-
resonance, higher-order resonance, bogie spectrum, bogie wheelbase, cumulative
acceleration
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1 Introduction

In a way similar to the traditional approach adopted in Earthquake Engineering
and other fields of Structural Dynamics, the idea of separating the action exerted
by a train of loads —on a given structure— from the response of the structure
itself has been exploited by a number of researchers in the past. This, in turn,
has given rise to the appearance of different versions of the so-called train spectra
over the last three decades.

Since the approach based on a train spectrum can be of interest for any vi-
bration analysis related to railway vehicles, engineers and researchers concerned
with the dynamic behaviour of track systems are one of the more active groups
in this topic. In the early nineties Ford[?] discussed several questions related to
the vibrations associated to the sleeper passing effect. In his paper, he presents
the essential idea of combining the equal (but delayed) impulses produced by
two axles (i.e. one bogie) on each sleeper, with the effect of two consecutive
bogies placed under the same carriage. This combination results in the spec-
trum of one single vehicle. i.e. one single carriage resting on two bogies. The
same idea was exploited later by Auersch[?] in a more comprehensive article,
where random soil properties were also included for the analysis of the overall
track/soil vibrations generated by high-speed trains.

Also of interest is the contribution from Krylov and Ferguson[?], where they
suggested the possibility of supressing the vibrations created by each bogie by
selecting a particular value of the bogie wheelbase. Implicitly, this idea is also
pointed out by Ford[?] and Auersch[?] when they remark the existence of null
values (cancellations) of the spectrum for particular relations of the wheelbase,
speed and frequency. Similar strategies based on adjustable-size vehicles have
been also proposed by Shin et al. [?].

More recently, one contribution from Milne et al. [?] emphasises that the
most prominent peaks in the train spectrum correspond to frequencies close to
integer multiples of the vehicle passing frequency. Moreover, Milne et al. in-
dicate that the spectral peaks tend to integer multiples of the vehicle passing
frequency as the number of vehicles increases. In coincidence with the findings
from previous references[?]'[?]°[?], Milne et al. state that the magnitudes of



such peaks are weighted by a function equivalent to the spectrum for a single
vehicle, in such a way that the overall vibration level depends on the amplitude
of vibration created by each single vehicle. In their article, Milne and his collab-
orators use the train spectra for suitable track engineering applications such as
assessing the track modulus, or measuring the effective speed of passing trains.

When it comes to the analysis of structures subjected to the passage of rail-
ways, various groups of researchers have also resorted to the use of train spectra.
Vestroni and Vidoli[?] published a versatile approach based on a nondimensional
representation of the structural response and the Fourier Transform (FT) of the
train loads. Their main aim was to give general expressions of useful bounds
of the structural response at resonance, which they illustrated for both (i) a
beam on elastic foundation and (i) an arch bridge. They obtained manage-
able mathematical expressions when only one characteristic distance (carriage
length) was considered, while numerical simulations were also presented for the
case of two characteristic distances (carriage length and bogie wheelbase). Us-
ing this approach, the critical speeds were predicted and optimal speed ranges
were derived for particular trains. Although being an innovative and rather
general formulation, the mathematical tools presented by Vestroni and Vidoli
were not exploited for the analysis of different train configurations, as it will be
done here.

More recently, the train spectra of an ETR-~1000 has been used by Matsuoka
et al.[?] in conjunction with advanced numerical modelling and experimental
measurements in order to analyse the level of local vibrations in an Italian
viaduct subject to the passage of trains at speeds above 300 km/h. In their ar-
ticle, Matsuoka et al. endeavour to explain as well how higher-order resonances
(sub-resonance phenomena) are responsible for the prominent contribution of
local modes.

The most popular version of the train spectrum is, probably, the one intro-
duced in year 1999 by the Furopean Rail Research Institute committee D-214
(ERRI D-214) in the report RP6[?], which has had a determinant influence in
the current European regulations[?]. Such spectrum, successfully named as the
train signature, was derived both within the realm of the DER method (Decom-
position of the Excitation at Resonance), as well as in the LIR method (Residual
Influence Line). As regards the diffusion of such ideas in scientific publications,
credit has to be attributed to Savin[?] in 2001, in a paper that disseminated the
concept of the signature regarded as a sum of out-of-phase damped sinusoids
of different amplitudes. This idea arises naturally also in other fields of sound
and vibration theory as, for instance, the composition of decaying sounds that
combine in some fragments of audio signals. However, due to the complex simul-
taneous treatment of such decaying sinusoids with the accompanying noise, they
have been long since treated by means of different model fitting techniques|?].

In this article the equivalent concepts of train signature or train spectrum
will be used in combination with the bogie spectrum (or bogie factor) for the
critical assessment of standard load models. Particularly, attention will focus
on the rational selection of critical articulated trains (ATS), i.e., trains with
car-bodies supported on shared (or Jacobs) bogies. Such kind of trains form the
basis of one of the most important dynamic load models prescribed in EN1991-
2[?] for the analysis of high-speed bridges: the so-called HSLM-A model.

The main objective of the paper is to analyse the conditions under which the
HSLM-A model can be considered a safe upper bound of the actual, envisaged
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Figure 1: Scheme of an articulated train.

ATs that satisfy the limits described in Annex E of EN1991-2 (in what follows,
simply Annex F). The importance of understanding such conditions can not
be overemphasised: since the HSLM-A is presently used on a regular basis for
the dynamic assessment of railway bridges in Europe, any actual bridge that is
judged suitable for traffic at high (or increased) speeds will be de facto limited by
the ranges of validity stated in Annex E. Consequently, any future AT that were
not covered by the spectrum of the HSLM-A would be a potential candidate
for creating vibration problems in particular structures. This, in turn, can be
regarded as a limitation on the ranges of variation of design parameters that
train manufacturers can explore for optimising their new vehicles in search of
competitiveness, which has serious implications from an economic point of view.

Within the results presented in this paper, some cases will also be pointed
out where strong vibrations could be expected at speeds that are not necessarily
high (i.e., speeds V' < 200km/h). Non-articulated trains will not be dealt with
in this paper, but will be subject of forthcoming publications.

2 Closed-form expression of the (free) acceler-
ation caused by a series of loads: Residual
Influence Line

The intended audience of this paper comprises both railway bridge engineers
and railway vehicle engineers. Since the latter may appreciate some previous
background on bridge dynamics, Appendix A contains an brief summary of the
main concepts regarding the analysis of railway bridges using the LIR method.

The general loading scheme of a series of coaches in an AT is well known
and can be found, for instance, in EN1991-2[?]. A graphical description of such
scheme of loads is presented in Figure 77.

When a series of loads pass over a flexible structure, the effects caused by
every moving load will add to those of the preceding loads. By neglecting vehicle-
bridge interaction (VBI) and admitting that the system behaviour is linear,
the maximum vibration level can be obtained by the principle of superposition
in a most convenient manner. Such an approach was previously adopted in
several investigations[?], and is a suitable departure point to analyse the critical
combinations of load distances in a train.

Neglecting VBI can be regarded sometimes as an unwise, oversimplifying de-
cision given the variety of sophisticated numerical models and software packages
that can take VBI into account in the simulations. In this regard, it should be
emphasised that VBI usually decreases the response predictions, but such “ben-



eficial” effect depends markedly on the vehicle parameters[?]. For this reason,
the definition of load models in regulations cannot rely on certain vehicle char-
acteristics: if one load model depended on the level of VBI, i.e. on the values
of the primary suspension stiffness, damping, semi-sprung mass, etc., then any
modification introduced by vehicle manufacturers in such parameters, while still
keeping the same or similar axle loads, could lead to the load model potentially
not covering the dynamic effects of the new vehicles. Certainly, this situation
would be undesirable.

Moreover, it should be recognised that the mechanical characteristics of rail-
way vehicles can vary over the years for reasons related to passenger comfort,
riding stability and other considerations related to vehicle design and perfor-
mance, while the total axle loads may remain very similar, or even identical.

VBI can play an important role in the response of short or medium span
bridges in certain cases, particularly when the degree of coupling between the
primary suspension and the bridge is high[?]. In this regard, it would be con-
venient for bridge engineers to have a means of considering this factor in the
regulations, but not through the load model itself due to the reasons explained
above. Recently, one new simplified method has been proposed in an attempt
to obtain an additional damping equivalent to the response reduction due to
VBI effect[?].

In a view to compare the dynamic response induced by different load models
based on concentrated loads, the VBI effect will not be considered in this paper.
Conversely, load distribution due to the track and ballast, which is also an
important factor for the prediction of bridge response[?], will be introduced in
an appropriate way in order to analyse its influence on the results.

Focussing on the idea of applying the principle of superposition, it is clear
that many different modes of vibration will be excited with different intensity
when one single load travels over a flexible structure. In general, obtaining the
combined response of all modes in a closed-form solution that is amenable to
clear physical interpretation is not possible. Recently, Matsuoka et al.[?] have
shown that local modes can as well have an influence in the total vibration re-
sponse below 30 Hz, which is a reference frequency limit for bridge analysis[?].
Nevertheless, such local response has to be dealt with in a second level of ap-
proximation and is beyond the scope of this article. The analysis presented here
is focussed on the structural response of bridges associated to their principal
modes of bending deformation.

Once the free response of one of the modes is obtained under one passing load
(either concentrated or distributed), superposition can be applied to get the total
vibration amplitude. The same strategy can be applied to any type of structure,
and can be exploited with special success if the total response is largely governed
by the contribution of one single mode. Because this is especially the case
when the peak vibration is due to resonance of one particular mode, the single
mode approach can be useful in practical applications and has been used by
many researchers: the DER and LIR methods rely on the contribution of the
fundamental mode of simple beams[?], a similar approach was also adopted by
Yang et al.[?], some extensive parametric studies have confirmed its suitability
under different conditions[?]-[?], and recently the approach has been extended
to include the soil-structure interaction effect[?].

While some of the results and conclusions of this paper are valid for any
kind of structure traversed by ATs, others will be particularized here for simply



supported bridges (S-S bridges). The research works of ERRI D-214[?] some
20 years ago, as well as many other researchers since then, have pointed out
such type of structures as being particularly sensitive to experiencing resonant
vibration under high-speed traffic.

Let T be the maximum level of free vibration (acceleration) given by
the fundamental mode of a flexible structure that is subjected to the passage
of a unit concentrated or distributed moving load. Under the assumption of
linear behaviour I';,,, will be proportional to the magnitude of the load, and
will vary in some (probably non-monotonic) manner as a function of the speed
of the load. It is also expected that I';,,, will be inversely proportional to some
particular expression of the modal mass. It is usual to refer to I',,4, as the
Residual Influence Line[?], or simply as the Influence Line.

The basic physical model of a S-S bridge used in this manuscript for dynamic
analysis is the S-S beam. Both terms will be used equivalently as regards the
mathematical formulations. For S-S beams of span L and constant cross-section
with a small (viscous) damping ratio (typically ¢ < 0.03-0.05), the influence line
of a unit, concentrated moving load has the well-know expression[?]

TCingr = 1mL/2- K1 — K2
/1 + e /K (e=¢m/K 1 2cos(1K))

where m is the constant linear mass and K is the nondimensional speed of
the first mode of vibration. For such fundamental bending mode, the nondi-
mensional speed is a function of the span, the speed V' and the fundamental
period of vibration T":

K =VT2L (1)

The influence line is then I'yyh = Dipae(mL, (, K). The corresponding ex-
pression for highly damped beams can also be obtained in an analogous way[?].

The maximum vertical acceleration is often the governing variable in the
design of short and medium span bridges in Europe, which is a consequence of
the current Serviceability Limit States (SLS) prescribed in the regulations|?].
The LIR method allows to compute the maximum acceleration as the product
of two terms:

Umaz = Fmax(mL7 ¢, K) : G(Fia di, A, C) (2)

where the term G(F;,d;, A\, () is the train signature or train spectrum and
has the following form:

G = \/(Zf_l F;0; COS(2ﬂ5i))2 + (Zle Fi0; Sin(27r5i)>2

97; — e—CQﬂ'(Si
0; = dj — di\
A=VT

In equation (?7), k is the total number of loads in the train and every d;(m)
distance associated to each load F;(kN) is usually measured from the first load,
in such a way that d; = 0. Because the end passenger coaches and the power
cars break the repetitive pattern of load distances formed by the sequence of
intermediate passenger cars, the possibility exists that the maximum response
does not occur precisely when the last load leaves the bridge; therefore, equation
(?7) has to be applied for all possible subtrains that start at the first axle



load, and then retain the maximum value that has been computed among the
subtrains|?].

3 Closed-form expression of the (free) accelera-
tion caused by a series of coaches with shared
bogies (articulated coaches)

The decomposition given by equation (??) permits to focus on the effects of the
train of loads, given that the first factor I';,,, does not depend on the loads.
Moreover, most of the essential conclusions derived from the analysis of the
signature G(Fj;, d;, A\, ¢) can be obtained without reference to damping, with the
exception of the amplitude levels.

In a first stage, the power cars will not be considered because the distances
between their loads do not follow a regular pattern in comparison with the
passenger cars, and therefore obtaining a closed-form solutions amenable to
interpretation becomes infeasible due to the simultaneous dependence on too
many parameters. Therefore, the scheme of Figure 7?7 is adopted, but without
locomotives. The characteristic length of the coach is D, while the bogie wheel-
base is b. In EN1991-2[?], the bogie wheelbase is referred to as dpa, but instead
b = dp4 is used in what follows for the sake of conciseness.

In the rest of the paper, symbol k will refer to the number of bogies, which,
in turn, is one unit more than the number of cars n.: kK = n.+ 1. Therefore, the
total number of loads is 2k. All loads are considered to have the same value,
and thus F; = F' is the constant axle load.

In order to arrive to a correct physical insight, the signature will be next
decomposed into two factors. An additional assumption is that all passenger
cars are of equal length D while, in reality, the initial and final cars (number
(2) in Figure ??) will be somewhat shorter. With these hypotheses, the main
objective of this section is to analyse the sequence of bogies in the coaches, i.e.
the selection of critical combinations of D and b.

3.1 Decomposition of the signature of a series of coaches
with shared bogies (Articulated Train)

The effects of two consecutive loads in one bogie will be gathered into a single
function that will take values between two (perfect in-phase addition, or bogie
resonance) and zero (perfect bogie cancellation by destructive addition of the
effects of each axle). This will be the spectrum or signature of the bogie fg.

Then, the series of vibrations generated by each pair of loads in one bogie,
each of them of amplitude proportional to F' - fp, ought to be combined by
realizing that they create a repetitive sequence of k bogies at equal distances D.
This is equivalent to obtaining, from equation (?7?), the particular expression of
the damped signature of a set of k equidistant unit loads. In previous works such
expression was obtained only for resonant speeds[?]. In the following section,
this result is generalised in a new closed-form expression that is valid both for
resonant and non resonant speeds. Since this expression includes the effects of
structural damping, the graphical representations are similar to the ones from
Milne et al.[?] but the effect of the decaying oscillations are shown.



3.2 Signature of a series of equidistant loads (Regular
Train)

Choosing suitable nondimensional parameters is important for subsequent graph-
ical representation and interpretation. The following nondimensional wave-
length is defined for convenience|[?]:

A=)\/D=VT/D (3)

The nondimensional wavelength A represents the fraction of D travelled in
one period of the free vibration. Also, an auxiliary parameter is defined that
increases with damping:

o=e2/A > (4)

The following mathematical expression of the signature of a set (train) of k
equidistant unit loads that travel at distance D is a contribution of this article
and is derived in Appendix B. Its simplified expression is

Gp(k,A,O)=k  if¢=0 and A=1,1/2,1/3, ...
(kA Q) =1\/o21-M fi(0,A) fi(o,A)  otherwise. (5)

where
fe(o,A) = (1 + 0% — 20% cos(2kn/A)) (6)

and f; = fiy(k = 1). It is apparent that ratio A equals to one will produce
resonant addition of the effects of consecutive loads, while ratios A equal to 1/2,
1/3, etc., will produce sub-resonance. In different contexts, ratio A = 1/4,j =
1,2,3... is referred to as the jth resonance, jth sub-resonance, or also jth sub-
harmonic. As equation (??) shows, in absence of damping the maximum peaks
will be of equal value Gg = k for every sub-harmonic. Figure 7?7 displays the
signature for a set of 15 loads. The evolution of Gg for A > 1 is of little practical
relevance in actual railway bridges and is discussed in Appendix B.

The maximum peaks in Figure ?? are obtained for A = 1,1/2,1/3,..., where
equation (?7?) simplifies as follows[?]:

Gp(k,A=1/n,¢) =e®™¢ — e 2me(k=D)g2mnC _ 1y =12 ... (7)

Equation (?7?) is a suitable basis to interpret the influence of damping and
the number of loads on the signature peaks. When k is very high, the second
term in the numerator of equation (?7?) tends to vanish and the maximum Gg
is obtained. This value is shown in Tables ?7 and ?7? for the different sub-
resonances and seven levels of damping, where Gg a5 is indeed an asymptotic
value that provides a measure of the maximum expected intensity of each sub-
resonance. Because in certain cases Gg maz Will only be reached by trains
containing a very large number loads, it is of interest to know how many loads
would be required to exceed three reference thresholds: 50%, 75% and 90% of
G E,maz- Such values are also presented in Tables 7?7 and ?7. As an example, it is
shown in Tables 7?7 and 77 that an AT with, say, 15 equidistant bogies, is capable
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Figure 2: Signature or spectrum of a set of k& = 15 equidistant, concentrated
unit loads.

A=1 A= 1/2 A= 1/3
¢ GEmaz k50w ks koon | GEmaz  ksow  krsw koow | GEmar  ksow  krsw Koo
0.50% 32.3 23 45 74 16.4 12 23 37 11.1 8 15 25
0.75% 21.7 15 30 49 11.1 8 15 25 7.59 5 10 17
1.00% 16.4 12 23 37 8.47 6 12 19 5.82 4 8 13
1.25% 13.2 9 18 30 6.88 5 9 15 4.76 3 6 10
1.50% 11.1 8 15 25 5.82 4 8 13 4.06 3 5 9
1.75% 9.60 7 13 21 5.07 4 7 11 3.56 3 5 7
2.00% 8.47 6 12 19 4.50 3 6 10 3.18 2 4 7

Table 1: Representative values of Gg and number of loads k required to exceed
50%, 75% and 90% of G g maz-

of fully building up (90%) the second sub-resonance (A = 1/2) for damping
1.25% or higher, as well as the third sub-resonance (A = 1/3) for damping
around 0.875% or higher; also it will build up at 50% all sub-resonances, except
for the first one if damping were very light.

An interesting conclusion that can be drawn from Tables 7?7 and ?7 is that
bridges where damping is above some 1.5-2.0% need not be traversed by very
long trains to build up resonance to its maximum achievable amplitude (for such
train type and bridge): the bottom rows for columns A = 1/2 or smaller show
that with 5 — 10 loads resonance is build up to 90%.

3.3 Bogie factor fg

The following nondimensional parameters are defined that will be convenient in
what follows:

p=A\b=VT/b



A=1/4 A=1/5 A=1/6
¢ GEmaz k50w ks koon | GEmaz  ksow  krsw koow | GEmar  ksow  krsw Koo
0.50% 8.47 6 12 19 6.88 5 9 15 5.82 4 8 13
0.75% 5.82 4 8 13 4.76 3 6 10 4.06 3 5 9
1.00% 4.50 3 6 10 3.71 3 5 8 3.18 2 4 7
1.25% 3.71 3 5 8 3.08 2 4 6 2.66 2 3 5
1.50% 3.18 2 4 7 2.66 2 3 5 2.31 2 3 5
1.75% 2.81 2 4 6 2.36 2 3 5 2.07 2 3 4
2.00% 2.53 2 3 5 2.14 2 3 4 1.89 1 2 4

Table 2: Representative values of Gg and number of loads k required to exceed
50%, 75% and 90% of G g maz-

n=D/b=p/A
®)

The ratio n = D/b is of particular importance since the range of validity
of the HSLM-A is restricted to not close to integer values of n, as it will be
discussed later.

No definite trends exist that link the actual values of coach length D of ATs
in the range [18, 27]m to the bogie wheelbase b. Both are key parameters that are
selected by vehicle manufacturers in order to maximize its dynamic performance.
Doménech et al.[?] found relations between the coach length and the wheelbase
between bogies (D — dpg in Annex E) in conventional carriages, but no actual
relations of D with the bogie wheebase. Moreover, in one background document
from ERRI Committee D-214.2[?], where the basis of design of the HSLM-A are
described in detail, no relation is established between b and D. Following such
document[?], in this article it is assumed as a reasonable hypothesis that D
values in the range [18,27]m can coexist with b € [2.5,3.5]m. This, in turn,
leads to a range 7 € [5.14,10.8].

If the general expression of the signature given by equation (??) is particu-
larized for values F; = 1, k = 2, d; =0, do = b, straightforward operations lead
to the expression of the bogie factor:

fe(b,\,¢)= \/1 + e~ ¢Amb/X 4 2e=C2mb/A cos(27h/N)
(9)

Such expression can also be written as a function of u, to be used in equation
(??) in next section:

F(1,¢) = 1+ =64/ 4 2662/ cos 2/ )
(10)
As it was mentioned in the introductory section, the concept of bogie spec-

trum is not a new one. However, it will be expressed next in a manner suitable
for arriving to some useful conclusions. Indeed, spectrum is a term that is more
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Figure 3: Bogie factor fp as a function of p and ¢ (left), or A and n for ( =0
(right, in log-log axes).

often linked to frequency dependence, and therefore bogie factor will be used
preferably. Given the relation between p, A and 7, the bogie factor can be
rewritten as

fB (Av 7, C) =
\/]_ + e—64m/(An) 4 9e—¢2m/(An) 003(271'/(/\77))

The bogie factor is always comprised between zero and two. If damping is
neglected, one of its possible expressions is as follows:

fB(An, ¢ =0) = /2(1+ cos(2r/(An))) (11)

The bogie factor can be plot in different manners. Figure ?? shows two of
them: one is a function of p for different values of damping, and the other is
a contour log-log plot as a function of A and 7 for the undamped case. The
cancellation by addition points (or lines) @, @, @ (fB(¢ =0) = 0) can be
obtained from equation (?7?), as well as the maximum points (or lines):

Cancellations: m = 1,2,...
w=2m—-1 << n=2/A2m -1

Maxima (bogie resonance): m = 1,2,...
p=1m <= n=1mA

In Figure ?? [left], fp tends monotonically to 2.0 for increasing values p > 2

The same phenomenon is observed in Figure ?? [right], in the region to
the right of the first cancellation line @ Bogie cancellations are caused by
addition of out-of-phase vibrations. Besides, in Figure ?? [right] it can be seen
that sub-harmonics A = 1/8 and above are always located above the second
bogie cancellation @, which encompasses the vast majority of cases of interest.

An important thing to notice in Figure ?7? [right] is that fp varies in a
smooth monotonic fashion with 7, in coincidence with the resonant cases for
the sequence of carriages: A = 1,1/2,1/3.... Such fact is apparent for A = 1
and A = 1/2, but also for A = 1/3 once the cancellation @ is exceeded (see
the right dashed vertical line). Also for the rest of resonant values of A, such as

11
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Figure 4: Signature of a series of K — 1 = 9 articulated coaches with unit loads
and damping ¢ = 0.5%. Log axis in A

1/6 (see the left dashed vertical line), fp(A,n) varies smoothly, featuring values
fB(1/6,6.0) = 2.0; f5(1/6,6.5) = 1.94; fp(1/6,7.0) = 1.80; fr(1/6,7.5) =
1.62. Therefore, from a physical point of view, there is no reason to think
that ratios n = D/b close to an integer will produce a dynamic effect that is
significantly larger than those corresponding to D/b not close to an integer.
Even if such integer D/b = D/dp ratios are specifically left out of the range
of validity of HSLM-A in Annex E, the reasons for such a condition are not
supported by the present results.

3.4 Signature of a series of coaches with shared bogies
(Articulated Train)

One further evidence of the preceding statement regarding the D/b ratios is
given by the combined plot of Figure ?? multiplied by Figure ?? [right]. This
product is precisely the signature of the series of (k— 1) articulated coaches, i.e.
k bogies with equal forces F'. Figure 7?7 shows a 3D view of such comprehensive
train spectrum for £k = 10 and F' = 1. The general mathematical expression of
it is obtained by multiplying equation (??) times either equations (??) or (?7?):

GART(kv Aa 7, <) = GE'(kv A7 C) fB(A7 m, C)

GART(k’ A, C) = GE(kv A, C) fB(uv C)

The signature given in equations (??) or (??) is a good approximation to
the general signature from equation (??) in the case of ATs. Figure ?? shows
the comparison of both for an ensemble of 1001 trains that cover the ranges of
Annex E with D € [18,27]m in steps of 0.1m, and b € [2.5,3.5|m in steps of
0.1m. The lengths of such ATs are adjusted to be as close as possible but no
longer than L;,; = 400 m while keeping the total weight below P;,; = 10000 kN,
which are conditions stipulated in Annex E. Besides, the power cars are identical
to the ones of the HSLM-A model. Such three criteria (total length < L;, total
weight < Py, power cars equal to HSLM-A) are hold for all ATs derived from
Annex E that will be analysed in this paper. The step for the wavelength is
0.01m. No subtrains need to be considered for the simplified signature.
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Figure 5: Signature of the Annex E articulated trains for damping ¢ = 1%.

As it can be seen in Figure ?7, the agreement is very good for wavelengths
A > 4.2m: the first resonances are slightly underestimated, while the second
ones are slightly overestimated. For short bridges where the dominant wave-
lengths can be short the simplified signature will not be useful because the
expected relative error is too large. Conversely, the simplified signature will
be convenient for parametric studies during preliminary design stages providing
that the dominant wavelength is larger than 4.2 m. It should be emphasised that
the computational cost of the simplified signature is one order of magnitude less
than that of the general one.

In a way analogous to Figure 7?7, Figure 7?7 compares the general signature of
HSLM-A model, for A > 4.2m and 1% damping, with the simplified signature.
In this case two extra cars have been added to the simplified signature in order
to have a better fit of the first and second sub-resonances of each train.

If the signature given in equations (??) or (??) is finally multiplied by the
influence line given by equation (??), the maximum acceleration in free vibration
is obtained, which is a good estimate in cases when one mode is predominant
and the structure is short in comparison with the train length. Thus, equation
(??) can be rewritten finally as

amar = Umaz (mLa Cv K) : GART(ka Aa m, C)
= Pmam(mLa ¢ K) : GE(ka A, C) ’ fB(,U’v C)

In what follows the particular expression adopted for I';,,,, in equation (?7)
is that for S-S beams, which depends on the total mass mL. This strategy can
of course be adapted to beams on elastic supports, plate-like bridges, etc.

As it can be seen clearly from Figure 77, the peak load combination effects
take place always in correspondence of A = 1/n, i.e. when resonance associated
to distance D takes place. The maximum values of Gagrr in Figure 7?7 would
be 20 in absence of damping. Notice that Gagrr is to be multiplied by F' (kN).
No abrupt or singular resonant effect is observed for integer values of the D/b
ratio. Therefore, integer values of 77 can not be retained as being particularly
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Figure 6: Signature of the HSLM-A model for damping ¢ = 1%. Two extra cars
added for the simplified signature.

harmful from the point of view of vibrations.

Based on equation (?7?), Figure ?? offers additional insight on the effect of
the D/b ratio. Such figure is the counterpart of Figure ??, but has been plotted
as a function of u instead of n (damping neglected for the sake of clarity). For the
purpose of illustration, the point of coordinates (A, u) = (1/6, 1) represents that
each cycle of bridge vibration is of the same duration as one bogie passage, while
the passage of one single carriage will last six times as much. The logarithmic
scale in both axes produces inclined parallel lines for each value of n = D/b.
Three of such lines are plotted for values n = 18/3.273 ~ 5.5 (dotted line),
1 = 18/3 = 6 (continuous line) and n = 18/2.769 ~ 6.5 (dash-dotted line). For
most of the sub-resonances, the maximum values of the signature correspond
to the dotted or dash-dotted lines, for which the n ratio is as far as possible
from being integer. Even in the case where theoretically it can be predicted
(see equation (?7?)) that a maximum effect is expected for n = 18/6 = 3, which
is precisely A = 1/6, the value of the bogie factor is 1.92 for the dash-dotted
line, 2.0 for the continuous line and 1.94 for the dotted line. Because the same
proportions will hold for the signature according to equation (?7?), it is clear
that the integer n ratio is not significantly more aggressive.

4 Analysis of the HSLM-A load model

4.1 Existence of particular cases of interest

In Figure 7?7 two black lines are included of constant 7 ratio: the thicker one
corresponds to the 7 ratio of train HSLM-A1l: 18/2 = 9; the thinner line cor-
responds to HSLM-A2: 19/3.5 = 5.43. As it can be seen, HSLM-A1 produces
strong vibration levels for the first two resonances, but lower for the third and
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Figure 7: Contour plot of the undamped signature of a series of k —1 = 9
articulated coaches, as a function of D-nondimensional wavelength (A) and b-
nondimensional wavelength (u). Extreme dashed lines correspond to 7 limits
for Annex E articulated trains.

even very low for the fourth and fifth resonances. HSLM-A2 produces rather
low levels in the second resonance and very low ones in the third resonance, but
on the other hand it is optimal for the fourth and fifth sub-harmonics.

Because of this influence of the bogie wheelbase in the dynamic effects cre-
ated by one train, ERRI D-214.2[?] carried out a comprehensive parametric
study with a view to optimize the maximum response of the 10 HSLM-A trains
by varying both b and F'. The final result is the load model included in EN1991-
2, where axle loads up to 210kN are used, as well as exceptionally short bogies
of b = 2.0m. However, the range of validity of HSLM-A is restricted in Annex
E to trains with axle loads not higher than P, = 170kN, and bogie wheel-
bases b € [2.5,3.5)m. What was the reason why ERRI D-214.2 used higher axle
loads and shorter bogies than the Annex E limits? Most likely, because that
was a rather clean and simple means of producing a load model that can cover
real trains by using only 10 articulated trains, which is convenient for dynamic
analyses in practical engineering applications.

The question that arises from there is whether it is possible or not to find
cases where the selection of b done by ERRI D-214.2[?] was not optimal. If this
were so, would it be possible to find ATs that exceed the vibrations created
by HSLM-A model, while still satisfying the range of validity in Annex E?
The answer to such question is affirmative, but yet it needs to be nuanced and
discussed in different scenarios. As a starting point, one example of an Annex
E train that is not covered by HSLM-A is discussed next.

Figure 7?7 shows the response of a bridge of span L = 21.0m, where the
HSLM-A model is compared to one “real” AT derived from Annex E. Only the
fundamental mode is included in the simulation of the (Bernoulli-Euler) bending
deformation. The values adopted for the mass, damping and natural frequency
are realistic ones for a composite bridge. Load distribution is not yet taken into
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account in this example.

It should be recalled that the emphasis of the article is in the comparison
of load models, and therefore it is important to avoid including features in
the structural model that may depend on the end user implementation, such
as the modelling of the track, bearings, etc. Also, track irregularities are not
considered since the EN1991-2 prescribes them (¢”) as a function of the bridge
span and frequency regardless of the load model. The sampling time step used
is dt = T/20 for the closed-form time integration of the differential equation of
motion. Speed increment is equal to 0.5 km/h.

The real train is of the articulated type, with F' = P, = 170kN, D =
19m and b = 2.5m. The peak mid-span response at 188km/h is 5.01 m/s?,
and exceeds the maximum values of HSLM-A1 and HSLM-A2 by 42%. This
exceedance is due to the somewhat low effects of HSLM-A2 at the second sub-
resonance, which is a consequence of its long bogie wheelbase b = 3.5m. When
three modes are included in the analysis the results are only slightly different,
with peak values for certain HSLM-A trains that increase some 12%, but the
peak of the real train increases also and the exceedance is still of almost 30%.

Now, in order to assess the relevance of such kind of cases, the exceedance
in acceleration is defined for each speed V as

Aa(V) =
max [100 amaz REAL(V) — @maz, HSLMA (V) @maz,nstma (V) 5 0]

However, it should be recalled that in EN1991-2[?] the following relation
between the design and nominal speeds is established: “1.4.3.7. Mazimum
Nominal Speed [= Vihom|: generally the Maximum Line Speed at the Site [...]
1.4.3.8 Maxzimum Design Speed [= Vinax]: generally Vipax = 1.2 Viom”-

The question that arises from there is the following: is an exceedance Aa
of the kind shown in Figure 7?7 relevant for the assessment of bridges based on
HSLM-A model? Two different situation can be distinguished.

One case analogous to the one in Figure 7?7 would not be relevant because
the design speed to be used with HSLM-A is Vipax = 1.2 Viom- Therefore, even
if the real train reaches its non-covered peak at 188 km/h, the HSLM-A should
be analysed up to, at least 1.2-188 = 225.6 km/h. Figure ?? shows that, in such
case, train A3 for V' > 198km/h, and train A5 for V' > 217.8 km/h would be
decisive for the design (in what follows we will refer to such determinant trains
as the governing trains).

It is of interest, then, to define the speed increase required for HSLM-A to
cover a real train AV as the minimum difference in speed (as a percentage) that
is needed to reach, from the dominant peak of the real train, the response curve
of the HSLM-A with identical amplitude, but at higher speed (the concept is
illustrated in Figure ?7?). If AV < 20%, the exceedance Aa is not relevant.
Conversely, the situation becomes relevant when AV > 20%.

Also, some values of exceedance Aa below certain tolerance limits will not
be considered relevant, as it will be discussed later.

It should be noticed that all phenomena described in relation to Figure 77?7
take place at speeds below 200km/h, which is a range of speeds not usually
considered of risk in dynamic analysis. However, this is only a consequence of
the bridge frequency being 5.5 Hz; if the frequency were only above 5.9 Hz, the
same phenomena would take place at speeds greater than 200 km /h.
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Figure 8: Maximum acceleration at mid-span in a simply supported bridge
defined by: L =21.0m, m = 16000kg/m, f = 5.5Hz, ¢ = 0.6%.

4.2 Theoretical prognosis of critical cases

The case described in Figure 7?7 was predicted from the theoretical expressions
given by equations (?7), in a preliminary screening of span lengths equal to
integer values from 7 to 30 m. In order to do so, one key point is to realize that,
in Figure 7?7, each sub-resonance requires a particular value of n for fp being
maximum, which leads also to a maximum Gagr. This means that the values
of b can be optimised for every D and every A = 1/n. If this optimisation is
carried out, the potential increase obtained for Gagrr, in correspondence of each
nth sub-resonance and each ith HSLM-A train, can be summarised into a matrix
[ fg}. When the values in such matrix are greater than one, this means that
the bogie wheelbase bysima,; of the ith HSLM-A is not optimal for A = 1/n:

fBA,in :max{fB (A = 1/”777 € nrangevc)}pi B (A = 1/”777 = ﬁzaC)

Nrange = [18/3.5,27/2.5] = [5.14,10.8]
pi = Pastma, i/ Pret = Prasima,i/17T0kN

i = DusLMA,i /bHSLMA, i

¢=0
i=1,2,...10
n=1,2,... (12)

Damping is set to zero in equation (??) because Figure 7?7 shows that
its effect is very small in the range of interest. Matrix [ fﬁ] is represented
in Table ?? for n < 6, where it should be emphasised that the numerator
max {fg (A =1/n,1 € Nrange, ()} in equation (??) is restricted to real trains
that are theoretically covered by HSLM-A, according to Annex E. If the val-
ues of [ fl%] are less than or equal to one, they are of no practical interest and
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A=1 A=1/2|A=1/3 A=1/4] A=1/5 A=1/6

Al — - - 4.41 5.74 2.00
A2 — 1.43 1.68 — — —
A3 - — - 1.80 A3 cancels 3.06
A4 - 1.05 1.74 2.01 1.24 —
A5 - - - - 5.63 6.96
A6 - - - - 3.39 13.33
AT - — — — 2.28 AT cancels
A8 - - - - A8 cancels 2.54
A9 - - - - 1.18 5.53
A10 — - - - — 3.57

Table 3: Matrix [f§] of potential increases in resonant response of real trains
with reference to HSLM-A effects.

are shown as a hyphen (-). Cancellations of the bogie factor of some HSLM-A
trains lead to an infinite increase and are mentioned explicitly.

Table 7?7 shows that in some cases the effect of particular HSLM-A trains is
indeed smaller than the effect of the real trains. For instance, f§,1 4, =441 and
f §722 = 1.43. Also, many values in the table are larger than one for the 5¢th and
6th sub-resonances.

However, all of the cases where f ﬁ,m > 1 are not effectively relevant, for the
following reasons: (i) the power cars can have an effect which is particularly
significant when resonance occurs for the higher coach length sub-harmonics
A =1/4,1/5,...; (ii) the third sub-resonance of train A10 coincides with the
second one of train Al and, at speeds below the third sub-resonance of A4, the
various sub-resonances of the different trains intermingle and make it difficult
to know a priori which one will be predominant; (iii) it should be realised that
point (ii) is even more involved because the different span lengths will lead
to cancellation of the influence line I';,,, in particular speeds, and therefore
some prominent peak may disappear despite being very noticeable in the train
signature. Therefore, Table 7?7 gives hints about where to look at, but can
not provide a definitive answer. Such an answer is to be searched with a more
comprehensive study as described next.

5 Parametric analyses of the level of exceedance
of HSLM-A

Due to the reasons explained in the previous section, examples can be found
where the bogie wheelbases of the HSLM-A trains are not optimised for all
sub-resonances. Therefore, in order to assess the validity of the HSLM-A under
relevant conditions, a series of parametric analyses have been carried out. The
hypotheses of such analyses are the following:

e The characteristics of the physical model are the ones described in the
section entitled Fxistence of particular cases of interest. Two different
methods for computing the vertical acceleration are considered, namely
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(i) the general signature in equation (?7?), and (ii) the time integration of
the equations of motion. The simplified signature will not be used because
wavelengths below 4.2 m will be also involved.

Only S-S bridges on rigid supports are analysed.

Load distribution is introduced by means of the wavelength-dependent
distribution factor derived by ERRI D-214[?] and adopted by the UIC][?].
Recent studies have shown that such ERRI-UIC distribution factor is
slightly conservative in comparison with a triangular distribution with
a total length of 3m[?] which, in turn, was proposed as a good approxi-
mation to the actual load spreading effect due to ballast by Axelsson et
al.[?].

The HSLM-A model is considered to cover the effects of Annex E trains if
the exceedance in acceleration Aaq, as defined by equation (??) is smaller
than some particular limit Aag;,. Such limit should correspond to the
fraction of the global safety coefficient of the structure that bridge engi-
neers would accept as being “consumed” by exceeding the load (HSLM-A)
model. Assigning an indisputable value for Aay;,, would require a compre-
hensive approach that is beyond the scope of this paper. As a reference,
a value Aay,, = 10% was adopted by ERRI D-214.2 for validating the
applicability of HSLM-A to continuous bridges[?]. However, higher values
up to at least 15% will also be explored in order to assess the problem
from an engineering point of view.

The maximum governing response is computed in the sense of the cumu-
lative maximum acceleration. Obtaining the cumulative maximum in a
range of speeds implies that, given a peak response of amplitude ag that
corresponds to speed V{, response levels a < ag are disregarded for every
higher speed V' > V{. This entails an evaluation of the maximum response
in a way similar to the rainflow counting method used for fatigue analysis,
and is justified by considering that if a train reaches a maximum nominal
speed Viom at one site, it is always possible that the same train will cir-
culate in some moment at a lower speed due to particular circumstances
in the line.

The real trains derived from Annex E have D € [18,27]m in steps of 0.5 m,
and b € [2.5,3.5]m in steps of 0.1 m.

Speeds are considered in the range [50,250]km/h for spans in the range
[7,15]m. This limited speed range is adopted because S-S bridges of those
spans are not usually employed for the very high speeds due to their ten-
dency to experience strong vibration. Even if some S-S bridges below 15 m
can be found in lines such as the Madrid-Sevilla, where V' = 270km/h,
portal frames are presently regarded as a better option in such cases.
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e Speeds are considered in the range [50,350)km/h for spans in the range
(15, 30]m.

e Damping ratios are selected according to EN1991-2, section 6.4.6.3.1, both
for prestressed concrete and composite structures, which can be considered
a conservative lower bound[?]:

Steel/Composite

C(%)=05+0.125(20— L) for L <20m
¢(%)=0.5 for L>20m

(13)
Prestressed concrete
¢(%)=1.040.07(20— L) for L <20m
¢(%)=1.0 for L>20m
(14)

e Natural frequencies are selected in the lower limit of the frequency band in
section 6.4.4 of EN1991-2: ng jower(Hz) = maX{SO/L,23.58 L*O‘592} for
L € [4,100]m. This allows capturing the highest amplitude sub-resonances
(at the higher wavelenghts), while the lower amplitude relevant ones are
retained by considering a very low minimum speed of 50 km/h. Notice that
even if the frequencies of the bridges were selected from the upper limit
of the frequency band in section 6.4.4 of EN1991-2, which is some 2.0-2.5
times higher that the lower bound, the corresponding minimum speed of
the results presented here would be increased in the same amount, thus
leading to some 100-125km/h, which is a reasonable lower speed in line
with EN1991-2. The selection of ng = ng jower is therefore to be regarded
as a strategy to cover adequately the expected range of wavelengths, in
conjunction with a minimum speed of 50 km/h.

e Given that lower bounds of linear mass and damping will be used, only
cases where the maximum acceleration is above 3.5 m/s? will be retained as
relevant. Aa and AV will not be computed in cases where the maximum
acceleration is below such SLS level.

e The selection of a lower estimate for the linear mass greatly influences
the representative examples that can be found where accelerations are
above 3.5m/s?. Indeed, this is one of the most relevant parameters of the
analysis, as it will be shown next. Therefore, estimates of the mass that
are low enough to retain the majority of relevant cases will be adopted.
As mentioned in the point above, due to the also low values adopted for
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Figure 9: Linear fit of the minimum mass for single-span concrete bridges. Slab
bridges also include filler-beam bridges.

damping, those cases found here where accelerations are below 3.5m/s?
are to be deemed of little relevance. Based on a representative ensemble
of single-track, concrete bridges from conventional and high-speed lines in
Sweden, Spain and Germany (see Figure ?7?), the following lower limit is
adopted as a function of the span:

m(L) = 400L + 4900 (kg/m) with L in (m) (15)

The mass estimate in Figure 7?7 was obtained from design drawings for a set
of real concrete bridges. All bridges considered in this study satisfy strictly the
deflection limit L/600 under load model LM71 [?] for linear mass 7(L), as well
as for 80 % of m(L) —to be used below—. For 50% of (L) such deflection
limit is also satisfied approximately if the frequency is chosen equal to ng jower as
defined before, and in a strict manner if the frequency is increased only slightly.

Under these conditions, the exceedance in acceleration Aa as defined in
equation (??) has been computed with different levels of resolution in both
span length and speed. Cases of interest where Aa > 10 — 15% will be pointed
out in what follows. Also, the required speed increase AV has been calculated in
a coherent manner for such cases of interest, i.e., having increased the nominal
HSLM-A effects by either 10% or 15% before computing AV. Particularly,
those situations where AV > 20% will be highlighted, which are the ones where
HSLM-A (increased by 10-15%) does not cover the vibration effects of real
Annex E trains.
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Figure 10: Cumulative maximum acceleration for HSLM-A model in prestressed
concrete bridges with mass m(L): Simplified Signature approach; Load distri-
bution not included.

It should be noticed that bridges with a very low mass as, for instance,
some kinds of steel trusses with non-ballasted track, could have linear masses
much lower than 7 (L). For this reason, such examples will deserve particular
comments in the following subsections.

5.1 Concrete bridges

To begin with, (single-track) bridges with linear mass strictly equal to (L)
are discussed in this subsection. As explained before, the comparison is based
on the levels of cumulative maximum response surfaces, which are plots of the
kind shown in Figure ?7? for the HSLM-A model. As an exception, such figure
has been produced with the faster simplified signature for a finer graphical
resolution.

Figures 7?7 and 7?7 compare the values of exceedance without and with load
distribution for a threshold Aay;, = 10%. Since in this span range the frequency
is equal to 80/L, the lines of constant wavelength are hyperbolas in the span-
vs-speed axes; this explains the curved shape of the limits of the shaded areas,
given that resonance phenomena take place at particular values of wavelength.
The response has been computed with the general train signature. Only those
cases where Aa > Aay, are shown in grey scale. The step in span length is
dr, = 0.05m, while the step in speed is dy = 0.1km/h. As it can be seen, the
load distribution effect is noticeable, particularly at the lower speeds. Therefore,
in order to obtain meaningful results, such distributive effect will be considered
in all subsequent discussions and figures in the paper.

In some areas of Figure 7?7 the exceedance is above 10%, 15% or as much
as 60%. Therefore, the required speed increase AV corresponding to Figure 77
has been calculated, and it has been found that in none of the cases it is above
20%. Therefore, the gray areas in Figure 7?7 are not to be deemed relevant for
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Figure 12: Exceedance Aa (only if > 10%) for prestressed concrete bridges of
mass 1(L): general signature approach; Load distribution included.
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dynamic assessment.

Although m(L) is a rather low value of linear mass for concrete bridges,
information from design drawings may lead to overestimate the linear mass of
a bridge. Therefore, bridges with even a lower value of linear mass, 0.8 m (L),
have been also analysed with a view to detect if they could be relevant for
the comparison of the HSLM-A wvs. Annex E trains. Most likely such very
low-mass bridges would correspond to single-track structures with slender pre-
stressed I-girders or relatively thin-walled box sections. Under such conditions,
Figure 77 reveals that there are only two significant cases occurring at speeds
between some 90 and 110km/h. Those cases corresponds to L ~ 12.4m and
L ~ 13m, and our analyses confirm that they stand out both for Aay;, = 10%
or 15%. Please recall that the low values of speed are directly related to the low
frequencies selected for the bridges.

Particularly, Figure 7?7 shows the response of a bridge with L = 12.4 m to the
HSLM-A and to one real train from Annex E, having D = 21 m and b = 3.5m.
The peak response at 175km/h corresponds to a fifth sub-harmonic for the A4
train, a case that can be optimised according to Table ??. The response has been
computed with the general signature (the difference of the peak values is very
small if time integration is used instead). Such real train is a kind of modified A4
train that, if added to the HSLM-A model, makes the gray area corresponding
to L = 12.4m in Figure ?? turn into not relevant, even if the governing Annex
E train in such gray area has D = 20.4m and produces accelerations slightly
above 3.5m/s?. Therefore, one possible solution to cover such case would be to
incorporate the modified A4 train to the HSLM-A. In a similar manner, it can
be determined that the gray area corresponding to L ~ 13 m would be covered
by adding one modified A1 train (D = 18 m), with b = 3.5 m. That would imply
to optimise Al for the fourth sub-harmonic, as suggested by Table 77.

However, adding two new trains to the HSLM-A load model with the sole
purpose of covering two isolated cases would not be a convenient solution for
practical applications. Instead, it is preferable that both such cases be pointed
out as requiring a particularly detailed analysis, in the event that an assessment
of its dynamic behaviour were required.

It is of particular interest to point out that the two relevant cases in Figure
?? stand out because the linear mass has been reduced by 20% with respect to
m(L). The mass of the bridge, therefore, reveals as an important parameter for
obtaining meaningful examples. This fact will be confirmed also in the following
subsection.

When the previous analysis is extended for concrete bridges of L € (15, 30]m
and V' € [50,350]km/h, the only significant case that can be found is equivalent
to the one already shown in Figure ??, but then AV < 5% and such case is
again not relevant.

Additionally, no further relevant cases have been found in the whole range
of spans for m (L) increased by 50%, which would be a linear mass value closer
to the levels expected in double-track bridges.

The results described here have been confirmed by an independent para-
metric study where the response has been computed by time integration of
the equations of motion (which is accurate also for non-resonant response) and
dL = 0.11117 dV =0.5 km/h .

In conclusion, given the hypotheses adopted for our analyses, it can be stated
that the HSLM-A model covers well the dynamic response of simply supported
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Figure 13: Speed increase AV required for 1.10 - HSLM-A to cover Annex E
trains. Prestressed concrete bridges of mass 0.8 m(L): general signature ap-
proach; load distribution included.

concrete bridges as regards the maximum vertical accelerations, with the excep-
tion of the few cases mentioned in this section.

5.2 Composite/Steel bridges

In order to futher analyse the validity of the preceding conclusions, some of
the analyses have been repeated for bridges with damping corresponding to
steel/composite structures, according to EN1991-2.

Given that these bridges are usually of mass rather low compared to con-
crete structures, it is unlikely that short S-S composite or steel bridges would
be deemed adequate for use at speeds above 200 km/h. Nevertheless, the term
short is necessarily imprecise in this context, given that the policies of differ-
ent Railway Administrators may often vary among different countries. There-
fore, in a view to offering some practical insight for a range of spans that can
be considered more habitual for composite/steel bridges, in this paper the be-
haviour of such structures has been analysed for spans L € (15, 30Jm and speeds
V € [50,350]km/h. Subsequently, further extension of the analysis to spans up
to 50 m has revealed no additional relevant cases.

As it was mentioned before, the minimum values of linear mass of compos-
ite/steel bridges are often significantly lower than for concrete bridges. After
the analysis of five single-span, single-track examples in the Swedish railway
network, linear masses around 0.6 (L) — 0.8m (L) have been found for girder
bridges and for orthotropic decks. Moreover, masses as low as 2500kg/m have
been found for truss bridges without ballast that were located in northern lines,
where the operating train speeds are not high. However, the analysis of these
five examples cannot of course cover all possibilities, and more comprehensive
information would be needed regarding the lowest levels of mass to be expected
in composite/steel structures potentially used for V' > 200km/h.

In order to overcome such lack of more comprehensive information, a sensi-
tivity analysis has been performed by considering, in addition to mass equal to
m(L) and 0.8/ (L), also a lower bound equal to 0.5m(L). Since truss bridges
with no ballast could present even lower values of mass, they may probably
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Figure 14: Maximum acceleration (general signature, one mode) at mid-span in
a simply supported bridge defined by: L = 12.4m, m = 7900kg/m, f = 11.6 Hz,
¢ = 1.53%.

not be covered by the results presented here and thus deserve further specific
studies.

As a first conclusion, it can be stated that no relevant cases are found for
bridges with mass equal to either m (L) or 0.8m(L): in those situations the
HSLM-A model covers the Annex E trains in the sense explained in previous
sections.

Conversely, some relevant cases appear for bridges with 0.5/2(L), which has
also been confirmed by repeating the parametric study with the time integration
procedure and dy, = 0.1m, dy = 0.5km/h. Figure ?? shows the most significant
cases. They are relevant because in all of them the required AV for 1.15 -
HSLM-A to cover the Annex E trains is larger than 20%. The governing bogie
wheelbase in such cases is monotonously b = 3.5 m.

The speeds where such cases appear are low, around 55-85km/h, which is
a consequence of the frequency of the bridges being equal to 79 iower- The
associated resonant peaks take place at wavelengths around 3.5-4.5m. Never-
theless, for bridges in the upper limit of the frequency band in section 6.4.4
of EN1991-2 (ng upper(Hz) = 94.76 L=0-748) they turn into speeds than can be
above 150km/h. Thus, could these cases be deemed relevant for a dynamic
assessment according to EN1991-2, given that the prescribed initial speed[?] is
40m/s = 144km/h?

To answer this question it should be born in mind that in any line for speed
greater than 200 km/h, say Viyom = 210km/h, the design speed to be used with
HSLM-A would be Viax = 1.2-210 = 252 km/h. Therefore, if the speed increase
AV for the cases in Figure 77 is not high enough to exceed 252 km/h, HSLM-
A will govern and the cases will not be relevant. Providing that the bridges
stay within the frequency band in section 6.4.4 of EN1991-2 (ng jower < 1o <
N0, upper), Our analyses confirm that 252km/h are not exceeded. If the bridge
frequencies were higher (out of the band), then the cases in Figure 7?7 could
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Figure 15: Coach length of Annex E governing trains in the ranges where the
response is not covered by 1.15 - HSLM-A, for steel/composite bridges of mass
0.5m(L).

be determinant for dynamic assessment. Figure 77 shows the case closest to
the limit: the value of AV highlighted between two black dots is rather large
(243km/h — 170km/h = 73km/h — 43%), but the frequency of the bridge,
being limited to the band of EN1991-2, is not high enough for the situation to
be determinant in a dynamic assessment at speeds V' > 243/1.2 = 202.5km/h
,which is equivalent in practice to V' > 200 km/h.

6 Conclusions

The effects of vibrations induced by load models of articulated trains (ATs) have
been analysed in this paper, with particular attention to the response of simply
supported bridges. From the results of this research, the following conclusions
can be extracted:

1. Of particular importance to vehicle manufacturers is that Annex E/EN1991-
2 establishes that the dynamic effects of ATs with 7 = D/dp4 ratio close
to integer values may not be duly covered by model HSLM-A. Such state-
ment conveys the idea that trains with integer n ratios can be significantly
more aggressive than other trains. From a mathematical perspective, the
results of this work show that this is not the case: the effects of 1 close to
integer values are only maximal when such value is equal to the inverse of
the sub-resonance order, and even in those cases the difference with other
non-integer ratios is not large. The analysis carried out here encompasses
the first 10 sub-harmonics of carriage resonance, within the realistic ranges
of D and b = dpg4 defined in Annex E.
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Figure 16: Maximum acceleration (general signature, one mode) at mid-span in
a simply supported bridge defined by: L = 16.2m, m = 5700kg/m, f = 11.8 Hz,
¢ = 0.98%. Results for HSLM-A increased by 15%.

2. As a general conclusion regarding structural design, the HSLM-A model

covers well the vibration (acceleration) effects of Annex E ATs for simply
supported concrete bridges of spans between 7 m and 30 m, in usual ranges
of speed for such bridge types. The effects in composite/steel bridges of
spans between 15 m and 30 m will be also covered except for very high fre-
quency bridges. For very low mass bridges (less than 50% of the minimum
mass assumed herein for concrete bridges), the conclusions presented here
could possibly not be valid and require further research.

A new simplified expression of the train signature has been developed
for ATs. The mathematical demonstration is given in Appendix B. For
wavelengths A > 4.2m, the approximation to the true signature is very
good both for the HSLM-A model as well as for the (articulated) trains
defined in Annex E of EN1991-2. The computational cost of the new sim-
plified signature is one order of magnitude lower than that of the general
signature.

Based on the new train signature at resonance, the number of loads re-
quired to build up the different sub-resonances has been studied for dif-
ferent levels of damping. The first resonance requires a large number of
loads to reach 90% or more of its maximum amplitude, which can be up to
30-40 loads for damping around 1%. The second resonance needs approx-
imately half the number of loads, compared to the first one. The third
and successive resonances need not necessarily very long trains to reach
values close to their maxima, except when damping is very low.

The bogie wheelbase of the ten HSLM-A trains is not optimal in order
to maximize all possible sub-harmonics of carriage resonance for D €
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[18,27]m. Still, this lack of optimal dp4 values is not always significant
because previous resonances (at lower speeds) of other HSLM-A trains
cover, in many cases, the situations when one of the bogies does not have
an optimal wheelbase.

. Both the general signature and time integration have been used to analyse
whether the HSLM-A model covers the effects of Annex E ATs on simply
supported high-speed bridges, with tolerances of 10-15% in amplitude and
20% in speed. It has been shown that only two examples are relevant for
concrete structures of spans between 7m and 30 m (shorter spans ought to
be analysed with model HSLM-B). The minimum values of linear mass, as
well as the load distribution due to track and ballast, play a decisive role
for finding relevant examples where accelerations are above 3.5m/s?. The
two cases to be pointed out correspond to spans L ~ 12.4m and L ~ 13 m.
In the rest of cases model HSLM-A covers the Annex E ATs as regards
the vertical accelerations.

. Because linear mass is a key factor when it comes to finding relevant
cases, mass values reduced down to 50% of the ones corresponding to
concrete bridges have also been analysed in conjunction with damping for
composite/steel structures, in spans between 15m and 30m. The cases
found where the HSLM-A does not cover the effects of Annex E trains
correspond to resonant peaks at wavelengths around 3.5-4.5m. Such cases
will not be relevant for dynamic analysis if the bridge frequencies lie within
the frequency band in section 6.4.4 of EN1991-2.

Appendix A: Resonant response of railway bridges
computed by the LIR method

The first step in order to apply the LIR method is to obtain the free vibration
levels created by a single concentrated load of constant value F. If the bridge
or structure travelled by the load is much shorter than the train, then the free
vibrations arising from each load (represented by decaying sinusoidal functions)
will accumulate with the previous ones[?]. This will typically be the case for
actual high-speed trains, which total length is between some 200 m and 400 m
(see Annex E from EN1991-2[?]), passing over bridges of less than typically 40 m
span. Particularly, simply supported spans below 40 m have been thoroughly
investigated in the last decades due to its higher propensity to undergo excessive
vibration[?].

If the cumulative effect of successive loads is in phase, this will result in
a resonant phenomenon. In such conditions it is expected that the maximum
response will be obtained approximately when the last loads leave the bridge.
Nevertheless, the end effects induced by the irregular distances in the load pat-
tern of the power cars (non-repetitive distances) can sometimes modify the
expected values to a certain exent|[?].

After the load has left the bridge, the maximum acceleration in the bridge

is 'z, as given by equation (??). Such vibration will be damped out by
dissipation mechanisms that are usually expressed as a viscous effect by means
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of the ¢ damping ratio. Then, the vibration amplitude will adopt the shape of
a damped sinusoid as follows:

a(t) = Dage” ¢ sin(wt) (16)

where w is the frequency of the mode of vibration that can be either damped
or undamped. For small damping, both can be considered equal for practical
purposes.

Therefore, the superposition of the vibrations a;(t) = Fja(t) created by
successive loads F;, which are separated by space intervals d; from the first load
that left the bridge is to be carried out as a summation of out-of-phase damped
sinusoids. For such purpose it is central to realize that the I';,,, value will be
a constant, common factor that will not depend on either the F; or d; values.

Consequently, superposition is carried out by adding the maximum free vi-
bration created by the last load that leaves the bridge, plus the free vibrations
created by the preceding loads. Resonance will occur when such addition hap-
pens to be in phase, i.e. when each sinusoid is an integer number of periods
delayed with respect to the rest of sinusoids. Should this happen, the amplitude
will grow with each load and will be only limited by damping until the last load
effectively exits the structure. Conversely, if one of the loads is out of phase,
then the vibration adds but just to some extent, or cancels to some extent. If
damping is neglected, total cancellation will happen if one free vibration is de-
layed exactly half period more (or less) than an integer number of periods with
respect to another vibration of the same amplitude (i.e. created by an iden-
tical force). This well-known[?]:[?]'[?]'[?] mechanism of cancellation is referred
in the paper as cancellation by addition, with a view to distinguish it from the
zeroes of the influence line I',,,4,. Such zeroes of the influence line take place at
particular speeds depending on the bridge characteristics[?]'[?], and usually are
designated simply as cancellations.

It is important to notice that, since the d; values are fixed for each particular
train, resonance will occur at given speeds when the time interval between the
sinusoids coincides with integer multiples of T = 1/f = 27 /w, being f the
natural frequency in Hz. Cancellation (by addition) can be explained in much
the same way, but adding or subtracting one half-period. For convenience, the
so-called wavelength is established as a measure of the speed of the load in
relation with how fast the structure vibrates. It represents the length travelled
by the load during one period of vibration of the structure:

A=VT (17)

Therefore, if a train is characterized by a repetitive scheme of distances
d; (typically associated to the car length D), resonance will happen when the
wavelength is equal to D or any sub-multiple: A = D/j where j =1,2,....

In summary, according to the LIR method, the maximum acceleration (in
free vibration) due to a train of passing concentrated loads can be computed as
the product of two factors: one is I';,42, which depends solely on the nondimen-
sional speed K and the bridge, while the other depends on the values F; and d;
(i.e. on the pattern of loads of the train), on the wavelength and the structural
damping:

Amazr = Fmam(mL7 <7 K) : G(Fi7 di7 /\7 C) (18)
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In general, equation (??) will not give the exact value of the maximum
acceleration because this may take place when some of the loads are still on
the bridge (forced vibration), but it has been proved that the approximation of
equation (??) to the true maximum acceleration is very good, particularly for
the resonant speeds[?]. The term G(F;,d;, A, () is the train signature as given
by equation (?7).

8 Appendix B: Derivation of the signature for a
train of equidistant loads

Departing from equation (??), a train of k equidistant loads of equal modulus F,
separated by a constant distance D from each other can be obtained as follows.
First, the distance of each load to the first one are expressed as

di=D(i—1) = & =DNk—i)=Fk—iA (19)

Then, the general signature in equation (??) is rewritten as the modulus of
a complex number:

G=|7| = j=v-1 (20)

k
Z (Fe—CQTI'tsiejQﬂ'&i)
i=1

By substituting equation (??) into equation (??) one gets

k A
Z = FerU-ONAY" (6727r<j7<;>/A>z (21)
i=1
The summation in equation (?7?) is a geometric progression and can be
summed in a standard manner, providing that the ratio of the progression
(e=27G=9/A) is not equal to one. If one examines such ratio in detail, for
it being equal to one it is required that

eQﬂC/Ae—jQTr/A -1 (22)

Because the second factor in equation (??) is a complex number, it is clear
that its imaginary part must equal zero, thus

2r/A=m- = m=0,1,2,... (23)

When equation (?7?) is satisfied, then the second factor in equation (?7) is
the cosine of a multiple of 7, i.e. cos(mm) = (—=1)™ m =0,1,2,.... Therefore,
equation (??) can be written as

e27rC/A(_1)m =1 m=20,1,2,... (24)

The factor (—1)™ must be positive, i.e. m =2n, n=0,1,2,... for equa-
tion (??) to be safistied, which leads to the resonance (or sub-resonance) case,
according to equation (?7):

27w/A=2nm n=0,12... =
A=VT/D=1/n n=12,...
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where n = 0 must be excluded in real applications because VT is a finite
scalar value and D > 0 in a train of equidistant loads. The physical interpreta-
tion of an infinitely small value of n, leading to A — oo, would be a theoretical
infinite wavelength VT or an almost null distance D, such that the free vibra-
tions from all loads on the bridge took place simultaneously (acting as a single
concentrated load). This can be easily confirmed by extending the horizontal
axis in Figure ?? and observing that Gg — k for high values of A (particularly
when A > k).

Because damping ratio ¢ must be zero for equation (??) to hold, then it can
be stated that the geometric progression can always be summed in a standard
manner except for the undamped resonance case. This particular case will be
treated afterwards.

The sum of the geometric progression in equation (??) yields the complex
signature Z as follows:

7 — F o2 (G—Ok/Ag=2m(j=C)/A (efszok/A _ 1)e,g,r(j,<)/A 1 (25)

By multiplying the numerator and denominator by e/27/2e$27/A _1 one gets,
after some algebra, an expression where the denominator is real:

Z=FA-BC

A=eb?r _e7ia gl

B = ¢lkagl=k)a _ n—i(l-k)a((1-k)a

C =e%?* — 2% cos(a) + 1

a=2m/A (26)

Equation (??) can be used to obtain the real and imaginary parts of Z as
follows:

Re(Z)=F (eCQO‘ — e cos(a) — S cos(ka)
Hetd=Ra cog((1 — k)a)) /C
In(Z)=F (eCa sin(a) — e$Z=P% gin(ka)

—eS=Ragin((1 — k)a)) /C
(27)

From equation (??) the signature can be evaluated as the modulus of Z.
After some simplifications, and by including C' = fi(o,A) from equation (?7?)
into the square root that will yield the modulus of Z, one gets precisely equation
(?7) when force F' is set equal to unity.

As regards the undamped resonance case, in such condition it will be verified
that 2wd; = 2w(k —4)/A, where A =1,1/2,1/3, ..., which implies that 27¢; will
be either zero (if i = k) or a multiple of 2r (otherwise). Therefore, the sine
functions vanish in equation (?7?). Besides, in equation (??) 6; = 1 and the
cosine functions will be also equal to one. Then, for unit loads F, the signature
is simply equal to the number of equidistant loads k.
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