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a b s t r a c t

The solution of the time-dependent neutron diffusion equation can be approximated using quasi-static
methods that factorise the neutronic flux as the product of a time dependent function times a shape
function that depends both on space and time. A generalization of this technique is the updated modal
method. This strategy assumes that the neutron flux can be decomposed into a sum of amplitudes
multiplied by some shape functions. These functions, known as modes, come from the solution of the
eigenvalue problems associated with the static neutron diffusion equation that are being updated along
the transient. In previous works, the time step used to update the modes is set to a fixed value and this
implies the need of using small time-steps to obtain accurate results and, consequently, a high
computational cost. In this work, we propose the use of an adaptive control time-step that reduces
automatically the time-step when the algorithm detects large errors and increases this value when it is
not necessary to use small steps. Several strategies to compute the modes updating time step are pro-
posed and their performance is tested for different transients in benchmark reactors with rectangular
and hexagonal geometry.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The solution of time-dependent neutron diffusion equations
approximates the neutron distribution that describes reactor ki-
netics. This equation with the energy multigroup approximation
depends on the position and time. Different spatial discretizations
can be considered that lead to a time-dependent ordinary differ-
ential system of equations (ODE). In this work, a high order
continuous Galerkin finite element method is used to make the
spatial discretization of the equations yielding to a time-dependent
system of ODE. This method can be applied to different reactor
geometries, including rectangular and hexagonal geometries [1].
Some characteristics of the dynamics of a nuclear reactor, such as
the presence of both prompt and delayed neutrons, usually produce
a so-called stiff problem in time. It means that obtaining the solu-
tion of this system efficiently will depend heavily on the method-
ology used as well as the time steps for integration.
o), anvifer2@upv.es (A. Vidal-
@iqn.upv.es (G. Verdu).

by Elsevier Korea LLC. This is an
Several approaches have been proposed to solve the time-
dependent neutron diffusion equation. One possibility is to use
an approximation of the differential operator based on the implicit
Euler method [2]. Other type of method is the point kinetic
approximation, that eliminates the spatial dependence of the so-
lution obtaining a differential equation for an amplitude function.
However, in some transients, mainly when local effects are rele-
vant, it is not possible to represent the evolution of the neutron flux
with the amplitude function. One way to improve this approxi-
mation is the quasi-static method. This methodology factorizes the
solution as a product of an amplitude function (what has a fast
change over time) times a shape function (that changes slowly in
time). The shape function is updated using a differential scheme a
certain interval of time [3e5]. The recomputation of this spatial
shape is usually the most expensive part. Another strategy to
improve the point kinetics approximation is the adiabatic method
that obtains the shape functions by static computations that are
updated at specific time points during the transients [6e8]. Finally,
we have the modal method [ [8,9]]. It assumes that the solution can
be described by the sum of several amplitude functions multiplied
by some shape functions. These shape functions can be computed
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by solving eigenvalue problems for different spatial modes [10].
This last approach has a great interest when the neutron power
distribution cannot be well approximated by using only one shape
function, mainly, when local perturbations are applied during the
transient [10]. In this work, the eigenfunctions are updated to avoid
to use a high number of modes.

Classically, the implementation of all these methods uses small
fix time-steps over which there are little changes in the neutron
population, to ensure the stability of the solution and this has a
high computational cost. One way to avoid to use small time-steps
is using high order schemes such as the backward differential
methods proposed in Ref. [11]. However, obtaining the approxi-
mations at each time-step is also computationally expensive. Other
approach very common in the methods to approximate the solu-
tion of large systems of differential equations is the implementa-
tion of adaptive control-step where the time-step to be used in the
discretization is computed step by step. Theoretically, this meth-
odology picks up an optimal time-step adaptively based on the
current state of the transient. In practice, this time-step is selected
from the solutions computed in the previous steps to satisfy some
approximated error tolerance [12e14]. This kind of methodology
improves computational efficiency because time is not wasted
solving the system to a level of accuracy beyond relevance, but also
it allows to reduce the step size if a numerical instability is detected.
Moreover, adaptive schemes remove the necessity for the user to
select appropriate time steps before the simulation has been run.

Recent works have incorporated an adaptive time-step for the
Backward differential method for different orders [15e18]. The
quasi-static methodology is also implemented by selecting an
appropriate step size from a given tolerance [19]. Step size con-
trollers require an error estimation. The time step selection for
these works are based on some approximations of the local trun-
cation error caused by the time discretization, since both works use
a finite difference discretization.

The aim of this paper is to study updated modal methods and to
propose an efficient strategy to integrate the time-dependent
neutron diffusion equation based on an adaptive control for the
time-step used to update the modes along the transient. In this
way, different error estimations must be defined. Several error
approximations can be proposed to select the time-step along the
transient. First, an error estimator based on the change in the
neutron power is considered. Another error estimator is defined
from the residual error of the associated static problem corre-
sponding to the modes computation. Finally, the last error esti-
mator considered is based on the change on the cross-sections
along the transient.

Moreover, the memory resources and the CPU time to assemble
the matrices at each time-step are in general very large. Thus, the
implementation of the modal method will be compatible with a
matrix-free methodology [20,21].

The structure of the rest of the paper is as follows. Section 2
presents the time dependent neutron diffusion equation and the
l-modes problem in the approximation of two energy groups. This
Section also briefly describes the spatial discretization used for the
differential equations and the definition of the adjoint problems
associated for the l-modes problems. Section 3 describes the
matrix-free strategy. Section 4 presents the backward differential
method. Section 5 includes the development of the updated modal
kinetics equations associated with the different spatial modes.
Section 6 presents the theory related to the adaptive time-step
control for the update modal method. Section 8 collects numeri-
cal results to test the performance of the adaptive time-step control
for modal equations in several different benchmark problems.
Finally, Section 9 synthesizes the main conclusions of this paper.
2. Time dependent neutron diffusion equation

In the following, we develop the methodology for the two en-
ergy groups neutron diffusion approximation. However, this strat-
egy can be likewise applied for more energy groups and other
angular approximations of the neutron transport such as the SN or
the PN equations. Nowadays, the integration of these problemswith
differential or quasi-static methods can be very slow [22], and the
modal methods can be an interesting alternative to study some
type of transients with higher order approximations of the neutron
transport.

For a given transient in a nuclear reactor, the neutronic flux
inside the core can be described by means of the time dependent
neutron diffusion equation with two energy groups, without up-
scattering and K groups of delayed neutron precursors [23]. These
equations are expressed as

V �1vF
vt

þ ðL þ S ÞF ¼ ð1� bÞcpF Fþ
XK
k¼1

ldkC kc
d;k;

dCk

dt
ð r!; tÞ ¼ bkF 1F� ldkCk; k ¼ 1;…;K;

(1)

where,

L ¼
��V

!
,ðD1V

!ÞþSa1 þS12 0

0 �V
!
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�
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�
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�
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0
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1
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�
; F¼

�
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�
:

The operator L is known as leakage operator, the operator S ,
the scattering operator and F , the fission operator. The vectors F1
and F2 represent the fast and thermal fluxes of neutrons, respec-
tively. The term C k is the concentration of delayed neutron pre-
cursors of group k. The fission spectrum is denoted by c. The
average number of neutrons produced in each fission and energy
group g is ng . The rest of the coefficients, where the subindex
represent the energy group g (g ¼ 1;2), are: the diffusion co-
efficients, Dg; the absorption cross sections, Sag and the fission
cross sections, Sfg . The scattering cross section from group 1 to
group 2 is S12. The neutron velocities are v1, v2. The spectrum of the
prompt neutrons cp and the delayed neutrons cd;k, in this special
case of two energy groups, are considered equal. All of these co-
efficients are, in general, position and time dependent functions.

Given a configuration of the reactor, the criticality can be forced
of several forms transforming Equation (1) into several time-
independent eigenvalue problems. If the fission operator is
divided by a positive number, lm, the l-modes equation is obtained
as

ðL þS Þ4m ¼ 1
lm

F 4m: (2)

A Galerkin high order finite element method has been used for
the spatial discretization of equation (1) making use of Lagrange
polynomials. More details can be found in Ref. [1,24]. The finite
element method has been implemented by using the open source
finite elements library Deal.ii [25]. In this way, equations (1) can
be approximated by solving the time dependent system of ordinary
differential equations,
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V�1d~F
dt

þ ðLþ SÞ~F ¼ ð1� bÞF ~Fþ
XK
k¼1

ldkXCk;

dCk
dt

¼ bkF1 ~F� ldkCk; k ¼ 1;…;K;

(3)

where L, S, F, F1are the matrices obtained from the discretization of

operators L , S , F , F 1, respectively. Vectors ~Fand Ckare the
corresponding coefficients of Fand C k in terms of the Lagrange
polynomials. The matrices X and ½V�1�are, then, defined as

X¼
�

I
0

�
; V�1 ¼

0
@ Pv�1

1 0

0 Pv�1
2

1
A; (4)

where I is the identity matrix and P is themass matrix related to the
spatial discretization, which is different from the identity matrix
because the Lagrange basis of polynomials is not orthonormal.

For l-modes problem (Equations (2)), the algebraic problem
associated after the discretization has the following structure

ðLþ SÞ~4m¼ 1
lm

F~4m; (5)

where ~4 is the algebraic vectors of weights associated with the
function vectors 4. In the following, to simplify the notation, the
algebraic vectors are denoted by F(for the time-dependent flux)
and 4 (for the eigenfunctions) by removing the tildes from the
original notation.

Associated to the l-modes problem one can introduce the
adjoint problem

ðLþ SÞT4y
l ¼

1
ll
FT4y

l ; (6)

where LT , ST and FT are the transpose matrices of L, S and F,
respectively [8]. They are equal to the matrices obtained from the
discretization of the adjoint operators, L y, S y and F y. The adjoint

modes, solutions of (6), 4y
l ; l ¼ 1;…; q satisfy the biorthogonality

condition

C4y
l ; F4mD¼ C4y

m; F4mDdl;m; l;m¼1;…; q; (7)

where C ;Dis the scalar product for vectors and dl;m is the Kronecker’s
delta.
3. Matrix-free implementation

The schemes proposed to solve the semi-discrete time depen-
dent neutron diffusion equations (3) require the updating of the
different matrices at each time-step. In this work, a matrix-free
strategy is used to avoid the full assembly of the matrices. In this
way, the CPU time and the CPU memory needed to allocate the
matrices are removed. To apply this technique, matrix-vector
products are computed ‘on the fly’ in a cell-based interface.

For instance, one can consider that the finite element Galerkin
approximation leads to the matrix A and takes a vector u as input. A
module has been built such that it computes the integrals associ-
ated with the different matrix elements and the output vector v is
computed. This operation can be expressed as a sum of Nc cell-
based operations,
v¼Au ¼
XNc

c¼1

PTc A
cPcu; (8)

where Pc denotes thematrix that defines the location of cell-related
degrees of freedom in the global vector and Ac denotes the sub-
matrix of A on cell c. This sum is optimized through a sum-factor-
ization (see more details in Ref. [21]). This strategy minimizes the
memory used by the matrix elements and it can improve matrix-
vector multiplication computational times.

The main difficult of this strategy is to obtain efficient algebraic
solvers that only use matrix-vector multiplications. For this reason,
two types of implementations are used in this work depending on
the integration scheme used. For the Backward differential method,
a semi matrix-free implementation is used, where only the diago-
nal blocks of the matrix Tn (described in Section 4) are allocated in
memory. For the modal method, any matrix obtained from the
discretization of the operator is assembled.

4. Backward differential method

The time-dependent system of ordinary differential equations
(3) is, in general, stiff, thus the use of implicit methods is necessary.
Particularly, the backward differential method, that is a classical
implicit method, is used [11,24,26].

This method starts with the steady-state flux, i.e., the approxi-
mated Fð0Þ ¼ 4obtained from the solution of the problem (5),
where the system is made critical by dividing the matrix F by keff ¼
l1. An approximated solution in the ðn þ 1Þ-th step, Fnþ1, with a
time-step of Dtn ¼ tnþ1 � tn, is obtained by solving the following
system of linear equations

Tnþ1Fnþ1 ¼RnFn þ
XK
k¼1

ldke
�lkDtnXCn

k ; (9)

where the matrices are defined as

Tnþ1 ¼Rn þ Lnþ1 þ Snþ1 � baFnþ1; Rn ¼ 1
hn

V�1 ;

and the coefficient ba is computed as

ba¼1�bþ
XK
k¼1

bk

�
1� e�l

d
khn

�
:

The neutron precursors equation is discretized in time by using
the explicit scheme

Cnþ1
k ¼Cn

k e
�lkhn þ bk

lk

�
1� e�lkhn

��
Fnþ1
11 Fnþ1

12

�
Fnþ1 ; k¼1;…;K:

(10)

This system of equations is large and sparse and has to be solved
for each new time-step, tnþ1. In this work, the GMRES method has
been used to solve the linear systems preconditioned with the
block Gauss-Seidel method (see more details in Ref. [20]). The in-
verses in the Gauss-Seidel method are approximated solving linear
systems with the conjugate gradient method with the ILU pre-
conditioner and a residual error of 10�6. This strategy permits to
avoid the assembly of the full matrices at each time-step.

5. Updated modal method

The time-dependent neutron diffusion equation (3) can also be
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solved by using a modal method [6e9]. For that, it is supposed that
Fð r!; tÞ can be expanded as,

Fð r!; tÞ¼
Xq
m¼1

nmðtÞ4mð r!Þ; (11)

where 4mð r!Þ is the unitary eigenvector associated with the m-th
dominant eigenvalue of the l-modes problem (5) and q is the
number of dominant modes considered. The amplitude coefficients
nmðtÞ are only time dependent. To simplify the notation, we will
write nm and 4m instead of nmðtÞand 4mð r!Þ.

After that, we choose the matrices L, S and F, that we denote by
L0, S0 and F0, as the matrices related to the configuration of the
reactor core at t ¼ 0. We start with this reactor in critical state by
dividing the matrix related to the fission terms (F0) by keff ¼ l1. In
this way, we express the matrices L, S and F as

L¼ L0 þ dL; S ¼ S0 þ dS; F ¼ F0 þ dF: (12)

Now, if one substitutes the expansion (11) into the time
dependent neutron diffusion equation (Equation (3)), the l-modes
problem is taken into account and it is multiplied on the left by the

adjoint modes 4y
l (l ¼ 1;…;q), one can obtain the coefficients nlby

solving the following system of qðK þ 1Þequations

d
dt

N¼TN; (13)

where

Nl ¼ �
n1/nq c11/cq1 / c1K/cqK

�
T ; (14)

T¼

0
BBBBBBBBB@

L�1
�
ð1�bÞI�½l��1�DL�DSþð1�bÞDF

�
L�1ld1/L�1ldK

b1ðIþDFÞ �ld1I / 0
« « 1 «

bKðIþDFÞ 0 / �ldK I

1
CCCCCCCCCA
;

(15)

and

Llm ¼ C4y
l ;V

�14mD; DLlm ¼ C4y
l ; dL4mD;

DFlm ¼ C4y
l ; dF4mD; cllk ¼ C4y

l ;XCkD;

DSlm ¼ C4y
l ; dS4mD:

(16)

The block ½l� denotes the diagonal matrix whose elements are
the dominant l-modes. The initial conditions in the steady state are

n1ð0Þ¼1; nmð0Þ¼0; m¼2;…;q

c1kð0Þ¼
bk

ldk
C4y

1;F041D; cmkð0Þ¼0; m¼2;…;q; k¼1;…;K;

with 41 and 4
y
1, the corresponding eigenvector and its adjoint

associated with the dominant eigenvalue l1.

5.1. Updating the modal method

In realistic transient computations, the neutronic flux shape in
the reactor over time can suffer large spatial variations with respect
to the initial flux. Thus, in order to obtain good approximations by
using the modal method, high number of modes would be neces-
sary in the modal expansion [10], which implies a large computa-
tional cost in the calculation. A solution for this challenge was
proposed in Ref. [9], where a small number of modes are computed
but they are updated from time to time, generalizing the quasi-
static method by using the modes as several shape functions.

Moreover, the modal methodology with one eigenvector in its
expansion is known as the adiabatic method [8]. It is well-known
that this method suffers problems in its convergence to the solu-
tion if the eigenfunction is not well suited to represent the evolu-
tion of the system under analysis [27]. Using for the representation
a higher number of modes (eigenvectors) logically improves the
accuracy of the solution.

In this method, the time domain is divided into several intervals
½ti;ti þ Dti� ¼ ½ti;tiþ1�. In each interval ½ti;tiþ1�, the neutron diffusion
equation can be integrated by using the l-modes associated with
the problem

�
Li þ Si

�
4i
m ¼ 1

lim
Fi4i

m; (17)

where Li, Si and Fi are the matrices associated with the reactor
configuration at time ti, and the differential equations that are
needed to be solved are of the form

d
dt
Ni;l ¼Ti;lNi;l; (18)

where

Ni ¼
�
ni1/niq ci11/ciq1 / ci1K/ciqK

�
T ; (19)

Ti¼

0
BBBBBBBBB@

L�1
i

�
ð1�bÞI�½li��1�DLi�DSiþð1�bÞDFi

�
L�1

i ld1/L�1
i ldK

b1

�
IþDFi

�
�ld1I / 0

« « 1 «

bK

�
IþDFi

�
0 / �ldK I

1
CCCCCCCCCA
;

(20)

and

Li
lm ¼ C4y;i

l ;V�14mD; DLilm ¼ C4y;i
l ; dLi4i

mD;

DFilm ¼ C4y;i
l ; dFi4i

mD; cllk ¼ C4y;i
l ;XCkD;

DSilm ¼ C4y;i
l ; dSi4i

mD:

(21)

where the operators dLi, dSi and dFialso change into the interval ½ti;
tiþ1�. Observe that this system is the same as the one in the modal
method without modes updating, but matrices Li, Si, Fi and dLi,
dSiand dFi have to be updated. Nevertheless, the initial conditions
(at time ti) must be reformulated to ensure the continuity of the
solution. These initial conditions will depend on the solution in the
previous interval ½ti�1; ti�, the eigenvectors associated with direct
modes (4i

m) and the eigenvectors associated with adjoint modes

(4y;i
l ). With the solution obtained in the interval ½ti�1; ti�, we

compute the solution in the interval ½ti; tiþ1�.
In this way, the initial conditions for nim at time ti must be

defined to solve the problem (20) in the interval ½ti; tiþ1�. For that
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purpose, we reconstruct the vector

FðtiÞ¼
Xq
m¼1

ni�1
m ðtiÞ4i�1

m ; (22)

from the variables ni�1
m ðtiÞ, 4i�1

m obtaining from the integrating in
the interval ½ti�1; ti�. As the function FðtÞmust be continuous on all
its domain, one could use the expansion

FðtiÞ¼
Xq
m¼1

nimðtiÞ4i
m;

and obtain the value of nimðtiÞ as

ni;lm ðtiÞ¼
C4y;i

m ; FiFðtiÞD
C4y;i

m ; Fi4i
mD

;

where FðtiÞ is computed from Equation (22).
In order to compute the initial conditions related to the con-

centration of the precursor k at time ti, cil;kðtiÞ ¼ C4y;i
l ;XCkDðtiÞ, we use

the known ci�1
m;kðtiÞ computed in the previous integration on ½ti�1;ti�.

We assume that

4
y;i
l ¼

Xq
m¼1

alm4
y;i�1
m :

Using the adjoint modes and the biorthogonality relation (7) in
Equation (5.1) it is obtained that,

alm ¼ C4y;i
l ; Fi�14i�1

m D

C4y;i�1
m ; Fi�14i�1

m D
: (23)

Thus, the concentration of precursors at time ti can be computed
as

ci;ll;kðtiÞ¼C4y;i
l ;XCkDðtiÞ¼

Xq
m¼1

almC4
y;i�1
m ;XCkDðtiÞ¼

Xq
m¼1

almc
i�1;l
m;k ðtiÞ:

(24)
6. Adaptive time-step control for the modes update

In previous works, the updating of the modes was made with a
fix time-step that is selected by the user. This updating with a fix
time-step implies several limitations. First, one needs to select a
time-step previously that leads to obtain results with unpredictable
errors. If, a small time-step is used to ensure good approximations,
this small time-step may be not necessary in some stages of the
transient. Moreover, the computational cost also increases, since
most of the time in the modal computation is spent in the solutions
of the modal problems. On the other hand, if we use large time-
steps the computational cost is smaller but the obtained results
could be inaccurate. For these reasons, there is a big interest to
implement an adaptive control of the time-step for the modal
methods. For doing that, there are two fundamental issues that
must be studied: The error estimation due to the finite modal
expansion assumption, and a suitable constraint to select the time-
step based on the error estimation. Several approaches are
considered in the following subsections.
6.1. Estimates of the local error

After applying the modal methodology, the obtained error
essentially comes from the assumption that the neutronic flux can
be described as a finite linear combination of the spatial modes,
since they do not form a complete basis of the function space [8]. It
is reasonable to assume that larger variations in the flux will imply
larger errors in the modal method.

The first error estimate proposed is based on the difference
between the different sets of eigenfunctions. This approach will be
called themodal difference error. One can compute the modes in the
next time to predict how the total flux will change. According to the
difference between the previous modes and the new modes, an
error can be defined as,

ε
i
md ¼ max

m¼1;…;q

���j4d
i�1;m � 4d

i;mj
���
1���j4d

i�1;mj
���
1

kmd;

where q is the total number of modes and kmd a constant to adjust
the accuracy of the approximation and its value will depend on the
transient analyzed. This error estimation requires the computation
of eigenvalue problems and this can be computationally very
expensive.

The second proposed approach is based on the residual error
that appears when the actual modes are substituted on the problem
corresponding to the next time. Larger residual errors are obtained
when the eigenfunctions change more spatially. For that, we define
the modal residual error as

εmr ¼ max
m¼1;…;q

���jAd;i4d
i�1;m � di�1

m Bd;i4d
i�1;mj

���
1���j4d

i�1;mj
���
1

kmr;

where kmr is a constant for this type of error and q the total number
of modes.

Finally, we assume that the flux along the time will change
depending on the variation in the cross-sections. For this reason,
we define the cross-section perturbation error as

εxs ¼
X
c

			XSi�1ðcÞ � XSiðcÞ1
						XSi�1ðcÞ1

			 kxs;

where kxs is an accuracy constant for this error, the value of c de-
notes the cell c of the reactor and XS, one cross-section type that
depends on the perturbation applied to the transient. This esti-
mation is the cheapest estimation and it is used in other neutronic
codes, such as PARCS [28]. Note that the same cross-section
perturbation error is obtained when a cross-section is increased or
decreased with the same value, but the response in the relative
power is not the same. The type of cross-section to be considered
will depend on the transient analyzed.
6.2. Control algorithm for modal update time steps

Once the error estimation is selected, it is necessary to define
the control algorithm to compute the time-step from the error
estimation. For that, we have studied two strategies.

The first one depends on the error in the previous step in a fixed
way. It is called as banded time-step control. If the error is greater
than some value maxle, the time-step is divided by 2. On the other
hand, if the error is lower than other valueminle, the next time-step
is multiplied by 2. For errors between minle and maxle, the time-
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step remains constant. This can be written as,

Dti ¼
8<
:

Dti�1*2; ε<minle;
Dti�1; minle < ε<maxle;

Dti�1 = 2; maxle < ε;
(25)

where ε is one of the error estimations presented in the previous
Section. The values of minle and maxle are dependent on the tran-
sient analyzed. In the numerical results presented below, the value
of minle has been fixed to 1.0 and the value of maxle ¼ 2:0.

The second option to select the time-step is based on the control
algorithms defined for other differential methods implemented for
stiff problems [13]. It is called as dynamic time-step control. In
particular, we obtain the step Dti as

Dti ¼Dti�1min
n
2:0;max

n
0:5;

ffiffiffiffiffiffiffiffiffiffiffiffi
1:0=ε

p oo
; (26)

where ε is some error defined in Section 6.1.
Finally, to avoid using very high or very small time-steps, we

have implemented a minimum time-step andmaximum time-step.
These values are computed as Dtmin ¼ Dt0=2, Dtmax ¼ Dt0* 50,
where Dt0is the initial Dtgiven by the user.

7. Rod cusping correction

Some transient calculations in reactor cores are based on dy-
namic changes in the reactor configuration due to the movement of
control rods, which are usual maneuvers in the reactor operation.
When a control rod is partially inserted into a cell, a newmaterial is
needed to be defined for this cell ormovingmeshes are used, where
the cell is divided into two subcells: one rodded cell and one
unrodded cell [24].

The classical method to define the materials of partially inserted
cells, S, is based on the volume weighting average of the cross sec-
tions of the rodded (SR) and unrodded (SNR) part with the volume
fraction inserted as

S¼ finsSR þ ð1� finsÞSNR; (27)

where fins is the volume fraction of insertion of the rod in the cell.
However, for some transients, this type of approximation presents
what is known as the rod cusping effect [29]. This is a non-physical
behaviour of different magnitudes such as the neutron power along
the transient.

Different strategies can be applied to reduce the rod cusping
problem. One possibility is using a high number of planes in the z-
axis by increasing also the problem size. Another possibility is to
use a simple correction model by utilizing the surrounding aver-
aged cell values [30]. This strategy is known as flux weighting
method. The cross-sections of the partially inserted cell, S, are given
by

S¼ð1� finsÞSNR4NR þ finsSR4R
ð1� finsÞ4NR þ fins4R

; (28)

where the average flux in the unrodded and rodded fractions of the
cells are approximated by

4NR ¼
hc�14c�1 þ ð1� finsÞhc4c

hc�1 þ ð1� finsÞhc
; (29)

4R ¼
hcþ14cþ1 þ finshc4c

hcþ1 þ finshc
; (30)

where 4c is the average neutron flux in the axial cell c and hc is the
length of the cell in the z-direction. More strategies to avoid the rod
cusping could be applied [31,32].

8. Numerical results

In this Section, we analyze the performance of the updated
modal methodology and the adaptive time-step control for two
three-dimensional benchmarks with rectangular and hexagonal
geometries. First, two different transients are studied for the Lan-
genbuch reactor [33]: a control rods movement and an out-of-
phase periodic perturbation. Also, we present some numerical re-
sults for an asymmetric control rod ejection accident in a VVER-440
core [34].

In the finite element method, the spatial discretizations is made
by using Lagrange polynomials of degree 3. It has been shown in
other works that this degree is enough to obtain accurate results for
usual reactor calculations [1].

The solution of the eigenvalue problems (Equations (5) and (6))
has been computed with a hybrid method using a residual error for
the generalized eigenvalue problem of 10�7 (see more details in
Ref. [35]). For the direct modes computation, the initial guess used
is the solution of the l-modes problem with Lagrange polynomials
degree equal to 1 in the FEM, which is previously computed. For the
adjoint modes computation, the solution of the direct modes is
used to initialize the solver.

In the following, the relative errors for the neutron power are
described.

The neutron power distribution, P, is defined as

Pð r!; tÞ¼Sf1F1ð r!; tÞ þ Sf2F2ð r!; tÞ;

where F1and F2are the neutron fluxes related to the fast and
thermal energy group, respectively.

The Local Error (LE) in % at time t is given by

LEðtÞ¼

���jPðtÞ � Pref ðtÞj
���
1			Pref ðtÞ1			 ,100;

where Pref ðtÞis the reference power at time t, and jj jj1 is the norm-1
of a vector, that is, its highest component in absolute value.

The Mean Power Error (MPE) in % in the interval ½t0; tN � is
defined by

MPE¼ 1
ðtN � t0Þ

XN
n¼1

LEðtnÞðtn � tn�1Þ:

The code has been implemented in Cþþ based on the data
structures provided by the library Deal.II [25] and PETSc [36]. The
computer used for the computations has an Intel® Core™ i7-4790
3.60 GHz with 32 Gb of RAM running on Ubuntu GNU/Linux 16.04
LTS.

8.1. Langenbuch-CRM transient

The Langenbuch reactor was defined in Ref. [33]. It is a small
LWR core with 77 fuel assemblies and two types of fuel. Fig. 1(a)
shows the geometry of the reactor model. Table 1 shows the
macroscopic cross-sections that define the transient.

Table 2 displays the neutron precursors data. The neutron ve-
locities for the fast and thermal groups are, respectively, v1 ¼ 1:25,
107 cm/s and v2 ¼ 2:5,105cm/s. The value of n is assumed constant
and equal to 2.5 for everymaterial and energy group. The boundary
conditions are set to zero flux. The calculations for the reactor have
been performed with a whole core model, using 1170 cells.



Fig. 1. Distribution of the materials along the Langenbuch-CRM transient.

Table 1
Cross sections data of the Langenbuch reactor.

Material Group Dg Sag nSfg Ss12

(cm) (cm�1) (cm�1) (cm�1)

1 e Fuel 1 1.423913 0.01040206 0.00647769 0.01755550
2 0.356306 0.08766217 0.11273280

2 e Fuel 1 1.425611 0.01099263 0.00750328 0.13780040
2 0.350574 0.09925634 0.01717768

R eReflector 1 1.634227 0.00266057 0.00000000 0.02759693
2 0.264002 0.049363510 0.00000000

4,6 e Absorbent 1 1.423913 0.01095206 0.00647769 0.11273228
2 0.356306 0.09146217 0.01755550

5 e Reflector þ 1 1.634227 0.00321050 0.00000000 0.02759693
Absorbent 2 0.264002 0.05316351 0.00000000

Fig. 2. Relative power of the Langenbuch-CRM transient computed with the BKM and
PARCS code.
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Langenbuch-CRM corresponds to an operational transient of the
Langenbuch reactor. Materials 4 and 6 represent control rods. It has
been initiated by the withdrawal of a bank of four partially inserted
control rods (C1 in Fig. 1(a)) at a rate of 3 cm/s over 0< t < 26:7 s. A
second bank of control rods (C2 in Fig. 1(a)) is inserted at the same
rate over 7:5< t <47:5 s. The transient is followed during 60 s. In
Fig. 1 the axial profiles at initial state, t ¼ 0:0 s and at t ¼ 60s are
represented.

The numerical solution of this problem has been obtained by
many authors but no reference solution is provided. Fig. 2 shows
the relative power evolution along the transient obtained with the
PARCS code [28] and the Backward differential method (BKM)
described in Section 4. In the code PARCS Equation (3) is solved
using a nodal strategy with polynomials of degree 2 and two re-
finements over the original mesh. For the BKM, the time-step has
been set to Dt ¼ 0:01 s and for the PARCS code, the maximum time
step has been set to Dt ¼ 0:01 s. Moreover, different methodologies
to compute the materials in the cells when the control rod is
partially inserted are compared. For the BKM, the volume weighting
method (VWM) and the flux weighting method (FWM) are used. In
the PARCS solutions, the volumeweighting method (VWM) and the
DECUSPmethod (that is a flux weighting method type) are used [28].
Fig. 2 does not show significative differences between the two
codes when the volume weighting method is used. The mean
Table 2
Neutron precursors data of the Langenbuch reactor.

Group (k) 1 2 3

bk 0.000247 0.0013845 0.0012
ldk (s

�1) 0.0127 0.0317 0.115
power error between the two solutions isMPE ¼ 4,10�3. However,
in the two solutions obtained with FWM and DECUSP methods a
small difference between BKM and PARCS solutions is appreciated.
In this case, the error between these two solutions is MPE ¼
1:8,10�2. For these last approximations, the rod cusping effect is
reduced. The reference for this problem has been taken as the so-
lution computed with the BKM and the flux weighting method. Fig. 3
represents the neutronic power distribution in the middle plane of
the reactor at several relevant times, showing the radial symmetry
of the power.

First, we study the efficiency of the matrix-free implementation
proposed in this work. For that purpose, we compare the same
algorithms with the same settings to solve the Langenbuch-CRM
transient where only the matrix allocation type and, conse-
quently, the preconditioner used to solve the linear systems are
changed. Table 3 displays the mean of the iterations needed for the
4 5 6

22 0.0026455 0.000832 0.000169
0.311 1.4 3.87



Fig. 3. Evolution power at the middle plane of the Langenbuch-CRM transient.

Table 3
Matrix-free backward differential method performance for the Langenbuch-CRM
transient.

Matrix Alloc. Mean GMRES its. Max. memory CPU Time

CSR 15.7 1422 MB 151 min
Matrix-free 16.6 478 MB 55 min

Table 4
Matrix-free updated modal method performance for the Langenbuch-CRM
transient.

Matrix Alloc. q Updating Max. memory CPU Time

CSR 1 No 1244 Mb 176 min
Matrix-free 1 No 345 Mb 2 min
CSR 1 Yes 1253 Mb 113 min
Matrix-free 1 Yes 444 Mb 3 min
CSR 3 No 1126 Mb 319 min
Matrix-free 3 No 350 Mb 7 min
CSR 3 Yes 1394 Mb 225 min
Matrix-free 3 Yes 456 Mb 16 min

Table 5
Updated modal method performance for Langenbuch-CRM transient.

N. eigs. (q) Dt MPE (%) CPU Time

1 1.0 s 0.278 11 min
1 2.0 s 0.281 6 min
1 5.0 s 0.630 3 min
1 10.0 s 1.880 2 min
3 1.0 s 0.260 31 min
3 2.0 s 0.261 19 min
3 5.0 s 0.509 16 min
3 10.0 s 1.650 4 min
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GMRES to solve the linear systems (Mean GMRES its.), the
maximum computational memory required (Max. memory) and
the computational time (CPU Time) to solve the transient by using
the backward differential method (BKM). The results show that the
matrix-free implementation decreases the computational memory
and the CPU time considerably, even though the number of itera-
tions needed for the convergence of the linear systems is greater
than when the matrices are stored in the CSR format [37]. To
analyze thematrix-free performance in the updated modal method
(where Dt ¼ 5.0s), Table 4 shows the maximum computational
memory and CPU needed to apply this methodology with several
settings and number of eigenvalues in the expansion, q. All cases
show a high reduction in computational resources, especially in the
CPU time, if the matrix-free implementation is used.

To test the performance of the updated modal method for the
Langenbuch-CRM transient, data have been collected when
different number of modes (q) and different fixed time-steps (Dt)
are used. Table 5 displays the mean power error (MPE) and the CPU
time needed to obtain each approximation. This Table shows that
using only q ¼ 1 l mode is enough to approximate the solution of
this transient with the modal method, because increasing the
number of modes reduces the MPE slightly, but increases enor-
mously the CPU time. Note that for this transient, the evolution of
the power can be described with an adiabatic approximation.
However, this characteristic of the modal methods is heavily
dependent on the type of transient analyzed.

Fig. 4 represents the power evolution computed with the BKM
and the updated modal method with one eigenvalue and with
several fix time-steps. The errors in the neutron power between the
BKM and the updated modal method are mainly produced at the
maximum value of power. These differences are reduced as the
time-step for updating the modes decreases. This fact can be also
observed in the evolution of the local errors (LE) shown in Fig. 5.
The local errors in the power increase along the time until tz20 s
then, they decrease and from tz30 s they begin to increase again. It
happens because of the definition of the MPE, since from t ¼ 30 s
the curve of the modal approximation is above the BKM solution It
is also observed that the errors decrease just at times when the
dominant l-mode is updated.

To analyze the adaptive time-step control for the updatedmodal
methodology only one mode is used in the modal expansion. The



Fig. 4. Evolution of the relative power computed with the updated modal method with fix time-steps for the Langenbuch-CRM transient.

Fig. 5. Evolution of local error (%) in the Langenbuch-CRM transient in the updated
modal method with one mode.

Table 6
Errors and CPU time obtained with the adaptive time-step modal method for the
Langenbuch-CRM transient.

Type of Error Banded Control Dynamic Control

K MPE (%) CPU Time MPE (%) CPU Time

εmd
0.5 3.050 2.5 min 1.181 5.3 min
1.0 1.830 4.0 min 0.396 8.6 min
2.0 0.464 12.5 min 0.887 8.4 min
εmr

200 0.615 3.6 min 0.407 4.0 min
300 0.432 4.0 min 0.310 5.5 min
500 0.312 6.0 min 0.276 8.2 min
εxs

0.5 2.651 7.2 min 1.793 9.2 min
1.0 1.572 9.4 min 1.041 11.0 min
2.0 0.965 12.0 min 0.503 16.0 min
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initial time-step for all strategies has been set toDt0 ¼ 1:0s. For the
cross-section perturbation error, the absorption cross-section has
been used to quantify the error because the movement of control
rods in this benchmark only produces changes in this cross-section.
Table 6 shows the Mean Power Errors (MPE) and CPU times
obtained by using the different error estimations, time-step con-
trols and accuracy coefficients (kmd;kmr ;kxs). First, one can observe
that using higher values for the accuracy coefficients gives more
accurate results because the time-steps are reduced, but it also
needs more time for the computation. Higher values for the modal
difference error are needed for adapting the time-steps. In the
comparison of the different error estimators, one can deduce that
the modal difference error (εmd) is not very efficient. Between the
other error estimations, themodal difference error (εmr) gives better
results using less CPU time.

Table 6 does not show relevant differences between the dy-
namic control and the banded control. The dynamic control selects
smaller time-steps and the approximations obtained are, conse-
quently, better, but also the CPU time is increased. To better analyze
both time-step controls, Fig. 6 shows the time-steps and the local
errors obtained with the different types of error estimators. The
accuracy coefficients are selected as kmd ¼ 2:0, kmr ¼ 200 and kxs ¼
2:0, because similar MPE are obtained with these settings (Table 6).
First, if the time-steps are analyzed (in the first row of Fig. 6), it is
deduced that the time-steps obtained with themodal residual error
depend on the type of error control. From t ¼ 20 s, the banded error
reduces the time-step while the dynamic error increases it. The
time-steps computed with the modal difference error, with banded
and dynamic control error, follows a behaviour similar to the local
error. Finally, the cross-section perturbation error, for both types of
control error, reduces the time-steps only when the perturbation in
the cross-section is higher. The evolution of the time-steps is re-
flected in the evolution in the local errors (second row of Fig. 6).

If we compare updated modal method using an adaptive time-
step for the modes updating with the updated modal method us-
ing a fix time-step, it can be observed that for similar mean power
errors (MPE), more distributed local errors are obtained. It can be
appreciated, for instance, to obtain a MPEz0:6% first, with the
adaptive updated modal method with εmr , dynamic control and
kmr ¼ 200 (Fig. 6) and second, with the updated modal method
with fixed Dt ¼ 5:0 s (Fig. 5). All modal strategies improve
considerably the CPU time required by the BKM method to
approximate the evolution of the power.
8.2. Langenbuch-OPP transient

The Langenbuch-OPP transient has been defined by perturbing
the fission cross sections of material 1 in the Langenbuch reactor
represented in Fig. 7 with a striped pattern. In this case, we have
defined two types of local sinusoidal perturbations that are out of
phase between them. They are expressed as,



Fig. 6. Evolution of the time-step (Dt) and local error (%) in the adaptive time-step control for the Langenbuch-CRM transient.

Fig. 7. Location of the perturbation areas for the Langenbuch-OPP transient.
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Sf ;gðtÞ¼Sf0;gðtÞ þ dSf ;gðtÞ g ¼ 1;2: (31)

The perturbation 1, represented as P1 in Fig. 7, is given by
dSf ;gðtÞ¼5 ,10�4sinð2pftÞ g¼1;2; (32)

and the perturbation 2, denoted by P2, is given by

dSf ;gðtÞ¼5 ,10�4sinð2pftþpÞ g¼1;2; (33)

where f ¼ 1:0 Hz. This transient duration is 2 s.
Before starting with the modal method, we have computed the

power evolution using the Backward Difference method (BKM),
which is taken as the reference solution. The time-step for the BKM
has been set to 0.001 s. Fig. 8 represents the radial average power
distribution at four relevant times (t ¼ 0:00 s, t ¼ 0:25 s, t ¼ 0:50 s
and t ¼ 0:75 s). At the beginning, the maximum power goes from
the center to the perturbation 1 zone then, it comes back to the
center and then, it goes to the perturbation 2 zone. This behavior is
repeated along the transient.

To study the performance of the modal method, the mean po-
wer errors (MPE) between the backward differential method (BKM)
with Dt ¼ 0:001 s and some settings of the updated modal method
with fixed time-steps are computed. The number of modes (q) used
in the expansion has been q ¼ 3 and q ¼ 5. First, Table 7 shows that
small time-steps for the modes updating gives more accurate ap-
proximations. In contrast, the CPU times are also higher. For q ¼ 3,
good approximations are obtained with updating time-steps
smaller or equal to 0.2 s. Table 7 also shows that increasing the
number of modes is not an efficient strategy because improves very
little the obtained errors with a high CPU time cost. In this case, the
increasing of two extra modes in the expansion does not improve
considerably the spatial representation in the evolution of the so-
lution. This characteristic depends on the transient analyzed and



Fig. 8. Evolution power of the out-of-phase perturbation in the Langenbuch-OPP transient.

Table 7
Data of the updated modal method with fixed time-steps for the Langenbuch-OPP
transient.

N. eigs. (q) Dt MPE (%) CPU Time

3 0.40 s 1.793 4 min
3 0.20 s 0.988 7 min
3 0.10 s 0.558 12 min
3 0.05 s 0.187 30 min
5 0.40 s 0.953 7 min
5 0.20 s 0.375 15 min
5 0.10 s 0.167 24 min
5 0.05 s 0.077 42 min

Table 8
Mean Power Errors (MPE) and CPU time obtainedwith the adaptive time-stepmodal
method for the Langenbuch-OPP transient.

Type of Error Banded Control Dynamic Control

k MPE (%) CPU Time MPE (%) CPU Time

εmd
1.0 3.901 3 min 3.748 5 min
2.0 2.902 22 min 1.681 14 min
5.0 1.641 32 min 1.519 20 min
εmr

50 6.383 3 min 2.117 3 min
100 1.011 7 min 1.162 8 min
200 1.531 7 min 0.713 18 min
εxs

0.5 1.338 4 min 0.809 7 min
1.0 0.647 11 min 0.656 12 min
2.0 0.617 13 min 0.607 13 min
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usually, the next eigenfunctions do not provide more relevant
information.

Fig. 9 represents the evolution of the global power computed
with the BKM and the updated modal method with several fixed
time-steps (Dt) and 3 modes. It is observed that large errors be-
tween the BKM and the updatedmodal method are producedwhen
the perturbations reach their maximums. However, these differ-
ences are reduced for small time-steps. Fig. 9(b) displays the local
error (LE) along the time for several time-steps. It shows non-
uniform errors along the time and high errors near to the ex-
tremes of the power (maximums and minimums) and before to the
modal updating. Note that, in this type of transient, the errors are
larger than the ones obtained for the Langenbuch-CRM transient
and the time-steps used are quite smaller. Thus, the time-step
needed to update the modes is very dependent on the behaviour
of the transient.

Now, the updated modal method with an adaptive time step is
used for the Langenbuch-OPP transient. The number of modes for
themodal method has been set to q ¼ 3. The initial time-step for all
Fig. 9. Relative power and local error (%) obtained with the updated
strategies has been set to Dt0 ¼ 0:05s. The cross-section used for
the cross-section perturbation error has been the fission cross-
section.

Table 8 shows the Mean Power Errors and CPU times obtained
by setting the different error estimations, control errors and accu-
racy coefficients. As in the previous transient, the modal difference
error (εmd) is not very efficient because it needs to compute the
modes to estimate the error and this is very expensive. Regarding
the other error estimations, the cross-section perturbation error
(εmr) gives lower errors, but using more time than the modal re-
sidual error. If the type of error control is compared, in general, the
dynamic control gives better approximations than the banded
control, but also using more CPU time.

Fig.10 shows the time-steps obtained with kmd ¼ 2:0, kmr ¼ 200
and kxs ¼ 0:5 with the dynamic and the banded control. A similar
modal method with 3 modes for the Langenbuch-OPP transient.



Fig. 10. Evolution of the time-step (Dt) with the adaptive time-step control for the Langenbuch-OPP transient.
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behaviour in the computation of the time-steps for the modal re-
sidual error and the cross-section perturbation error can be observed,
but for the modal residual error, the time-steps computed are
slightly smaller. In contrast with the previous transient, here the
cross-section perturbation error is adapted according to the local
error.

Fig. 11 displays the local errors for the different accuracy co-
efficients in themodal residual errorwith dynamic control error. It is
showed that higher values in the coefficient decrease the local er-
rors. However, these errors are not as distributed along the tran-
sient as the local errors obtained with higher values in the
coefficients.

If we compare the local error for the updated modal method
with fixed Dt ¼ 0:1 s and for the adaptive modal method with the
cross-section perturbation residual error, dynamic control time-step
and kxs ¼ 0:5, both strategies obtain similar mean power errors
(MPE z1%) but with the adaptive control time-step the results are
obtained in less time.

Finally, the modal strategies are compared with the BKM. The
CPU time to approximate the solutionwith the BKM and Dt ¼ 0:001
s is 195 min. All configurations for the modal expansions are more
competitive than the BKM in terms of CPU time.
Fig. 11. Comparison of the evolution of the local error (%) with the fixed updated
modal method and the adaptive updated modal method for the Langenbuch-OPP
transient.
8.3. The AER-DYN-001 problem

The AER-DYN-001 problem was introduced in Refs. [34] and
corresponds to an asymmetric control rod ejection accident
without any feedback in a VVER440 reactor. The core has 250 cm
height, with two reflector layers of 25 cm each added, one to the top
and the other one to the bottom of the core. The assembly pitch is
14.7 cm. The core is a VVER-440 core type, with 25 fuel elements
across the diameter. The disposition of materials together with the
initial position of the control rods are shown in Fig. 12. Albedo
boundary condition are applied on the outer edge of the reflector
nodes. The extrapolation length is 2.13*Dg in both groups, whereDg

is the diffusion coefficient given for the material 5. Table 9 collects
the cross-section data. The values of n are n1 ¼ 2:55, n2 ¼ 2:43and
they are constant for all materials. The neutron precursors data are
the same as the ones for the Langenbuch reactor (Table 2). The
neutron velocities are v1 ¼ 1:27,107cm/s and v2 ¼ 2:5,105 cm/s.
For the spatial discretization, the deal.II library cannot handle
hexagonal cells, thus each hexagon is subdivided into 3 quadrilat-
erals to obtain a total number of 15156 cells.

The transient is defined as follows. The control rod denoted by
number 26 is ejected in the first 0.08 s with velocity 25 m/s. Then,
scram is initiated inserting the safety rods 23 and 25 at t ¼ 1:0s
with velocity 0.25 m/s, so that the bottom position is reached at t ¼
11:0 s. The drop of control rod group 21 is also started at 1.0 s with
the same velocity.

Before analyzing the modal method, we study the strategy to
avoid the rod cusping, which is very large in this transient. To
integrate the time-dependent equation the backward differential
method (BKM) with Dt ¼ 0:01 is used. Fig. 13 displays the power
obtained with different strategies of computing the cross-sections
for cells where the control rod is partially inserted: the volume
weighting method (VWH) with 12 planes in the z-axis, the flux
weighting method (FWM) with 12 planes and the flux weighting
method with 24 planes.

First, it is observed that the ejection of the control assembly 26
increases the reactor power till 1.0 s. After this time the rest of the
control rods begin to fall into the core causing a reduction in the
power beyond 1.5 s. The rod cusping effect begins to show from
1.0 s. The graphic exhibits that the flux weighting method reduces
the rod cusping problem by using only 24 planes. In the following,
this configuration is used to obtain the approximations with the
BKM and the modal method.

The neutronic power evolution for this transient has been
computed using several codes and it has not only one reference
solution. Fig. 14 compares the solution obtained with the BKM



Fig. 12. VVER-440 geometry and materials distribution.

Table 9
Cross section definition for the VVER 440.

Mat. Group Dg (cm) Sag (cm�1) ngSfg (cm
�1) S12(cm

�1)

1 e Fuel 1 1.3466eþ0 8.3620e-3 4.4339e-3 1.6893e-2
2 3.7169e-1 6.4277e-2 7.3503e-2

2 e Fuel 1 1.3377eþ0 8.7970e-3 5.5150e-3 1.5912e-2
2 3.6918e-1 7.9361e-2 1.0545e-1

3 e Fuel 1 1.3322eþ0 9.4700e-3 7.0120e-3 1.4888e-2
2 3.6502e-1 1.0010e-1 1.4908e-1

4 e Absorber 1 1.1953eþ0 1.3372e-2 0.0000eþ0 2.2264e-2
2 1.9313e-1 1.3498e-1 0.0000eþ0

5 e Radial Refl. 1 1.4485eþ0 9.2200e-2 0.0000eþ0 3.2262e-2
2 2.5176e-1 3.2839e-2 0.0000eþ0

6 e Axial Refl. 1 1.3413eþ0 2.1530e-3 0.0000eþ0 2.7148e-2
2 2.4871e-1 6.4655e-2 0.0000eþ0

Fig. 13. Power evolution computed with different methodologies for the rod cusping
effect in the AER-DYN-001 transient.

Fig. 14. Comparison of the power along the AER-DYN-001 transient with different
codes.
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(24p-FWM), the solutions available in the benchmark problem
computed with the adiabatic method, the DYN3D code and KIKO3D
code [27], the solution computedwith the TRIKIN code [38] and the
solution obtained with the PARCS code using 60 axial planes and
the flux weighting method for homogenizing the cross sections.
The BKM results are very similar to the PARCS ones until 1.0 s and
then, the power obtained with BKM is more similar to the TRIKIN
power distribution.

First, the updated modal method with fixed time-steps is
analyzed. Table 10 displays the mean power error (MPE), taking the
solution computed with BKM as a reference, and the CPU time
obtained with the updated modal method using 2 modes. This
choice is because the solution with one eigenvalue gives non-
accurate approximations.

Table 10 shows that very small time-steps are needed in the
updated modal method to approximate accurately the drop out of
the bar at the beginning of the transient. This fact can be also
appreciated in Fig. 15. However, beyond t ¼ 1s, using small time-
steps implies high local errors (Fig. 15(b)). Thus, different time-



Table 10
Comparison of the Backward Differential Method (BKM), the updatedmodal method
and the adaptive updated modal method for the AER-DYN-001 transient.

Method Dt MPE CPU Time

(%)

BKM 0.01 s e 89 h
Updated modal method 0.01 s 5.90e-02 140 h
Updated modal method 0.05 s 4.60e-02 38 h
Updated modal method 0.10 s 4.86e-02 23 h
Adaptive updated modal method e 3.59e-02 17 h
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steps are needed to be used along the transient. Thus, the solution
with the adaptive updated modal method with 2 eigenvalues,
modal residual error, dynamic control time-step and kmr ¼ 100is
computed. The obtainedmean power error (MPE) and the CPU time
are included in Table 10. With this method, a smaller mean power
error than with the rest of the solutions computed with the fixed
updated modal method is obtained. Furthermore, the CPU time is
reduced considerably.

Fig. 16 shows the relative power, the local error and the time-
step (Dt) obtained with the updated modal method with adaptive
time step. The local error has been compared with the local error
obtainedwith the updatedmodal method using a fix time stepDt ¼
0:05 s. It observed that the adaptive modal method reduces the
local error in the first times, but also reduces the local error beyond
t ¼ 1 s.
Fig. 15. Relative power and local error (%) obtained with the update

Fig. 16. Relative power, local error (%) and time-step (Dt) obtained with the updated modal
transient.
9. Conclusions

In this work, an updated modal method using an adaptive time
step for the modes updating is proposed to solve the time-
dependent neutron diffusion equation. For the spatial discretiza-
tion of the differential equations, we have used a high order finite
element method. The performance of this methodology has been
analyzed and compared by solving several three-dimensional
transients with both rectangular and hexagonal geometries. To
validate the implemented code, the obtained results have been
compared with the ones obtained with the backward differential
method (BKM) applied directly to the semi-discrete neutron
diffusion equation.

Several time-step controls have been proposed depending on
different errors associatedwith themodal expansion of the neutron
flux and the cross sections variation along the transient. The most
efficient results are obtained with an error estimation based on the
difference between the eigenfunctions (modal residual error).
However, the cross-section perturbation error is also a good strategy
to control the time step update. On the other hand, the modal dif-
ference error is computationally very expensive. With respect to the
type of control, the dynamic control error is more adapted to the
local errors, but there are not relevant differences between the
dynamic and the banded time step control. Moreover, different
coefficients are defined to adjust the accuracy obtain in the
different approaches. These values are not highly dependent on the
transient analyzed. For the modal residual error, the authors
d modal method with 2 modes for the AER-DYN-001 transient.

method and the adaptive updated modal method with 2 modes for the AER-DYN-001
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recommend to use kmrz100. For the modal difference error a value
of kmdz2:0 gives good results. Lastly, for the cross-section pertur-
bation error values of kxsz2 are a good option. However, we would
like to remark that these values are obtained based on the nu-
merical results studied in this work. Therefore, for other types of
transients, using alternative values for k may be a more efficient
option. The numerical results show that the updatedmodalmethod
with an adaptive time step control decreases the errors in the ob-
tained solutions with the same or smaller CPU times than the
updatedmodal methodwith fixed time-step, and also obtains more
distributed local errors over the simulation.

When the different methodologies to integrate the neutron
diffusion equation used in this work are compared, the modal
method is faster than the BKM in the transients analyzed. For this
reason, future works are devoted to implement modal methods for
other type of angular approximations whose integrationwith other
type of strategies is computationally very expensive.
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