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Abstract: The semilocal convergence using recurrence relations of a family of iterations for solving nonlinear
equations in Banach spaces is established. It is done under the assumption that the second order Fréchet
derivative satisfies the Hölder continuity condition. This condition is more general than the usual Lipschitz
continuity condition used for this purpose. Examples can be given for which the Lipschitz continuity condition
fails but the Hölder continuity condition works on the second order Fréchet derivative. Recurrence relations
based on three parameters are derived. A theorem for existence and uniqueness along with the error bounds
for the solution is provided. The R-order of convergence is shown to be equal to 3 + q when 𝜃 = ±1; otherwise
it is 2 + q, where q ∈ (0, 1]. Numerical examples involving nonlinear integral equations and boundary value
problems are solved and improved convergence balls are found for them. Finally, the dynamical study of the
family of iterations is also carried out.

Keywords: dynamical systems; Hammerstein integral equation; Hölder condition; Lipschitz condition;
semilocal convergence.
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1 Introduction
Let X and Y be Banach spaces and consider solving

F(x) = 0 (1.1)

where F:Ω ⊆ X → Y be a nonlinear operator in an open convex domain Ω0 ⊆ Ω of X with values in Y . This
problem is important in numerical analysis from the practical point of view. There exists a large number of
applications leading to (1.1) depending on one or many parameters. The dynamical systems, elasticity and
many other areas involve boundary value problems, partial differential equations, difference, differential and
integral equations whose solutions are obtained by solving (1.1). Many optimization problems also require
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solving these equations. It is studied extensively in literature and several researchers [1–4] have significantly
contributed to developing many diverse methods, both analytic and iterative, for them. The frequently used
convergence analyses are the local [5–9] and the semilocal [10–13] using information around the solution
and around the initial point, respectively. Other important problems also to be considered are the R-order
of convergence and the domains of the convergence balls. In general, an attempt is made by considering
additional hypothesis so that the convergence radii is enlarged as far as possible. The most widely used
quadratically convergent Newton’s method to solve (1.1) is defined for k = 0, 1, 2,…, by

xk+1 = xk − 𝛤kF(xk) (1.2)

where 𝛤k = F′(xk)−1 and x0 are the initial points. The sufficient conditions for the semilocal convergence,
the error estimates and existence-uniqueness regions for solutions for it are given by Kantorovich theorem
[14]. Two types of proofs are considered. The first one uses majorizing functions and generates a sequence of
iterates by the iteration in Banach space which is majorized by a sequence of iterates generated by the same
iteration applied to a scaler function. The other is based on recurrence relations which has advantages, as
the initial problem in Banach space can be reduced to a simpler problem with real sequences and vectors.
Multi-points higher order iterative methods and their convergence analysis along with the error bounds are
also used to solve (1.1). These methods require higher computational cost. Another drawback of them is the
involvement of higher order derivatives which are either unbounded or difficult to compute at times. Also,
their convergence domains are small. However, these methods are also required for some applications needing
faster convergence, for example, those involving stiff systems of equations. Also, the second order Fréchet
derivative used for the solutions of integral equations is diagonal by blocks and inexpensive. For quadratic
equations, it is constant.

The semilocal convergence analysis of third order deformed Halley’s method for solving (1.1) in Banach
spaces is discussed in [15] under Hölder continuity conditions on the second order Fréchet derivative of
the involved operator. The semilocal convergence of a Newton-like method of third order for solving (1.1) in
Banach spaces is studied in [16, 17] under the Lipschitz and the Hölder continuity conditions on the second
order Fréchet derivative of the involved operator. A family of the deformed Chebyshev iterative method for
solving (1.1) and its semilocal convergence analysis under the Hölder continuity condition on the second order
Fréchet derivative of the involved operator in Banach spaces is considered in [18]. Recently, the semilocal
convergence analysis of a family of iterative methods for solving (1.1) in Banach space setting is described in
[10] under the Lipschitz continuity condition on the second order Fréchet derivative of the involved operator.
It is given for k = 0, 1, 2,…, by

yk = xk − 𝜃 𝛤kF(xk),

zk = yk − 𝛤kF(yk), (1.3)

xk+1 = zk − 𝛤kF(zk),

where 𝜃 ∈ ℝ − {0} and x0 are the starting points. For 𝜃 = ±1, it leads to fourth order iterative methods. For
other values of 𝜃 ∈ R, it gives third order iterative methods. The novelty of this work is that it is applicable to
many problems even if the Lipschitz condition on F′′ fails. The following example illustrates this.

Example 1. Consider the integral equation

F(x)(s) = x(s) − f (s) − 𝜆∫
1

0

s
s + t

x(t)2+q dt, (1.4)

with x, f ∈ [0, 1], s ∈ [0, 1], q ∈ (0, 1) and 𝜆 ∈ R.

Under sup-norm, we get

‖F′′(x) − F′′(y)‖ ≤ |𝜆|(1 + q)(2 + q) log 2‖x − y‖q
, x, y ∈ Ω.
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Clearly, Lipschitz condition on F′′ fails for q ∈ (0, 1). However, the Hölder condition works for it.
The aim of this paper is to establish the semilocal convergence using recurrence relations of a family of

iterations for solving nonlinear equations in Banach spaces. It is done under the assumption that the second
order Fréchet derivative satisfies the Hölder continuity condition. This condition is more general than the
usual Lipschitz continuity condition used for this purpose. Examples can be given for which the Lipschitz
continuity condition fails but the Hölder continuity condition works on the second order Fréchet derivative.
Recurrence relations based on three parameters are derived. A theorem for existence and uniqueness along
with the error bounds for the solution is provided. The R-order of convergence is shown to be equal to
3 + q when 𝜃 = ±1; otherwise it is 2 + q, where q ∈ (0, 1]. Numerical examples involving nonlinear integral
equations and boundary value problems are solved and improved convergence balls are found for them.
Finally, the dynamical study of the family of iterations is also carried out.

The paper is organized as follows. Section 1 is the introduction. In Section 2, the semilocal convergence
analysis of a family of iterative methods in Banach spaces is established under Hölder condition on second
order Fréchet derivative. The theorems for existence and uniqueness are established for the solution along
with error bounds. In Section 3, examples of different types are solved to demonstrate the applicability of our
approach. The dynamical study is carried out in Section 4. Finally, conclusions are included in Section 5.

2 Semilocal convergence analysis
In this section, the semilocal convergence analysis of (1.3) is discussed. First, we shall show some preliminary
results involving real sequences and their properties. Using these sequences, we shall establish the recurrence
relations used in the convergence analysis. Next, an existence-uniqueness theorem and error bounds for the
solution are provided.

2.1 Preliminary results
Let 𝛤0 = F′(x0)−1 ∈ BL(Y,X) exists at x0 ∈ Ω, where BL(Y,X) denotes the set of bounded linear operators from
Y to X and the following conditions hold.
(1) ‖Γ0‖ ≤ 𝛽0
(2) ‖Γ0F(x0)‖ ≤ 𝜂0
(3) ‖F′′(x)‖ ≤ L1
(4) ‖F′′(x) − F′′(y)‖ ≤ L2‖x − y‖q, x, y ∈ Ω, q ∈ (0, 1].

Let c0 = L1𝛽0𝜂0, d0 = L2𝛽0𝜂
1+q
0 and define the real sequences {ck}, {dk} and {𝜂k} for k = 0, 1, 2…, by

ck+1 = ck g𝜃(ck)2h𝜃(ck, dk), (2.1)

dk+1 = dk g𝜃(ck)2+qh𝜃(ck , dk)1+q
, (2.2)

𝜂k+1 = 𝜂k g𝜃(ck)h𝜃(ck, dk), (2.3)

where,
g𝜃(t) = 1

1 − t𝜑𝜃(t)
, (2.4)

𝜑𝜃(t) =
(

1 + t
2
𝜃2
)

+ 𝜙𝜃(t), 𝜙𝜃(t) = t
2
𝜁 2
𝜃

(t) + |𝜃|t𝜁𝜃 (t), 𝜁𝜃(t) =
(

|1 − 𝜃| + 1
2
𝜃2t

)

(2.5)

and
h𝜃(t, u) =

((

t + t2

2
𝜃

2
)

𝜙𝜃(t) + t
2
𝜙𝜃(t)2 + u

(1 + q)(2 + q)
𝜙𝜃(t)2+q

)

. (2.6)
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Let 𝜈𝜃(t) = 𝜑𝜃(t)t − 1. Since 𝜈𝜃(0) = −1 and 𝜑𝜃(t) are increasing, 𝜈𝜃(t) has a real root 𝛼. If t ∈ (0, 𝛼), we get
𝜑𝜃(t)t < 1.

Lemma 1. g𝜃(t), 𝜑𝜃(t) and h𝜃(t, u) are given by (2.4)–(2.6) respectively. If 0 < c0 < 𝛼 and g𝜃(c0)2h𝜃(c0, d0) < 1,
then

(i) g𝜃(t) and 𝜑𝜃(t) are the increasing functions and g𝜃(t) > 1, 𝜑𝜃(t) > 1 for t ∈ (0, 𝛼).
(ii) For u > 0, h𝜃(t, u) is an increasing function of t, for t ∈ (0, 𝛼).

(iii) {ck}, {dk} and {𝜂k} are decreasing sequences and ck𝜑𝜃(ck) < 1 as well as g𝜃(ck)2h𝜃(ck, dk) < 1 for k ≥ 0.

Proof. The proof of (i) and (ii) is obvious. The proof of (iii) can be given as follows. For k = 0, (2.1)
gives c1 = c0 g𝜃(c0)2h𝜃(c0, d0) < c0. Similarly, using (2.2) and (2.3), we get d1 = d0 g𝜃(c0)2+qh𝜃(c0, d0)1+q <

d0(g𝜃(c0)2h𝜃(c0, d0))1+q < d0 and 𝜂1 = g𝜃(c0)h𝜃(c0, d0)𝜂0 < 𝜂0. As, g𝜃(c0)2h𝜃(c0, d0) < 1 and g𝜃(c0) > 1, we get
g𝜃(c0)h𝜃(c0, d0) < 1. From 𝜈𝜃(t), we get c0𝜑𝜃(c0) < 1. Thus, (iii) holds for k = 0. Let it hold for some k = n. Since
g𝜃(t) and 𝜑𝜃(t) are the increasing functions and following in a similar manner, it is easy to show that it also
holds for k = m + 1. Thus, by mathematical induction, (iii) holds ∀k ≥ 0.

Lemma 2. 𝜙𝜃(t) and h𝜃(t, u) are given by (2.4) and (2.6), respectively. If 𝛾 ∈ (0, 1) then 𝜙𝜃(𝛾t) < 𝛾𝜃𝜙(t) and
h𝜃(𝛾t, 𝛾1+qu) < 𝛾1+qh𝜃(t, u) ∀ 𝜃 ∈ ℝ. For 𝜃 = 1, we have 𝜙1(𝛾t) < 𝛾2𝜙1(t) and h1(𝛾t, 𝛾1+qu) < 𝛾2+qh1(t, u).

Proof. The proof is omitted here as it is trivial.

Lemma 3. Let 𝛿 = g𝜃(c0)2h𝜃(c0, d0), 0 < c0 < 𝛼 and 𝛥 = 1
g𝜃 (c0 ) . From Lemma 2, we have

(i) ck ≤ 𝛿(2+q)k−1 ck−1 ≤ 𝛿 (2+q)k−1
1+q c0 and dk ≤

(

𝛿(2+q)k−1
)1+q

dk−1 ≤ 𝛿(2+q)k−1d0.
(ii) g𝜃(ck)h𝜃(ck, dk) ≤ 𝛿(2+q)k

𝛥 ∀ k ∈ N.

(iii) 𝜂k ≤ 𝛿 (2+q)k−1
1+q 𝛥k𝜂0 and

∑k+m−1
n=k 𝜂n ≤ 𝛥k𝛿

(2+q)k−1
1+q 1−(𝛥𝛿(2+q)k )m

1−𝛥𝛿(2+q)k 𝜂0.

For 𝜃 = 1, the following results hold.

(i′′) ck ≤ 𝛿(3+q)k−1 ck−1 ≤ 𝛿 (3+q)k−1
2+q c0 and dk ≤

(

𝛿(3+q)k−1
)1+q

dk−1 ≤
(

𝛿
(3+q)k−1

2+q

)1+q

d0.
(ii′′) g(ck)h(ck, dk) ≤ 𝛿(3+q)k

𝛥 ∀ k ∈ N.
(iii′′) 𝜂k ≤ 𝛿 (3+q)k−1

2+q 𝛥k𝜂0 and
∑k+m−1

n=k 𝜂n ≤ 𝛥k𝛿
(3+q)k−1

2+q 1−(𝛥𝛿(3+q)k )m

1−𝛥𝛿(3+q)k 𝜂0.

Proof. Taking k = 0 in (2.1) and (2.2), we get c1 = c0 g𝜃(c0)2h𝜃(c0, d0) ≤ 𝛿c0 and d1 = d0 g𝜃(c0)2+qh𝜃(c0, d0)1+q ≤
d0

(
g𝜃(c0)2h𝜃(c0, d0)

)1+q = 𝛿1+qd0. Thus, (i) holds for k = 0. Assume that (i) holds for n < k. If 𝜃 ≠ 1, then we
have

ck = ck−1g𝜃(ck−1)2h𝜃(ck−1, dk−1),

≤ 𝛿(2+q)k−2 ck−2 g𝜃(𝛿(2+q)k−2 ck−2)2h𝜃(𝛿(2+q)k−2 ck−2, (𝛿(2+q)k−2 )1+qdk−2),

≤ 𝛿(2+q)k−2 ck−2 g𝜃(ck−2)2
(

𝛿
(2+q)k−2

)1+q
h𝜃(ck−2, dk−2),

≤ (

𝛿
(2+q)k−2

)(2+q)
ck−2 g𝜃(ck−2)2h𝜃(ck−2, dk−2),

≤ 𝛿(2+q)k−1 ck−1. (2.7)

Proceeding in this way, we get

ck ≤ 𝛿(2+q)k−1 ck−1 ≤ 𝛿(2+q)k−1
𝛿(2+q)k−2 ck−2

≤ · · · ≤ 𝛿(2+q)k−1
𝛿

(2+q)k−2 … 𝛿
2+q0 c0 = 𝛿

(2+q)k−1
1+q c0. (2.8)
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Now,
dk = dk−1g𝜃(ck−1)(2+q)h𝜃(ck−1, dk−1)1+q,

≤ (

𝛿
(2+q)k−2

)1+q
dk−2 g𝜃(𝛿(2+q)k−2 ck−2)(2+q)h𝜃

(

𝛿
(2+q)k−2 ck−2,

(

𝛿
(2+q)k−2

)1+q
dk−2

)1+q

,

≤ (

𝛿(2+q)k−2
)1+q

dk−2 g𝜃(ck−2)(2+q)
(

(𝛿(2+q)k−2 )1+q
)1+q

h𝜃 (ck−2, dk−2)1+q
,

≤ (

(𝛿(2+q)k−2 )2+q
)1+q

dk−2 g𝜃 (ck−2)(2+q) h𝜃 (ck−2, dk−2)1+q
,

≤ (

𝛿(2+q)k−1
)1+q

dk−1.

Proceeding in this way, we get

dk ≤
(

𝛿
(2+q)k−1

)1+q
dk−1 ≤

(

𝛿
(2+q)k−1

)1+q (
𝛿

(2+q)k−2
)1+q

dk−2

≤…(

𝛿
(2+q)k−1

)1+q (
𝛿

(2+q)k−2
)1+q

…
(

𝛿
(2+q)0

)1+q
d0 =

(

𝛿
(2+q)k−1

1+q

)1+q

d0,

= 𝛿(2+q)k−1d0 (2.9)

Hence, (i) holds ∀k ≥ 0 by using mathematical induction. Now, consider

g𝜃(ck)h𝜃(ck, dk) ≤ g𝜃(𝛿
(2+q)k−1

1+q c0)h𝜃
(

𝛿
(2+q)k−1

1+q c0, (𝛿
(2+q)k−1

1−q )1+qd0

)

,

≤ 𝛿(2+q)k−1g𝜃(c0)h𝜃 (c0, d0) = 𝛿(2+q)k
𝛥. (2.10)

Thus (ii) is proved. From (2.3), we get

𝜂k = g𝜃(ck−1)h𝜃(ck−1, dk−1)𝜂k−1 ≤
k−1∏

n=0
g𝜃(cn)h𝜃(cn, dn)𝜂0,

≤
k−1∏

n=0

𝛿(2+q)n

g𝜃(c0)
𝜂0 ≤ 𝛿 (2+q)k−1

1+q 𝛥k𝜂0. (2.11)

Therefore,

k+m−1∑

n=k
𝜂n ≤

k+m−1∑

n=k
𝛿

(2+q)n−1
1+q 𝛥

n
𝜂0 ≤ 𝛿

(2+q)k−1
1+q 𝛥

k
m−1∑

n=0
𝛥

n
(

𝛿
(2+q)k

)n
𝜂0,

≤ 𝛿 (2+q)k−1
1+q 𝛥k

1 −
(

𝛥𝛿(2+q)k
)m

1 − 𝛥𝛿(2+q)k 𝜂0. (2.12)

Thus, (iii) is proved. On similar lines, we can easily prove (i′′), (ii′′) and (iii′′), respectively.

Since 𝛿 < 1 and 𝛥 < 1, this gives
∑∞

n=0𝜂n ≤ 1
1−𝛥𝛿 𝜂0. Let R = 𝜑𝜃 (c0)

1−𝛥𝛿 . Next, we shall establish the semilocal
convergence of (1.3) in B(x0,R𝜂0).

2.2 Recurrence relations
Here, the recurrence relations for (1.3) will be established under the conditions discussed in the previous
section. From (1.3) for k = 0, we get

z0 − x0 = −𝛤0(F(y0) + 𝜃F(x0)). (2.13)
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From Taylor expansion of F(y0) about x0, we get

F(y0) = F(x0) + F′(x0)(y0 − x0) + ∫
1

0
(1 − t)F′′(x0 + t(y0 − x0))(y0 − x0)2 dt (2.14)

= (1 − 𝜃)F(x0) + ∫
1

0
(1 − t)F′′(x0 + t(y0 − x0))(y0 − x0)2 dt (2.15)

Using (2.14) in (2.13) and taking norm, we get

‖z0 − x0‖ = ‖𝛤0F(x0) + 𝛤0∫
1

0
(1 − t)F′′(x0 + t(y0 − x0))(y0 − x0)2 dt‖

= ‖𝛤0F(x0)‖ + 1
2
‖𝛤0‖L1‖y0 − x0‖

2

=
(

1 + c0
2
𝜃

2
)

𝜂0. (2.16)

Now,

‖z0 − y0‖ = ‖𝛤0F(y0)‖,

≤ ‖(1 − 𝜃)𝛤0F(x0) + 𝛤0∫
1

0
(1 − t)F′′(x0 + t(y0 − x0))(y0 − x0)2 dt‖,

≤ (

|1 − 𝜃| + 1
2
𝜃

2c0

)

𝜂0 = 𝜁𝜃(c0)𝜂0. (2.17)

For k = 0, (1.3) gives
‖x1 − z0‖ ≤ ‖𝛤0‖‖F(z0)‖ (2.18)

From Taylor expansion of F(z0) about y0, we get

F(z0) = F(y0) + F′(y0)(z0 − y0) + ∫
1

0
(1 − t)F′′(y0 + t(z0 − y0))(z0 − y0)2 dt

= (F′(y0) − F′(x0))(z0 − y0) + ∫
1

0
(1 − t)F′′(y0 + t(z0 − y0))(z0 − y0)2 dt (2.19)

Using (2.17) and (2.19), we get

‖x1 − z0‖ ≤
(

|𝜃|c0𝜁𝜃(c0) + c0
2
𝜁

2
𝜃

(c0)
)

𝜂0 = 𝜙𝜃(c0)𝜂0 (2.20)

where 𝜙𝜃(t) =
(

|𝜃|t𝜁𝜃(t) + c0
2 𝜁

2
𝜃

(t)
)

𝜂0 = 𝜙𝜃(c0). Using (2.20) and (2.16), we get

‖x1 − x0‖ ≤ ‖x1 − z0‖ + ‖z0 − x0‖,

≤ (

𝜙𝜃(c0) +
(

1 + c0
2
𝜃

2
))

𝜂0 = 𝜑𝜃(c0)𝜂0. (2.21)

Now,
‖I − 𝛤0F′(x1)‖ ≤ ‖𝛤0‖‖F′(x1) − F′(x0)‖ ≤ 𝛽0L1‖x1 − x0‖

≤ L1𝛽0𝜂0𝜑𝜃(c0) = c0𝜑𝜃(c0) < 1

Thus, by Banach lemma, we get
‖𝛤1‖ ≤ ‖𝛤0‖

1 − c0𝜑𝜃(c0)
= ‖𝛤0‖g𝜃(c0). (2.22)

From Taylor expansion of F(x1) about z0, we get

F(x1) = F(z0) + F′(z0)(x1 − z0) + ∫
1

0
(1 − t)F′′(z0 + t(x1 − z0))(x1 − z0)2 dt,
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= (F′(z0) − F′(x0))(x1 − z0) + 1
2

F′′(z0)(x1 − z0)2

+ ∫
1

0
(1 − t)(F′′(z0 + t(x1 − z0)) − F′′(z0))(x1 − z0)2 dt (2.23)

Taking norm and using (2.16) and (2.20), we get

‖F(x1)‖ ≤ L1‖z0 − x0‖‖x1 − z0‖ +
L1
2
‖x1 − z0‖

2 + L2
(1 + q)(2 + q)

‖x1 − z0‖
2+q
. (2.24)

Therefore,

‖𝛤1F(x1)‖ ≤ ‖𝛤1‖‖F(x1)‖ ≤ ‖𝛤0‖g(c0)‖F(x1)‖,

≤ g𝜃(c0)
((

c0 +
c2

0
2
𝜃

2
)

𝜙𝜃(c0) + c0
2
𝜙𝜃(c0)2 + d0

(1 + q)(2 + q)
𝜙𝜃(c0)2+q

)

𝜂0,

= g𝜃(c0)h𝜃(c0, d0)𝜂0 = 𝜂1 (2.25)

Using (2.25), we get

L1‖𝛤1‖‖𝛤1F(x1)‖ ≤ L1 g𝜃(c0)‖𝛤0‖g𝜃(c0)h𝜃(c0, d0)𝜂0,

≤ L1𝛽0𝜂0 g𝜃(c0)2h𝜃(c0, d0) = c1 (2.26)

and

L2‖𝛤1‖‖𝛤1F(x1)‖1+q ≤ L2 g𝜃(c0)‖𝛤0‖g𝜃(c0)1+qh𝜃(c0, d0)1+q
𝜂

1+q
0 ,

≤ L2𝛽0𝜂
1+q
0 g𝜃(c0)2+qh𝜃(c0, d0)1+q = d2. (2.27)

Now, using mathematical induction, the following recurrence relations are proved for k ≥ 1.
(I) ‖Γk‖ ≤ g𝜃(ck−1)‖Γk−1‖,

(II) ‖ΓkF(xk)‖ ≤ g𝜃(ck−1)h𝜃(ck−1, dk−1)𝜂k−1,

(III) L1‖Γk‖‖ΓkF(xk)‖ ≤ ck,

(IV) L2‖Γk‖‖ΓkF(xk)‖1+q ≤ dk,

(V) ‖xk − xk−1‖ ≤ 𝜑𝜃(ck−1)𝜂k−1, yk, zk , xk+1 ∈ B(x0,R𝜂0)

Assume that x1, y1, z1 ∈ Ω and c0 < 𝛼.
Now,

‖xk+1 − x0‖ ≤
k∑

i=0
‖xi+1 − xi‖ ≤

k∑

i=0
𝜑𝜃(ci)𝜂i

≤ 𝜑𝜃(c0)
k∑

i=0
𝜂i ≤ R𝜂0. (2.28)

If |𝜃| ≤ 1 then using (2.21), we get

‖yk − x0‖ ≤ ‖yk − xk‖ + ‖xk − x0‖,

≤ |𝜃|𝜂k +
k−1∑

i=0
𝜑𝜃(ci)𝜂i ≤ 𝜑𝜃(c0)

k∑

i=0
𝜂i ≤ R𝜂0. (2.29)

For |𝜃| > 1, we get

‖yk − x0‖ ≤ |𝜃|𝜂k +
k−1∑

i=0
𝜑𝜃(ci)𝜂i ≤ |𝜃|𝜂0 + 𝜑𝜃(c0)

k−1∑

i=0
𝜂i,
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≤
(

|𝜃| + 𝜑𝜃(c0)
1 − 𝛥𝛿

)

𝜂0 ≤ (|𝜃| + R)𝜂0. (2.30)

Using (2.5) and (2.16), we get

‖zk − x0‖ ≤ ‖zk − xk‖ + ‖xk − x0‖,

≤ (

1 + c0
2
𝜃

2
)

𝜂k +
k−1∑

i=0
𝜑𝜃(ci)𝜂i,

≤ 𝜑𝜃(c0)
k∑

i=0
𝜂i ≤ R𝜂0. (2.31)

This implies that yk, zk , xk+1 ∈ B(x0,R𝜂0). Hence, for k = 1, the recurrence relations (I)–(IV) follow from (2.22)
and (2.25)–(2.27), respectively. The recurrence relation (V) is already established for k = 1 in (2.21) followed
by (2.28)–(2.31), respectively. Assume that they hold for some k = n. In a similar manner, it can be proved by
mathematical induction that (I)–(V) hold for all k ≥ 1.

2.3 Convergence theorem

Theorem 1. Let x0 ∈ Ω and assumptions (1–4) hold for c0 = L1𝛽0𝜂0, d0 = L2𝛽0𝜂
1+q
0 with c0 ∈ (0, 𝛼). If

B(x0, (|𝜃| + R)𝜂0) ⊆ Ω, where R = 𝜑𝜃 (c0)
1−𝛥𝛿 with 𝛥 = 1

g𝜃 (c0) and 𝛿 = g𝜃(c0)2h𝜃(c0, d0) < 1, then {xk} given by (1.3)
converges to the solution of (1.1). The R-order is three for any 𝜃 ∈ R, and for 𝜃 = 1 it becomes four. Moreover,
yn ∈ B(x0, (|𝜃| + R)𝜂0), zn, xn+1, x∗ ∈ B(x0,R𝜂0) and x∗ are the unique solutions in B

(

x0,
2

L1𝛽0
− R𝜂0

)

∩ Ω. The
error bounds for 𝜃 ≠ 1 is given as follows.

‖xk − x∗‖ ≤ 𝜑𝜃(c0)𝛥k 𝛿
(2+q)k−1

1+q

1 − 𝛥𝛾 (2+q)k 𝜂0.

For 𝜃 = 1, it is given by

‖xk − x∗‖ ≤ 𝜑𝜃(c0)𝛥k 𝛿
(3+q)k−1

2+q

1 − 𝛥𝛾 (3+q)k 𝜂0.

Proof. To prove this theorem, we have to show that {xk} is a Cauchy sequence. Using (V), we get

‖xk+m − xk‖ ≤
k+m−1∑

i=k
‖xi+1 − xi‖

≤
k+m−1∑

i=k
𝜑𝜃(ci)𝜂i ≤ 𝜑𝜃(c0)

k+m−1∑

i=k
𝜂i

≤ 𝜑𝜃(c0)𝛿
(2+q)k−1

1+q 𝛥
k 1 − (𝛥𝛾 (2+q)k )m

1 − 𝛥𝛾 (2+q)k 𝜂0. (2.32)

Hence, {xk} is a Cauchy sequence and hence converges to x∗ as k → s. Taking m →∞ in (2.32), we get

‖xk − x∗‖ ≤ 𝜑𝜃(c0)𝛥k 𝛿
(2+q)k−1

1+q

1 − 𝛥𝛾 (2+q)k 𝜂0. (2.33)

Taking k = 0 in (2.33), we get ‖x∗ − x0‖ ≤ R𝜂0. Hence, x∗ ∈ B(x0,R𝜂0). Now, we prove that x∗ is the solution
of F(x) = 0. Using Lemma 3 (iii), we get ‖ΓkF(xk)‖→ 0, since ‖F′(xk)‖ is bounded. This gives ‖F(xk)‖ ≤
‖F′(xk)‖‖ΓkF(xk)‖→ 0. Thus, by the continuity of F in Ω, we get F(x∗) = 0. To prove the uniqueness part,
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let z∗ ∈ B(x0,
2

L1𝛽
− R𝜂0) ∩ Ω such that F(z∗) = 0, z∗ ≠ x∗. Then 0 = F(z∗) − F(x∗) = ∫ 1

0 F′(x∗ + t(z∗ − x∗))dt(z∗

− x∗) = T(z∗ − x∗), where T = ∫ 1
0 F′(x∗ + t(z∗ − x∗))dt. Now,

‖I − 𝛤0T‖ ≤ ‖𝛤0‖∫
1

0

‖
‖
‖

(
F′(x∗ + t(z∗ − x∗)) − F′(x0)

)‖
‖
‖

dt

≤ L1𝛽∫
1

0
‖(1 − t)(x∗ − x0) + t(z∗ − x0)‖dt

≤ L1𝛽

2 (‖x∗ − x0‖ + ‖z∗ − x0‖)

≤ L1𝛽

2

(

R𝜂0 +
2

L1𝛽
− R𝜂0

)

= 1

Therefore, ‖I − Γ0T‖ < 1. Thus, by Banach Lemma T−1 exists and hence z∗ = x∗.

3 Numerical examples
In this subsection, different examples are worked out to demonstrate the efficiency of our approach.

Example 2. Consider nonlinear integral equation

F(x)(s) = x(s) − f (s) − 𝜆∫
1

0
K(s, t)x(t)2+q dt, (3.34)

where s ∈ [0, 1], x, f ∈ C[0, 1], 𝜆 ∈ ℝ and K(s, t) denotes the Green’s function in [0,1].

Clearly,
‖F′′(x) − F′′(y)‖ ≤ 1

8
|𝜆|(1 + q)(2 + q)‖x − y‖q

.

Thus, Lipschitz condition does not hold for q ∈ (0, 1) but Hölder condition holds. Taking 𝜆 = 1∕7, f (s) = 1,
x0 = x0(s) = 1, 𝜃 = 1 and q = 0.7, all the assumptions considered in the previous sections are satisfied. By
applying Theorem 1, the existence and uniqueness balls are given by B(x0,0.018777) and B(x0, 23.206), respec-
tively. However, for q = 1, the existence and uniqueness balls are given by B(x0,0.018888) and B(x0, 17.648),
respectively. The values of {ck}, {dk} and {𝜂k} are given in Table 1.

The error bounds for (1.3) are given in Table 2.

Table 1: The values of ck, dk and 𝜂k.

k ck dk 𝜼k

0 1.6157 × 10−3 9.9919 × 10−5 1.8762 × 10−2

1 3.4224 × 10−12 1.7919 × 10−19 3.9678 × 10−11

2 6.8598 × 10−47 1.8479 × 10−78 7.9528 × 10−46

3 1.1072 × 10−185 2.0898 × 10−314 1.2836 × 10−184

4 7.5013 × 10−741 3.418 × 10−1258 8.7102 × 10−740

5 1.5931 × 10−2961 2.4476 × 10−5033 1.8469 × 10−2960
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Table 2: Error bounds for (1.3).

k ‖xk − x∗‖

0 0.018777
1 3.971 × 10−11

2 3.1938 × 10−43

3 5.7047 × 10−162

4 2.456 × 10−601

5 5.4693 × 10−2227

Example 3. Consider nonlinear integral equation

F(x)(s) = x(s) − 1 − 1
4∫

1

0

s
s + t

x(t)11∕5 dt. (3.35)

where s ∈ [0, 1], x ∈ C[0, 1].

Clearly,
‖F′′(x) − F′′(y)‖ ≤ 33

50
log 2‖x − y‖1∕5

.

Thus, Lipschitz condition does not hold but Hölder condition holds. Taking x0 = x0(s) = 1, 𝜃 = 1 and q = 1∕5,
all the assumptions considered in the previous sections are satisfied. By applying Theorem 1, the existence
and uniqueness balls are given by B(x0,0.31752) and B(x0, 2.3876), respectively. The values of the sequences
{ck}, {dk} and {𝜂k} are given in Table 3.

The error bounds for (1.3) are given in Table 4.
In order to find the numerical solution of (3.35), we have approximated the integral by Gauss–Legendre

formula

∫
1

0
f (t)dt ≃ 1

2

m∑

j=1
𝛽 j f (t j)

Table 3: The values of ck , dk and 𝜂k.

k ck dk 𝜼k

0 2.0705 × 10−1 1.6052 × 10−1 2.8005 × 10−1

1 1.8373 × 10−3 5.2504 × 10−4 1.9057 × 10−3

2 5.7267 × 10−12 3.2546 × 10−14 5.9289 × 10−12

3 5.3777 × 10−46 4.7834 × 10−55 5.5676 × 10−46

4 4.1818 × 10−182 2.318 × 10−218 4.3295 × 10−182

5 1.5291 × 10−726 1.0577 × 10−871 1.5831 × 10−726

Table 4: Error bounds for (1.3).

k ‖xk − x∗‖

0 0.31752
1 2.1459 × 10−3

2 4.4696 × 10−10

3 3.3388 × 10−31

4 1.4855 × 10−98

5 7.9441 × 10−314
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where 𝛽 j and tj denote the weights and nodes, respectively, and they are given in Table 5 for m = 8. If we
denote the approximation of x(ti), i = 1, 2,… , n, by xi, we obtain the following nonlinear system

xi = 1 + ti
8

8∑

j=1
𝛽 j

x11∕5
j

ti + t j
, i = 1, 2,… 8 (3.36)

The above system can be written as

xi = 1 +
8∑

j=1
ai jx

11∕5
j , i = 1, 2,… 8 (3.37)

where ai j =
1
8

(
𝛽 j ti

ti+t j

)

.
The numerical solution is displayed in Table 6 for x0 = (1, 1,… , 1)T and m = 8. In Figure 1, interpolating

function passing through (ti, xi) is an approximate solution of (3.37).

Example 4. Consider nonlinear integral equation

F(x)(s) = x(s) − 1 + 1
2∫

1

0
s cos(x(t))dt, (3.38)

where s ∈ [0, 1] and x ∈ Ω = B(0, 2) ⊂ X.

Clearly,
‖F′′(x) − F′′(y)‖ ≤ 1

2
|‖x − y‖.

Thus, it satisfies the Lipschitz condition. Taking, x0 = x0(s) = 1,𝜃 = 1 and q = 1, all the assumptions considered
in the previous sections are satisfied. By applying Theorem 1, the existence and uniqueness balls are given
by B(x0,0.66363) and B(x0, 1.6534), respectively. The values of the sequences {ck}, {dk} and {𝜂k} are given in
Table 7.

Table 5: Value of weights and nodes for m = 8.

j 1 2 3 4 5 6 7 8

𝛽 j 0.10122854 0.22381034 0.31370665 0.36268378 0.36268378 0.31370665 0.22381034 0.10122854
tj 0.01985507 0.10166676 0.237233795 0.40828268 0.59171732 0.762766205 0.89833324 0.98014493

Table 6: Solution of (3.37).

i 1 2 3 4 5 6 7 8

Xi 1.02415468657 1.07954327274 1.13201750646 1.17280585507 1.20186439201 1.22141388151 1.23360029059 1.23991266325

Figure 1: Approximate solution of (3.37).
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Table 7: The values of ck, dk and 𝜂k.

k ck dk 𝜼k

0 0.40255 0.18774 0.46637
1 0.078012 3.388 × 10−3 0.04343
2 2.3277 × 10−5 2.7711 × 10−10 1.1905 × 10−5

3 1.468 × 10−19 1.1021 × 10−38 7.5077 × 10−20

4 2.3219 × 10−76 2.7573 × 10−152 1.1875 × 10−76

5 1.4533 × 10303 1.0802 × 10−606 7.4327 × 10−304

The error bounds for (1.3) are given in Table 8.

Example 5. Consider a typical example as [19]

− d
dt

(

S dx
dt

)

= 𝑣(x11∕4), t ∈ (0, 100), (3.39)

for conductivity S and physical variable x. The boundary conditions are

x(0) = 1, x(100) = 0.

Use cell-centered difference to discretize (3.39) by taking a mesh with 100 grid-cells. We take S = 1 and
𝑣 = 1∕7413. Solving (3.39) is equivalent to solve the non-linear system

F(x) = Ax − 𝑣H(x) − q, (3.40)

where x = (x1, x2,… , x100)T, for 0 ≤ xi ≤ 1, H(x) = (x11∕4
1 ,… , x11∕4

100 ), q = (2,0, . .,0)T and

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 −1 0 … 0
−1 2 −1 … 0
...

...
... ⋱

...
0 … −1 2 −1
… … … −1 3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Now, the successive derivatives of F are given by

F′(x) = A − 11∕4 𝑣 diag(x7∕4
i )

F′′(x)y = −77∕8 𝑣 diag(x3∕4
i yi)

We take x0 = A−1q as initial approximation to the solution. Clearly, L1 = L2 =
77
8 𝑣 and q = 3∕4, we

get c0 = 0.47921 < 0.64132 = 𝛼, d0 = 0.20360 and as a result, we have g𝜃(c0)2h𝜃(c0, d0) = 0.67883 < 1.

Table 8: Error bounds for (1.3).

k ‖xk − x∗‖

0 0.66363
1 0.056082
2 3.7985 × 10−5

3 7.224 × 10−17

4 8.5174 × 10−63

5 1.4835 × 10−245
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Table 9: The values of ck , dk and 𝜂k.

k ck dk 𝜼k

0 0.4792 0.2036 0.3194
1 0.3253 8.8026 × 10−3 7.4663 × 10−3

2 1.9826 × 10−3 3.6905 × 10−6 2.7446 × 10−3

3 8.1646 × 10−9 2.9074 × 10−17 1.1076 × 10−9

4 2.2218 × 10−29 4.0509 × 10−67 3.0142 × 10−30

5 1.2184 × 10−115 1.3464 × 10−266 1.6529 × 10−116

6 1.1018 × 10−460 1.6431 × 10−1064 1.4948 × 10−461

Table 10: Error bounds for (1.3).

k ‖xk − x∗‖

0 0.1111
1 8.2413 × 10−3

2 1.2204 × 10−6

3 5.6435 × 10−15

4 1.0441 × 10−48

5 6.2240 × 10−174

6 2.9836 × 10−642

By applying Theorem 1, the existence and uniqueness balls are given by B(x0,0.57032) and B(x0,0.76272),
respectively.

The values of the sequences {ck}, {dk} and {𝜂k} are given in Table 9.
The error bounds for (1.3) are given in Table 10.

4 Dynamics
Let us briefly analyze the dynamics of the family of iterative methods (1.3) in terms of parameter 𝜃 with the
aim of choosing the values of this parameter more suitable for convergence with different starting points.
Similar studies have been performed in [20–22] for other families of iterative methods. The dynamics of the
relaxed Newton’s method has been studied in [23].

Let us establish some notation. The iterates obtained starting from z0 ∈ ℂ can be denoted by
{z0,R(z0),R2(z0),… ,Rn(z0),…}, where R is a rational function defined on the Riemann sphere ℂ̂. This set is
called the orbit of z0.

Let z ∈ ℂ̂ be a fixed point of the rational function R, that is to say R(z) = z. The basin of attraction of z
consists of the points whose orbit tends to z. The behavior of the orbits near a fixed point z depends on the
derivative R′(z). If |R′(z)| < 1, the fixed point z is attracting; if |R′(z)| > 1, it is repelling; and if |R′(z)| = 1, it is
parabolic. If R′(z) = 0, the fixed point is superattracting.

The set of points z0 ∈ ℂ̂ such that their families Rn(z0), n ∈ ℕ are normal in some neighborhood U(z0) is
the Fatou set, (R) and its complement in ℂ̂ is the Julia set  (R). Roughly speaking, the orbits of the points in
(R) present a stable behavior, whereas the orbits of the points in  (R) have chaotic behavior. In particular,
the Fatou set contains the attraction basins of the attracting fixed points, whereas the Julia set contains the
boundaries of the attraction basins.

Given an analytic function f (z), consider the function associated to a step of the iterative method (1.3)
M𝜃, f : ℂ̂→ ℂ̂, such that M𝜃,f (xk) = xk+1. The following scaling result holds for M𝜃,f :
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Theorem 2. Let f be an analytic function on ℂ̂, and A(z) = 𝛼z + 𝛽, with 𝛼 ≠ 0, an affine map. If g(z) = 𝜆(f ˚A)(z),
𝜆 ≠ 0, then M𝜃,f is analytically conjugated to M𝜃,g by A, that is, A˚M𝜃,g˚A

−1 = M𝜃,f .

Any polynomial of second degree is conjugated by an affine transformation to a polynomial of the form
g(z) = z2 + c, c ∈ ℂ, so that in order to study the dynamics of M𝜃,f on quadratic polynomials, it suffices to
consider only polynomials of this form.

Then, if g(z) = z2 + c, with c ≠ 0, M𝜃,g has the form

M𝜃, f (z) = −
16z4 (c + z2) (c + 5z2) + 8z2 (c + z2)3

𝜃2 +
(

c + z2)4
𝜃4

128z7

The equation M𝜃,g(z) = z can be written as

(
c + z2)

(

16z4 (c + 5z2) + 8z2 (c + z2)2
𝜃

2 +
(

c + z2)3
𝜃

4
)

= 0,

so that M𝜃,g has eight fixed points, the roots of f (z),
√
−c and −

√
−c and other six points called strange fixed

points, which depend on 𝜃. The two roots are superattracting, because

M′
𝜃,g(z) =

(
c + z2)2 (48z4 − 8z2 (−5c + z2) 𝜃2 +

(
7c − z2) (c + z2) 𝜃4)

128z8

and then, M′
𝜃,g(±

√
−c) = 0. The character of the remaining fixed points depends on 𝜃.

The dynamical study can be simplified further by using the idea of analytical conjugation. If B(z) is a
Möbius map

B(z) = 𝛼z + 𝛽
𝛾z + 𝛿

, 𝛼𝛿 − 𝛽𝛾 ≠ 0, (4.41)

the rational maps M and N are analytically conjugated via B if N = BMB−1. Then, (N) = B((M)) and
 (N) = B( (M)).

Theorem 3. Let f (z) be a quadratic polynomial with simple roots. The fixed point operator M𝜃,g(z) associated to
the family of iterative methods (1.3) is analytically conjugated with

N𝜃(z) =
z3 (−(1 + z)4(2 + z) + 2(1 + z)2𝜃2 + z𝜃4)

−(1 + z)4(1 + 2z) + 2z3(1 + z)2𝜃2 + z4𝜃4 . (4.42)

Proof. Considering the Möbius map B(z) = z−
√

(−c)
z+

√
(−c)

, the conjugation BM𝜃,gB−1 gives the desired result.

Function B sends the roots of g,
√

(−c) and−
√

(−c), to 0 and∞, respectively. Furthermore, B(∞) = 1. It is
desirable from a numerical point of view that the basins of attraction of 0 and∞ under N𝜃 cover almost all the
plane. In order to analyze if this is the case for a given 𝜃, we have to study the orbits of the free critical points
of N𝜃, namely, those that are not associated to the roots of the polynomial. The derivative of the conjugated
function is

N′
𝜃
(z) =

−2z2(1 + z)6 (3
(
−1 + 𝜃2) (1 + z4) + 2

(
−6 + 𝜃2 + 𝜃4) (z + z3) −

(
18 + 2𝜃2 + 3𝜃4) z2)

(−1 − 6z − 14z2 + 2 (−8 + 𝜃2) z3 + (−9 + 4𝜃2 + 𝜃4) z42 + (−1 + 𝜃2) z5)2 . (4.43)

There are twelve critical points, counting multiplicities: 0 and ∞ associated to the roots of the polynomial, a
root with multiplicity six, −1, associated to 0, and the four roots of a self-reciprocal polynomial depending
on 𝜃. Without loss of generality, we will study the orbit of one of these roots, called z0,𝜃, under the iteration
function N𝜃. We are interested in knowing if the orbit either converges to 0 or ∞, or has another behavior,
converging to a strange fixed point, to a periodic cycle or exhibiting a more complex behavior.

The results are depicted in the so-called parameter plane, in which point 𝜃 ∈ ℂ is colored according to
the behavior of the orbit of z0,𝜃. Following the convention established in [9], point 𝜃 is colored in cyan if the
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orbit converges to the fixed point 0, in magenta if it converges to∞ and in yellow if converges to 1. If the orbit
converges to another fixed point, point 𝜃 is colored in red. The convergence to 2-cycles is depicted in orange,
to 3-cycles in light green, to 4-cycles in dark red, to 5-cycles in dark blue, to 6-cycles in dark green, to 7-cycles
in dark yellow, 8-cycles in white and to higher order cycles in dark magenta. The points that neither converge
nor tend to a cycle after 1000 iterations are colored in black.

Figure 2 shows the parameter plane of the iteration function N𝜃. The image is symmetric with respect to
the real and complex axis but only the positive imaginary semiplane is shown. The dynamics is richer near
the imaginary axis.

Figure 3 shows the basins of attraction in the case 𝜃 = 1.5. The basin of 0 is painted in cyan and that of
∞ in magenta. In this case, the numerical behavior is straightforward, as the orbits tend to one of the roots.
Let us now show the dynamical planes for some values of 𝜃 that present involved behaviors.

Figure 2: Parameter plane of N𝜃.

Figure 3: Attraction basins for 𝜃 = 1.5.



282 | D. K. Gupta et al.: Recurrence relations

Figure 4, for 𝜃 = 0.45 + 3.64i, shows the cyan and magenta regions deeply intertwined in a fractal shape.
Although no other regions are visible, this indicates instability in the iteration function.

For 𝜃 = 0.9i (see Figure 5), besides the cyan and magenta zones corresponding to the roots, there appear
black regions where the iterations present a periodical behavior.

Figure 6 shows the case of 𝜃 = 1.1 + 2.6i. The black zones occupy more space alternating with the basins
of the proper fixed points.

In the case of 𝜃 = 4.25i shown in Figure 7 the basin of 0, in cyan, is very small. Instead, there are big
yellow zones that are the basin of 1, corresponding to points whose orbit for the original iteration function
M𝜃,g would tend to infinity.

The dynamical study shows the good behavior of the method, provided the parameter 𝜃 is suitably
chosen.

Figure 4: Attraction basins for 𝜃 = 0.45 + 3.64i.

Figure 5: Attraction basins for 𝜃 = 0.9i.
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Figure 6: Attraction basins for 𝜃 = 1.1 + 2.6i.

Figure 7: Attraction basins for 𝜃 = 4.25i.

4.1 Critical points of operator N𝜃(z)
Recall that the critical points of N𝜃(z) are the roots of N′

𝜃
(z) = 0. That is z = 0, z = ∞ are associated to the

roots of the polynomials and remaining are the roots depending upon 𝜃 is given by the polynomial

3
(
−1 + 𝜃2) (1 + z4) + 2

(
−6 + 𝜃2 + 𝜃4) (z + z3) −

(
18 + 2𝜃2 + 3𝜃4) z2 = 0

whose solution are given by

z = −(2𝜃4 + 2𝜃2 − 12 + 2𝜃2
√

4 + 11𝜃2 + 𝜃4 ± E)
12(𝜃2 − 1)

(4.44)
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Figure 8: Dynamical behavior of critical points for −2 ≤
𝜃 ≤ 2.

and

z = −(2𝜃4 + 2𝜃2 − 12 − 2𝜃2
√

4 + 11𝜃2 + 𝜃4 ± F)
12(𝜃2 − 1)

(4.45)

We denote the critical points obtained by (4.44) with c1, c2 and by (4.45) with c3, c4 where

E = 2𝜃
√

2𝜃6 + 13𝜃4 − 43𝜃2 + 60 + (2𝜃4 + 2𝜃2 − 12)
√
𝜃4 + 11𝜃2 + 4

and

F = 2𝜃
√

2𝜃6 + 13𝜃4 − 43𝜃2 + 60 − (2𝜃4 + 2𝜃2 − 12)
√
𝜃4 + 11𝜃2 + 4

Clearly c1 =
1
c2

and c3 =
1

c4
.

In Figure 8, we represent the behavior of critical points for real values of 𝜃 between −2 and 2. We observe
that the critical points are symmetric along the line 𝜃 = 0. All the critical points meet at z = −1 for 𝜃 = 0, and
c1 = c2 = 1 for 𝜃 = ±2.

Moreover, we can see that when 𝜃→ ±1, c1 → ±∞, and c2 = 0. Outside [−2, 2] the critical points can take
complex values. It is observed that when 𝜃→ ±∞, the real parts of c2 and c3 tend to±∞, respectively, whereas
the real parts of c1 and c4 tend to 0.

5 Conclusions
A family of iterative methods and its semilocal convergence using recurrence relations for solving nonlinear
equations in Banach spaces are presented. The convergence is established under the Hölder continuity
condition on second derivatives which generalize the results obtained in [10]. Recurrence relations based
on three parameters are derived. A theorem for existence and uniqueness along with the error bounds for
the solution is provided. The R-order of convergence is shown to be equal to 3 + q when 𝜃 = ±1; otherwise
it is 2 + q, where, q ∈ (0, 1]. Numerical examples involving nonlinear integral equations and boundary value
problems are solved and improved convergence balls are found for them. Finally, the dynamical study of the
family of iterations is also carried out.
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