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Abstract: Clustering algorithms are one of the most widely used kernels to generate knowledge
from large datasets. These algorithms group a set of data elements (i.e., images, points, patterns,
etc.) into clusters to identify patterns or common features of a sample. However, these algorithms
are very computationally expensive as they often involve the computation of expensive fitness
functions that must be evaluated for all points in the dataset. This computational cost is even
higher for fuzzy methods, where each data point may belong to more than one cluster. In this
paper, we evaluate different parallelisation strategies on different heterogeneous platforms for fuzzy
clustering algorithms typically used in the state-of-the-art such as the Fuzzy C-means (FCM), the
Gustafson–Kessel FCM (GK-FCM) and the Fuzzy Minimals (FM). The experimental evaluation
includes performance and energy trade-offs. Our results show that depending on the computational
pattern of each algorithm, their mathematical foundation and the amount of data to be processed,
each algorithm performs better on a different platform.

Keywords: clustering algorithms; performance evaluation; GPU computing; energy-efficiency;
vector architectures

1. Introduction

Modern society generates an overwhelming amount of data from different sectors,
such as industry, social media or personalised medicine, to name a few examples [1].
These raw datasets must be sanitised, processed and transformed to generate valuable
knowledge in those contexts, which requires access to large computational facilities such as
supercomputers. Current supercomputers are designed as heterogeneous systems, relying
on Graphics Processing Units (GPUs), many-core CPUs and field-programmable gate
arrays (FPGAs) to cope with this data deluge [2]. Heterogeneous computing architectures
leverage several levels of parallelism, including instruction-level parallelism (ILP), thread-
level parallelism (TLP) and data-level parallelism (DLP). This significantly complicates
the efficient programming of such architectures. ILP and TLP have been traditionally
exposed in latency-oriented and multicore architectures, but the best way to expose DLP is
through vector operations. A vector design uses a single instruction to compute several
data elements. Examples of vector designs include SIMD extensions [3–7], dedicated vector
computing [8] and GPUs [9,10]. Therefore, the effective and efficient use of heterogeneous
hardware remains a challenge.

Clustering algorithms are of particular interest when transforming data into knowl-
edge. Clustering aims to group a set of data elements (i.e., measures, points, patterns, etc.)
into clusters [11]. In order to determine these clusters, a similarity or distance metric is used.
Common metrics used in these algorithms include Euclidean or Mahalanobis distance [12].
Individuals from a cluster are closer to its centre than to any other given cluster centre [13].
Clustering algorithms are critical to analyse datasets in many fields, including image
processing [14], smart cities [15,16] or bioinformatics [17]. The most relevant clustering
algorithms have the following characteristics: (1) scalability, i.e., theability to handle an
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increasing amount of objects and attributes; (2) stability to determine clusters of different
shape or size; (3) autonomy or self-driven, i.e., it should require minimal knowledge of the
problem domain (e.g., number of clusters, thresholds and stop criteria); (4) stability, as it
must remain stable in the presence of noise and outliers; and, finally, (5) data independency
to be independent of the way objects are organised in the dataset.

Several clustering algorithms have been proposed in the literature [18]. These algo-
rithms perform an iterative process to find (sub)optimal solutions that tries to optimise a
membership function (also known as clustering algorithms are NP-complex problems and
their computational cost is very high when run on sufficiently large data sets) [19]. The
computational cost of these algorithms is even higher for fuzzy clustering algorithms as
they provide multiple and non-dichotomous cluster memberships, i.e., a data item belongs
to different clusters with a certain probability. Several fuzzy clustering algorithms have
been proposed in the literature. The fuzzy c-means (FCM) algorithm [20] was the first
fuzzy clustering proposed. One of the main drawbacks of FCM is that requires to know
the number of clusters to be generated in advance, like k-means. Then, the search space
increases as the optimal number of clusters must be found, and therefore, the computa-
tional time increases. Another issue is that the FCM algorithm assumes that the clusters
are spherical shaped. Several FCM-based algorithms have been proposed to detect dif-
ferent geometrical shapes in data sets. Among them, we may highlight the Gustafson
and Kessel [21] algorithm which applies an adaptive distance norm to each cluster, also
replacing the Euclidean norm in the by Mahalanobis distance. Finally, the Fuzzy Minimals
(FM) clustering algorithm [22,23] does not need prior knowledge about the number of
clusters. It also has the advantage that the clusters do not need to be compact and well
separated. All these changes in the algorithm and/or scoring function imply an added
computational cost that makes the parallelisation of these algorithms even more necessary
in order to take advantage of all the levels of parallelism available in today’s heterogeneous
architectures. In fact, several parallel implementations in heterogeneous systems have been
proposed for some of these algorithms such as the FCM [24] and FM [25]. In this paper,
different fuzzy clustering algorithms, running on different Nvidia and Intel architectures,
are evaluated in order to identify (1) which is the best platform in terms of power and
performance to run these algorithms and (2) what is the impact on performance and power
consumption of the different features added in each of the fuzzy algorithms, so that the
reader can determine which algorithm to use and on which platform, depending on their
needs. The main contributions of this paper include the following.

1. A description of the mathematical foundation of three fuzzy clustering algorithms.
2. A detailed parallel implementation these clustering algorithms for different comput-

ing platforms.
3. In-depth evaluation of HPC platforms and heavy workloads. Our results show the

best evaluation platform for each algorithm.
4. A performance and energy comparison is performed between different platforms,

reporting performance improvements of up to 225×, 32× and 906× and energy
savings of up 5.7×, 10× and 308× for FM, FCM and GK-FCM, respectively.

The rest of the article is organised as follows. Section 2 shows the related work before
we analyse in detail the mathematical foundation for the selected clustering algorithms in
Section 3. Then, Section 4 describes the CPU/GPU parallelisation and optimisation process.
Section 5 shows performance and energy evaluation under different scenarios. Finally,
Section 6 ends the paper with some conclusions and directions for future work.

2. Related Work

Clustering methods have been studied in great depth in the literature [26]. However,
there are very few parallel implementations that cover different computing platforms.
The k-means algorithm is one of the most studied clustering methods [27]. Hou [28],
Zhao et al. [29] and Xiong [30] developed MapReduce solutions to improve k-means.
Jin et al. proposed a distributed single-linkage hierarchical clustering algorithm (DiSC)



Mathematics 2021, 9, 2156 3 of 20

based also on MapReduce [31]. The k-tree method is a hierarchical data structure and
clustering algorithm to leverage clusters of computers to deal with extremely large datasets
(tested on a 8 terabyte dataset) [32]. In [33], the authors optimise a triangle inequality
k-means implementation using a hybrid implementation based on MPI and OpenMP on
homogeneous computing clusters, however they do not target heterogeneous architectures.

Several papers have parallelised clustering algorithms on GPUs. For instance, Li et al.
provide GPU parallelisation guidelines of the k-means algorithm. They describe data
dimensionality as an important factor in terms of performance on GPUs [34]. Optimal
tabu k-means clustering combines tabu search for calculation of centroids with clustering
features of k-means [35]. Djenouri et al. proposed three single-scan (SS) algorithms that
exploit heterogeneous hardware by scheduling independent jobs to workers in a cluster
of nodes equipped with CPUs and GPUs [36]. In [37], the authors proposed a classifier
for efficiently mining data streams which was based on machine learning improved by
an efficient drift detector. However, they focused on hard clustering techniques where
data elements only belong to one cluster and probabilities are not provided. Other works
also proposed problem-specific parallelisation of the k-means algorithm. Image Segmen-
tation [38], Circuit Transient Analysis [39], monitoring fault tolerance in Wireless Sensor
Networks (WSN) [40], air pollution detection [15] and health care data classification [41]
are examples of domain-specific k-means implementations.

Fuzzy clustering algorithms were introduced by Bezdek et al. [20] and they have as
their main advantage that the membership function is not dichotomous; instead, each data
item has a probability of belonging to each cluster. In other words, each data item can
belong to more than one cluster. Furthermore, membership degrees can also express the
degree of ambiguity with which a data item belongs to a cluster. The concept of degrees of
membership is based on the definition of fuzzy sets [42]. Several parallelisation of fuzzy
clustering algorithms have been proposed in the literature. For instance, Anderson et al. [43]
introduced the first GPU implementation attempt of the FCM algorithm. They highlighted
that one of the main bottlenecks was continuous reductions carried out to merge results
from different clusters. Al-Ayyoub et al. [44] implemented a variant of the FCM (brFCM)
on GPUs. They compared their implementation with a single-threaded CPU version by
clustering lung CT and knee MRI images. Although their results offered 23.43× speed-up
factor compared to the sequential version, this version did not exploit the multiple levels
of parallelism available on the CPU such as vector units or multiple cores. Aaron et al. [45]
demonstrated that the FCM clustering algorithm can be improved by the use of static
and dynamic single-pass incremental FCM procedures. Although they did not provide
a parallel version, they pointed out this is mandatory in the future work. Defour and
Marin developed FuzzyGPU, a library for common operations for fuzzy arithmetics. More
recently, Téllez-Velázquez, Arturo and Cruz-Barbosa [46] introduced an inference machine
architecture that processes string-based rules and concurrently executes them based on an
execution plan created by a fuzzy rule scheduler. This approach explored the parallel nature
of rule sets, offering high speed-up ratios without losing generality. Cebrian et al. [47] first
proposed coarse and fine grain parallelisation strategies in Intel and Nvidia architectures
for the FM algorithm but it was not compared against other fuzzy algorithm. Finally.
Scully-Alison et al. propose a sparse fuzzy k-means algorithm that operates on multiple
GPUs [48] and performs clustering for real environmental sensor data.

3. Clustering Algorithms

Clustering algorithms are based on the assignment of data points to groups (also
known as clusters). Points belonging to the same cluster can be considered to share a
common similarity characteristic. This similarity is based on the evaluation (i.e., minimisa-
tion) of an objective function. This includes the use of different metrics, such as distance,
connectivity and/or intensity. A different objective function can be chosen, depending on
the characteristics of the dataset or the application.
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As mentioned above, fuzzy clustering methods are a set of classification algorithms
where each data point belongs to all clusters with a degree of probability of belonging. This
probability could be 0, indicating that this point does not belong in any case to that set. In
what follows, we show the mathematical foundations of the clustering algorithms targeted
in this work, including the Fuzzy C-means (FCM), Gustafson–Kessel FCM (GK-FCM) and
the Fuzzy Minimals (FM) algorithms [20,49,50]. These algorithms are well-known fuzzy
clustering algorithms and they are commonly used in several applications [51].

In general terms, fuzzy clustering algorithms creates fuzzy partitions of the dataset.
Let us define X = {x1, x2, . . . , xn} ⊂ RF, where F is the dimension of the vector space.
A fuzzy partition of X into c clusters (1 < c < n) is represented by a matrix U = (uij)

that satisfies

uij ∈ [0, 1]∀i, j;
c

∑
i=1

uij = 1∀j;
n

∑
j=1

uij > 0∀i.

uij ∈ [0, 1] represents the membership degree of datum xj to cluster i relative to all
other clusters.

3.1. Fuzzy C-Means: FCM

FCM aims to find the fuzzy partition that minimises the objective function (1)

Jm(U, V) =
n

∑
k=1

c

∑
i=1

(uik)
md2

ik, (1)

where V = {v1, v2, . . . , vc} are the centres of clusters, or prototypes, dik is the distance
function and m is a constant that represents the fuzziness value of the resulting clusters that
are to be formed, 1 ≤ m ≤ ∞. The uij is dependent on the distance function, dij. Bezdek
proposed m = 2, the Euclidean distance, dik = ||xj − vk||, and

uik =
1

c
∑

k=1

[ dij
dik

] 2
m−1

(2)

The calculation of the prototypes is performed by means of

vi =

n
∑

k=1
(uik)

mxk

n
∑

k=1
(uik)m

. (3)

FCM starts with a random initialisation of the membership values for each example
of the manually selected clusters. The algorithm will iterate the clusters by recursively
updating the cluster centres using the membership functions (2) and (3) until convergence
criteria is reached. This is done in order to minimise the objective function (1). The
convergence criteria is met when the overall difference in the membership function between
the current and previous iteration is smaller than a given epsilon value, ε.

3.2. Gustafson–Kessel: GK-FCM

The Gustafson–Kessel (GK-FCM) is an evolution of the FCM algorithm [21]. It replaces
the use of the Euclidean distance in the objective function by a cluster-specific Mahalanobis
distance [52]. The goal of this replacement is to adapt to various sizes and forms of the
clusters. For a given cluster j, the associated Mahalanobis distance can be defined as

d2
ij = (xi − vj)

tΛ−1
j (xi − vj), (4)
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where

Λj =

n
∑

k=1
(uik)

m(xi − vj)(xi − vj)
t

n
∑

k=1
(uik)m

∀j = 1, . . . , c, (5)

is the covariance matrix of the cluster.
Using the Euclidean distance in the objective function of FCM means, it is assumed

that ∀j, Aj = I, identity matrix, i.e., all clusters have the same covariance that equals the
identity matrix. Therefore, FCM can only detect spherical clusters, but it cannot identify
clusters having different forms or sizes. Krishnapuram and Kim show that GK-FCM is
better suited for ellipsoidal clusters of equal volume [53].

3.3. Fuzzy Minimals: FM

The FM algorithm, first introduced by Flores-Sintas et al. in 1998, provides scalability,
adaptability, self-driven, stability and data independence to the clustering arena [22,23,50,54].
One useful feature of the FM algorithm is that it requires no prior knowledge of the
number of prototypes to be identified in the dataset, as is the case with FCM and GK-
FCM algorithms.

FM is a two-stage algorithm. In the first stage, the r factor for the input dataset is
computed. The r factor is a parameter that measures the isotropy in the dataset. The
calculation of r factor is shown in (6).√

|C−1|
nrF ∑

x∈X

1
1 + r2d2

xx̄
= 1. (6)

It is a nonlinear expression, where |C−1| is the determinant of the inverse of the
covariance matrix, x̄ is the mean of the sample X, dxx̄ is the Euclidean distance between
x and x̄, and n is the number of elements of the sample. The use of Euclidean distance
implies that the homogeneity and isotropy of the features space are assumed. Whenever
homogeneity and isotropy are broken, clusters are created in the features space.

Once the r factor is computed, the calculation of prototypes is executed to obtain the
clustering result. The objective function used by FM is given by (7)

J(v) = ∑
x∈X

µxv · d2
xv , (7)

where
µxv =

1
1 + r2 · d2

xv
. (8)

Equation (8) is used to measure the degree of membership ofelement x to the cluster
where v is the prototype. The FM algorithm performs an iterative process to minimise the
objective function given by Equation (9), for the prototypes represented by each cluster.
The input parameters ε1 and ε2 establish the error degree committed in the minimum
estimation and show the difference between potential minimums, respectively.

v =
∑x∈X µ2

xv · x
∑x∈X µ2

xv
. (9)

4. Parallelisation Strategies
4.1. Baseline Implementations

This section shows the different clustering methods pseudocodes. Functions for the
baseline implementations are manually coded and parallelised using OpenMP. We do not
show full codes due to space limitations. Note that ◦ represents a Hadamard product,
	 represents a Hadamard subtract and � represents a Hadamard division. These are
product/subtraction/division of two matrices element by element. A n© represents an
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element-wise exponent n for elements of matrix A. X is the input dataset to be classified
in 2D matrix form, with size x rows and y columns. Notice that capital names refer to
matrices while the rest of the variables refer to scalars.

4.1.1. FCM

Algorithm 1 shows the pseudocode for FCM. U represents the randomly chosen
centres in 2D matrix form. ex and ix are precomputed values for the exponent with m = 2
as described in Section 3.1. Lines 5 to 11 match the computation of the centres as described
in Equation (3). Lines 12 to 14 match Equation (1) for m = 2. Line 15 corresponds to
Equation (2) for m = 2. Lines 16 and 17 update the cluster centres.

Algorithm 1: Pseudocode for the main loop of the FCM algorithm.

1: Load_Dataset(X)
2: Initialize_Random_Centers(U)
3: ex ← 2/(2− 1); ix ← −2/(2− 1)
4: for (step = 0; step < iterations; step++) do
5: U_UP← Uex©
6: SUM_COLS← ColumnWise_Reduction(U_UPᵀ : +)
7: for (i = 0; i < y; i ++) do
8: [DC]i ← SUM_COLS
9: end for

10: NUMERATOR← U_UP× X
11: CENTERS← NUMERATOR� DCᵀ

12: DISTANCE_MATRIX ← Compute_Euclidean_Distance(CENTERS, X)

13: DM2← DISTANCE_MATRIX 2©
14: OBJ_FUNC[step]← Reduction(DM2 ◦U_UP : +)

15: I_DM2← DISTANCE_MATRIX ix©
16: SUM_COL_DIST ← ColumnWise_Reduction(I_DM2 : +)
17: U ← Compute RowWise(I_DM2� SUM_COL_DIST)
18: i f ( f abs(OBJ_FUNC[step]−OBJ_FUNC[step− 1]) < error) break;
19: end for

4.1.2. GK-FCM

Th GK-FCM algorithm is shown in Algorithm 2. As for the standard FCM, U rep-
resents the randomly chosen centres in 2D matrix form. exponent and inv_exponent are
precomputed values for the exponent with m = 2 as described in Section 3.1. Lines 5
to 11 are identical to FCM and compute Equation (3). Lines 12 to 25 compute the Maha-
lanobis distance as described in Equations (4) and (5) for m = 2. Line 26 corresponds to
Equation (2) for m = 2. Lines 27 and 28 update the cluster centres.

4.1.3. FM

Finally, Algorithm 3 depicts the main building blocks of FM algorithm. FM is com-
posed of two main parts: (1) the calculation of the r factor (line 4, see Algorithm 4) and (2)
the calculation of prototypes or centroids (lines 5 to complete the set V).

The pseudocode for the Calculate_Prototypes function is quite large, so instead we
will show the formulation for each function step (Algorithm 5).
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Algorithm 2: Pseudocode for the main loop of the GK-FCM algorithm.

1: Load_Dataset(X)
2: Initialize_Random_Centers(U)
3: ex ← 2/(2− 1); ix ← −2/(2− 1)
4: for (step = 0; step < iterations; step++) do
5: U_UP← Uex©
6: SUM_COLS← ColumnWise_Reduction(U_UPᵀ : +)
7: for (i = 0; i < y; i ++) do
8: [DC]i ← SUM_COLS
9: end for

10: NUMERATOR← U_UP× X
11: CENTERS← NUMERATOR� DCᵀ

12: for (cluster = 0; cluster < clusters; cluster++) do
13: for (i = 0; i < x; i++) do
14: [ZV]i ← [X]i 	 [CENTERS]cluster
15: end for
16: TMP← [ZVᵀ]i ◦ [U_UPᵀ]cluster
17: COV_MATRIX ← TMP× ZV
18: COV_MATRIX ← COV_MATRIX� SUM_COLS[cluster]
19: det← Compute_Determinant(COV_MATRIX)

20: power_det← det(1/columns)

21: MAHALANOBIS← COV_MATRIX−1 ◦ power_det
22: TMP_DIST ← ZV ×MAHALANOBIS
23: TMP_DIST ← TMP_DIST ◦ ZV
24: DIST[cluster]← Row_Reduction(TMP_DIST : +)
25: end for
26: I_DM2← DIST ix©
27: SUM_COL_DIST ← ColumnWise_Reduction(I_DM2 : +)
28: U ← Compute RowWise(I_DM2� SUM_COL_DIST)
29: i f ( f abs(OBJ_FUNC[step]−OBJ_FUNC[step− 1]) < error) break;
30: end for

Algorithm 3: Pseudocode for the FM algorithm, V is the algorithm output that
contains the prototypes found by the clustering process. F is the dimension of
the vector space.

1: Choose ε1 and ε2 standard parameters.
2: Initialise V = { } ⊂ RF.
3: Load_Dataset(X)
4: r ← Calculate_r_Factor(X)
5: Calculate_Prototypes(X, r, ε1, ε2, V)

4.2. CPU Optimisations

CPU-based optimisations require all levels of parallelism (instruction, thread and data).
Instruction-level parallelism is developed by the compiler, and we focus our programming
efforts on thread and data-level parallelism. Our code is implemented using OpenMP,
exploiting thread-level parallelism. However, its performance is sub-optimal, as we do
not use well-known techniques to optimise matrix operations such as blocking/tiling.
The code needs to be vectorised to fully exploit SIMD units and thus leverage data-level
parallelism. Instead of doing this manually, we will rely on the Eigen library whenever
possible [55]. Eigen will parallelise, vectorise and perform other optimisations, such as
blocking/tiling, transparently.
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Algorithm 4: Pseudocode for the Calculate_r_Factor of the FM algorithm.
1: r ← 1
2: e← 0
3: for (i = 0; i < rows; i++) do
4: det← Compute_Determinant(Covariance_Matrix(X, rows))
5: f 1← f 1 + (1/SRQT(det))
6: end for
7: comp← abs(r− e)
8: while ((comp > error)AND(cont < rows× columns)) do
9: cont++

10: e1← r
11: f 2← 0
12: for (i = 0; i < rows; i++) do
13: tmp← 0
14: for (k = 0; k < columns; k++) do
15: tmp← tmp + (X[i× columns + k]−median[k])2

16: end for
17: f 2← f 2 + (1/(1 + r× r× tmp)
18: end for
19: r ← (( f 1× f 2)/rows)1/columns

20: if r > e then
21: comp← r− e
22: else
23: comp← e− r
24: end if
25: end while

Algorithm 5: Calculate_Prototypes() of FM algorithm.
1: for k = 1; k < n; k = k + 1 do
2: v(0) ← xk, t← 0, E(0) ← 1
3: while E(t) ≥ ε1 do
4: t← t + 1
5: µxv ← 1

1+r2·d2
xv

, using v(t−1)

6: v(t) ←
∑x∈X

(
µ
(t)
xv

)2
·x(

µ
(t)
xv

)2

7: E(t) ← ∑F
α←1

(
vα
(t) − vα

(t−1)

)
8: end while
9: if ∑F

α(vα − wα) > ε2, ∀w ∈ V then
10: V ≡ V + {v}.
11: end if
12: end for

Algorithm 6 shows the pseudocode for FCM using Eigen calls. Note that Lines 5, 12,
13 and 15 remain as function calls to our original code. We could not find an optimal way
to implement them using Eigen.

Algorithm 7 shows the pseudocode for GK-FCM using Eigen calls. As in FCM, there
are several function calls that remain as in the original code. This includes lines 5, 21 and
26. Again, we could not find an optimal way to implement them using Eigen.
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Algorithm 6: Eigen pseudocode for the main loop of the FCM algorithm.

1: Load_Dataset(X)
2: Initialize_Random_Centers(U)
3: ex ← 2/(2− 1); ix ← −2/(2− 1)
4: for (step = 0; step < iterations; step++) do
5: U_UP← Uex©
6: U_UP_T ← U_UP.transpose()
7: SUM_COLS← U_UP_T.rowwise().sum()
8: DC.colwise()← SUM_COLS
9: DC_T ← DC.transpose()

10: NUMERATOR← U_UP× X
11: CENTERS← NUMERATOR.array()/DC_T.array()
12: DISTANCE_MATRIX ← Compute_Euclidean_Distance(CENTERS, X)

13: DM2← DISTANCE_MATRIX 2©
14: OBJ_FUNC[step]← ((DM2.array()×U_UP.array()).sum()

15: I_DM2← DISTANCE_MATRIX ix©
16: SUM_COL_DIST ← I_DM2.rowwise().sum()
17: U ← I_DM2.array().rowwise()/SUM_COL_DIST.array())
18: i f ( f abs(OBJ_FUNC[step]−OBJ_FUNC[step− 1]) < error) break;
19: end for

Algorithm 7: Eigen pseudocode for the main loop of the GK-FCM algorithm.

1: Load_Dataset(X)
2: Initialize_Random_Centers(U)
3: ex ← 2/(2− 1); ix ← −2/(2− 1)
4: for (step = 0; step < iterations; step++) do
5: U_UP_T ← U_UP.transpose()
6: SUM_COLS← U_UP_T.rowwise().sum()
7: DC.colwise()← SUM_COLS
8: DC_T ← DC.transpose()
9: NUMERATOR← U_UP× X

10: CENTERS← NUMERATOR.array()/DC_T.array()
11: U_UP← Uex©
12: for (cluster = 0; cluster < clusters; cluster++) do
13: ZV ← X.array().rowwise()− CENTERS.row(cluster).array()
14: ZV_T ← ZV.transpose()
15: TMP← ZV_T.array().rowwise()×U_UP_T.row(cluster).array()
16: COV_MATRIX ← TMP× ZV
17: COV_MATRIX ← COV_MATRIX.array()/SUM_COLS(cluster)
18: det← COV_MATRIX.determinant()
19: power_det← det(1/columns)

20: COV_MATRIX_I ← COV_MATRIX.inverse()
21: MAHALANOBIS = COV_MATRIX_I ◦ power_det
22: TMP_DIST ← ZV ×MAHALANOBIS
23: TMP_DIST ← ZV.array()× TMP_DIST.array()
24: DIST[cluster]← TMP_DIST.colwise().sum()
25: end for
26: I_DM2← DIST ix©
27: SUM_COL_DIST ← I_DM2.rowwise().sum()
28: U ← I_DM2.array().rowwise()/SUM_COL_DIST.array())
29: i f ( f abs(OBJ_FUNC[step]−OBJ_FUNC[step− 1]) < error) break;
30: end for
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Finally, the FM algorithm performance carving is shown. First of all, a profiling analy-
sis of the Calculate_r_Factor is provided, revealing that the convolution and determinant
steps are the most time consuming. This function is parallelised through OpenMP and
Eigen library. This function shows a very good scalability, almost linear with thread count,
as there are almost no critical sections in the code, just a final reduction to merge all partial
factor r computations.

For the Calculate_Prototypes function, it can be parallelised using OpenMP (see
Algorithm 5) as well. This parallelisation is not straight-forward as it requires a critical
section (lines 9 and 10) to include candidate prototypes into the final output. The number
of critical access to this memory is O(N), where N is the number of prototypes found in
the solution. As this number is unknown, a dynamic array must be developed, so as many
prototypes found, as longer will take the execution. Fine-grain parallelisation via manual
vectorisation is performed in lines 6–7 and the Euclidean distance required in line 5, being
the later the most time consuming (around 90% of total execution time). A pseudocode
of the SIMD version of the euclidean distance is shown in Algorithm 8. However, there
are several limitations to this code: (a) horizontal operations (reduction), (b) increased L2
cache misses with high number of dimensions (columns), (c) low arithmetic intensity (A
measure of operations performed relative to the amount of memory accesses (Bytes).) and
(d) the division in Algorithm 5 line 5.

Algorithm 8: SIMD version of Algorithm 5 line 5.
1: for l = 0; l < columns; l+ = SIMD_WIDTH do
2: aux ← simd_load(PROTOTYPE[l])− simd_load(ROW[l])
3: distance← distance + aux× aux
4: end for
5: scalar_distance← reduce_add(distance)
6: output← 1

1+rFactorSquare×scalar_distance

To solve some of these issues, we performed manual unrolling of the main loop to
make use of the SIMD divisor ports available in the system. The unroll factor will be
16 iterations (rows) of the main loop (see Algorithm 5). All distances are then calculated by
combining them into two vector registers. These registers can be then passed to the vector
units (Algorithm 9. We rely on AVX-512 for this implementation. Other unrolling factors
yield slightly worse performance results. This version puts more pressure on the memory
subsystem, but the use of the SIMD division ports improves overall performance.

Algorithm 9: Superblocked SIMD version of Algorithm 5 line 5 (16 iterations)
for a vector register of 8 doubles (512-bits).

1: for blockcount = 0; blockcount < 16; blockcount ++ do
2: aux ← 0; distance[blockcount]← 0
3: for l = 0; l < columns; l+ = SIMD_WIDTH do
4: aux ←

simd_load(PROTOTYPE[l])− simd_load(ROW[l + blockcount ∗ columns])
5: distance[blockcount]← distance[blockcount] + aux× aux
6: end for
7: scalar_distance[blockcount]← reduce_add(distance[blockcount])
8: end for
9: simd_output1← [1..1]

[1..1]+[rFactorSquare..rFactorSquare]×scalar_distance[0..7]

10: simd_output2← [1..1]
[1..1]+[rFactorSquare..rFactorSquare]×scalar_distance[8..15]
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4.3. GPU Optimisations

This section shows the different parallelisation strategies developed with CUDA
programming language for the three algorithms described in Section 4. These parallelisation
approaches use a set of techniques and libraries to optimise their performance: (1) shared
memory to optimise device memory accesses at block level and (2) cuBLAS to provide
optimised functions to perform matrix operations and factorisations.

Algorithm 10 shows the FCM pseudocode. It shows the kernel and library function
calls. This algorithm comprises a number of steps. The first four lines load the input
data into the CPU and later on GPU. In addition, the f uzzy_U matrix is generated on
the GPU using curand library. Next, lines 6 to 10 calculate the centre matrix (centers).
Previously, three kernels and a call to cuBLAS calculate preliminary results. Lines 6 to 8
calculate the numerator (numerator_m) of Equation (9) and line 9 calculates the denom-
inator (denominator_m). Then, the distance between the data matrix (X) and the centre
matrix (center) is calculated in line 10. With this new distance matrix (distance), the error is
calculated with a reduction (reduce)(see line 10). This error is tested to continue with the
next iteration or end the execution.

Algorithm 10: FCM algorithm in GPU.
1: Load_Dataset(X)
2: EXP = 2/(2− 1); inv_exponent = −2/(2− 1)
3: init_random_centers(states);
4: init_u(states, f uzzy_u);
5: for step = 1; i < MAX_STEPS; i = i + 1 do
6: exponent <<< bk, th >>> ( f uzzy_based_u, f uzzy_u, EXP);
7: cuBLASDGEMM(vector_u_columns, f uzzy_basedu);
8: numerator_i <<< bk, th >>> (numerator_m, f uzzy_basedu, vector_u_columns);
9: determinator_i <<< bk, th >>> (denominator_m, vector_u_columns);

10: centers_i <<< bk, th >>> (center, numerator_m, denominator_m);
11: distance_matrix_i <<< bk, th >>> (distance, center, X);
12: Error_i = reduce <<< bk, th >>> (distance);
13: if (Error_stepi − Error_stepi−1) < error then
14: break;
15: end if
16: new_ f uzzy_u <<< bk, th >>> ( f uzzy_u, distance);
17: end for
18: cudaMemcpy(u_host, f uzzy_u);

Algorithm 11 shows the pseudocode for the Gustafson–Kessel Algorithm (GK-FCM),
highlighting again kernel and library calls. This algorithm has a different set of computa-
tional and operational characteristics than the FCM algorithm. The FCM-GK algorithm
performs a pre-normalisation of the data. It also contains operations such as the calculation
of the inverse and transpose of a matrix in the calculation of different clusters. The compu-
tation of the inverse matrix is performed by using the cublasDgetriBatched function and
for the computation of the transpose the kernel called (traspose).

As in the FCM algorithm, the algorithm can be divided into several steps. In the first
five lines, the input matrix is normalised and then several data structures are initialised
on the GPU. Next (lines 7–12), the (center) matrix is calculated, similar to Algorithm 10.
The main difference in the process of both algorithms occurs from lines 13 to 24 where
the (distance) matrix is calculated. The process consists of obtaining a matrix called
(covariance_matrix) and calculating its determinant and inverse. To perform this pro-
cess, a set of functions from the cuBLAS library is used to achieve: (1) the LU factorisation
and calculate the determinant and (2) we obtain the inverse of the matrix. The process is
repeated as long as the result is not lower than the proposed error (lines 25–28).
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Algorithm 11: FCM-GK algorithm in GPU.
1: Load_Dataset(X)
2: EXP = 2/(2− 1); inv_exponent = −2/(2− 1)
3: init_random_centers(states);
4: init_normalize_data(X);
5: init_u(states, f uzzy_u);
6: for step = 1; i < MAX_STEPS; i = i + 1 do
7: exponent <<< bk, th >>> ( f uzzy_exponent_u, f uzzy_u, EXP);
8: transpose <<< bk, th >>> (traspose_u, f uzzy_u);
9: cuBLASDGEMM(vector_u_columns, f uzzy_exponent_u);

10: numerator <<< bk, th >>>
(numerator_m, f uzzy_exponent_u, vector_u_columns);

11: determinator <<< bk, th >>> (denominator_m, vector_u_columns);
12: centers <<< bk, th >>> (center, numerator_m, denominator_m);
13: for cluster = 1; cluster < clusters; cluster = cluster + 1 do
14: substraction <<< bk, th >>> (ZV, X, center);
15: transpose <<< bk, th >>> (ZVt, ZV);
16: cuBLASDGEMM(ZV_temp, ZV_t, f uzzy_exponentu, vector_u_columns);
17: Covarianze_matrix <<< bk, th >>>

(Covarianze, ZV_temp, ZV_t, f uzzy_exponent_u);
18: Calculation_cuBLASDGETRF(Covarianze);
19: determinant_value = thrust :: reduce(Covarianze_ f actorized);
20: cuBLASDGETRI(Inverse_matrix, Covarianze);
21: exponent <<< bk, th >>>

(MAHALANOBIS_matrix, Inverse_matrix, determinant_value);
22: cuBLASDGEMM(distance_temp, ZV, MAHALANOBIS_matrix);
23: reduction <<< bk, th >>> (distance, distance_tmp, cluster);
24: end for
25: new_ f uzzy_u <<< bk, th >>> ( f uzzy_u, distance);
26: if (Error_stepi − Error_step(i− 1)) < error then
27: break;
28: end if
29: end for
30: cudaMemcpy(u_host, f uzzy_u);

As previously mentioned, the FM algorithm is divided into two stages. The first stage
is the calculation of the r factor that is used in the second stage, called prototype calculation.
In this case, the data are grouped together based on their distance. The parallelisation
of both stages in GPU is briefly explained in Algorithm 12. First, the so-called r factor
(lines 2–6) is calculated. For one of the rows of the data matrix (X), the covariance matrix
is built and factored through Nvidia cuBLAS library. The diagonal of its factorisation is
reduced to obtain the value of the determinant. Then, the calculation shown in line 5 is
applied to each of the values and carries over to the previous ones to eventually obtain the
r factor. The second step of the FM algorithm is the calculation of prototypes. In the first
stage of this calculation, a set of candidate prototypes is calculated with the probability of
belonging to each prototype (lines 9–14). This process consists of four kernels where each
row of the data matrix (X) approaches a possible prototype. This calculation reproduces
Equation (8). With these data obtained in this first stage, prototypes are included in the
final set based on the distance between the prototypes included in the final set and each of
the candidates. Finally, it is important to note that the number of columns in the data matrix
(X) is a relevant factor for all clustering algorithms discussed in terms of performance on
GPU platforms.
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Algorithm 12: R Factor and Prototype calculation algorithm in GPU.
1: Load_Dataset(X)
2: for i = 0; i < rows; i = i + 1 do
3: covariance_matrix <<< bk, th, sh >>> (X, row_i, rows, cols);
4: detvalue = cuBLAS_reduction(covarianzematrix);
5: r f actor+ = 1√

detvalue
;

6: end for
7: for i = 0; i < rows; i = i + 1 do
8: cudaMemcpy(prot_actual, X + i);
9: while errori < error1 do

10: new_prot <<< bk, th >>> (X, r f actor, i, MU_prot));
11: reduction <<< bk, th >>> (MU_all, MU_prot);
12: distance_prots <<< bk, th >>> (distance, new_prot, prot_actual, MU_all);
13: reduction <<< bk, th >>> (errori, distance);
14: end while
15: cudaMemcpy(provisional_prototype + i, prot_actual);
16: end for
17: for i = 0; i < rows; i = i + 1 do
18: distance_prots <<< bk, th >>> (prots_d, provisional_prototype + i, error2);
19: end for
20: cudaMemcpy(prots, prots_d);

5. Evaluation

This section introduces the performance and energy evaluation for all fuzzy clustering
algorithms targeted and parallelisation approach proposed on different heterogeneous
systems based on Intel CPUs and Nvidia GPUs.

5.1. Hardware Environment and Benchmarking

Intel-based platform We use an Intel Skylake-X i7-7820X CPU processor (SKL in our
Figures). It has eight physical cores with sixteen threads running at 3.60 GHz (but
we disabled simultaneous multi-threading, so we only have 8 threads available). It
has 32 + 32 KB of L1 and 1MB of L2 cache per core plus 11MB of shared L3 cache. We
chose this CPU as it is the only one available to us with support for AVX-512 (512-bit
registers) instructions.

Nvidia-based platform Two GPU-based platforms are targeted. One node with a x86-
based architecture and a Nvidia A100 GPU. This GPU belongs to Ampere family and
it has 6912 CUDA cores at up to 1.41 GHz with FP32 compute performance of up
to 19.5 TFLOPS, and 40 GB of 2.4 GHz HBM2 memory with 1.6 TB of bandwidth.
The another node is an IBM POWER 9 system with two 16-core Power 9 processors
at 2.7 GHz including an Nvidia V100 GPU with 5120 CUDA cores and 32 HBM2
memory with 870 GBps of bandwidth.

To test our parallelisation approaches, a dataset based on 800 K points that belongs
to three hyper-ellipsoids is proposed. They are Sk, with Sk ⊂ R108, ∀k ∈ {1, 2, 3}, and
Si ∩ Sj = ∀i 6= j. The cardinal of each subset is |S1| = 271, 060, |S2| = 277, 256 and
|S3| = 251, 684, respectively.

5.2. Runtime Evaluation

Performance and energy figures are provided by varying the number of rows and
columns of the input dataset. Columns represent the number of variables for each element
in the dataset (e.g., for a dataset composed of bicycles, each column represents a character-
istic, like brand, colour, type, etc.). Rows represent different data instances to be clustered
(e.g., different data points). Our goal is to show the scalability on each dimension, as each
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field of application has different requirements. The parallel CPU version runs on 8 threads
with AVX-512 support for all algorithms.

Figure 1 shows the performance gains compared to the baseline implementation, de-
scribed in Section 4.1, for each clustering method. It shows results for 8 variables/columns
(top) and 64 variables (bottom). It is important to note that the baseline implementation
does not make use of SIMD units and only runs on a single thread. For small datasets with
a small number of variables (up to 16 columns), the CPU outperforms the GPU for both
FM and FCM. The CPU is specially good for FM with small datasets. However, as the
computation of the r factor time increases with the dataset size, the additional computing
power of the GPU starts to pay off. Nevertheless, the CPU always defeats the GPU when it
calculates the prototypes, so a hybrid CPU-GPU implementation would be the best option.
The differences in performance for high variable count in FCM are minimal, and go in
favour of the GPU. On the other hand, GK-FCM (GUS in the Figure 1) always works best on
the GPU. The reason is that the CPU is underutilised (less than 1% usage), as it spends most
of the time in data movements (e.g., transpose). The analysed GPUs seem to be specially
good at performing this task, and thus overwhelming performance improvements shown
in the figure.
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Figure 1. Speed-up (normalised to scalar code running on one thread).
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5.3. Energy Evaluation

This section shows an energy evaluation of the different clustering algorithms. We
compare the energy measurements of the CPU package, that is, Intel’s performance counter
that measures the energy consumed by the whole processor via the RAPL interface and the
energy used by the whole GPU board. It is important to note that the GPU also requires
CPU computations, but as the CPUs used in GPU clusters are usually over provisioned,
we decided to compare strictly CPU vs. GPU energy.

Figure 2 shows the energy reduction factor, that is, how many times the energy is
reduced compared to the scalar implementation running on one CPU thread. When energy
is taken into consideration, the differences between the CPU and GPU implementations
of FM drop drastically. For example, with big datasets with high variable count, the CPU
only uses 2.6× more energy than the GPU, while the performance is 29.6× faster in favour
of the GPU. Still, it is a better option to run FM on the GPU for big datasets, and on the
CPU for small datasets with low variable count. For FCM the CPU is outperforms the
GPU for almost all combinations of size and variable count in terms of energy efficiency.
Last, GK-FCM is always more energy efficient to run on GPU, regardless of dataset and
variable count.
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Figure 2. Energy reduction factor (normalised to scalar code running on one thread).



Mathematics 2021, 9, 2156 16 of 20

5.4. Scalability with Big Datasets

Figures 3 and 4 show the scalability of FCM and GK-FCM, respectively, for big datasets.
FM was excluded due to the long execution times for big datasets. In this case, we use the
same hyper-ellipsoids but with increased rows (150 K, 256 K, 500 K, 800 K) and columns
(80, 88 and 104). We can see that for both algorithms, the scalability with the number
of columns (variables) is much better for the GPU. This is due to the fact that the SIMD
extensions of the CPU can handle up to 8 double precision floating point per SIMD register,
while the number of threads the GPU can handle is in the order of millions. Wider vector
registers on the CPU would help to balance this trend. For example, ARM’s SVE can work
with 2048-bit registers, compared with 512-bit registers of Intel’s AVX-512. On the other
hand, scalability with row count is almost linear for both platforms. Increasing core count
on the CPU would significantly reduce its execution time (our CPU only has 8 cores, and
many servers have 64 cores). On the other hand, doubling the core count in a GPU would
be difficult given the power it dissipates per unit area and the current GPU die sizes.
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Figure 3. Execution time (seconds) for FCM.
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Figure 4. Execution time (seconds) for GK-FCM.

5.5. Discussion

This section discusses what are the best platforms and algorithms to run on, based on
the datasets to analyse. First, let us break down the dataset type. If the dataset to run has
an unknown number of clusters, FM is the best option as one of the its main features is that
users do not need to set the number of cluster to obtain. For the FM algorithm, running on
the CPU is faster and more energy efficient as long as the number of variables per entry is
below 16. Otherwise, running on the GPU is faster, and consumes over 2.6× less energy.
This is mainly due to the fact that the r factor computation is extremely compute intensive
and highly parallelisable, meaning that the GPU has the advantage over the CPU as the
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dataset size increases and becomes the hotspot of the algorithm. Nevertheless, the update
prototypes function requires the modification of a data structure in mutual exclusion, and
for that purpose the CPU works best regardless of the input size. We leave as future work
to design hybrid CPU-GPU implementation of FM. Nevertheless, FM is several orders of
magnitude slower than the other clustering mechanisms for big datasets mainly due to the
blind search of clusters previously commented.

On the other hand, if the number of clusters is known, and we are dealing with
spherical clusters, FCM is the best alternative. FCM also works best on the CPU for
datasets below 16 variables. However, GPUs are preferred in terms of performance for
bigger datasets, but not in terms of power. This is mainly because the GPU is underutilised
for FCM algorithm. Indeed, the extra idle power dissipated by the GPU does not pay
off compared with the performance it provides. FCM parallelises on the row count for
the CPU. Therefore, as the number of rows increases, the proportion of computation to
communication time increases, meaning greater the energy benefits in favour of the CPU.
Probably, a 16-core CPU with AVX-512 will outperform the GPU, in terms of performance
and energy, regardless of the dataset size. Finally, GK-FCM is better suited if we are dealing
with other clusters shapes. Computationally speaking, GK-FCM performs best on the GPU
for almost all cluster sizes and variable count, and it is therefore the best platform to chose.
A detailed profile of the CPU using Intel’s Vtune revealed an extremely low CPU utilisation.
Most of the CPU time was spent in trivial data movements (e.g., transposition). SIMD
extensions are not good at re-organising data in memory if there is no sequential pattern.
Besides, SIMD helps for high column count. The increase on column count translates into
an increment of the computation requirements. Therefore, the overhead of the transposition
becomes less impact on the overall performance.

6. Conclusions and Future Work

Clustering algorithms are one of the most used algorithms to produce valuable knowl-
edge in data science. These algorithms group a set of data elements (measures, points,
patterns, etc.) into clusters. Their main characteristic is that individuals from a cluster are
closer to its centre than to any other given cluster centre. This definition is extended in fuzzy
clustering methods, where each data point can belong to more than one cluster. Typical
examples of these algorithms include the Fuzzy C-means (FCM), Gustafson–Kessel FCM
(GK-FCM) and the Fuzzy Minimals (FM). Given that the current trend in processor design
moves towards heterogeneous and massively parallel designs, it becomes mandatory to
redefine clustering algorithms to take full advantage of these architectures.

This article introduces several parallelisation strategies for clustering algorithms for
both Intel and Nvidia-based architectures. Particularly, we focus on three widely applied
fuzzy clustering techniques such as FCM, GK-FCM and FM. Parallel implementations are
then evaluated in terms of performance and energy efficiency. Our results show that, if
there is a need to compute a dataset with an unknown number of clusters, FM on CPU is
the best option as long as the number of variables is below 16. If the number of clusters
is known, and we are dealing with spherical clusters, FCM is the best alternative. FCM
also works best on the CPU for datasets below 16 variables. However, for big datasets, a
GPU is preferred in terms of performance, but not in terms of power. Finally, if we are
dealing with other clusters shapes, GK-FCM is preferred. GK-FCM works best on the GPU
for almost all cluster sizes and variable count, and it is therefore the best platform to chose.

Clustering algorithms are undoubtedly necessary in today’s computing landscape.
Depending on the context, these algorithms must be efficient in both performance and
consumption, therefore, in the future a middleware can be developed that depending on
the constraints of the target platforms or its instantaneous workload, executes one or the
other workload, knowing its possible deviations.
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