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Abstract: In this paper, a mathematical model to describe the spread of an infectious disease on a
farm is developed. To analyze the evolution of the infection, the direct transmission from infected
individuals and the indirect transmission from the bacteria accumulated in the enclosure are con-
sidered. A threshold value of population is obtained to assure the extinction of the disease. When
this size of population is exceeded, two control procedures to apply at each time are proposed. For
each of them, a maximum number of steps without control and reducing the prevalence of disease
is obtained. In addition, a criterion to choose between both procedures is established. Finally, the
results are numerically simulated for a hypothetical outbreak on a farm.

Keywords: epidemic model; direct and indirect transmission; discrete-time system; stability; control

1. Introduction

Mathematical models are frequently used to analyze the behavior of an infectious
disease on a group of individuals. The infectious agent that causes the disease can be
transferred between an infected and a susceptible individual (direct transmission), from a
reservoir where susceptible individuals are exposed to the pathogen (indirect transmission),
or even through both types of transmission. Identifying the route of transmission is
important as this facilitates better prevention system and control of infectious diseases. In
the literature there are several works with direct transmission models such as [1–5] and
indirect transmission [6–9]. However, the case in which the transmission is direct and
indirect has not been studied. This contrasts markedly the behavior of most diseases such
as salmonella, typhoid fever or COVID-19. Papers related to direct and indirect transmission
are [10–12].

In this work, using theoretical models, we analyze the behavior of infectious diseases
that can be transmitted directly and indirectly. In particular, we suggest a direct and
indirect transmission model where the pathogen cannot be reproduced in the environment.
We study the epidemiological dynamics at the population level and we also propose control
techniques to ensure that the disease evolves favorably.

Unlike other papers that appear in the literature on models of direct or/and indirect
disease transmission, the novelty of this work consists of the method followed to control
the disease. In our case, we propose two different strategies that are applied periodically.
In both cases, we obtain an N-periodic mathematical model. The main result is obtaining
a threshold for each of these strategies. This provides us with the optimal time interval
in which we can be without acting on the process and with the assurance that the disease
tends to disappear. In addition, the information obtained can be used to compare the two
strategies and determine which is the most appropriate for the different models that can be
obtained from the parameters.
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Generally, when modeling epidemic processes, a discrete time approach has advan-
tages over a model that uses differential equations because it is more realistic, since the
epidemic statistics are made from given time intervals and not continuously (that is, sig-
nificant for analyzing the rapid spread of epidemics). Examples of discrete epidemic
models can be found in [2,3,5–7,13–15] and references given there. In this case, the model
is described by a non-linear system z(t + 1) = f (z(t)) where the variables and parameters
involved are the usual ones in this type of process. To study the evolution of the disease,
equilibrium points are determined, disease-free and endemic equilibrium points. A linear
model can arise from the linearization of the above system around one of them, and this
approach can provide sufficient precision to describe the evolution of the system and
specify whether or not the disease can be controlled.

The paper is organized as follows. In Section 2, the discrete-time non-linear math-
ematical epidemic model is shown. The stability of the equilibrium points is studied in
terms of the size of the population in the enclosure. Our main results are given Section 3
where two control procedures to lead the infection towards disappearance are investigated.
Moreover, in function of the survival rates, a criterion to determine the better one of them is
established. In Section 4 the theoretical results are illustrated with some examples applying
both strategies to herds of several population sizes, and the conclusions follow in Section 5.

2. Mathematical Model and Problem Statement

In this chapter we propose a mathematical model to describe the behavior of a disease
in a farm. This model can obtain the prevalence of infection depending of the size of the
population in the farm. The animals can be infected through direct or indirect transmission.
So, in this model we have opted for these two approaches.

We consider a transmission model consisting of two compartments: susceptible (S(t)),
infected (I(t)), and in addition to the susceptible and infected individuals variables is
considered a variable measuring the amount of contaminant, pathogen or bacteria, (B(t)),
that is found in the environment which has been generated by infected individuals.

In the model of spread of infectious disease we consider that replaced individuals
are introduced into the susceptible class and after infection the individuals transfer to the
infected class. It is assumed that only infected individuals produce bacteria (B(t)) and
infected individuals remain in the enclosure together. Moreover, at each stage the cage is
closed and only the dead animals are replaced. That is, the size of the population always
remains constant P = S(t) + I(t) with replacement of dead individuals.

Considering all the above assumptions, we can represent our model (Figure 1).

entryPu(t)
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Figure 1. SIB model.

The Table 1 contains the list of parameters, symbols and abbreviations used in the paper.
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Table 1. Parameters, symbols and abbreviations in the paper.

P Size of population.
S(t) Susceptible population at time t.
I(t) Infected population at time t.
B(t) Amount of bacteria at time t.
α (0 < α < 1) Direct transmission rate.
σ (0 < σ < 1) Indirect transmission rate.
u(t) Replacement rate of the population

(u(t)P dead individuals at time t).
p (0 < p < 1) Survival rate of the susceptible population.
q (0 < q < 1) Survival rate of the infected population.
s (0 < s < 1) Survival rate of the bacteria.
β (β > 0) Amount of bacteria produced by infected individual.
λ eigenvalue of a matrix.
ρ(M) spectral radius of M (maximum modulus of its eigenvalues).
x f DFEP, disease-free equilibrium point.
xe EEP, endemic equilibrium point.
Se Size of susceptible population in endemic equilibrium point.
N period of time.
Ms = ΦM(s + N, s) Monodromy matrix.
N?

a Threshold value such that the infectious disease dissappears
because the infected individuals are removed.

N?
b Threshold value such that the infectious disease dissappears

because the enclosure is disinfected.

From the parameters shown in Table 1 and denoting

x(t) = (xi(t))T
i=1,2,3 = (S(t), I(t), B(t))T ,

the dynamics of the disease are modeled using the following system of difference equations

x(t + 1) = Āx(t) + F(x(t)) + Pu(t)e1, t ≥ 0 (1)

with

Ā =

 p 0 0
0 q 0
0 β s

 (2)

F(x(t)) = (αx1(t)x2(t) + σx1(t)x3(t))

 −1
1
0

 (3)

and e1 =

 1
0
0

. Assuming x1(t) + x2(t) = P, ∀t ≥ 0, the replacement of individuals

satisfies u(t)P = (−p + q)x1(t) + (1− q)x2(t) and we obtain

x(t + 1) = Ax(t) + F(x(t)) + (1− q)Pe1, t ≥ 0, (4)

with

A =

 q 0 0
0 q 0
0 β s

. (5)

This mathematical model representing the dynamics of a direct and indirect infection
on the farm is a nonlinear discrete-time system whose equilibrium points x̂, x̂ = Ax̂ +
F(x̂) + B(1− q), are the disease-free equilibrium point (DFEP) x f = (P, 0, 0) and the endemic

equilibrium point (EEP) xe = (Se, P− Se, (P− Se)
β

1− s
) with Se =

(1− q)(1− s)
σβ + α(1− s)

.
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If we analyze the behavior of the solution of the system around the equilibrium point
x̂ we have the following linear approach

z(t + 1) =

 q− σx̂3 − αx̂2 −αx̂1 −σx̂1
σx̂3 + αx̂2 q + αx̂1 σx̂1

0 β s

z(t), (6)

where we have considered the translation z(t) = x(t)− x̂ where x̂ = (x̂1, x̂3, x̂3) is some
equilibrium point. In Control Theory, it is known that the solution of an autonomous
discrete-time linear system x(t + 1) = Mx(t) is asymptotically stable to 0 if and only if the
state matrix M is stable. That is, ρ(M) < 1, with ρ(M) denoting the spectral radius of M
(maximum modulus of its eigenvalues). Calculating the eigenvalues of the state matrix
in (6), these are q and

1
2

(
q + α(x̂1 − x̂2)− σx̂3 + s±

√
(q + α(x̂1 − x̂2)− σx̂3 − s)2 + 4βσx̂1

)
, (7)

Analyzing the solution of this system for each one of the equilibrium points, we have
the following results.

When we consider the behavior of the system via linear approximation around the
disease-free equilibrium point (DFEP) x f , we have

z(t + 1) =
(

q −αP −σP
O H

)(
z1(t)
z2(t)

)
, with H =

(
q + αP σP

β s

)
(8)

where we have considered the translation z(t) = (z1(t) z2(t))T = x(t) − x f with
z1(t) = x1(t)− P and z2(t) = (x2(t) x3(t))T .

The capacity of dissemination or spread of the infection is quantified through the
eigenvalues of the state matrix q and the eigenvalues of H given by (7), in this particular case

λ1,2 =
q + αP + s±

√
(q + αP− s)2 + 4σβP

2
(9)

Spectral radius of matrix H indicates the asymptotic stability to zero (ρ(H) < 1) or not
(ρ(H) ≥ 1) of the linear system, and consequently the asymptotic stability or not of the
dynamic process to disease-free equilibrium point. By (9), we prove that λ1 = ρ(H) < 1 if

and only if the size of the population P is less than Se =
(1− q)(1− s)
σβ + (1− s)α

:

λ1 < 1↔ (q + αP− s)2 + 4σβP < (2− (q + αP + s))2

↔ −2s(q + αP) + 4σβP < 4− 4(q + αP + s) + 2s(q + αP)
↔ σβ(α− sα + σβ)P < 1− q− s + qs

↔ P <
(1− q)(1− s)
σβ + α(1− s)

= Se.

If we analyze the behavior of the solution of the system around the endemic equilib-
rium point (EEP) xe we have the linear approach given in (6) and the eigenvalues of the
state matrix are q and λ1,2(x̂) given in (7) when the equilibrium point is x̂ = xe. Using

xe = (Se, P− Se, (P− Se)
β

1− s
) with Se =

(1− q)(1− s)
σβ + α(1− s)

we can prove that the spectral ra-

dius of the state matrix, λ1, given in (7) is less than 1 if and only if the size of the population
P is greater than Se.

We have obtain the following result.
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Theorem 1. Consider the system given by (1)–(3). If the size of population P is less than

Se =
(1− q)(1− s)
σβ + α(1− s)

, then it is asymptotically stable to disease-free equilibrium point. If P > Se,

then it is asymptotically stable to endemic equilibrium point.

Note that, in the case P = Se, the system is not asymptotically stable to disease-free
equilibrium point and it is a critical case which is included in our study. When the size of
population is greater than or equal to the threshold value Se, (ρ(H) ≥ 1), the instability of
the system around the disease-free equilibrium point leads to the disease remaining in the
farm. Then, some interventions are necessary to control the spread of the disease. Next, we
establish our aim objective of this work.

Problem statement. If P ≥ Se, (ρ(H) ≥ 1), the infected population does not disappear
and it remains endemic. Some strategies are necessary to make extinct the infection. Our
goal is to analyze how often we should act on the process to ensure that the infection does
not spread and tends to be eradicated in the enclosure. As the infected individuals and
bacteria are the focus of infection, we propose to act periodically, that is, follow each N
steps: (a) Removing the infected individuals or (b) removing the bacteria in the enclosure, through
periodic programs.

This problem is studied in the following section.

3. Periodic Control Leading the Infection to Extinction

We consider the system given by (1)–(3) with P ≥ Se. Then, the system is not stable to
disease-free equilibrium point and we want to redirect the solution of the system towards
this point using the mentioned techniques in the problem statement. In both detection and
disinfection processes, we consider an N-periodic treatment. Our study led us to use of the
Control Theory of N-periodic linear discrete-time system, see [2,16]. We construct a model
to analyze each case:

(a) An N-periodic model representing the periodic detection and elimination of infected in-
dividuals. Given N, when the infected individuals are removed, at time t = kN,
k ≥ 0 the survival rate of it, the direct transmission rate and production of bacteria
are considered zero. In the rest of the steps, these parameters take their estimated
value. Thus, the parameters α, q and β becoming N-periodic: α(t + N) = α(t) =
{0, t = 0; α, 1 ≤ t < N}, q(t + N) = q(t) = {0, t = 0; q, 1 ≤ t < N} and
β(t + N) = β(t) = {0, t = 0; β, 1 ≤ t < N}. The N-periodic system is given by

z2(t + 1) = Ha(t)z2(t) (10)

with Ha(0) =
(

0 σP
0 s

)
, Ha(t) = H, t = 1, . . . , N − 1,

Ha(t + N) = Ha(t), t ≥ 0, with z2(t) = (x2(t) x3(t))T defined as under equation (8).
Moreover, in this case, at time 0, the infected individuals are removed, then x2(0) = 0,
but bacteria may be in the enclosure, then x3(0) = x0

3.
Now, infection can occur in both ways, directly through contact with an infected
individual or through contact with the bacteria, and we also propose two different
actions and make a comparison between them. We give conditions to determine, in
each case, which of the two techniques is the most effective. In this way, the second
strategy is:

(b) An N-periodic disinfection of the amount of bacteria in the enclosure. Then, the indirect
transmission rate and the survival rate of the bacteria are considered zero at steps
multiple of N. That is, the parameters s and σ are replaced by two N-periodic
parameters σ(t) and s(t) which are equal to s and σ at all times except at multiple
of N times: s(t + N) = s(t) = {0, t = 0; s, 1 ≤ t < N} and σ(t + N) = σ(t) =
{0, t = 0; σ, 1 ≤ t < N}. A first application of this technique was introduced in some
previous works on Salmonella infection in a hen house only considering transmission
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through indirect contact, [7,17]. Now, the new N-periodic system with direct and
indirect transmission is given by

z2(t + 1) = Hb(t)z2(t) (11)

with Hb(0) =
(

q + αP 0
β 0

)
Hb(t) = H, t = 1, . . . , N − 1,

Hb(t + N) = Hb(t), t ≥ 0, with z2(t) = (x2(t) x3(t))T defined as under Equation (8).
Now, the disinfecting of the enclosure is made at time 0, then x3(0) = 0, but infected
individuals may be in the enclosure, then x2(0) = x0

2.

It is known that to analyze the stability of a periodic system it is necessary to work
with the monodromy matrix, which is the ordered product of all the coefficient matrices
involved in the periodic process during a period of time, see for instance [2,16] and the
references therein. Remember that the asymptotic stability to 0 of an N-periodic discrete-
time linear system x(t + 1) = M(t)x(t), M(t + N) = M(t), t ≥ 0 is characterized by
ρ(ΦM(k + N, k)) < 1, 0 ≤ k < N, being ΦM(k + N, k) = M(k + N − 1) . . . M(k) the
monodromy matrix at time k. Moreover, these spectral radius are equals for all k, see [16].
Thus, it is sufficient to study the stability of ΦM(N, 0).

Now we are going to expand on the analysis of the control techniques proposed. In our
cases (a) and (b), the monodromy matrix is Ha

k = ΦHa(k + N, k) = Ha(k + N− 1) · · ·Ha(k),
Hb

k = ΦHb(k + N, k) = Hb(k + N − 1) · · ·Hb(k), 0 ≤ k ≤ N − 1, respectively. Additionally,
the system (10), (11), is asymptotically stable to zero if ρ(Ha

0) < 1, ρ(Hb
0) < 1, respectively.

In our model, the effect of direct transmission and indirect transmission is reflected in
the parameters that appear in the coefficient matrix of the system. This information is used
to obtain the monodromy matrix of the periodic system that we use to study the behavior
of the model. Therefore, we have to study the stability of the monodromy matrix in k = 0.
In the following results we have considered the two control strategies that we discussed at
the beginning of this section. This study will provide us with the threshold values for the
period N that ensure the stability of the corresponding N-periodic system. We denote by
N?

a the bound for the control action (a) and by N?
b the bound for the control action (b). The

way to obtain both bounds is analogous and is made explicit in the proof of the following
result. Moreover, in the theorem, the condition q + αP < 1 is needed to show that jb(N)
given in (16) is a decreasing function.

Theorem 2. Consider an epidemic outbreak modeled by system (1)–(3). If q + αP < 1 and the
eigenvalues given in (9) satisfy 0 < λ2 < 1 ≤ λ1, then there exist threshold values N?

a and N?
b

such that the infectious disease disappears when either the infected individuals are removed each N?
a

steps or the enclosure is disinfected each N?
b steps, respectively.

Proof. We develop the case (a) and in a similar way we can establish the results corre-
sponding to the case (b).

(a) In this case, we consider Ha
0 = ΦHa(N, 0). From (10), we can calculate this mon-

odromy matrix

Ha
0 = ΦHa(N, 0) = HN−1Ha(0) =

(
0 ?
0 a(N)

)
,

and we obtain that its spectral radius is given by

ρ(Ha
0) = a(N) =

λN
1 (s− λ2) + λN

2 (λ1 − s)
λ1 − λ2

, (12)

where λ1 and λ2 are the eigenvalues of H given in (9).
Our main goal is to find the maximum interval of time N?

a , so that a(N?
a ) < 1 <

a(N?
a + 1). This value N?

a will be the maximum number of steps maintaining stabilized the
solution of the system, and hence, the disease evolves towards disappearance. For that, we
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construct the following functions of the period N and the analysis of their behavior will
lead us to ensure the existence of this point N?

a :

Θ(N) =

(
λ2

λ1

)N
(13)

ja(N) = λ−N
1

(
λ1 − λ2

λ1 − s

)
+

λ2 − s
λ1 − s

(14)

From (12)–(14), we have that

(a(N)− 1)
λ1 − λ2

λN
1 (λ1 − s)

=

=

(
λN

1 (s− λ2) + λN
2 (λ1 − s)

λ1 − λ2
− 1

)
λ1 − λ2

λN
1 (λ1 − s)

=
λN

2
λN

1︸︷︷︸
Θ(N)

−
(λ1 − λ2) + λN

1 (λ2 − s)
λN

1 (λ1 − s)︸ ︷︷ ︸
ja(N)

= Θ(N)− ja(N).

Now, it is important make the following observation. From an unstable initial epidemio-
logical process, we have λ2 < λ1 = ρ(H) and 0 < s < 1 ≤ λ1. If, then, we assume λ2 > 0,
these conditions lead us to functions Θ(N) and ja(N) given in (13) and (14) are decrease
functions and Θ(1) < ja(1).

Moreover, we have that

lim
N→∞

ja(N) =
λ2 − s
λ1 − s

< 0 = lim
N→∞

Θ(N).

Then, we can assure that the order relation between Θ(N) and ja(N) changes for some
values of N. That is, there exists N?

a such that

Θ(N?
a )− j(N?

a ) < 0 ⇒ a(N?
a ) < 1

Θ(N?
a + 1)− j(N?

a + 1) > 0 ⇒ a(N?
a + 1) > 1.

In a similar way, we can analyze the case (b).
(b) Consider the N-periodic model previously described in (11). Studying the spectral

radius of the matrix of monodromy in s = 0, we have to Hb
0 = ΦHb(N, 0) = HN−1Hb(0) =(

b(N) 0
? 0

)
and

ρ(Hb
0) = b(N) =

λN
1 (q + αP− λ2) + λN

2 (λ1 − q− αP)
λ1 − λ2

. (15)

Our next step is to find a period N?
B in which we do not apply the control action but

b(N?
b ) < 1 < b(N?

b + 1). For that, we construct the following function

jb(N) = λ−N
1

(
λ1 − λ2

λ1 − (q + αP)

)
+

λ2 − (q + αP)
λ1 − (q + αP)

. (16)

By (13)-(15)-(16), we have that (bN − 1)
λ1 − λ2

λN
1 (λ1 − (q + αP))

= Θ(N)− jb(N). Assuming

0 < q + αP < 1 and λ2 > 0, and using λ1 = ρ(H) ≥ 1, we have that functions Θ(N)
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and jb(N) given in (13)–(16) are decrease functions, Θ(1) < jb(1) and lim
N→∞

jb(N) =

λ2 − (q + αP)
λ1 − (q + αP)

< 0 = lim
N→∞

Θ(N). Hence, there exists N?
b such that

Θ(N?
b )− j(N?

b ) < 0 ⇒ b(N?
b ) < 1

Θ(N?
b + 1)− j(N?

b + 1) > 0 ⇒ b(N?
b + 1) > 1.

Remark 1. The results of the theorem are valid under condition q + αP < 1. However, we will
see late that using the survival rate (0 < s < 1) as bound of q + αP will allow us to determine the
control strategy to use.

The imposed conditions on the parameters lead us to restrictions on the size of the population
P. First, the instability condition λ1 ≥ 1 it is equivalent to P ≥ Se, and the condition λ2 > 0

is held up if and only if P <
qs

σβ− sα
(it is proved from the definition of λ1,2 given in (9)). On

the other hand, note that if q, s >
1
2

(it is frequent in the case of infectious disease as Salmonella,

Brucella, Yersinia), then Se <
qs

σβ− sα
.

Based on these comments, from now on we rewritten the hypothesis of the above
Theorem where the condition on P, q + αP < 1, is also considered.

Theorem 3. Consider an epidemic outbreak modeled by system (1)–(3) with q, s >
1
2

and popula-
tion size satisfying

Se < P < min
{

qs
σβ− sα

,
1− q

α

}
. (17)

Then, there exist threshold values N?
a and N?

b such that the infectious disease disappears when either
the infected individuals are removed each N?

a steps or the enclosure is disinfected each N?
b steps,

respectively.

Now, we propose a new analysis to compare between the control strategies and we
establish a criterion to choose one or another option of the proposed control strategies (a)
and (b). We compare the two functions ja(N) and jb(N) in order to establish when is better
to use one action than other. That is, which is the greatest N?

a or N?
b . The result is given in

the following Theorem.

Theorem 4. Consider an epidemic outbreak modeled by system (1)–(3) with q, s >
1
2

and popula-
tion size satisfying condition (17). Then,

(i) If P <
s− q

α
, then the option of disinfection of the enclosure is the optimal one since N?

a < N?
b ;

(ii) If P >
s− q

α
, it is better the elimination of infected individuals option since N?

b < N?
a ;

(iii) When P =
s− q

α
both techniques are useful in the same degree, since N?

b = N?
a .

Proof. The question is: Which function ja(N) or jb(N) intersects with Θ(N) before? This will
depend on who is greater if q + αP or s since by definitions given in (14)–(16),
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ja(N)− jb(N) =

= λ−N
1 (λ1 − λ2)

(
1

λ1 − s
− 1

λ1 − (q + αP)

)
+

λ2 − s
λ1 − s

− λ2 − (q + αP)
λ1 − (q + αP)

= λ−N
1 (λ1 − λ2)

s− (q + αP)
(λ1 − s)(λ1 − (q + αP))

+
((q + αP)− s)(λ1 − λ2)

(λ1 − s)(λ1 − (q + αP))

=
((q + αP)− s)(λ1 − λ2)

(λ1 − s)(λ1 − (q + αP))
(1− λ−N

1 ).

Hence, if q + αP ≤ s, then ja(N) ≤ jb(N) and if q + αP ≥ s, then jb(N) ≤ ja(N).

Remark 2. In a farm it is common to use these strategies to keep an infectious outbreak under
control, but the results optimizing the number of stages without acting on the process using
deterministic models are unusual. The contribution of this work is precisely this, so the results
are novel. Using the theory of periodic systems control on the epidemic mathematics model, we
have been able to establish the greatest number of steps without applying one of the techniques
with the infection tending to disappear. In addition, depending on the value of the parameters, we
know which one optimizes the use of the farm’s resources since it allows for more steps without
applying the corresponding control strategy. From these results, we conclude when it is better to
apply one control technique or another. The higher threshold value of N allows us to perform more
steps without acting on the process. Under the hypotheses of the Theorem 4, we can ensure which
technique is optimal one, that is, the option allowing to take more steps without intervening.

4. Control Model Simulation

In this section we present a brief summary of how the use of these techniques has
affected the dynamics of our model. In order to do this we simulate a hypothetical infection
that is transmitted both by direct contact between susceptible and infected individuals, and
indirectly through the spread of the contaminant or pathogen in the environment; in line
with other modeling of communicable diseases such as salmonellosis, malaria, tuberculosis,
brucellosis (see [18–24]).

In the simulation we have considered the parameter values corresponding to farm
animals as follows: α = 10−5—the direct transmission rate, σ = 10−6—the indirect
transmission rate, β = 103—CFU (colony-forming unit) the amount of bacteria production,
and s = 0.8—the survival rate of the bacteria. We start from an unstable model, that is the
spectral radius of the state matrix H is greater than 1. We have distinguished two scenarios
corresponding to q + αP < s and to q + αP > s and for each one of them, we have made
simulations analyzing the two control strategies presented in this work: (a) detection and
elimination of the infected individuals and (b) disinfection of the enclosure, in three enclosures
with a size of population of 100, 200 and 400 individuals, respectively. (i) First scenario:
Consider q = 0.7 survival rate of infected individuals. Then q + αP < s if P < 104. Note

that the upper bounds to P given in (17) are
{

qs
σβ− sα

,
1− q

α

}
=
{

564, 3.104}. Thus, by

Theorem 3 we consider size of the population P < 546.
As Se = 59, the solution trajectory of the system is asymptotically stable to zero when

the size of population is P < 59. For instance, if P = 50 we have λ1 = 0.9793, but if
P > 59, λ1 > 1. As illustrative example, in Figure 2 is shown the increase of the infected
population when P = 100. We observe that the solution trajectory tends to the endemic
point (Se, Ie, Be) = (59.8802, 40.1198, 200599).
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Figure 2. Evolution of the population of susceptible individuals S(t) and infected individuals I(t) when the
population is P = 100 q = 0.7.

In Figure 3 is shown the graphics of the functions Θ(N), jI(N), jB(N) corresponding
to the size of population P = 100, 200 and 400.
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Figure 3. Intersection points between functions JI(N), JB(N) and function Θ(N) when q = 0.7.

These graphs show which method is the most indicated as a control action. All this is
reflected in Table 2 where we can see the points of intersection between these functions.
Using this information, we choose the control action corresponding to disinfection of the
enclosure which confirms the results of the Theorem 4.

Table 2. Threshold times N?
a and N?

b to the model remain asymptotically stable to (DFEP) when q = 0.7.

Population P

100 200 400

N?
a 8 3 1

N?
b 12 4 2

(ii) Second scenario: Consider q = 0.9 survival rate of infected individuals. Then q+αP > s

for all P. By Theorem 3 we consider size of population P < min
{

qs
σβ− sα

,
1− q

α

}
= 725.

As Se = 19, the solution trajectory of the system is asymptotically stable to zero if
P < 19.

For instance, if P = 19 we have λ1 = 0.9967, but if P > 19 we have λ1 > 1. In Figure 4
is shown the increase of the infected population when P = 100. In this case, the solution
tends to the endemic point (Se, Ie, Be) = (19.9601, 80.0399, 400200).
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Figure 4. Evolution of the population of susceptible individuals S(t) and infected individuals I(t) when the
population is P = 100 and q = 0.9.

In the Figure 5 is shown the graphics of the functions Θ(N), jI(N), jB(N) correspond-
ing to the size of populations P = 100, 200, 400. The points of intersection between
these functions are given in Table 3. Using this information, we choose the control action
corresponding to analysis and withdrawal of the infected individuals which confirms the results
of Theorem 4.
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Figure 5. Intersection points between functions JI(N), JB(N) and function Θ(N) when q = 0.9.

Table 3. Threshold times N?
I and N?

B to the model remain asymptotically stable to (DFEP) when q = 0.9.

Population P

100 200 400

N?
a 5 2 1

N?
b 3 1 1

Note that when q = 0.7 < s = 0.8 is most effective to eliminate the bacteria since the
time interval without having to apply the disinfection control action is longer. However,
when q = 0.9 > s = 0.8 it is better to eliminate the infected individuals.

Below, in Tables 4 and 5, are shown the information about the spectral radius of
the monodromy matrices aN from the elimination of infected individuals and bN of the
disinfection, respectively.
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Table 4. Spectral radius of N-periodic control model with elimination of infected individuals.

aN (with q = 0.7) aN (with q = 0.9)

P = 400 P = 200 P = 100 P = 400 P = 200 P = 100

N = 1 0.8 0.8 0.8 0.8 0.8 0.8
N = 2 1.04 0.84 0.74 1.04 0.84 0.74
N = 3 . . . 0.9724 0.748993 . . . 1.0124 0.7621
N = 4 . . . 1.1568 0.7729 . . . . . . 0.8369
N = 5 . . . . . . 0.8181 . . . . . . 0.9505
N = 6 . . . . . . 0.8719 . . . . . . 1.0972
N = 7 . . . . . . 0.9317 . . . . . . . . .
N = 8 . . . . . . 0.9967 . . . . . . . . .
N = 9 . . . . . . 1.0667 . . . . . . . . .

Table 5. Spectral radius of N-periodic control model with disinfection of the enclosure.

bN (with q = 0.7) bN (with q = 0.9)

P = 400 P = 200 P = 100 P = 400 P = 200 P = 100

N = 1 0.704 0.702 0.701 0.904 0.902 0.901
N = 2 0.8956 0.6928 0.5914 1.2172 1.0136 0.9118
N = 3 1.2321 0.7867 0.56467 . . . . . . 0.9916
N = 4 . . . 0.9311 0.5750 . . . . . . 1.12
N = 5 . . . . . . 1.1141 . . . . . . . . .
N = 6 . . . . . . 0.64 . . . . . . . . .
N = 7 . . . . . . 0.6828 . . . . . . . . .
N = 8 . . . . . . 0.73 . . . . . . . . .
N = 9 . . . . . . 0.7811 . . . . . . . . .
N = 10 . . . . . . 0.836 . . . . . . . . .
N = 11 . . . . . . 0.895 . . . . . . . . .
N = 12 . . . . . . 0.9581 . . . . . . . . .
N = 13 . . . . . . 1.0257 . . . . . . . . .

Finally, focusing our attention in the case (i) First scenario, q = 0.7 (analogously, we
can analyze the case (ii) Second scenario, q = 0.9), Figure 6 shows how the evolution of the
population of infected and the number of bacteria on an enclosure with populations of size
100, 200 and 400 individuals, respectively.
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Figure 6. Evolution of the population of infected individuals I(t) and bacteria B(t) in the initial process, for a
population of P = 100, P = 200 and P = 400 individuals in the enclosure, when q = 0.7.

When the size of the population is 100, the elimination of the accumulated bacteria is
more effective than the elimination of those infected animals: With the strategy of case (b)
(disinfection of enclosure) we can spend 12 periods of time keeping the process without
spreading (see Table 5), while by strategy of case (a) (eliminating the infected individuals),
in step 8 the process becomes unstable spreading the infection (see Table 4). In Figure 7,
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we show the evolution of infected and bacteria variables under the two control strategies
when the period is N = 9.

For a population of 200 individuals, the process remains asymptotically stable up to
time period 3 with the elimination of infected, but with the disinfection strategy we can act
each 4 steps. It can be seen in the Figure 8 the evolution of the solution, corresponding to
both strategies, when the period is N = 4.

For a population of 400 individuals, it is necessary to remove the infected individuals at
each stage in order to stabilize the process. However, the population of infected individuals
and the bacteria tend to disappear if the disinfection action is made every two steps. This
behavior is shown in Figure 9.
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Figure 7. Evolution of the population of infected individuals I(t) and bacteria B(t) after applying the control
strategy every 9 stages (N = 9), when the population P = 100, when q = 0.7.

Out[50]=

o Case (a) x Case (b), Infected N=4 and P=200

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o o o o

oo oo oo o o o

x

x

x

x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x x

5 10 15 20 25 30
t

2

4

6

8

10

I(t)

Out[20]=

o Case (a) x Case (b), Bacteria N=4 and P=200

o
o
o
o

o
o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

5 10 15 20 25 30
t

20000

40000

60000

80000

100000

B(t)

Figure 8. Evolution of the population of infected individuals I(t) and bacteria B(t) after applying the control
strategy every 4 stages (N = 4), when the population P = 200.
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Figure 9. Evolution of the population of infected individuals I(t) and bacteria B(t) after applying the control
strategy every 2 stages (N = 2), when the population P = 400 when q = 0.7.
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5. Conclusions

The spread of an infectious disease by direct and indirect transmission was consid-
ered. The process was mathematically represented by a non-linear discrete time system.
Depending on the size of the population the disease tends to disappear, remains endemic
or spreads, leading to a pandemic. After analyzing the different procedures that are usually
used, two control strategies have been chosen: elimination of infected individuals and
disinfection of the enclosure. The application of one of these procedures from time to time
has led us to an N-periodic mathematical model. We have developed a method to find
the optimal time interval without acting on the process and with the disease tending to
disappear. We have obtained threshold points for each of the strategies and we use this
information to compare the two strategies.

We can conclude that when the survival rate of infected individuals plus αP is lower
than the survival rate of the bacteria, it is preferable to opt for disinfection of the enclosure
since we can spend more time without intervening. Otherwise, it is better to eliminate
infected individuals. Although this technique is applicable to any group of farm animals,
we have shown an example by estimated values of the parameters inspired in the references
considered. Two assumptions have been considered and applied to the two procedures.
The different graphs and data collected in the shown tables and figures corroborate the
conclusions presented here.
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