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Abstract

Machine learning (ML) is one of the most important areas in the field of
artificial intelligence (AI), which is increasingly present in our daily lives.
From the beginning, ML algorithms have played an important role in the
development of computer-aided diagnostic systems aimed at improving the
efficiency and accuracy of experts. In this context, medical imaging has been
of particular interest, as computer vision (CV) techniques can automatically
perform pattern recognition tasks to associate certain biomedical structures
with a specific disease.

Over time, different imaging modalities have been used to address a wide range
of diseases under the umbrella of CV. In this thesis, we focus on two important
research areas at the forefront of medical imaging: digital pathology and
ophthalmology. Specifically, we use histological images to assist pathologists in
the diagnosis of prostate and bladder cancer, and optical coherence tomography
(OCT) data to help ophthalmologists in glaucoma decision making. We
propose different cutting-edge solutions based on traditional and deep learning
methods, as well as hybrid approaches to leverage the strengthens of each.

In order to exploit the potential of AI in diagnostic imaging, we address
several learning paradigms to cover different supervision scenarios. For
histological imaging, we propose fully supervised methods for the segmentation
and classification of prostate-specific structures, as well as fully unsupervised
techniques for bladder-specific histological pattern recognition. Moreover,
for glaucoma assessment, we rely on recurrent learning to detect glaucoma
from OCT volumes in the spectral domain (SD), and on few-shot learning to
determine the severity level of glaucoma from circumpapillary B-scans.

In the prostate-based studies, we provide a comparison between hand-driven
and deep learning methods for identifying the earliest stage of prostate
cancer. The conventional ML approach shows better performance than
deep learning in distinguishing between artefacts (false glands), benign and
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pathological glands, as hand-crafted features allow the computation of spatial
hierarchies and orientations that are essential in this multi-class scenario.
The proposed end-to-end system contributes to the accurate localisation and
classification of prostate histological structures, achieving an accuracy of
88.30% in discriminating normal and Gleason grade 3 glands. In contrast,
the proposed deep unsupervised algorithm far outperforms other conventional
clustering algorithms in the classification of muscle-invasive bladder cancer
(MIBC). Here, we resort to high-resolution histological samples stained with
immunohistochemistry techniques to self-recognise non-tumour, mild and
infiltrative MIBC patterns. The proposed model achieves a multi-class
accuracy of 90.31% without incurring prior annotation steps, which bridges
the gap with respect to training the model on labelled data.

Regarding glaucoma detection from SD-OCT volumes, we propose the
combination of convolutional neural networks (CNNs) with long short-term
memory (LSTM) units to find glaucoma-specific spatial dependencies between
adjacent 2D slides of the SD-OCT cube. Important contributions to glaucoma
detection are included in the architectures of both the slide-level feature
extractor and the volume-based predictive model. The proposed recurrent
learning system improves on other state-of-the-art approaches based on
3D architectures, reaching an accuracy of 81.25% in discerning between
healthy and glaucomatous SD-OCT volumes. Delving deeper into glaucoma
assessment, we address a novel learning strategy to discriminate, for the first
time, between different levels of glaucoma severity from circumpapillary OCT
B-scans. We propose a new hybrid backbone to optimise the feature extraction
process and embed it in a novel few-shot learning scenario based on dynamic
prototypical neural networks (PNN). The convolutional coefficients of the
backbone are refined during model training according to the prototypical latent
feature assignment, leading to higher performance compared to dense layers
activated by softmax. At test time, the proposed model achieves accuracies of
96.97% and 87.88% in detecting and grading glaucoma, respectively.

In short, the AI methods proposed in this thesis contributes to the diagnosis of
prostate and bladder cancer from histological images, as well as to glaucoma
detection from OCT samples, making use of ML algorithms under different
supervision scenarios.
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Resumen

El machine learning (ML) es una de las áreas más importantes en el campo
de la inteligencia artificial (IA), la cual está cada vez más presente en nuestra
vida cotidiana. Los algoritmos de ML siempre han desempeñado un papel
importante en el desarrollo de sistemas de ayuda al diagnóstico destinados a
mejorar la eficacia y la precisión de los expertos. En este contexto, la imagen
médica ha cobrado especial interés, ya que las técnicas de computer vision (CV)
pueden realizar automáticamente tareas de reconocimiento de patrones para
asociar determinadas estructuras biomédicas a una enfermedad específica.

A lo largo del tiempo, diferentes modalidades de imagen se han utilizado para
abordar una amplia gama de enfermedades bajo el paraguas del CV. En esta
tesis, nos centramos en dos importantes áreas de investigación en el campo
de la imagen médica: la patología digital y la oftalmología. Usamos imágenes
histológicas para ayudar a los patólogos en el diagnóstico del cáncer de próstata
y de vejiga, y datos de tomografía por coherencia óptica (OCT) para ayudar
a los oftalmólogos en la toma de decisiones relacionadas con el glaucoma.
Para ello, proponemos diferentes soluciones de vanguardia basadas en métodos
tradicionales de ML y de deep learning, así como enfoques híbridos.

Además, abordamos varios paradigmas de aprendizaje para cubrir diferentes
escenarios de supervisión. Con respecto a las imágenes histológicas,
proponemos métodos supervisados para segmentar y clasificar estructuras
específicas de la próstata, así como técnicas totalmente no supervisadas para el
reconocimiento de patrones histológicos de la vejiga. Con respecto al glaucoma,
aplicamos aprendizaje recurrente para detectar la enfermedad en volúmenes
OCT en el dominio espectral (SD), así como métodos de few-shot learning
para determinar su gravedad a partir de imágenes OCT circumpapilares.

En los estudios sobre la próstata, ofrecemos una comparación entre los métodos
de hand-driven y deep learning para identificar la etapa más temprana del
cáncer de próstata. El enfoque convencional muestra un mejor rendimiento
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a la hora de distinguir entre artefactos (glándulas falsas), glándulas benignas
y patológicas, ya que las características codificadas manualmente permiten
tener en cuenta el cálculo de jerarquías y orientaciones espaciales, lo cual
es esencial en este escenario multiclase. El sistema propuesto contribuye
a la precisa localización y clasificación de las estructuras histológicas de
la próstata, logrando una precisión del 88.30% en la discriminación entre
glándulas normales y de grado 3 de Gleason. Por su parte, el algoritmo
propuesto de deep learning no supervisado supera con creces a otros métodos de
clustering convencional en la clasificación del cáncer de vejiga músculo-invasivo
(MIBC). En este caso, utilizamos muestras histológicas de alta resolución
teñidas con técnicas de inmunohistoquímica para reconocer patrones de MIBC
no tumorales, leves e infiltrativos. El modelo propuesto alcanza una precisión
multiclase del 90.31% sin incurrir en pasos previos de anotación, lo cual reduce
la brecha con respecto a entrenar el modelo utilizando datos etiquetados.

En cuanto a la detección de glaucoma a partir de volúmenes SD-OCT, pro-
ponemos la combinación de redes neuronales convolucionales (CNN) con algo-
ritmos de memoria a corto plazo (LSTM) para encontrar dependencias espa-
ciales específicas de glaucoma entre los cortes 2D. Se incluyen contribuciones
clave para la detección del glaucoma en las arquitecturas tanto del extractor
de características a nivel de imagen como del modelo predictivo basado en el
volumen. El sistema propuesto centrado en el aprendizaje recurrente mejora
otros enfoques del estado del arte basados en arquitecturas 3D, alcanzando
una precisión del 81.25% en la clasificación entre volúmenes SD-OCT sanos
y glaucomatosos. Profundizando en la evaluación del glaucoma, llevamos a
cabo una novedosa estrategia de aprendizaje para discernir, por primera vez,
entre diferentes niveles de gravedad del glaucoma a partir de imágenes OCT
circumpapilares. Proponemos una nueva arquitectura híbrida para optimizar
el proceso de extracción de características y la embebemos en un novedoso
escenario de few-shot learning basado en redes neuronales prototípicas (PNN)
dinámicas. Los coeficientes convolucionales de la arquitectura se refinan du-
rante el entrenamiento del modelo de acuerdo con la asignación prototípica de
las características latentes, lo que conduce a un mayor rendimiento en com-
paración con las capas densas activadas por softmax. Durante la etapa de test,
el modelo propuesto alcanza precisiones del 96.97% y 87.88% en la detección
y gradación del glaucoma, respectivamente.

En definitiva, los métodos de IA propuestos en esta tesis contribuyen al
diagnóstico del cáncer de próstata y vejiga a partir de imágenes histológicas,
así como a la detección del glaucoma a partir de muestras OCT, utilizando
algoritmos de ML bajo diferentes escenarios de supervisión.
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Resum

El machine learning (ML) és una de les àrees més importants en el camp de
la intel·ligència artificial (IA), que està cada vegada més present en la nostra
vida quotidiana. Des del principi, els algorismes de ML han exercit un paper
important en el desenvolupament de sistemes d’ajuda al diagnòstic destinats a
millorar l’eficàcia i la precisió dels experts. En aquest context, la imatge mèdica
ha cobrat especial interés, ja que les tècniques de computer vision (CV) poden
realitzar automàticament tasques de reconeixement de patrons per a associar
determinades estructures biomèdiques amb una malaltia específica.

Al llarg del temps, diferents modalitats d’imatge s’han utilitzat per a abordar
una àmplia gamma de malalties sota el paraigua del CV. En aquesta tesi,
ens centrem en dues àrees d’investigació importants en el camp de la imatge
mèdica: la patologia digital i l’oftalmologia. Usem imatges histològiques per a
ajudar als patòlegs en el diagnòstic del càncer de pròstata i de bufeta, i dades
de tomografia de coherència òptica (OCT) per a ajudar als oftalmòlegs en la
presa de decisions sobre el glaucoma. Per a això, proposem diferents solucions
d’avantguarda basades en mètodes tradicionals de ML i de deep learning, així
com enfocaments híbrids.

A més, abordem diversos paradigmes d’aprenentatge per a cobrir diferents
escenaris de supervisió. Respecte a les imatges histològiques, proposem
mètodes totalment supervisats per a la segmentació i classificació d’estructures
específiques de la pròstata, així com tècniques no supervisades per al
reconeixement de patrons histològics de la bufeta. Respecte al glaucoma,
recorrem al recurrent learning per a detectar la malaltia en els volums SD-OCT,
així com a mètodes de few-shot learning per a determinar la seua gravetat a
partir d’imatges OCT circumpapilares.

En els estudis sobre la pròstata, oferim una comparació entre els mètodes
de hand-driven i deep learning per a identificar l’etapa més primerenca del
càncer de pròstata. L’enfocament convencional mostra un millor rendiment
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que el deep learning a l’hora de distingir entre artefactes (glàndules falses),
glàndules benignes i patològiques, ja que les característiques codificades
manualment permeten tindre en compte el càlcul de jerarquies i orientacions
espacials, la qual cosa és essencial en aquest escenari multiclasse. El
sistema proposat contribueix a la precisa localització i classificació de les
estructures histològiques de la pròstata, aconseguint una precisió de 88.30%
en la discriminació entre glàndules normals i de grau 3 de Gleason. Per
contra, l’algorisme proposat de deep learning no supervisat supera amb escreix
a altres mètodes de clustering convencional en la classificació del càncer de
bufeta múscul-invasiu (MIBC). En aquest cas, utilitzem mostres histològiques
tenyides amb tècniques d’immunohistoquímica per a reconéixer patrons de
MIBC no tumorals, lleus i infiltrativos. El model proposat aconsegueix una
precisió multiclasse del 90.31% sense incórrer en passos previs d’anotació, la
qual cosa redueix la bretxa respecte a entrenar models supervisats.

Quant a la detecció de glaucoma a partir de volums SD-OCT, proposem
la combinació de xarxes neuronals convolucionals (CNN) amb algorismes
de memòria a curt termini (LSTM) per a trobar dependències espacials
específiques de glaucoma entre els talls 2D. S’inclouen contribucions clau
per a la detecció del glaucoma en les arquitectures tant de l’extractor de
característiques a nivell de diapositiva com del model predictiu basat en
el volum. El sistema proposat centrat en recurrent learning millora altres
enfocaments de l’estat de l’art basats en arquitectures 3D, aconseguint
una precisió del 81.25% en la classificació entre volums SD-OCT sans i
glaucomatosos. Aprofundint en l’avaluació del glaucoma, duem a terme
una nova estratègia d’aprenentatge per a discernir, per primera vegada,
entre diferents nivells de gravetat del glaucoma a partir d’imatges OCT
circumpapilares. Proposem una nova arquitectura híbrida per a optimitzar
el procés d’extracció de característiques i l’embevem en un nou escenari de
few-shot learning basat en xarxes neuronals prototípiques (PNN) dinàmiques.
Els coeficients convolucionals de l’arquitectura es refinen durant l’entrenament
del model d’acord amb l’assignació prototípica de les característiques latents,
la qual cosa condueix a un major rendiment en comparació amb les capes
denses activades per softmax. Durant l’etapa de test, el model proposat
aconsegueix precisions 96.97% i del 87.88% en la detecció i gradació del
glaucoma, respectivament.

En definitiva, els mètodes de IA proposats en aquesta tesi contribueixen al
diagnòstic del càncer de pròstata i bufeta a partir d’imatges histològiques,
així com a la detecció del glaucoma a partir de mostres de OCT, utilitzant
algorismes de ML baix diferents escenaris de supervisió.
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Chapter 1

Introduction

This chapter introduces the motivation and the objectives
pursued in this thesis, as well as the main contributions. It also
includes the thesis framework and the thesis outline.

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Contributions to prostate and bladder cancer . . . . . . 8
1.3.2 Contributions to glaucoma . . . . . . . . . . . . . . . . . 10

1.4 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1





1.1 Motivation

1.1 Motivation

Artificial intelligence (AI) is a part of computer science that focuses on the
intelligent analysis of data. At the turn of the century, Kononenko [1] claimed
that there is no intelligence without learning, which makes machine learning
(ML) one of the most important and rapidly developing subfields of AI research.
According to [1], ML algorithms were, from the beginning, designed and used
to analyse medical datasets. In [2], Xu et al. also declared that the application
of AI technology in healthcare enhances human abilities and improves the
accuracy of medical treatment. From the 1970s onwards, with the digital
revolution and the AI development, accessible means of data collection and
storage began to appear. Hospitals were provided with well-equipped systems
to gather and share a large amount of information [1]. Since then, a wide
range of medical domains such as histopathology [3, 4], ophthalmology [5,
6], radiology [7, 8], odontology [9, 10] and embryology [11, 12], among many
others [13], have been the subject of study for the development of diagnostic-
aid systems under the umbrella of ML algorithms. An automatic diagnosis
via machine learning is simplistically translated as a classification task in
which medical diagnostic knowledge can be automatically derived from the
description of cases solved in the past. The proposed models can be then
inferred either to assist experts in diagnosing new patients or to train non-
specialists as a support tool [1].

In the context of computer-aided diagnosis, image-based systems are increas-
ingly relevant because ML algorithms enable automatic pattern recognition
that allows intrinsic biomedical structures to be associated with a specific dis-
ease [2]. Different imaging modalities have been explored in the literature
to aid decision making in countless diseases, e.g. fundus image, for ocular
disorders such as diabetic retinopathy [14], age-related macular degeneration
[15], glaucoma [16], etc.; X-ray imaging, for scoliosis [17], bone fracture [18],
pneumonia [19], etc.; magnetic resonance imaging (MRI), for Alzheimer [20],
colorectal cancer [21], Parkinson [22], etc.; computed tomography (CT), for
lung cancer [23], Covid-19 [24], intracranial haemorrhage [25], etc.

Originally, ML approaches based on medical imaging advocated sequential
learning in which a feature engineering process must be carried out before the
classification stage [26]. This type of hand-driven learning usually requires
the outcome of a prior image segmentation task to delimit the regions of
interest (ROIs) from which extracting the relevant information for a particular
disease [27]. Back in 2011, with the advent of deep learning running on GPUs,
a new range of promising possibilities opened up in the field of AI. Hand-
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crafted features began to be replaced by automatically learned embedding
when Krizhevsky et al. [28] demonstrated that the use of deep convolutional
neural networks (CNNs) provided a significant improvement in the ImageNet1

classification challenge. However, it was not until around 2015, two years before
the start of this PhD thesis, that deep learning began to gain a foothold in the
research area [29]. At that moment, according to de Bruijne et al. [30], one
of the main challenges facing deep learning was the lack of labelled data, as
for data to drive learning, a lot of data is needed. This long-standing problem
is now accentuated in the healthcare community, where technical and specific
expertise is required to label data.

Under ideal conditions, it is possible to train deep learning models using
millions of annotated samples in a fully supervised setting, but it is far
from the real-life scenario that medicine currently faces in daily practice.
This is just one of the reasons why traditional computer vision approaches
can sometimes lead to a better solution than deep learning, as conventional
algorithms are not class-specific, but work the same for any image. In contrast,
the features learned from a deep neural network are dependent on the training
dataset which, if it does not account for variability, is likely to perform poorly
in predicting new samples. In [31], a comparison is made between deep
learning and traditional ML algorithms providing limitations and advantages
of each strategy. Mahony et al. [31] also discussed mixing hand-crafted and
deep learning approaches in a hybrid framework for better performance, as
conventional algorithms provide transparency and power efficiency, whereas
deep learning offers higher accuracy and versatility [32]. Moreover, the issue
of limited healthcare-related information opens the door to many other deep
learning paradigms intended to deal with the lack of labelled data, e.g. self-
training, unsupervised, semi-supervised, few-shot learning, etc.

In this PhD thesis, we explore all these families of learning methods to exploit
the potential of the AI for improving diagnostic accuracy and expert efficiency.
We propose innovative ML-based solutions to cover two interesting research
areas at the leading edge of medical imaging [33]: digital pathology and
ophthalmology. Regarding the former, histopathological images digitised from
biopsied tissues have recently come under the spotlight to characterise different
types of cancer via ML algorithms. Most of the state-of-the-art studies focus
on prostate cancer to assist pathologists in Gleason grading of tumours [3,
4]. However, histological imaging allows the analysis of other types of cancer
such as melanoma [34], osteosarcoma [35] and colorectal cancer [36], among
others [37, 38]. In this PhD thesis, we mainly focus on prostate cancer

1https://image-net.org/download-images
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using whole-slide images (WSIs) stained by Hematoxylin and Eosin (H&E)
(Chapter 2). To go further in histological image-based diagnosis, we also
propose a novel framework for bladder cancer grading using WSIs stained by
immunohistochemistry techniques (Chapter 3). Concerning the ophthalmology
field, AI-based methods have been also explored in the literature to analyse
several optical disorders, especially from fundus image and OCT-based data.
Since our aim is the assessment of glaucoma, we advocate the use of the
OCT technology, as it is the imaging modality par excellence for glaucomatous
damage evaluation [39]. To carry out a robust exploration of ML algorithms
aimed at glaucoma detection, we cover both 3D and 2D data using spectral-
domain (SD)-OCT volumes (Chapter 4) and circumpapillary OCT B-scans
(Chapter 5), respectively.

Big players

According to [40], the recent impact of digital and computational pathology is
reflected in academia through the increase in publications. Specifically, from
the studies published in the last 10 years related to the terms of computational
pathology and AI, PubMed and Google Scholar respectively report that 77.48%
and 83.09% have been registered in the last 5 years, which is evidence of the
growing interest of the scientific community in this field. In addition, big
players such as Google Health [41, 42] and Philips [43], among others, are now
at the forefront of computational pathology aimed at assisting pathologists
through artificial intelligence. Other important entities also show interest
in this field. The Food and Drug Administration (FDA) approved the first
American digital pathology system for diagnostic use in 2017 [44]; the UK Life
Sciences Industrial Strategy reinforced actions for the use of digital pathology
[45]; the Royal College of Pathologists highlighted the need for investment
to support digital pathology infrastructure [46] and the Innovative Medicines
Initiative (IMI) launched an H2020 call focused on supporting the collaborative
development of artificial intelligence in pathology in 2019 [47].

Similarly, the ophthalmology field has shown significant progress with the
breakthrough of AI in the assessment of different optical diseases through
diagnostic imaging, especially using fundus images and OCT data. As before,
this is evident in academia from the percentage of publications in recent years.
Looking at OCT and AI-related studies published in the last 10 years, PubMed
and Google Scholar record, respectively, that 75.96% and 85.55% are from
the last 5 years. Big players in this research area include DeepMind [48,
49] and IBM research [50], among others. Specifically, DeepMind has recent
publications in leading journals applying deep learning algorithms on OCT
samples to address age-related macular degeneration [48] and other retinal-
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derived diseases [49]. Furthermore, IBM research, in collaboration with the
New York University School of Medicine, is involved in glaucoma assessment, as
reported in [50], where Maetschke et al. proposed the use of 3D convolutional
architectures to detect glaucoma from OCT volumes. Additionally, some of
the world’s leading universities have shown interest in this research field in
recent years. For instance, Harvard University, with the review of AI on
ophthalmology carried out in [51], Stanford University, with different studies
for glaucoma assessment using OCT [52, 53] and Columbia University, with
other interesting works to evaluate glaucoma progression from B-scans [54, 55].

1.2 Objectives

The main objective of this PhD thesis is the design, development and validation
of innovative diagnostic-aid systems to understand how ML algorithms can
assist experts to manage specific diseases in clinical practice. We aim to
address a wide range of learning methods to cover different imaging domains
and problems via artificial intelligence. In particular, we set our sights
on hand-driven, deep learning and hybrid approaches for segmentation and
classification tasks. This thesis intends to frame these approaches in different
learning paradigms such as supervised, self-training, recurrent, few-shot and
fully unsupervised learning to include distinct supervision scenarios where the
amount of annotated data varies. In pursuit of this, we aim to develop new
ML algorithms able to address problems proposed by doctors and characterise
common diseases of each of the proposed imaging modalities.

In each chapter of this PhD thesis, different objectives are proposed depending
on the type of data. For histological imaging, the main target for both prostate
and bladder cancer scenarios is to recognise and characterise tumour patterns
in order to predict patient prognosis. In the prostate-based studies, we aim
to identify the first stage of cancer by segmenting and classifying histological
glandular structures via hand-driven and deep learning algorithms. In contrast,
in the case of bladder cancer, we opt for a self-recognition of high-resolution
patterns to determine tumour aggressiveness using fully unsupervised learning
methods. Concerning OCT data, the main goal is to detect and grade glaucoma
by applying ML algorithms on SD-OCT volumes and circumpapillary B-scans.
Specifically, we propose a novel glaucoma detection framework focusing on
recurrent knowledge to deal with SD-OCT cubes composed of unlabelled slides.
Furthermore, we aim to discern, for the first time, between different levels of
glaucoma severity by making use of circumpapillary images centred on the optic
nerve head (ONH) of the retina. To achieve these objectives, each proposed
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approach must undergo a sequential protocol based on the CRISP-ML(Q)
methodology [56], as detailed below:

• Data understanding. An in-depth exploration of the histological patterns
of prostate and bladder cancer should be carried out. Similarly, an
exhaustive analysis of OCT-specific glaucoma-related anomalies should
be performed.

• Data preparation. The databases corresponding to each particular disease
should be prepared for defining the learning framework and training the
models. Processing algorithms based on feature engineering should be
included in this step to select, clean, construct and standardise data.

• Modelling. This stage includes the design and development of innovative
ML-based predictive algorithms to provide optimal disease-specific
approaches. Different learning paradigms should be implemented to
handle the peculiarities of each disease and imaging modality. Previously,
state-of-the-art methods should be explored to propose cutting-edge
solutions for automatic image-based diagnostics.

• Evaluation. In this step, the robustness of the proposed models should be
determined through validation techniques. Quantitative and qualitative
results should be reported to compare the models’ performance with other
state-of-the-art methods. The identification of limitations and future
research lines should be also performed in this stage to decide if the
model can be deployed.

The last steps of the CRISP-ML(Q) methodology, i.e. Deployment and
Monitoring and Maintenance are not presented in this PhD thesis.

1.3 Main contributions

As mentioned above, we focus on two specific imaging modalities: i)
histopathology, to assist pathologists in the diagnostic process of prostate
and bladder cancer, and ii) optical coherence tomography (OCT), to help
ophthalmologists in glaucoma decision-making. In the course of this PhD
thesis, a transition from conventional ML to deep learning algorithms was
experienced through different biomedical image-based applications. In [57,
58], segmentation and classification tasks were addressed using conventional
and deep learning approaches, respectively, to detect and categorise prostate-
specific structures in histological images. In [59, 60], we carried out a
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comparison between hand-driven and data-driven algorithms to identify, in
a novel way, the first stage of prostate cancer by segmenting and classifying
histological glands locally. In [61], we faced, for the first time, a fully
unsupervised scenario employing deep clustering algorithms to self-recognise
the aggressiveness of bladder cancer from high-resolution histopathological
images. In an attempt to extend our AI knowledge to other imaging
modalities, we made use of OCT data to aid in the diagnosis of glaucoma.
In [62], we conducted a supervised pipeline for glaucoma detection using
fully convolutional neural networks (CNNs). Further on, in [63, 64], we
combined hand-crafted and automatic-learned OCT-specific features, giving
rise to innovative-hybrid approaches for optimal glaucoma detection. As a
novelty, in [65], we applied recurrent learning on unlabelled 2D images to find
glaucoma-specific spatial dependencies in SD-OCT volumes. In addition, we
explored advanced deep learning techniques for limited supervision. In [66],
we proposed a self-training framework for glaucoma grading to take advantage
of unlabelled samples through pseudo-labelling methods. Moreover, in [64], we
resorted to a new learning strategy based on supervised prototypical neural
networks (PNNs) to grade glaucoma under a redefined few-shot paradigm.

1.3.1 Contributions to prostate and bladder cancer from
histological images

Prostate cancer is the second leading cause of cancer death in men and one of
the most common types of cancers in the entire population [67]. Currently, the
diagnosis of this chronic disease is made by pathologists after extracting and
staining a sample of prostate tissue. Experts assign a specific score according
to the Gleason scale, from 1 to 5, in ascending order of aggressiveness [68].
Gleason grades 1 and 2 closely resemble the structure of normal tissues, where
individual and well-differentiated glands are evident. In contrast, Gleason
grades 3, 4 and 5 correspond to cancerous tissues (from less to more aggressive).
In Chapter 2, we aim to identify prostate cancer at its earliest stage by
discerning between normal tissues and those with a Gleason pattern of grade
3. One of the main contributions lies in the classification framework carried
out at the gland level. Unlike the state-of-the-art studies [69, 70], which
addressed prostate cancer detection attending to a slide-level label, we focused
on local gland patterns to determine the benign or malignant character of
each prostate gland present in the tissue sample. This is possible because
Gleason patterns 1, 2 and 3 have individual glands, while Gleason grades 4
and 5 show a different histological arrangement. As far as we are aware, our
study [60] detailed in Chapter 2, was the first in addressing gland detection and
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classification algorithms in a unified framework. For the gland segmentation
task, we innovatively applied the Locally Constrained Watershed Transform
(LCWT) method using the gland nuclei as the constraints required by the
algorithm [57]. Note that all important tissue components were extracted by
conventional clustering techniques. Further on, we improved the results of
the proposed LCWT algorithm by a novel deep segmentation network based
on residual and multi-resolution U-Net [59]. As for the classification task,
both hand-driven and deep learning approaches are detailed in Chapter 2.
The main contribution in this line is reported by the hand-crafted feature
extraction algorithm, which provides a fingerprint composed of four types of
descriptors. In addition to morphological, texture and contextual features, the
measurement of the Hurst exponent deserves a special mention, as [60] was the
first study in which the fractal dimension was considered for prostate cancer
detection. We also addressed the discrimination between normal and Gleason 3
pathological tissues through deep learning methods, namely by training CNNs
from scratch and fine-tuning the most popular ones in the literature [58].
Another related contribution was the publication of a new locally annotated
prostate cancer database with artefacts, benign and pathological glands [60].

Bladder cancer is the second most common urinary tract cancer and the fifth
most prevalent among men in developed countries [71]. As with prostate,
definitive diagnosis of bladder cancer requires a biopsy to examine the tumour
growth. Tissue samples are usually stained with hematoxylin and eosin (H&E)
to enhance the histological properties; however, as a novelty, we resorted to
digitised images stained with immunohistochemical CK AE1/3 to highlight
in brown the antigen-antibody binding. Bladder cancer can be non-muscle
invasive (NMIBC) and muscle-invasive (MIBC). We focus on the latter, as
it has the worst prognosis and favours tumour dissemination to adjacent
organs. MIBC corresponds to a high-grade urothelial carcinoma, but the
patient’s prognosis depends on the aggressiveness of the histological patterns
[72]. Specifically, we can find three types of patterns: nodular, trabecular and
infiltrative. In the study [61] detailed in Chapter 3, we coined the nodular and
trabecular patterns as class “mild” because they are associated with a better
prognosis. Contrarily, the infiltrative pattern denotes tumour budding, which
refers to the most aggressive scenario with a high mortality rate. In Chapter 3,
we provide a novel self-learning framework to discern between non-tumour,
mild and infiltrative patterns. The study details a fully unsupervised learning
methodology to recognise the MIBC-specific structures without the need for
prior annotation steps. It consists of a novel deep clustering architecture based
on an attention module aimed at refining the feature space and improving the
classification of high-resolution histological patches of MIBC.
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1.3.2 Contributions to glaucoma from optical coherence
tomography samples

Glaucoma is a degenerative optic neuropathy characterised by causing several
visual field defects, functional damage and structural changes in the optic nerve
[73]. Nowadays, this chronic disease is the leading cause of blindness worldwide
and is expected to affect 111.8 million people in 2040 [74, 75]. Current diagnosis
of glaucoma involves a large number of hardworking tests such as pachymetry,
tonometry and visual field testing, among others. Imaging-based techniques
have become of particular interest for glaucoma diagnosis, especially the OCT
modality, as it is able to measure the deterioration of retinal cell layers, which
is closely related to glaucoma disease. To contribute to OCT-based glaucoma
assessment, we propose two different ML frameworks to deal with 3D data,
via SD-OCT volumes, and 2D images, via circumpapillary B-scans. Regarding
the first one, our work [65] detailed in Chapter 4 addresses a novel glaucoma
detection scenario from ONH-centred SD-OCT slides labelled at the volume
level. For the first time, we advocated the use of a hybrid setup composed
of CNNs and Long Short-Term Memory (LSTM) networks to extract the
feature space from each slide and handle the information relative to the spatial
dependencies across the SD-OCT volume. We assumed each spatial slide as
a temporary instance, rather than resorting to 3D deep learning architectures
as state-of-the-art studies [50, 76]. As a novelty, we proposed a 2D-CNN
feature extractor that combines fine-tuned networks with convolutional blocks
trained from scratch through residual connections. We also included an identity
shortcut to refine the latent space extracted from each slide using an attention
module. Additionally, in [65], we detail a new way of codifying the LSTM
outputs by proposing a sequential-weighting module (SWM), which allows all
the outputs of each LSTM cell to be considered in a weighted manner. This
lead to an optimal convergence by providing more stable learning during the
model training. To compute and measure the performance of the learning
curves, we proposed two new metrics: i) OVFT, to quantify overfitting and ii)
QLTY, to quantify the quality of training by considering the stability (STBL)
and the amount of learning (LRNG). Finally, we report the class activation
maps (CAMs) to evidence not only the ROIs in each slide of the volume, but
also the most relevant slides to detect glaucoma from SD-OCT volumes without
losing the spatial information.

Concerning the 2D approach based on circumpapillary OCT B-scans, we
conducted two works ([62] and [63]) that form the basis of the study [64]
detailed in Chapter 5. Specifically, in [62], we proposed a fully-supervised
strategy for glaucoma detection by fine-tuning the most popular state-of-the-
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art architectures. Contrarily, in [63], we used the same dataset to validate the
performance of new CNNs trained from scratch. To cover all the possible
learning scenarios, we also performed fully hand-driven and hybrid-based
strategies to combine the hand-crafted and automatic features in the same
pipeline. Inspired by the results achieved in these previous works, in [64],
we proposed a hybrid network as a benchmark of a novel glaucoma-related
paradigm aimed at measuring, for the first time, the aggressiveness of the
disease from circumpapillary B-scans. The hybrid network is focused on
the late fusion of the features extracted from both fine-tuned architectures
conducted in [62] and the new hand-crafted methods proposed in [63]. One
of the main contributions addressed in [64] is the use of tailored PNNs to
optimise the classification performance between healthy, early and advanced
glaucomatous cases. We detail different prototype-based solutions in a few-
shot paradigm, in which the k-shot methodology was adapted to optimise
glaucoma grading via supervised learning. Further on, in [66], we carried
out a self-training framework for glaucoma grading under domain adaptation
techniques. We proposed a two-step learning methodology to transfer, via
pseudo-labelling, domain knowledge from an unlabelled dataset (target) to a
model previously trained on a labelled dataset (source).

1.4 Framework

This PhD thesis is part of three different research projects, as detailed below:

• SICAP − Sistema de interpretación de imágenes histopatológicas para
la detección del cáncer de próstata. This is a national project whose
objective was to develop a diagnostic aid system for prostate cancer by
classifying histopathological images from biopsies into different grades
according to the Gleason scale. SICAP project was funded by the
Ministerio de Economía, Industria y Competitividad (DPI2016-77869-C2-
1-R). Chapter 2 contributes to this project in the design and development
of a classification system capable of identifying the first stage of prostate
cancer from specific histological structures.

• GALAHAD − Glaucoma-advanced, label-free high resolution automated
OCT diagnostics. This is a European project that aimed to improve
the axial resolution of OCT equipment and explore polarisation sensitive
applications of OCT to develop an early warning glaucoma screening test.
GALAHAD project was funded by the European Commission through
Horizon 2020 [H2020-ICT-2016-2017, 732613]. Chapter 4 and Chapter 5
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contribute to this project on glaucoma detection from SD-OCT volumes
and glaucoma grading from circumpapillary B-scans, respectively.

• CLARIFY − Cloud artificial intelligence for pathology. This is another
European project that proposes the creation of a research infrastructure
based on AI and cloud-oriented data algorithms to facilitate the
interpretation and diagnosis of triple-negative breast cancer (TNBC),
high-risk non-muscle-invasive bladder cancer (HR-NMIBC) and spitzoid
melanocytic lesions (SML) from histopathological images. CLARIFY
project was funded by the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska Curie grant
agreement (No 860627). Chapter 3 contributes to this project giving
rise to a self-learning framework for the assessment of bladder cancer by
applying unsupervised techniques on histological images.

1.5 Outline

This thesis is divided into 6 chapters. The current chapter introduces the
motivation behind the research involved in this thesis, the proposed objectives
and the main contributions. Subsequently, this chapter also details the
framework and the thesis outline.

Chapter 2 corresponds to the paper: "First-Stage Prostate Cancer Identifica-
tion on Histopathological Images: Hand-Driven versus Automatic Learning"
[60]. It was published in the journal Entropy belonging to the editorial Multi-
disciplinary Digital Publishing Institute (MDPI). Entropy had an impact factor
of 2.494 when the article was published in 2019, an impact score of 3.01 and
an h-index of 74. The best rank was in the category physics, multidisciplinary
with a percentile of 61.76 (Q2).

Chapter 3 corresponds to the paper: "A Novel Self-Learning Framework
for Bladder Cancer Grading Using Histopathological Images" [61]. It was
published in the journal Computers in Biology and Medicine (CIBM) belonging
to the editorial ELSEVIER. The paper was published in 2021, but the following
publication details correspond to 2020, as the most recent journal indexes date
from that year. CIBM journal had an impact factor of 4.589, an impact score
of 5.59 and an h-index of 94 in 2020. The top ranking was in the category
mathematical & computational biology with a percentile of 88.79 (Q1).

Chapter 4 corresponds to the paper "Glaucoma Detection from Raw SD-OCT
Volumes: a Novel Approach Focused on Spatial Dependencies" [65], published
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in the journal Computer Methods and Programs in Biomedicine (CMPB). The
paper was also published in 2021, but the publication data is for 2020. CMPB
journal had an impact factor of 5.428, an impact score of 6.67 and an h-index
of 102 in 2020. The best rank was in the category computer science, theory &
methods with a percentile of 88.64 (Q1).

Chapter 5 corresponds to the paper "Circumpapillary OCT-Focused Hybrid
Learning for Glaucoma Grading Using Tailored Prototypical Neural Networks"
[64], published in the jorunal Artificial Intelligence in Medicine (AIIM). As
before, the paper was published in 2021, but the publication details date from
2020. AIIM journal had an impact factor of 5.326, an impact score of 6.69
and an h-index of 87 in 2020. The top ranking was in the category medical
informatics with a percentile of 78.33 (Q1).

Note that Chapters 2, 3, 4 and 5 base on the same communication structure.
First, they present an abstract followed by an introduction containing a review
of the literature and the contribution of the proposed work. Next, the material
section explains the datasets used to train and evaluate the developed ML
algorithms, which are explained in the following methodology part. Then, the
performance reached by the proposed methods is presented and discussed in
the results and discussion sections, respectively. At the end, a brief conclusion
recapitulating the main results and contributions of each work is included.

In Chapter 6, we relate the findings from each paper with the global aim of
this PhD thesis. We also collect final remarks from a global perspective and
suggest future research lines. Then, in Merits, we include journal publications,
national and international conferences, as well as research awards derived from
this thesis. Finally, we display the Bibliography.
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Chapter 2

First-Stage Prostate Cancer Identification on
Histopathological Images: Hand-Driven versus

Automatic Learning

The content of this chapter corresponds to the author ver-
sion of the following published paper: García, G., Colomer,
A. & Naranjo, V. First-stage prostate cancer identification on
histopathological images: Hand-driven versus automatic learning.
Entropy, 21(4), 356 (2019).
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Abstract

Analysis of histopathological image supposes the most reliable procedure to
identify prostate cancer. Most studies try to develop computer aid-systems to
face the Gleason grading problem. Contrary, we delve into the discrimination
between healthy and cancerous tissues in its earliest stage, only focusing on the
information contained in the automatically segmented gland candidates. We
propose a hand-driven learning approach, in which we perform an exhaustive
hand-crafted feature extraction stage combining in a novel way descriptors
of morphology, texture, fractals and contextual information of the candidates
under study. Then, we carry out an in-depth statistical analysis to select the
most relevant features that constitute the inputs to the optimised machine
learning classifiers. Additionally, we apply for the first time on prostate
segmented glands, deep learning algorithms modifying the popular VGG19
neural network. We fine-tuning the last convolutional block of the architecture
to provide the model specific knowledge about the gland images. Hand-driven
learning approach, using a non-linear Support Vector Machine, reports a slight
outperforming over the rest of experiments with a final multi-class accuracy
of 0.876± 0.026 in the discrimination between false glands (artefacts), benign
glands and Gleason grade 3 glands.



2.1 Introduction

2.1 Introduction

Nowadays, prostate cancer is one of the most diagnosed types of cancer in
the world, according to the American Cancer Society (ACS) [67]. This study
reveals that prostate cancer supposes the second cause of death related to
cancer in men and the first type of cancer concerning the estimated new cases.
The ACS also situates this disease as one of the most common types of cancer
in USA concerning the general population, although it only affects men. The
Spanish Society of Medical Oncology (SEOM) [77] exposes prostate cancer as
a chronic disease due to their very high incidence and 5-years prevalence ratios.
For this reason, it becomes necessary to carry out a fast and accurate diagnosis
facilitating an early treatment to improve the quality of life of the patients with
this chronic disease.

At present, the diagnostic procedure to detect prostate cancer is a very time-
consuming task that is manually accomplished by pathologists or urologists.
First, they carry out a rectal examination to find anomalies in the size of the
prostate gland. The next step is to perform some analysis based on detecting
specific antigens in the blood, such as Prostate-Specific Antigen (PSA) and
Prostate-Cancer Antigen (PCA3). If all non-invasive tests are positive, experts
extract a sample of tissue and submit it to a preparation process composed
of four phases: fixation, inclusion, cutting and staining. Once the samples
are stained using the Hematoxylin and Eosin (H&E) pigment, specialists
perform an in-depth examination under the microscope, or by computer if the
samples are previously digitised, to determine the definitive diagnosis. Finally,
pathologists base on the Gleason classification system [68] to assign specific
scores (from 1 to 5) to each tissue depending on the cancer aggressiveness (see
Figure 2.1).

Gleason grades 1 and 2 closely resemble the structure of normal tissues, since
both have large and well-defined gland units. In addition, lumens contain
large areas surrounded by cytoplasmic complexes and usually by an epithelial
multi-layer of nuclei. More specifically, Gleason pattern 1 corresponds to a well-
differentiated (low grade) carcinoma, whereas Gleason pattern 2 corresponds
to a moderately differentiated carcinoma. Gleason grades 3, 4 and 5 are related
to cancerous tissues (from less to more severe). In particular, a Gleason pattern
3 is characterised by presenting dimensions of lumens and glands smaller and
more circular. Besides, the cell density of the epithelial nuclei layer is lower
in the pathological tissue. Gleason pattern 3 also corresponds to a moderately
differentiated carcinoma. Regarding the Gleason grade 4, there are no gland
units, but glandular regions composed of the fusion of not well-defined glands.
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Chapter 2. First-Stage Prostate Cancer Identification

Contrarily, the Gleason grade 5 is easily differentiated by the presence of a
large number of scattered nuclei along the stroma. Gleason grades 4 and 5
correspond to a poorly differentiated carcinoma and an anaplastic carcinoma,
respectively. (See Figure 2.1).

Gland unit

Lumen

Cytoplasm

Stroma

Nuclei Glandular 
region

(a) (b) (c) (d)

Figure 2.1: Histological prostate-specific patterns according to the Gleason scale. (a)
Grade 2 (normal). (b) Grade 3. (c) Grade 4. (d) Grade 5.

2.1.1 Related work

Currently, the biopsy analysis entails a considerable subjectivity level between
pathologists, besides a large workload. For this reason, there are a lot of studies
in the state of the art whose goal is to provide automatic models capable
of reporting an initial indicative diagnosis from histopathological images. In
most of these studies, the authors tried to perform computer-aided prognosis
to discern between all Gleason grades [78–81] or simply between cancer and
non-cancer [69, 82, 83]. Nevertheless, we propose, for the first time, a
gland classification system exclusively focused on patterns corresponding to
moderately differentiated carcinomas. Our aim is to the pathologists to reduce
the workload and the subjectivity level when they try to diagnose this type of
heterogeneous structures.

In the literature, we can mainly find three different image-processing strategies
for encoding the relevant information of the histological images: i) construction
of patches, ii) detection of regions of interest (ROIs) and iii) segmentation of
gland units. Note that the kind of descriptors to extract the key information
from the image is highly dependent of the selected approach.

Image processing associated with the construction of patches lies in dividing
the whole-slide image (WSI) into different sub-images from which to extract
discriminant information. It is the simplest approach, as it evaluates the
histological image without any previous identification of ROIs. In [84] the
authors implemented an initial sliding window protocol of 512 × 512 pixels
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with a 10% of overlap, from 12 histological scenes of 2295×4407 pixels. Later,
using sub-regions of 100× 100 pixels and applying textural and morphological
descriptors, they achieved an accuracy of 0.79 in the distinction of stroma,
normal and cancer tissues. In another study [85], the researchers analysed
the fractal dimension of sub-bands derived from 1000 patches obtained with
a magnifying factor of 40×. Support Vector Machine (SVM) classifiers were
used to achieve an accuracy of 0.86 in the Gleason classification system. In [81],
Farooq et al. reported an overall accuracy of 98.3% in the Gleason grading of
268 images of 2448×3264 pixels. They applied a k-nearest neighbour classifier
(K-NN) using textural features based on Local Binary Patterns (LBPs) and
Gabor Filters. In a more recent study [69], Esteban et al. used 45 WSIs from
which they composed sub-regions of three different dimensions: 512 × 512,
1024× 1024 and 2048× 2048 pixels. The best accuracy (0.98) was achieved by
applying a linear SVM classifier on the 1024× 1024 images.

The strategy based on ROI identification enables the extraction of more specific
features. Notwithstanding, it entails a clear limitation, as it requires either
a manual identification, which supposes a tedious workload, or a previous
automatic identification, which assumes an additional error during the process.
This approximation is widely used in the state of the art because it allows for
the training of a model exclusively based on relevant information. In [86],
the authors tried to distinguish between stroma, benign epithelium, Gleason
grade 3 and Gleason grade 4. They extracted morphological and textural
features from 54 labelled tissue patches at 40× optical magnification, which
resulted in an accuracy of 0.85. In [79], Tabesh et al. made use of 268
colour images from representative areas of hematoxylin and eosin to address
the Gleason grading. They utilised colour, texture and morphometric features
and achieved an accuracy of 0.81 by means of the K-NN and SVM classifiers.
Arvaniti et al. [70] developed a Gleason grading system directly using a dataset
of Gleason annotations that contained 5 tissue microarrays (TMAs) at 40×
magnification. The authors divided each annotated TMA spot (3100 × 3100
pixels) in several patches (750 × 750 pixels), discarding those with multiple
annotations. They trained a convolutional neural network (CNN) based on the
MobileNet architecture. Then, the patches were reconstructed to the original
spot size to evaluate them in terms of average recall. The reported results
showed an accuracy of 0.7 concerning to the Gleason grading task.

The strategy related to gland unit segmentation is similar to the previous
one, as it also lies in identifying specific parts of the tissue that contain
information of interest. Whereas in ROI-based detection, several patterns
associated to different classes must be found, e.g. a group of poorly defined
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glands or an accumulation of nuclei, in the gland unit segmentation approach,
a single type of structures (individual glands) should be segmented along the
whole tissue. In [82], the authors applied a KNN classifier on an imbalanced
dataset of 199 images and they reported an accuracy of 0.95 per image, only
discerning between benign and malignant tissues. First, they used texture-
based techniques to segment the prostate glands and they extracted several
shape features to address the classification process. In [83], Kwak et al.
performed a tissue segmentation using 189 features based on the intensity
and texture of the pixels. From the segmented regions of lumens and nuclei
structures, the authors applied a total of 670 morphological features to detect
prostate cancer. They reported an Area Under the ROC Curve (AUC) of 0.98
using a multi-view boosting classifier. In another recent study [87], Leo et al.
made use of the Nuclei-Lumen Association (NLA) algorithm, proposed in [88],
to carry out the gland unit segmentation. Then, the authors extracted features
based on graphs and texture, as well as shape and orientation disorder of the
glands, to distinguish between cancerous and non-cancerous regions. Leo et
al. finally reported an AUC of 0.98 by applying random forest classifiers on
a database composed of 398 regions at 20× and 40× optical magnification.
Similar state-of-the-art studies [78, 80, 88] advocate for a similar strategy to
ours, as they used the lumen area as a starting point to address the gland unit
segmentation. This approach also entails the segmentation of specific objects
called “artefacts”, which are characterised by presenting a very similar structure
and colour to the lumen elements. However, artefacts are differentiated because
they are not surrounded by cytoplasm and epithelial nuclei components, unlike
the lumens. Naik et al. [78] implemented a Bayesian classifier to detect the
lumens and perform the gland segmentation from them. Nevertheless, the
results showed important limitations, as the gland boundaries were delimited
by the cytoplasm structure, instead of by the nuclei components according to
the medical literature [80]. From the previously segmented glands, Naik et
al. applied morphological and textural features to a database composed of
44 images with an optical magnification of 40×. They reported an accuracy
of 0.86 using a SVM classifier to distinct between benign and Gleason grade
3 tissues. In contrast, Nguyen et al. [88] developed the NLA algorithm to
segment the gland units, which consisted in the linear union of the nuclei
surrounding the lumen of a prostate gland. After the segmentation stage, the
database was composed of 525 artefacts, 931 benign glands and 1375 cancer
glands. The authors extracted a total of 22 features based on the context
of each gland candidate and they reported an accuracy of 0.77 by applying
a SVM classifier to distinguish between the three classes. Note that, unlike
the classification processes of the aforementioned works focused on a gland-
unit level, the validation of the proposed methodologies were performed in a
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patch or image-wise way. The study performed in [88] is one of the few studies
(along with ours) in which the predictive models were created and evaluated
from the individual gland candidates, instead of from regions. This strategy
entails lower overall accuracy, but more reproducible and reliable results. The
study performed in [89] is another example where the authors also carried
out a gland classification by discriminating between benign and pathological
glands. However, in that case, the artefacts elements were not considered. The
researchers extracted colour distributions, textural and structural features from
the previously segmented 159 benign and 108 pathological glands. They finally
reported an accuracy of 0.86 via SVM and boosted trees classifiers.

2.1.2 Contribution of this work

We present in this paper an extended version of our previous work [90],
in which we made a comparison between traditional hand-driven and deep
learning techniques for histological glands classification. The main difference
with respect to all aforementioned studies is that we only focus on the
identification and classification of individual glands what correspond to
moderately differentiated carcinomas. This is because such individual glands,
in spite of presenting a relatively homogeneous structure, contain the necessary
information to discern between normal and pathological tissues with a low
grade of cancer, according to the stipulated by the specialists in pathological
anatomy. Note that the discrimination between normal and cancerous tissues
in a first stage could be decisive in the treatment of the patient.

We address the classification task from the individual gland candidates
automatically segmented by means of the Locally Constrained Watershed
Transform (LCWT) [91], which was applied for the first time on histological
images in our previous work [57]. The proposed LCWT algorithm reported
better results, in terms of intersection over union (Jaccard index), than
the popular NLA algorithm [88] which, in turn, outperformed the methods
developed in [78, 92].

Regarding the approach related to the hand-driven learning, we incorporate
a novel hand-crafted feature extraction stage based on four global kinds of
descriptors. Besides morphological and textural-based descriptors applied on
most of the studies [78, 82, 84, 86, 87], we also use descriptors related to the
fractal dimension, like [79, 85, 93], and contextual features, similarly to [80,
88]. Until now, each kind of descriptor had been implemented separately, but
in this paper, we build a hybrid fingerprint able to encode all the relevant
information included in the gland units.
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According to the state-of-the-art studies [70, 94, 95], which demonstrated
the high viability of the deep learning techniques in the field of the
histopathological prostate image, we also include in this paper a convolutional
neural network (CNN) to detect the first stage of prostate cancer. Notably, to
the best of the author’s knowledge, this is the first study that purely use the
gland candidates as an input of a CNN, instead of patches or ROIs.

Another contribution of this work is the presentation of a new database
composed of prostate glands candidates, which is divided per categories into:
artefacts, benign and pathological glands. Note that we provide two images
per gland candidate: the bounding box enveloping the candidate and the
same bounding box, but masked according to the outputs from the gland
segmentation stage.

2.2 Material

The database used in this paper consists of 35 WSIs (17 corresponding to
healthy tissues and 18 containing tumour prostate areas) like the one shown in
Figure 2.2 (a), which was pixel-wise annotated by an expert pathologist of the
Hospital Clínico Universitario de València. The samples belong to 8 healthy
and 17 patients with prostate cancer in an initial stage. From each slide, we
performed a pre-processing step to identify the bounding box containing tissue
information (Figure 2.2 (a)). Once the useless information was removed, we
implemented a sliding window protocol to work with sub-images of reduced
size that allow for improved performance in terms of resolution and local
information (Figure 2.2 (b)). In particular, we divided the detected bounding
box from the WSI in patches of 1024× 1024 pixels (10× magnification). Next,
aimed at improving the computational cost without affecting the study, we
applied another processing step to discard those patches with less than 5% of
tissue pixels. This resulted in a database (prior to the segmentation process)
composed of 854 benign and 614 Gleason grade 3 sub-images of 1024 × 1024
pixels (see Figure 2.2 (c)).

After the segmentation stage, we obtained the final database for the
classification task, which contains 3.195 benign glands, 3.000 cancerous glands
of Gleason grade 3 and 3.200 artefacts (false glands). Note that we randomly
selected some artefacts from the total obtained (22045) in order to balance the
number of samples per class. The resulting database, including original gland
candidates and the corresponding segmented masks, can be downloaded from
https://cvblab.synology.me/PublicDatabases/ProstateGlandDB.zip.
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(a) (b) (c) (d)

Figure 2.2: Material. (a) Example of a WSI. (b) Region of interest to perform the sliding
window protocol. (c) Sub-image of 1024×1024 pixels to address the segmentation task. (d)
Gland candidate achieved after applying the LCWT segmentation method.

2.3 Methods

The methodology implemented in this paper is represented in the diagram
exposed in Figure 2.3, in which we show the two strategies carried out from the
segmented gland candidates. Regarding the hand-driven learning approach, we
initially applied a hand-crafted feature extraction stage based on four families
of descriptors. Then, we performed a statistical analysis to select the best
features in terms of correlation and discriminatory ability. Once the normalised
matrix of key features was extracted, we carried out a data partitioning
to divide the items into different sets in order to build reliable predictive
models for the classification stage. We achieved results per gland from two
different machine learning classifiers. Concerning the deep learning approach,
we directly addressed the data partitioning from the previous segmented gland
candidates. We created 5 sets of images corresponding to such candidates,
which constitute the input for the implemented CNN. Specifically, the network
includes both the feature extraction stage, defined by the combination of
four convolutional blocks, and the classification stage composed of two fully-
connected layers. Finally, the performance of the proposed hand-driven and
deep learning approaches was compared and best model was selected to predict
samples from new patients.
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Figure 2.3: Flowchart of the two proposed learning approaches to perform the gland
candidates classification.

Background . The first step was to separate the four main components that
appear in the H&E prostate images, i.e. lumens, nuclei, cytoplasm and stroma,
in order to compute different features from each component, as well as from the
relation between them. Similarly to [87, 88], we applied clustering algorithms
based on the k -means technique to carry out the identification of each tissue
component. However, unlike the previous studies that only used the RGB
image as an input for the clustering step, we used different colour spaces
depending on the component mask that we wanted to extract. In particular,
we made use of the saturation channel SHSV from the HSV (Hue, Saturation
and Value) colour space to detect the lumen objects; the cyan channel CCMYK

from the CMYK (Cyan, Magenta, Yellow and Key) colour space to identify
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the cytoplasm and stroma components; and a reshaped RGB image VRGB to
achieve the nuclei elements, as depicted in Figure 2.4 (a). From an initial RGB
image IRGB of dimensions 1024×1024, we applied a reduction factor of 50% and
performed the colour transformations to obtain each one of the four candidate
maps. Once the different channels were computed, we selected the number
of clusters k in which the pixels of IRGB should be grouped. Specifically, we
established k = 3 to obtain the map of lumen candidates Lm, as well as the
maps of the cytoplasm Cm and stroma Sm candidates. In contrast, we set k = 4
to acquire the nuclei map Nm. We ran k -means algorithm on the SHSV , CCMYK

and VRGB images to group the pixels of each image into k different classes
according to their intensity level. After the clustering stage, we obtained three
labelled images LI (one from each colour space), whose pixels can take values
from 1 to k, depending on the previous unsupervised pixel classification (see
Figure 2.4 (b)). From here, we carried out a thresholding of each LI image by
determining the value of the pixels associated with a specific tissue component,
as shown in Figure 2.4 (c). For instance, to achieve the lumen structure Lm,
we binarised the LIHSV image according to Eq. 2.1, as the darkest pixels of
the LIHSV correspond to the lumen structures.

Lm =

{
1, if LIHSV = min(LIHSV )

0, otherwise
(2.1)

Additionally, we performed a post-processing stage, from the outputs of the
clustering phase, to reduce noise and provide the final binary maps: Lmap,
Cmap, Smap and Nmap, exposed in Figure 2.4 (d). We applied different
morphological operations depending of the tissue map. To achieve the map
of lumen candidates, we implemented a filtering operation called area opening
(γa

λ) from the set of pixels X ⊆ Lm ⊂ R2. This morphological operation is
defined by the union of all connected components of X whose area is greater
than a specific number of pixels λ, according to Eq. 2.2:

γa
λ(X) =

⋃
{Xi | i ∈ I, Area(Xi) ≥ λ} (2.2)

After applying the area opening filter with a specific λlum = 20 pixels, we
implemented a dilation operation described as: δB(X) = X ⊕B, where B is
a structuring element (SE) with radius r = 1 and disk shape. Regarding the
maps of cytoplasm Cm and stroma Sm, we carried out a filtering phase based
on an opening operation defined by γB(X) = (X⊖B)⊕B, followed by another
area opening with λcyto = λstr = 20 pixels to discard the non-consistent sets of
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pixels. With respect to the nuclei elements, we first applied a dilation using the
SE B to emphasise the importance of the nuclei around the gland. Then, we
again implemented an area opening γa

λ with λnuc = 20 to discard non-epithelial
nuclei scattered across the stroma region.

Note that both clustering and post-processing algorithms were carried out
from the 1024 × 1024 RGB images. The resulted binary maps of each
tissue component was employed to address the segmentation stage via LCWT
algorithm [57]. Then, LCWT outcomes were used as a starting point of the
proposed classification framework aimed at distinguishing between artefacts,
benign glands and pathological glands.
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Figure 2.4: Process to obtain the binary map of each tissue component. (a) Outputs after
the colour space transformations. (b) Labelled images achieved from the clustering stage.
(c) Masks obtained after the binarisation. (d) Final maps of each tissue component.
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2.3.1 Hand-driven learning approach

2.3.1.1 Feature extraction

This stage supposes one of the most remarkable novelties of this paper since,
for the first time, we include information relative to the combination of 241
features extracted from four different families of descriptors.

Morphological descriptors. Several state-of-the-art studies demonstrated
the viability of this kind of features in the characterisation of the histological
prostate image [78, 82, 83]. Therefore, we used a total of 20 features related to
the morphology of the glands and their respective lumens, taking into account
the differences of the Gleason grades detailed in Section 2.1. From the gland
candidates segmented by the proposed LCWT method (see Figure 2.5 (a)), we
acquired gland and lumen masks to extract the same 10 shape and geometry-
based features from each specific structure. In this way, let GlandRGB be a
colour image of dimensions M×N , in which each pixel p(i, j) is denoted by the
system (Eq. 2.3), we decomposed the image into its three colour components
(R, G, B), and added them according to Eq. 2.4.

p(i, j) =
[
a b c

] Ri,j

Gi,j

Bi,j

 , where [a, b, c] ∈ [0, 255] (2.3)

RGBs =
M∑
i=1

N∑
j=1

Ri,j +Gi,j +Bi,j (2.4)

We applied the Otsu method [96] to identify an optimal threshold for gland
mask extraction. Then, we carried out a filtering procedure based on area
opening with 4-connectivity and λ = 20 pixels, followed by a flood-fill operation
on the background pixels. Once the gland mask Gmask (represented by the
white pixels in Figure 2.5 (b)) was extracted, we achieved the lumen mask
Lmask (Figure 2.5 (c)) by identifying the lumen pixel candidates included inside
the coordinates of the gland mask previously detected. Note that the name
of each morphological feature is accompanied by G or L (gland or lumen)
depending on the element under study. To explain the morphological features,
we only define below those corresponding to the gland masks, but the same
operations were computed for lumen masks.
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(a) (b) (c)

Figure 2.5: Gland processing. (a) Segmented Gland. (b) Gland mask. (c) Lumen mask.

• Garea. Number of pixels containing a specific gland candidate.

• GconvexArea. Number of pixels in the region known as convex hull that is
defined by the smallest convex polygon around the gland.

• Geccent. Ratio of the distance between the centre of EG and its major axis
length, where EG is the ellipse adjusted to the gland area with the same
second moments.

• GequivDiam. Diameter of a circle with the same area as the gland, defined
by: GequivDiam = 4∗Garea

π
.

• Gextent. Ratio of pixels between Garea and the area of the bounding box
GbBox that contains the gland. It is computed via Gextent =

Garea

GbBox
.

• Gorientation. Angle between the x-axis and the major axis of EG.

• Gperimeter. Number of pixels describing the edge of the gland.

• Gsolidity. Proportion of the pixels in the convex hull also included inside
the area of the gland. It is described as: Gsolidity = Garea

GconvexArea
.

• Groundness. Scalar that measures the compact character of the gland by
Groundness =

RG∗Gperimeter

Garea
, where RG is the radius of the gland.

• Gcompactness. Scalar indicating how round the gland is via Gcompactness =
Gperimeter√

Garea
.

Fractal analysis. Several state-of-the-art studies, such as [79, 83, 85, 93],
used features based on different fractal dimensions to address the classification
of histological prostate images. We applied, for the first time on this kind of
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images, a fractal analysis based on the Hurst exponent H [97]. We made use
of three different grey-scale images (cyan, hematoxylin and eosin) in order to
take into account the contributions of different colour spaces (see Figure 2.6).
Cyan was used because it is the channel in which the differences between
the four tissue components can be better differentiated. In addition, we
computed the hematoxylin and eosin colour images by means of the colour
deconvolution method proposed in [98], which was also implemented in other
studies of the state of the art related with this research field [69, 99]. The
colour deconvolution method enables the separation of the contributions of
each stain by calculating the Optical Density (OD) parameter (Eq. 2.5); where
A is the absorbance and Cs is the concentration of a specific stain s.

ODs = A ∗ Cs (2.5)

(a) (b) (c) (d)

Figure 2.6: Colour space transformation. (a) RGB image. (b) Cyan channel. (c)
Hematoxylin stain. (d) Eosin contribution.

For each colour image, we extracted the Hurst exponent H, which is related to
the fractal Brownian motion (fBm). This fBm is a Gaussian, self-similar and
non-stationary process BH(t) on [0,T], whose co-variance function (Eq. 2.6)
was introduced in [100].

ρ(s, t) = E[BH(t)BH(s)] =
1

2
(|t|2H + |s|2H − |t− s|2H), ∀H ∈ [0, 1] (2.6)

where 0 < s ≤ t and H corresponds to the aforementioned Hurst exponent,
which governs the stochastic representation of the fBm and allows for the
measurement of the tortuosity of the images. H is related to the fractal
dimension such that H = E + 1 − FD, where E is the Euclidean dimension
and FD the fractal dimension that takes higher values when the signal is more
complex.
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Being X the grey-scale bounding box of dimensions M × N that contains a
specific gland candidate (Figure 2.7 (b)), and taking into account that the fBm
is a non-stationary process, it is more convenient to analyse the incremental
process of the fBm (Figure 2.7 (c)), i.e. the fractional Gaussian noise (fGn)
defined as follows:

Gt(a) = BH(a+ 1)−BH(a) (2.7)

Once the fGn was computed, we calculated the discrete Fourier transform
(Eq. 2.8), from the 1D signal d[n] (Eq. 2.9), where m and n denotes the row
and column indices, respectively. We expose in Figure 2.7 (d) an example of a
1D signal for m = 1.

D[a] =
N−1∑
n=0

d[n]e
−j2πan

N (2.8)

d[n] = X[m,n+ 1]−X[m,n] (2.9)

From the fGn function and being D′[a, b] a 2D matrix composed of the M
rows corresponding to all 1D signals previously achieved, we calculated the
average Power Spectral Density (PSD) as follows:

PSD[a] =
1

M

M−1∑
t=0

D′[a, b] (2.10)

In a log-log scale, the PSD function of the fGn corresponds to a line of slope
1 − 2H, which we obtained via linear regression, as shown in Figure 2.7 (e).
The Hurst exponent H was finally calculated to determine if the pixels of the
gland candidates followed purely random patterns or kept underlying trends.
In particular, we considered L = 5 directions to calculate the Hurst exponent
along each one of them: H = {H0, H30, H45, H60, H90}. Our aim was to cover
different patterns in the orientation of the glands. Note that H was extracted
from the cyan, hematoxylin and eosin channels, so that 15 features related to
the fractal dimension (Hcyan, Hhmtx and Heosn) were finally computed.

Texture descriptors. In this work, we propose two kinds of descriptors
for encoding the textural information related to the artefacts, benign and
pathological glands. Specifically, we used Gray-Level Co-occurrence Matrix
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(d) (e)

Figure 2.7: Fractal analysis. (a) Original bounding box corresponding to a RGB gland
candidate image. (b) Cyan channel of the specific gland candidate. (c) Increments of the
fBm corresponding to the fractional Gaussian noise fGn. (d) 1D signal calculated from
the fGn for m = 1. (e) PSD of the increments of all rows from the gland candidate.

(GLCM), similarly to Leo et al. [87], who calculated a 18 × 18 co-occurrence
matrix to obtain information about the glands orientation. In other studies
such as [84, 86, 101], the authors also applied GLCM-based techniques
on histological regions, instead of on gland units. Additionally, we used
Local Binary Patterns (LBP) to extract local intensity changes of the gland
candidates, unlike other works which used LBP to segment different tissue
structures [83, 99] or to discriminate between cancerous and non-cancerous
patches [69, 81]. Note that, in this case, we also made use of the cyan,
hematoxylin and eosin channels to extract a total of 186 textural features.

Gray-Level Co-occurrence Matrix (GLCM) is a matrix of frequencies, in which
it is represented (on the (i,j)-position) the number of times that a pixel with
an intensity value i is adjacent to another pixel with intensity value j. During
the GLCM creation, we specified the number of adjacent pixels D that must
have the intensity value j = i, as well as the direction (angle) in which such
pixels are considered adjacent. In Figure 2.8 (a), we show an example of a
GLCM obtained from a specific image I with an angle of 0º and D = 1 pixels.
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Particularly, we applied a number of adjacent pixels D = 2 and established
two different directions corresponding to angles of 0º and 45º to consider the
orientation trend of the gland candidates. The two directions are represented
by an offset of [0,2], relative to the angle of 0º, and another offset of [-2,2],
corresponding to an angle of 45º, as detailed in Figure 2.8 (b). Note that the
dimension of the GLCMs computed in this paper for each colour image was
always 8× 8 pixels.

1 1 5 6

3 1 2 7

4 8 1 2

1 2 4 8

1 2 3 4 5 6 7 8

1 1 3 0 0 1 0 0 0

2 0 0 0 1 0 0 1 0

3 1 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 2

5 0 0 0 0 0 1 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

8 1 0 0 0 0 0 0 0

Angle = 0º
D = 1

I

GLCM

Pixel of 
interest

Offset of
[0, 2]

Offset of
[-2, 2]

(a) (b)

Figure 2.8: GLCM illustration. (a) Example of GLCM achieved from a certain image I
using an offset of [0,1]. (b) Two offset implemented in this paper to obtain each GLCM.

Once the GLCM was obtained, we normalised it via Eq. 2.11, where sGLCM =
GLCM +GLCMT corresponds to the symmetric GLCM [102].

nGLCM =
sGLCM∑
sGLCM

(2.11)

From the normalised nGLCM s
r corresponding to an offset s and a colour image

r, we extracted 21 different features. The use of two offset values and three
colour images allows for the extraction a total of 126 features related to the
GLCM for each gland candidate. We detail below the 21 different variables,
for an offset of [0,2], denoted by 0º, and a colour image corresponding to the
cyan channel C. Remember that these features are equally extracted from the
rest of offsets and colour images.

• Homogeneity. It reaches higher values when the occurrence is focused
along the normalised GLCM diagonal. Being p(i, j) the probability of the
grey-occurrence in each pixel, the homogeneity is calculated as follows:
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HomonGLCM0º
C

=
∑
i,j

p(i, j)

1 + |i− j|
(2.12)

• Contrast. It measures the local variation of a specific image. It is the
opposite to the homogeneity and it is computed by:

ContnGLCM0º
C

=
∑
i,j

|i− j|2 p(i, j) (2.13)

• Energy. The energy, a.k.a. the angular second moment, takes smaller
values the more similar the inputs are. It is denoted as follows:

EnernGLCM0º
C

=
∑
i,j

p(i, j)2 (2.14)

• Correlation. The correlation indicates how much similar information
provides a pixel over the whole image regarding its neighbour, such that:

CorrnGLCM0º
C

=
∑
i,j

(i− µi)(j − µj)p(i, j)

σiσj

(2.15)

• Entropy. It is a measure related to the uniformity of the image. The
entropy takes small values when the inputs of nGLCM are close to 0 or
1. It follows the next equation:

EntrnGLCM0º
C

=
∑
i,j

−p(i, j)ln(p(i, j)) (2.16)

• Mean(µ). This feature corresponds to an average by columns of the grey
values of the 8× 8 nGLCM . We obtained N = 8 values, according to:

µj

nGLCM0º
C

=
1

N

N∑
i=1

p(i, j) (2.17)

• Standard deviation(σ). We also computed 8 values relative to the
standard deviation of the 8× 8 nGLCM calculated by columns:
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σj

nGLCM0º
C

=

√√√√ 1

N − 1

N∑
i=1

|p(i, j)− µ|2 (2.18)

Local Binary Patterns (LBP) were also used to recognise local textures and
specific shapes in the gland candidates images. The basic LBP operator
proposed in [103] consists of computing the difference between the value of
the pixel of interest and the value of its neighbours. The pixels under study
are binarised to 0 or 1 depending on whether the resultant values are negative
or positive, as follows:

LBPP,R(i, j) =
P−1∑
p=0

s(gp − gc)2
p, s(x) =

{
1 if x ≥ 0

0 if x ≤ 0
(2.19)

where P is the number of neighbour pixels with a grey value gp inside a circle
of radius R, respecting to the central pixel p(i, j) with a grey value gc. In this
way, from the created binary string, we calculated the new value of the pixel
of interest by performing a conversion to a decimal value. However, we did
not implement the basic LBP, but we used the LBP riu2

P,R operator (Eq. 2.20),
proposed by Ojala et al. in [104]. This is characterised by being uniformly
invariant to rotation transforms for grey-scale images. LBP riu2

P,R operator
allows for the calculation of P+2 different output values [105]. Specifically,
we used P = 8 and R = 1 to extract 10-bin LBP riu2

P,R histograms from each
colour image corresponding to each gland candidate. As we made use of the
cyan, hematoxylin and eosin colour channels, we extracted a total of 30-bin
histograms uniformly invariant to rotation transforms.

LBP riu2
P,R (i, j) =

{ ∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
(2.20)

where,

U(LBPP,R) = |s(gp−1−gc)−s(g0−gc)|+
P−1∑
p=1

|s(gp − gc)− s(gP−1 − gc)| (2.21)
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In addition, we introduced the operator Rotational Invariant Local Variance
(VAR) (Eq. 2.22), which is commonly implemented in combination to the
LBP riu2

P,R , as it is invariant to contrast changes.

V ARP,R(i, j) =
1

P

P−1∑
p=0

(gp − µ)2, where µ =
1

P

P−1∑
p=0

gp (2.22)

From the LBP riu2
P=8,R=1 and V ARP=8,R=1 images of dimensions M × N , we

extracted the LBP variance (LBPV) histogram (Eq. 2.23), which was proposed
by Guo et al. [106]. It consists in the accumulation of the V ARP,R value for
each LBP riu2

P,R label according to:

LBPVP,R(k) =
M∑
i=1

N∑
j=1

w(LBPP,R(i, j), k), k ∈ [0,K] (2.23)

where,

w(LBPP,R(i, j), k) =

{
V ARP,R(i, j) if LBPP,R(i, j) = k

0 otherwise
(2.24)

In particular, we computed 10-bin LBPV histograms for each colour image
(cyan, hematoxylin and eosin). In Figure 2.9, we show an example of the
LBPV8,1 variable extracted from the cyan channel of the three types of gland
candidates, i.e. an artefact, a benign gland and a Gleason grade 3 gland.
Taking into account the 30-bin histograms corresponding to the LBP riu2

8,1 and
the 30-bin histograms relative to the LBPV8,1, we achieved a total of 60
features related to the LBP descriptor.

Contextual features. Nguyen et al. [80, 88] used structural features to
address a classification problem from two different approaches. Particularly, in
[80], the authors extracted 15 structural variables from the previous detected
glandular regions. However, such study was performed exclusively making
use of 82 ROIs carefully selected by hand, whereas in our work we propose
an automatic end-to-end approach. We extracted a total of 20 hand-crafted
features related to the context of each gland candidate image. For explanation
purposes, we group the features into three different sets of features.

The first set contains 10 features related to the nuclei components:
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(a) (b) (c) (d)

(e)

Figure 2.9: LBP-based feature extraction. (a) Gland candidates related to an artefact, a
benign and a pathological gland highlighted in black, green and red, respectively. (b) Cyan
channel of the the gland candidates. (c) LBP riu2

8,1 image. (d) V AR8,1 image. (e) 10-bin
histograms of the LBPV8,1 after combining the images (c-d).

• nucleinumBB Eq. 2.25. It corresponds to the quantity of nuclei elements
inside the area of the bounding box of the segmented gland Garea

bBox.
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nucleinumBB =
∑

NE, where NE ⊆ GbBox (2.25)

where NE = {p1, p2, ..., pT} ⊆ Garea
bBox is a group of all nuclei elements pi

with 8-connectivity inside the Garea
bBox

• nucleiRationumBB Eq. 2.26. It refers to the ratio between the number of
nuclei elements and the Garea

bBox.

nucleiRationumBB = nucleinumBB /Garea
bBox (2.26)

• nucleinumGland Eq. 2.27. It corresponds to the number of nuclei objects inside
the gland candidate area Garea, instead of inside the Garea

bBox.

nucleinumGland =
∑

NE, where NE ⊆ Garea (2.27)

• nucleiRationumGland Eq. 2.28. This refers to the ratio betewen the number of
nuclei objects and the gland candidate area Garea.

nucleiRationumGland = nucleinumGland/Garea (2.28)

• nucleiRationumGland−BB Eq. 2.29. It denotes the number of nuclei elements
inside the Garea in relation to the number of nuclei elements inside the
Garea

bBox.

nucleiRationumGland−BB = nucleinumGland/nuclei
num
BB (2.29)

Notably that the remaining 5 variables related to the nuclei components were
calculated in the same way as before, but taking into account the number
of pixels of the nuclei elements, instead of the number of nuclei elements
themselves. Therefore, being pix =

∑T
i=1 pi, where pi ⊆ NE, we extracted the

following features: nucleipixBB, nucleiRatiopixBB, nucleipixGland, nucleiRatiopixGland

and nucleiRatiopixGland−BB.

Regarding the second set of variables, we computed 5 features relative to
the cytoplasm structure. In a similar way as before, we extracted the
variables from the pixels of the cytoplasm component to obtain: Cytofeatures =

{cytopixBB, cytoRatiopixBB, cytopixGland, cytoRatiopixGland, cytoRatiopixGland−BB}.
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Finally, the third set of variables corresponds to 5 contextual features
associated with specific relations between the lumen, nuclei and cytoplasm
components, as we detail below:

• RatiopixL−G Eq. 2.30. It corresponds to the proportion between the lumen
and gland areas, in terms of number of pixels.

RatiopixL−G = Larea/Garea (2.30)

• µL−Edge Eq. 2.31. It refers to the euclidean average distance between the
centroid of a lumen and the pixels of its edge.

µL−Edge =

∑N
i=1

√
(cx − xi)2 + (cy − yi)2

N
(2.31)

where N is the total number of pixels of the lumen edge, (cx, cy) are the
coordinates corresponding to the centroid of the lumen and (xi, yi) are the
coordinates of the pixel i relative to the lumen edge.

• σL−Edge Eq. 2.32. It is the standard deviation of the euclidean distance
between the centroid and the edge of each lumen.

σL−Edge =
1

N − 1

√√√√ N∑
i=1

|vi − µL−Edge|2 (2.32)

where,

vi =
√
(cx − xi)2 + (cy − yi)2 (2.33)

• TorC−N Eq. 2.34. It corresponds to the number of pixels of the nuclei
Nmask and cytoplasm Cmask contained in a toroid region Toroid achieved
by subtracting the gland Gmask and lumen Lmask masks.

TorC−N =
∑

Toroid ∩ (Cmask +Nmask) (2.34)
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• ToroidRatioC−N Eq. 2.35. It is the ratio between the number of pixels in
Cmask and Nmask inside the Toroid with respect to the area of such region
Torarea.

RatioTorC−N = TorC−N/Torarea (2.35)

2.3.1.2 Feature selection

Once the 241 variables were computed and stored, we addressed an exhaustive
statistical analysis based on parametric and non-parametric tests to select the
most relevant features, in terms of independence between pairs of variables
and dependence between each feature and the ground truth label. The first
step was to normalise the variables, for assigning the same relevance to each
of them, according to the z-score parameter described by: zi = xi−µ

σ
. zi is

the normalised number of the xi value for a specific variable with mean µ
and standard deviation σ. After normalising the variables, we performed the
non-parametric Kolmogorov-Smirnov test to carry out a hypothesis contrast
in which the null hypothesis H0 maintains that the variables follow a normal
distribution N(0,1). In Figure 2.10 (a), we represent the histogram concerning
the first 20 computed variables over a Gaussian function, a.k.a. Gauss bell,
which characterises the normal distribution N(0,1) to evidence the differences
between both distributions. Depending on the previous statistical test, we
performed another contrast hypothesis aimed at analysing the discriminatory
ability of each variable with respect to the class. We carried out a comparison
of means making use of the ANOVA test (ANalysis Of VAriance) if the variable
follows a distribution N(0,1), or a comparison of medians using the Kruskal-
Wallis test otherwise. Using a significance level α = 10−6, which denotes
a confidence value of 99, 9999%, we compared α with the p-value obtained
from the ANOVA or Kruskal-Wallis test to determine the independence level
between each variable and its class. Finally, if p-value ≤ α, we rejected the
null hypothesis H0 that holds the independence variable-class, as there is a
significant evidence to ensure that the variable under study is dependent on
the class. Therefore, this variable is selected due to its high discriminatory
ability. Contrarily, we discarded the variables whose p-value was greater than
α, as they were not class dependent. As depicted in Figure 2.10 (b), we show
the box plot corresponding to the first 10 variables to qualitatively evidence
the differences between the values obtained by each feature depending on the
ground truth label.
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In addition, we performed a third hypothesis contrast to analyse the
independence level between pairs of variables. We discarded the features
correlated with others to avoid redundant information. To do this, we
calculated the Pearson’s correlation coefficient r and the p-value from the
correlation matrix to remove those variables that meet both p-value ≤ α and
|r| ≥ 0.95. In Figure 2.10 (c), we show an example of the correlation matrix
obtained during the feature selection stage. Finally, from the 241 variables, we
achieved a total of 136 relevant features that we list below in Table 2.1.

(a)

(b)

(c)

Figure 2.10: Qualitative outcomes from the feature selection stage.(a) Bar chart
corresponding to the distribution of the first 20 variables overlapped on the Gaussian bell
represented in red. (b) Box plot relative to the discriminatory ability of the first 10 variables.
(c) Correlation matrix evidencing the independence level between pairs of variables.

40



2.3 Methods

Table 2.1: Features selected from the statistical analysis.

Morphological

features (13)

Gland (6) Garea, Geccent, GequivDiam, Gextent, Gsolidity, Groundness

Lumen (7) Larea, Leccent, LequivDiam, Lextent, Lperimeter, Gsolidity, Groundness

Fractal

analysis (11)

Cyan (3) H30
cyan, H45

cyan, H60
cyan

Hematoxylin (5) H0
hmtx, H30

hmtx, H45
hmtx, H60

hmtx, H90
hmtx

Eosin (3) H30
eosn, H45

eosn, H60
eosn

Textural

features (94)

Cyan (32)
HomonGLCM0

C
, ContnGLCM0

C
, EnernGLCM0

C
, CorrnGLCM0

C
, µj

nGLCM0
C
(1− 3; 7− 8),

HomonGLCM45
C

, ContnGLCM45
C

, CorrnGLCM45
C

, LBP riu2
8,1 (1− 10), LBPV8,1(1− 10)

Hematoxylin (27)
HomonGLCM0

H
, EnernGLCM0

H
, CorrnGLCM0

H
, µj

nGLCM0
H
(1− 2; 7),

CorrnGLCM45
H

, LBP riu2
8,1 (1− 10), LBPV8,1(1− 10)

Eosin (35)
HomonGLCM0

E
, ContnGLCM0

E
, CorrnGLCM0

E
, µj

nGLCM0
E
(1− 8), HomonGLCM45

E
,

ContnGLCM45
E

, CorrnGLCM45
E

, EnernGLCM45
E

, LBP riu2
8,1 (1− 10), LBPV8,1(1− 10)

Contextual

features (18)

Nuclei (9)
nucleinumBB , nucleiRationumBB , nucleinumGland, nucleiRationumGland, nucleiRationumGland−BB,

nucleipixBB, nucleiRatiopixBB, nucleiRatiopixGland, nucleiRatiopixGland−BB

Cytoplasm (5) cytopixBB, cytoRatiopixBB, cytopixGland, cytoRatiopixGland, cytoRatiopixGland−BB

Lumen-Nuclei-Cytoplasm (4) RatiopixL−G, µL−Edge, σL−Edge, RatioTorC−N

2.3.1.3 Classification Strategy

Data partitioning. From the selected hand-crafted feature matrix, we
divided the different items (rows) into 5 datasets taking into account diverse
criteria. On the one hand, we included a similar number of items in each set
(fold), attending to the class of such items to create balanced groups. On
the other hand, performed a partitioning separating the data according to
the medical history of the patients. Thus, all the gland candidates features
corresponding to the same patient were stored in the same fold. Then, we
carried out a nested cross-validation strategy to remove the randomness effect
in the data partitioning. First, we performed an external 5-fold cross-validation
to train the models using four partitions and validate their performance with
the remaining fold. This process was repeated 5 times to ensure that all the
samples were used to train and test. Additionally, in each iteration, we also
applied an internal 10-fold cross-validation to optimise the parameters of the
classifiers using the 10% of the training data as a validation set.

Machine learning classifiers. In order to address the classification stage
through hand-driven learning methods, we made use of two different classifiers
widely used in the literature [69, 80, 83, 87]. Specifically, we optimised a
Support Vector Machine (SVM) classifier, which is able to find the optimal
hyperplane h that separates two regions of the input space by maximising the
distance between two support vectors, one of each class [107]. In particular, due
to the complexity of the problem under study, we applied a quadratic kernel
to perform the multi-class classification from a non-linear approach. Note that
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kernels allow a D-dimensional input space to be projected to another M>D,
according to ϕ = RD → RM . Te goal is to map the latent features in a
transformation space in which data can be linearly separated, as shown in
Figure 2.11.

(a) (b) (c) (d)

Figure 2.11: Operation of the non-linear SVM classifier. (a) Original input space. (b)
Rotation of the plane of data. (c) 3D space transformation where the features are linearly
separable. (d) Representation of the classification boundary on the 2D plane.

Taking into account that SVMs are non-parametric classifiers that were
originally formulated to face binary problems, we divided the initial multi-class
problem (artefacts, healthy glands and pathological glands) into two binary
sub-problems (artefacts Vs glands and healthy glands Vs pathological glands),
through applying a OneVsOne (OvO) strategy. Besides the polynomial
order and the binary type of classification, SVM classifiers also enable the
optimisation of other hyperparameters such as the box constraint C and the
kernel scale γ. C helps to prevent overfitting by managing the maximum
penalty imposed on margin-violating observations. The higher value of C the
fewer support vectors are assigned, which leads to a smaller overfitting but
longer training times. In contrast, γ defines the influence of a single training
example. High values of γ decrease the computational cost, but it also implies
that the weights of the observations closest to the decision boundary have
greater importance than the rest. We specified the same range of values for
both C ∈ [10−2, 102] and γ ∈ [10−2, 102] hyperparameters, in order to find a
trade-off solution between computational cost and robustness of the models. In
particular, we made use of a Bayesian optimisation algorithm that attempts to
minimise a scalar objective function through evaluating the expected amount of
improvements and modifying the behaviour when the classifier estimates that a
local area is over-exploited. As shown in Figure 2.12, we found C = 99.30 and
γ = 28, 88 as the optimal values to train a new classification model composed
of all 4-fold training data (see Subsection 2.3.1.3)

A second hand-driven learning classifier based on the Multi-Layer Perceptron
(MLP) was implemented. According to [108], MLP is one of the best algorithms
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(a) (b)

Figure 2.12: SVM training process. (a) 3D objective function that shows how the model
find the optimal minimum by modifying the hyperparameters C and γ. (b) Diagram that
shows how to reach the minimum objective as the number of time increases.

for pattern recognition tasks focused on hand-crafted features. This type of
neural network consists of a set of logistic regressions in which the output
of each is the input to the next one. MLP classifier is based on a forward-
backward propagation algorithm that allows for the updating of the weights
and bias during the models’ training. We applied a MLP architecture with one
hidden layer and fifteen neurons, as shown in Figure 2.13, taking into account
that more hidden layers would provide considerable overfitting. The inputs
X = {X1, X2, ..., Xi, ..., X136}, correspond to the latent features extracted
from each gland candidate Gi. Particularly, we performed the update of the
weights ω by means of the stochastic gradient descent (SGD) algorithm with a
momentum α = 0.9 and an adaptive learning rate back propagation, according
to Eq. 2.36.

ω(t+ 1) = αω(t) + ηα
d

dω(t)
L(y, ŷ) (2.36)

where ω(t) initially takes low random values and L(y, ŷ) is the loss function
corresponding to the categorical cross-entropy that measures the performance
of the classifier according to Eq. 2.37.
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L(y, ŷ) = −
∑
i

yi log(ŷi), (2.37)

where yi corresponds to the output (i.e. the prediction) achieved from the
model after each epoch, and ŷi is the ground truth label corresponding to the
target of the training data. Besides, η = 10−3 is the initial learning rate that
varies for each epoch following the next low: if the loss function error decreases
up to the goal, the learning rate is increased by a factor µu = 1.5, whereas if
the performance increases by more than m = 1.04, then the learning rate is
decreased by a factor µd = 0.5.

Unlike in the SVM-based approach, in this case, we did not perform internal
cross-validation techniques, as we initially defined all the hyperparameters.
However, we included a validation subset for each training set to analyse the
behaviour of the model and supervising if overfitting phenomenon appears
along the epochs. Additionally, we set the maximum number of epochs
N = 1000 and impose a stop criterion to end the training process if the
performance of the neural network does not improve after 20 epochs.
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Figure 2.13: Operation of the forward-backward algorithm using a MLP architecture
composed of one hidden layer with fifteen neurons and an output layer with three classes.
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2.3.2 Deep learning approach

2.3.2.1 Convolutional Neural Network strategy

Data partitioning. In this case, we directly constructed the predictive models
from the previous segmented gland candidates images, as the computed CNN
are able to automatically extract the key features by means of convolutional
operations performed in the base model. Similarly to the hand-driven learning
strategy, we accomplished a data partitioning stage based on the medical
history of each patient via 5-fold cross-validation. However, instead of carrying
out the internal data-partitioning from the extracted features, we did it from
the gland candidates images. The training process in this case lied in the
optimisation of the convolutional coefficients during the forward-backward
propagation process.

Network architecture. To compare the results achieved from the hand-
driven learning approach, we made use of a very popular neural network
called Very Deep Convolutional Networks for Large-Scale Image Recognition
(VGG19), which was proposed by Krizhevsky et al. [28] to face the challenge
ILSVRC-20121. It is important to remark that Simonyan and Zisserman [109]
modified some hyperparameters of this architecture with the aim of reducing
the classification error in the ImageNet dataset. They discovered that the
performance of the neural network improved by moving each filter of the
convolutional layer along the image by means of a sliding window with a
small step size (stride). In addition, the authors achieved better results using
smaller receptive fields, i.e. smaller sets of pixels inside the sliding window in
each epoch. For these reasons, they designed the convolutional layers using
receptive fields of size 3×3 and a stride s = 1, instead of 11×11 and s = 4, as
was originally proposed in [28]. The researchers developed six different CNN
architectures with the same basis and modified the depth in each of them.
Finally, they proposed the VGG16 and VGG19 networks to face the ImageNet
2014 challenge and reached the first and the second places in the localisation
and classification tracks. In this work, we based on the VGG19 architecture
also using 3 × 3 receptive fields and a stride s = 1, as shown in Figure 2.14.
However, we included some modifications in the classification stage (a.k.a top
model) with respect to the original architecture. Specifically, we defined two
fully-connected layers, but we applied dropout layers with coefficients of 0.5
and 0.25 after each dense layer. Note that these dropout layers aim to avoid
the overfitting by randomly disconnecting the 50% and the 25% of the neurons,
respectively. In addition, we defined the second hidden layer with 2048 neurons,

1www.image-net.org/challenges/LSVRC
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instead of 4096 as the original network, and we modified the output layer using
only three neurons to discern between artefacts, benign glands and pathological
glands (see Figure 2.14).
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Figure 2.14: Architecture of the fine-tuned VGG19 used to develop deep learning models
from gland candidates of histopathological prostate images.

Given the reduced number of gland candidate instances of our database to
train from scratch an architecture with a such high depth, we made use of fine-
tuning techniques [110] which are able to transfer the knowledge acquired by
the VGG19 when it was trained on the ImageNet dataset to the problem under
study. We used the pre-trained weights ω and applied a deep fine-tuning [111]
strategy to freeze only the coefficients of the three first convolutional blocks.
The filters of the two remaining blocks of the CNN were retrained using the
specific knowledge of the gland candidate images. During the training phase,
the update of the filter weights was performed in a similar way as in the MLP
case by setting a batch size b = 16. The categorical cross-entropy (Eq. 2.37)
was used as a loss function to calculate the error between the predictions and
the ground truth. The SGD optimiser (Eq. 2.38) was applied to update the
weights during the backward propagation step. We used a momentum of 0.98
to improve the convergence rate of the CNN with a learning rate η = 10−5.
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We trained the deep learning models during a maximum of 100 epochs with
an early stopping of 15 iterations.

ω(t+ 1) = ω(t) + V (t+ 1), (2.38)

where,

V (t+ 1) = γV (t)− η
d

dω
L(y, ŷ), (2.39)

We applied data augmentation techniques [112] to increase the number of
specific images. This technique allows for the creation of artificial samples
similar to the original ones by performing different transformations. We defined
the aggressive factor ratio as t = 0.02 to create the synthetic samples with the
same label as the samples from which they were generated.

2.4 Results

In this section, we present a comparison of the results achieved from both
hand-driven and deep learning approaches. We evaluate the 5-trained models
over each 5-external cross-validation datasets. Table 2.2 reports the average
results using different figures of merit such as sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), F-score, area under
the ROC curve (AUC) and accuracy. In addition, we also report the ROC
curves (see Figure 2.15) aimed at showing the discriminatory ability of the
proposed classifiers according to each problem. Note that, although the
proposed approach correspond to a multi-class framework, we expose the
results distinguishing, on the one hand, between artefacts and glands and,
on the other hand, between benign and Gleason grade 3 glands.

Noticeably, this is one of the few studies that provides results per gland
candidate, instead of per patch. For this reason, we expose in Table 2.3 the
results achieved by our best predictive model to compare them with those
reached by other authors who also dealt with this type of classification. It
should be noted that we conduct an indirect comparison due to the private
character of the code and databases used in [88] and [89].

To elucidate the statistical differences between the performance of the three
classification methods, we carried out a statistical analysis similar to the
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Table 2.2: Classification results obtained per gland candidate.

Artefacts Vs Glands Benign Vs Pathological
SVM MLP VGG19 SVM MLP VGG19

Sensitivity 0.945± 0.016 0.930± 0.011 0.901± 0.020 0.802± 0.058 0.802± 0.079 0.747± 0.109

Specificity 0.952± 0.026 0.952± 0.028 0.939± 0.026 0.873± 0.073 0.819± 0.094 0.780± 0.123

PPV 0.911± 0.058 0.913± 0.053 0.884± 0.059 0.845± 0.069 0.796± 0.084 0.779± 0.101

NPV 0.964± 0.018 0.956± 0.019 0.945± 0.016 0.843± 0.052 0.837± 0.059 0.769± 0.047

F-Score 0.927± 0.029 0.921± 0.030 0.891± 0.032 0.820± 0.030 0.793± 0.014 0.753± 0.059

AUC 0.984± 0.011 0.987± 0.007 0.974± 0.010 0.922± 0.045 0.912± 0.042 0.889± 0.036

Accuracy 0.946± 0.017 0.943± 0.030 0.925± 0.018 0.883± 0.026 0.853± 0.020 0.817± 0.031

Table 2.3: State-of-the-art comparison in terms of accuracy per gland.

Xia et al. [89] Nguyen et al. [88] Proposed Model
Artefacts Vs. Glands - 0.93± 0.04 0.946± 0.017

Benign Vs. Pathological 0.86± 0.02 0.79± 0.08 0.883± 0.026

Multi-class classification - 0.77± 0.07 0.876± 0.026

Figure 2.15: ROC curves from hand-driven and deep learning strategies after evaluating
each binary sub-problem.
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developed in Subsection 2.3.1.2. In this case, we calculated for each test dataset
not only the prediction labels, but also the scores, i.e. the probabilities of each
gland candidate of belonging to a specific class. The aim was to determine the
discriminatory ability of the different classification models taking into account
the scores and the ground-truth labels. Particularly, for each classification
model (SVM, MLP and VGG19), we used the scores as a variable to study
its independence level with respect to the targets. First, we performed a
Kolmogorov-Smirnov test to determine if the variable under study followed
a normal distribution N(0,1) or not. Depending on it, we made use of the
ANOVA or Kruskal-Wallis test, comparing the mean or median of such variable
with respect to the categorical classes, respectively. These tests reported a p-
value for each possible class to measure the performance of each classifier when
predicting the label of such class. We repeated this process 5 times (one per
partition) and reported the averaged p-values to show the differences between
the classifiers (see Table 2.4).

Table 2.4: Average of p-values achieved after calculating the independence level between
the probability of each class and the targets, from each classifier.

Artefact Benign gland Pathological gland

SVM 4.2813 · 10−223 3.3720 · 10−118 2.1903 · 10−210

MLP 6.3328 · 10−203 2.8052 · 10−143 7.3978 · 10−195

VGG19 3.9919 · 10−220 1.2796 · 10−137 5.8481 · 10−192

Prediction phase. At the test time, we made use of histological samples
of new patients from which we only know if they are healthy or suffer for
prostate cancer in an initial stage, but we do not have a ground truth per
gland. Particularly, we selected the best classification models to perform a
committee of evaluation responsible of predicting the label of the new samples.
The final objective was to help the pathologists by means of an automatic
system able to identify benign and pathological glands from histological
prostate images. In Figure 2.16, we expose the prediction carried out for
some 1024 × 1024 representative samples from different patients, in which
we remark the automatically segmented glands according to the prediction
carried out by the trained models. The boundary of the glands predicted as
healthy are highlighted in green, whereas the contours of the glands predicted
as pathological are highlighted in red. It is important to note that an expert
pathologist annotated the samples reported in Figure 2.16 as: fully benign
pattern (Figure 2.16 (a-c)), fully pathological pattern (Figure 2.16 (d-f)) and
mixed pattern (Figure 2.16 (g-i)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.16: Qualitative prediction results about the gland classification showing in green
and red the structures predicted as benign and pathological glands, respectively.

Computational cost. In Table 2.5, we list the average and standard deviation
corresponding to the temporal intervals spent in each of the four processes
that compose the hand-driven algorithm (clustering, segmentation, feature
extraction and prediction) when analysing each patch.
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Table 2.5: Computational cost of the proposed hand-driven learning algorithm. The results
refer to the time (in seconds) required to classify the gland candidates of each 1024 × 1024
as artefact, benign or pathological glands.

Healthy tissues (s) Cancerous tissues(s)

Clustering stage 2.79± 0.58 2.39± 0.39

Gland segmentation 25.24± 29.63 9.69± 18.99

Feature extraction 9.75± 7.75 5.88± 7.48

Prediction 0.04± 0.01 0.04± 0.01

End-to-end algorithm 38.68± 34.44 18.87± 26.12

Table 2.5 shows that the proposed algorithm needs 38.68 ± 34.44 seconds
to make the prediction of a benign 1024 × 1024 patch. Contrarily, the
averaged computational cost to automatically examine a pathological patch is
18.87±26.12 seconds. Note that the time analysis was performed on an Intel i7
@4.00 GHz of 16 GB of RAM with a Titan V GPU. The classification strategies
related to the SVM and MLP models were executed in MATLAB 2018b,
whereas the methodology based on the VGG19 architecture was implemented
in Python 3.5, using Keras framework with Tensorflow as backend.

2.5 Discussion

From Table 2.2 and Table 2.4, we observe that the hand-driven learning
approach, using a SVM classifier with a quadratic kernel, seems to provide
a very slight superiority in the binary classification of both scenarios: artefacts
Vs. glands and benign Vs. pathological glands. As depicted in Table 2.2,
the results achieved from the VGG19 architecture decline a bit compared to
the SVM and MLP classifiers, which may be due to the exhaustive feature
extraction and selection methods carried out during the hand-driven learning.

Notably, the values obtained for all figures of merit in Table 2.2 are similar in
the first binary classification (i.e. artefacts Vs. glands), but the differences
are more prominent when discriminating between normal and cancerous
samples. This is understandable taking into account that artefacts and glands
present very different contextual circumstances, as artefacts are not usually
surrounded by cytoplasm and nuclei components, unlike the lumen of the
glands. Nevertheless, artefacts could be confused with lumen structures when
an accumulation of glands envelop specific broken areas of tissue, which have
the same colour as the lumen objects. These broken areas result in artefacts
(false glands) because the model associates the nuclei of the surrounding glands
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as the nuclei of such broken areas. In this case, the features extracted from
artefacts and glands are more similar to each other, which can lead to an
error in the prediction. It should be noted that artefact elements usually are
involved by pixels corresponding to stroma components, as shown in Figure 2.9,
what is decisive to the correct classification of the false glands. The visible
differences between artefacts and glands enables a successful classification from
both conventional and deep learning approaches. We can observe in Figure 2.15
(bottom row) and in Table 2.2 that the performance of the three learning
strategies is closely similar attending to the ROC curves. In contrast, the
distinction between benign and pathological glands is more complex, as both
correspond to moderately differentiated carcinomas. In Figure 2.15, we can see
how the performance of the classifiers fall due to the similarities of the benign
and pathological glands.

It can be striking that the SVM-based conventional algorithm reports better
results than the proposed deep learning approach. However, this makes sense
taking into account that CNNs have specific limits and drawbacks related
to the orientation and spatial relationships between objects. CNNs do not
consider important spatial hierarchies between simple and complex objects.
For this reason, the deep learning approach successfully discriminates between
artefacts and glands, as it finds differences in the composition of the images.
Nevertheless, its performance considerably decreases when facing the benign
Vs. pathological scenario, as it can not manage the differences concerning to
the spatial dimensions, orientations and sizes of the glands. In the problem
under study, the size of the lumens and glands is really decisive to determine the
class of a specific gland, as explained in Section 2.1. Thereby, since the hand-
driven learning approach consider the dimensions of the gland candidates in
the feature space, it is coherent that the SVM classifier provides better results
than the proposed deep learning network.

The state-of-the-art comparison (Table 2.3) was carried out in an indirect
way, as there are no public databases of gland units to contrast our
results. Notwithstanding, the approach presented in this work outperforms
the methods proposed by other state-of-the-art studies that also follow an
approach at the gland unit level. In relation to the artefacts Vs. glands
problem, Xia et al. [89] did not report results because they did not implement
an approach based on an initial lumen identification, but they classified all
segmented glands into two classes: benign and pathological. In contrast,
Nguyen et al. [88] reported an accuracy of 0.93 in the discrimination between
artefacts and glands. We improve their results surpassing the accuracy by
1.6%. However, the real challenge lies in discerning between healthy and
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Gleason grade 3 glands. We surpass by 2.3% and 9.3% the accuracy with
respect to [89] and [88], respectively, and improve the multi-class accuracy
reached in [88] in a 10.6%.

Regarding the simulation of the clinical practice, we show in Figure 2.16 the
ability of the proposed computer-aid system to identify and discriminate the
healthy and pathological gland units, which are highlighted in green and red,
respectively. Attending to Figure 2.16, we can determine that the proposed
model performs successfully in detecting specific areas susceptible to cancer.

Concerning the computational cost, the automatic analysis of pathological
patches requires half the time compared to the healthy images. This is mainly
propitiated by the segmentation stage, which takes more time to analyse
benign glands due to its larger size and fusiform appearance. Attending to
the temporal intervals (Table 2.5), we can observe high standard deviation
values, especially in the segmentation and feature extraction stages. This
occurs because the computational cost is closely related to the number of
glands in each patch, i.e. the more number of glands per image, the more
time is required.

2.6 Conclusion

This work proposes two novel approaches to automatically identify the
first stage of prostate cancer from images of gland candidates previously
segmented. In the first approach, a combination of four kinds of descriptors
based on morphology, texture, fractals and contextual information has been
computed for an optimal hand-crafted feature extraction. Regarding the
second approach, a CNN built upon VGG19 architecture has been used to
automatically extract and classify the relevant features from artefacts, benign
and pathological glands. The hand-driven learning approach, making use of
the SVM with a quadratic kernel, provides the best classification performance
and also outperforms the most relevant methods proposed in the state of the
art. Promising results have been achieved in the prediction of samples from
new patients, however, it would be necessary to carry out additional tests,
as well as retraining the predictive models, using larger datasets of prostate
WSIs. In future research lines, we propose to improve the deep learning results
by training other popular state-of-the-art CNNs (e.g. ResNet, Xception, etc.).
We also propose to go further into the framework of prostate cancer grading
by considering all the patterns of the Gleason scale.
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A Novel Self-Learning Framework for Bladder
Cancer Grading Using Histopathological Images

The content of this chapter corresponds to the author version
of the following published paper: García, G., Esteve, A., Colomer,
A., Ramos, D. & Naranjo, V. A novel self-learning framework for
bladder cancer grading using histopathological images. Computers
in Biology and Medicine, 104932 (2021).

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.2 Contribution of this work . . . . . . . . . . . . . . . . . 61

3.2 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 CAE pre-training . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 DCEAC training . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.1 Comparison with other state-of-the-art methods . . . . . 69
3.4.2 Quantitative results . . . . . . . . . . . . . . . . . . . . . 71
3.4.3 Qualitative results . . . . . . . . . . . . . . . . . . . . . 72

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 On quantitative results . . . . . . . . . . . . . . . . . . . 73
3.5.2 On qualitative results . . . . . . . . . . . . . . . . . . . . 76

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



A Novel Self-Learning Framework for Bladder
Cancer Grading Using Histopathological Images

Gabriel García1, Anna Esteve1,2, Adrián Colomer1, David Ramos2 and Valery
Naranjo1

1Instituto de Investigación e Innovación en Bioingeniería, Universitat
Politècnica de València, 46022, Valencia, Spain

2 Hospital Universitario y Politécnico La Fe, Avinguda de Fernando Abril
Martorell, 106, 46026, Valencia, Spain.

Abstract

In recent times, bladder cancer has increased significantly in terms of
incidence and mortality. Currently, two subtypes are known based on tumour
growth: non-muscle invasive (NMIBC) and muscle-invasive bladder cancer
(MIBC). In this work, we focus on the MIBC subtype because it has the
worst prognosis and can spread to adjacent organs. We present a self-
learning framework to grade bladder cancer from histological images stained
by immunohistochemical techniques. Specifically, we propose a novel Deep
Convolutional Embedded Attention Clustering (DCEAC) which allows for the
classification of histological patches into different levels of disease severity,
according to established patterns in the literature. The proposed DCEAC
model follows a fully unsupervised two-step learning methodology to discern
between non-tumour, mild and infiltrative patterns from high-resolution
512 × 512 pixel samples. Our system outperforms previous clustering-based
methods by including a convolutional attention module, which enables the
refinement of the features of the latent space prior to the classification stage.
The proposed network surpasses state-of-the-art approaches by 2− 3% across
different metrics, reaching an average accuracy of 0.9034 in a multi-class
scenario. The reported heat maps evidence that our model is able to learn
by itself the same patterns that clinicians consider relevant, without requiring
previous annotation steps. This represents a breakthrough in MIBC grading
that bridges the gap with respect to training the model on labelled data.



3.1 Introduction

3.1 Introduction

Bladder cancer arises from uncontrolled proliferation of the urothelial bladder
cells, which leads to tumour development. A significant increase in adult
incidence and mortality has been observed during the last several years. Recent
studies state that bladder cancer is the second most common urinary tract
cancer and the fifth most prevalent among men in developed countries [71, 72].

Nowadays, the diagnostic procedure for bladder cancer involves several time-
consuming tests. First, urine cytology is performed to determine the presence
of cancer cells [113]. Subsequently, vesico-prostatic and renal ultrasound are
employed to locate the tumour and assess the type of growth, which can be
used to determine the grade and prognosis of the patient. If the tumour
cannot be located at the previous stage, MRI urography is carried out to
analyse possible local spread [114]. If there is evidence of bladder cancer, the
urologist usually performs a cystoscopy based on the transurethral resection
technique [115], which allows for the extraction of a sample of abnormal bladder
tissue to determine the type of tumour growth. After the preparation process,
the biopsied tissue is usually stained with hematoxylin and eosin (H&E) to
enhance its histological properties. Finally, an additional staining process can
be adopted to highlight special structures associated with the problem under
study. The immunohistochemical CK AE1/3 technique was applied on the
histological images used in this work to highlight the cancer cells by providing
a brown hue when the antigen-antibody binding occurs.

The two kinds of bladder cancer, non-muscle invasive (NMIBC) and muscle-
invasive (MIBC), are distinguished depending on the level of invasion of tumour
growth within the bladder wall. Currently, 75% and 25% of bladder cancer
cases correspond to NMIBC and MIBC, respectively [72]. In this study, we
focus on the MIBC category as it has the worst prognosis and favours tumour
dissemination to adjacent organs. According to [117], MIBC does not usually
present low-grade malignancy, but rather high-grade urothelial carcinomas.
Following the classification criteria proposed by the World Health Organisation
(WHO) [118], these can be classified as grade 2 or 3. Jimenez et al. [116]
described three different histological patterns which correlate with the patient
outcome. Specifically, histopathological images stained with CK AE1/3 were
annotated by a pathologist with more than 20 years of expertise considering
nodular, trabecular and infiltrative patterns, as shown in Figure 3.1. The
nodular pattern (yellow box) is defined by the presence of well-delineated,
circular nests of tumour cells. The trabecular pattern is characterised by
tumour cells arranged in interconnected bands. The infiltrative pattern, also
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Nodular

Trabecular

Infiltrative

(a) (b) (c) (d) (e)

Figure 3.1: Histological bladder patterns. The larger image corresponds to a WSI of a
patient suffering from muscle-invasive bladder cancer. The top right of the figure (modified
from [116]) is a diagrammatic representation of the theoretical arrangement of the patterns.
The patches marked with colours denote different growth patterns. (a) non-tumour pattern,
(b) nodular arrangement (mild pattern), (c) trabecular arrangement (mild pattern), (d)
tumour cell cords (infiltrative pattern) and (e) isolated tumour cells (infiltrative pattern).

known as tumour budding, is composed of cords of tumour cells (red box) or
a small cluster of isolated cells called buds (blue box). The infiltrative pattern
represents the most aggressive scenario and the worst prognosis for the patient
[119–122]. Therefore, we combined nodular and trabecular structures into a
single specific class (mild pattern) to grade the severity of MIBC according to
the prognosis of the disease. We also considered a non-tumour pattern (pink
box) to cover cases where the patient shows no signs of tumour. Thus, a
multi-class scenario is conducted in this paper to classify bladder cancer into
non-tumour (NT), mild (M) and infiltrative (I) patterns.
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3.1.1 Related work

Accurate diagnosis of bladder cancer is a time-consuming task for expert
pathologists and lacks reproducibility, leading to significant differences in
histological interpretation [123, 124]. Many state-of-the-art studies have
proposed artificial intelligence algorithms to assist pathologists in terms of
cost-effectiveness and subjectivity ratio. Most of these approaches focused on
machine learning techniques applied to H&E-stained histological images for
segmentation [125–127] and classification [123, 124, 128–133].

Beginning with the segmentation-based studies, Lucas et al. [125] used the
popular U-Net architecture to segment normal and malignant cases of bladder
images. They then used the common VGG16 network [28] as a backbone to
extract histological features from patches of 224 × 224 pixels. The resulting
features were combined with other clinical data to carry out a classification step
using bidirectional GRU networks [134]. The proposed algorithm reported an
accuracy of 0.67 for 5-year survival prediction. In [126], the authors carried
out an end-to-end approach to discern between MIBC and NMIBC categories
from H&E images. First, they performed a segmentation process to distinguish
tissue from image background. Patches of 700×700 pixels were used to perform
both manual and automatic feature extraction. The hand-crafted learning was
conducted via contextual features such as nuclear size distribution, crack edge,
sample ratio, etc., whereas the data-driven learning was conducted using the
VGG16 and VGG19 architectures. During the classification stage, different
machine learning classifiers such as support vector machine (SVM), logistic
regression (LR) and random forest (RF), among others, were used to determine
the bladder tissue type. Manual approaches showed superior performance over
deep learning models, reaching an accuracy of 91− 96%.

Most of the classification-intended studies also focused on H&E-stained
histological images, as in the segmentation frameworks. In [128], researchers
proposed a multi-class scenario to detect the molecular subtype in MIBC cases.
They applied the ResNet architecture to patches of 512×512 pixels, achieving
results for the area under the ROC curve (AUC) of 0.89 and 0.87 in terms
of micro- and macro-average, respectively. In [129], the authors made use
of the Xception network as a feature extractor from H&E-stained patches
of 256 × 256 pixels. An SVM classifier was then implemented to discern
between high and low mutational burden, reaching values of 0.73 and 0.75 for
accuracy and AUC, respectively. Harmon et al. [130] proposed a classification
scenario to detect lymph node metastases from H&E patches of 100 × 100
pixels. A combination of the ResNet-101 architecture with AdaBoost classifiers
reported an AUC of 0.678 at test time. Another study [123] carried out
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a classification approach to categorise tissue type into six different classes:
urothelium, stroma, damaged, muscle, blood and background. To this end,
the authors combined supervised and unsupervised deep learning techniques
on patches of 128× 128 pixels stained with H&E. Specifically, they trained an
autoencoder (AE) from the unlabelled images and used the encoder network to
address the classification through features extracted from the labelled samples.
They achieved multi-class scores of 0.936, 0.935 and 0.934% for precision, recall
and F1-score metrics, respectively. One of the most prominent state-of-the-art
studies (focusing on H&E-stained histological images of bladder cancer) was
conducted in [124]. In this study, Zhang et al. compiled a large database of
Whole-Slide Images (WSIs) with the aim of discerning between low and high
grades of disease. They used an autoencoder network to identify possible
areas with cancer. They then fed 1024 × 1024 regions of interest (ROIs)
into a Convolutional Neural Network (CNN) for classification into low and
high classes. The proposed system obtained an average accuracy of 94%,
compared to 84.3% achieved by pathologists. The findings from this study
reveal that there exists a significant subjectivity among experts in diagnosing
from histological images of bladder cancer, as discussed in [123].

In addition to histopathological samples, other imaging modalities are also
considered in the literature for bladder cancer analysis, e.g. magnetic resonance
imaging (MRI) [127], cystoscopy [132, 133] or computed tomography (CT)
[131]. In particular, Dolz et al. [127] applied deep learning algorithms to
detect bladder walls and tumour regions from MRI samples. In [132, 133],
different deep learning architectures were implemented to distinguish between
healthy and bladder cancer patients using cystoscopy samples. Yang et al.
[131] outlined a classification between NMIBC and MIBC categories from
CT images. Although immunohistochemical techniques are widely used in
the literature to detect tumour budding, most state-of-the-art works applied
them on colorectal cancer imaging [135–138]. However, there are relatively
few immunohistochemistry-based studies for the diagnosis of bladder cancer in
the literature. As far as we are aware, only the study conducted in [139]
proposed the use of sample stained via immunofluorescence techniques to
quantify tumour budding for the prognosis of MIBC via machine learning
algorithms. Specifically, the authors aimed to establish a relationship between
tumour budding and assessed survival in patients with MIBC. To do this,
they carried out learning methods based on detecting nuclei and segmenting
the tumour into stroma regions to count the isolated tumour budding cells.
The authors proposed a survival decision function based on random forest,
reporting a hazard ratio of 5.44.
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3.1.2 Contribution of this work

To the best of our knowledge, no previous works have been conducted to
analyse the severity of bladder cancer using histological images stained with
cytokeratin AE1/AE3 immunohistochemistry. Moreover, all the state-of-
the-art studies focused on supervised learning methods to find dependencies
between the inputs and the predicted class [123, 124, 129, 130]. Some of
them [123, 124] also considered using unsupervised techniques in the first
methodological steps to find possible ROIs with cancer, but required labelled
data to build the definitive predictive models. In addition, pattern recognition
tasks aimed at grading bladder cancer have not been previously addressed.

To fill these gaps in the literature, we present in this paper a self-
learning framework for bladder cancer growth patterns, which focuses on
fully unsupervised learning strategies applied on CK AE3/1-stained WSIs.
We propose a Deep Convolutional Embedded Attention Clustering (DCEAC)
that boosts the performance of the classification model without incurring
the cost of labelled data. In the literature, deep-clustering algorithms have
demonstrated a high rate of performance for image classification [140–142],
image segmentation [143], speech separation [144, 145] and data analysis
[146], among other tasks. Inspired by [140], we propose a tailored algorithm
capable of competing with the state-of-the-art results achieved by supervised
approaches. As a novelty, we include a convolutional attention module to
refine the features embedded in the latent space. Additionally, we are the
first to focus on the arrangement of histological structures contained in the
high-resolution patches to classify them into non-tumour (NT), mild (M) and
infiltrative (I) patterns, according to the criteria proposed in [116]. We also
computed a class activation map (CAM) algorithm [147] to evidence that the
proposed network focuses on specific structures that match with the clinical
patterns associated with bladder cancer aggressiveness.

The proposed end-to-end framework provides a reliable benchmark for making
diagnostic suggestions without involving a pathologist, which adds significant
value to the body of knowledge. In summary, the main contributions of this
work are listed below:

• For the first time, we make use of CK AE3/1-stained images to enable the
automatic diagnosis of bladder cancer using machine learning algorithms.

• We base on advanced unsupervised deep learning techniques to address
bladder cancer classification without the need for prior annotation steps.
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• We propose a new deep-clustering architecture capable of improving the
representation space via convolutional attention modules, resulting in
better unsupervised classification.

• We focus on high-resolution histological patches to learn specific-bladder
cancer patterns and stratify different levels of disease severity according
to the literature.

• We include heat maps highlighting decisive areas to incorporate an
explainable component for network prediction. This provides an
interpretability perspective that matches the clinicians’ criteria.

3.2 Material

This study made use of a private database of 136 WSIs (one per patient)
from the Hospital Universitario y Politécnico La Fe (Valencia, Spain). The
WSIs were stained by immunohistochemistry, and were digitised using an
intelligent scanner (LEICA BIOSYSTEMS – Aperio CS2) providing optical
magnifications of 20× (0.5 µm/pixel) and 40× (0.25 µm/pixel) with a fast
network interface of 1GB/second. Specifically, the 40× resolution was selected
to take advantage of the inherent structure of the bladder patterns associated
with each grade of disease, as high image resolution is necessary in order to
achieve an accurate diagnosis of bladder cancer. This is because the class
dependencies are only evident in the high frequency of the image, especially
the details of the tumour budding.

In the first step of the database preparation (Figure 3.2), an expert from
the Pathological Anatomy Department performed a manual segmentation to
indicate possible areas of interest. At this point, it is important to highlight
that the segmentation was carried out in a very rough manner, as observed in
the green areas of Figure 3.2, in order to reduce the expert’s annotation time
as much as possible. The software used to perform the rough annotations was
GIGAVISION: a system for labelling tumour regions in gigapixel histological
images [148]. A patching algorithm was then applied to extract cropped images
with an optimal block size in terms of computational efficiency and structural
content. Specifically, patches of dimensions 512 × 512 pixels were extracted,
according to some of the most recent studies focusing on histopathological
images [4, 34, 128]. Next, useless regions (WSI background) were discarded by
selecting only those patches that contained more than 75% annotated tissue.
After this, a total of 2995 representative patches composed the unsupervised
framework. For validation purposes, an expert pathologist with more than 20
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Patching algorithm Useful patches selection
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Non-tumour
pattern
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136 CK AE1/3-stained WSIs of different size

Figure 3.2: Database preparation process. The left-hand side corresponds to the rough
segmentation (in green) carried out by the pathologist. Note that each WSI has a different
size. Next, a patching algorithm was applied on the 136 WSIs stained with CK AE1/3 to
extract sub-images of 512× 512 pixels. The red rectangles correspond to some examples of
useful patches. Finally, a labelling step was conducted for validation purposes. The resulting
2995 sub-images were classified by the expert as non-tumour (NT), mild (M) or infiltrative
(I) pattern to give rise to a multi-class scenario for bladder cancer grading.

years of experience manually labelled each patch as non-tumour (NT), mild (M)
or infiltrative (I) classes, according to the pattern criteria previously detailed
in Section 3.1. The labelling process resulted in a dataset of 763 NT, 1470 M
and 762 I cases, as reported in Figure 3.2. It is essential to remark that we did
not have access to the labelled data during the training phase, as we propose a
fully unsupervised strategy to achieve self-learning of the patterns. The labels
were only considered at test time to evaluate the models’ performance.

Concerning the software and hardware aspects, all models were developed
using TensorFlow 2.3.1 on Python 3.6. The experiments were performed on
an Intel(R) Core(TM) i7-9700 CPU @3.00GHz machine with 16 GB of RAM.
For deep learning algorithms, a single NVIDIA DGX-A100 Tensor Core with
cuDNN 7.6.5 and CUDA Toolkit 10.1 was used.

3.3 Methods

Recently, deep-clustering algorithms have risen to the forefront of image-based
unsupervised techniques, as they are able to enhance feature learning while
improving the clustering performance in a unified framework [140]. In this
work, we address a fully unsupervised self-learning strategy to cluster a large
collection of unlabelled images into k = 3 groups corresponding to three
different severity levels of MIBC. Inspired by [140], we propose a novel Deep
Convolutional Embedded Attention Clustering (DCEAC ) in which the feature

63



Chapter 3. Self-Learning Framework for Bladder Cancer Grading

space is updated in an end-to-end manner to learn stable representations for the
clustering stage. Unlike conventional approaches [142], the proposed DCEAC
algorithm optimises the latent space by preserving the local data structure,
which helps stabilise the clustering-learning process without distorting the
embedding properties [140] (see Subsection 3.3.2).

Self-learning methods aim at learning useful representations by leveraging the
domain-specific knowledge from unlabelled data to accomplish downstream
tasks. This training procedure is usually tackled by solving pretext tasks
[149], relational reasoning [150] or contrastive learning [151] approaches. In
our bladder cancer scenario, we advocate for a sequential strategy that uses
image reconstruction as an unsupervised prior task. Specifically, we carry out
a two-step learning methodology. First, a convolutional autoencoder (CAE)
is trained to incorporate information about the properties of the histological
domain (Subsection 3.3.1). Second (Subsection 3.3.2), a clustering branch is
included at the output of the CAE bottleneck to provide the class information
from the embedded features, which are updated by re-training the CAE on a
combined network. In the following sections, we detail both learning steps.

3.3.1 CAE pre-training

Autoencoder (AE) is one of the most common techniques for data representa-
tion and aims to minimise the reconstruction error between X inputs and R
outputs. AEs consist of two training stages: the encoder fϕ(·) and the decoder
gθ(·), where ϕ and θ are learnable parameters. The encoder network applies a
non-linear mapping function to extract a feature space Z from the input sam-
ples X, such that f : X → Z. The decoder structure is intended to reconstruct
the input data from the embedded representations; R = gθ(Z). The learning
procedure is carried out by minimising a reconstruction loss function.

AE architectures are typically defined by fully connected layers aimed at
reducing the dimensionality of the feature space [142, 146], or by convolutional
layers acting to extract features from 2D or 3D input data [140]. Like [140], we
adopted a CAE architecture to address the reconstruction of the histological
patches as a pretext task. However, our CAE differs from the current literature
in a specific aspect of the network: the bottleneck. Unlike Guo et al. [140], who
combined flatten operations with fully connected layers at the central part of
the CAE, we introduced a convolutional attention module through a residual
connection to improve the latent space for the subsequent clustering task.
As seen in Figure 3.3, the proposed CAE consists of three main structures:
encoder, bottleneck and decoder. The encoder is composed of three stacked
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convolutional layers with a 3×3 receptive field (blue boxes). At the bottleneck,
we defined an attention block that allows the embedded features to be refined
in the spatial dimension. Specifically, the proposed module combines 1 × 1
convolutions (green boxes) with a sigmoid function (purple layer) intended
to re-calibrate the inputs. The inclusion of an identity shortcut forces the
network to stabilise the feature space by propagating larger gradients to
previous layers via skip connections. An additional 1×1 convolutional layer was
included at the end of the bottleneck to extract the latent space (zi) without
affecting the dimensions of the feature maps. In the decoding stage, we applied
regularisation operations between the transposed convolutional layers (yellow-
contour boxes) throughout Batch Normalisation (BN) to avoid the internal
covariate shift [152]. Notably, no pooling or up-sampling layers were used
to adapt the dimensions of the feature maps after each convolutional step.
Instead, we worked with a stride > 1 to provide a more transformable network
by learning spatial sub-sampling [140].

128×128×64
Stride = 1

32×32×256
Stride = 2

64×64×128
Stride = 2

64×64×128
Stride = 2

128×128×64
Stride = 2

BNBN

𝑥! 𝑟!

Bottleneck

𝐸𝑛𝑐𝑜𝑑𝑒𝑟	 → 	𝑓!(·) 𝐷𝑒𝑐𝑜𝑑𝑒𝑟	 → 𝑔"(·)

12
8×
12
8×
3
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8×
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3

Identity shortcut

32×32×64

32×32×32 32×32×256

32×32×256

32×32×1 !!

Attention module

Figure 3.3: Architecture of the proposed CAE used for image reconstruction as a pretext
task during the learning process.

As observed in Figure 3.3, given an input set of patches X = {x1, ..., xi, ..., xN},
with N samples per batch, the encoder network maps each input xi ∈ RM×M×3

into an embedded feature space zi = fϕ(xi) resulting from the attention
module. At the end of the autoencoder network, the decoder function was
trained to provide a reconstruction map ri = gθ(zi) trying to minimise the
mean squared error (MSE) between the input xi and the output ri, according
to Eq. 3.1. Note that the histological patches were resized from M0 = 512 to
M = 128 to alleviate GPU constraints during model training.
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Lr =
1

N

N∑
i=1

||xi − gθ(fϕ(xi))||2 (3.1)

Learning details for the CAE pre-training. Given a training set X =
{X1, ..., Xb, ..., XB} composed of 2995 histological patches, the proposed CAE
was trained during ϵ = 200 epochs by applying a learning rate of 0.5 on B = 94
batches, with Xb ⊂ X being a single batch composed of N = 32 samples.
The Adadelta optimiser [153] was used to update the reconstruction weights
by minimising the MSE loss function Lr after each epoch e, as detailed in
Algorithm 1. Loading the 2995 histological samples in memory takes 156.59
seconds at the beginning of the model’s training. Then, each epoch takes 6.87
seconds to train the B = 94 batches.

Algorithm 1 CAE training
Data: Unlabelled training dataset X = {X1, ..., Xb, ..., XB}
Results: Trained CAE parameters ϕ and θ.

ϕ, θ ← random;
for e← 1 to ϵ do

for b← 1 to B do
X ← Xb ⊂ X;
for i← 1 to N do

ri ← gθ(fϕ(xi));

Lr ← 1
N

∑N
i=1 ||xi − ri||2;

Update ϕ, θ using ∇ϕ,θLr;

3.3.2 DCEAC training

In the pioneer deep-clustering work [142], the authors proposed a Deep
Embedded Clustering (DEC) algorithm in which the decoder structure was
discarded during the second stage of clustering training. However, Guo et al.
[140] demonstrated that fine-tuning only the encoder network could distort
the feature space and hurt the classification performance. Instead, they kept
the decoder untouched, as AE architectures can avoid embedding distortion
by preserving the local information of the data [154]. We also propose a
simultaneous learning process for both reconstruction and clustering branches
to avoid feature space corruption, similar to the approach taken in[140].

Once the CAE was pre-trained in the first stage (Algorithm 1), we incorporated
a clustering branch at the output of the CAE bottleneck giving rise to the
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proposed DCEAC model able to provide a soft label of class dependency.
From the embedded representations zi = {zi,1, ..., zi,k, ..., zi,C}, with C = 256
the number of feature maps zi,k ∈ RH×W , we performed a spatial squeeze
to obtain a feature vector z′i ∈ RC leading to a better label assignment. As
depicted in Figure 3.4, a Global Average Pooling (GAP) layer (faded green)
was used to reduce the feature maps zi,k ∈ RH×W , with H = W = 32, into the
feature vector z′i,k ∈ R1×1 (see Eq. 3.2).

z′i,k =
1

H ×W

H∑
h=1

W∑
w=1

zi,k(h,w) (3.2)

After the GAP operation, a clustering layer (red box in Figure 3.4) was included
to map each embedded representation z′i onto a soft label qi,j, which represents
the probability of z′i belonging to cluster j. In accordance with Eq. 3.3, qi,j
was calculated via Student’s T-distribution [155], keeping the cluster centres
{µj}K1 as trainable parameters.

qi,j =
(1 + ||z′i − µj||2)−1∑
j(1 + ||z′i − µj||2)−1

(3.3)
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Figure 3.4: Architecture of the proposed DCEAC algorithm. The model is trained in an
end-to-end manner by minimising both reconstruction and clustering loss functions. The
reconstruction pretext task stabilises the feature space zi avoiding the embedding distortion,
while the clustering term predicts the soft-class assignments qi for each input xi.
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Note that the cluster centres were initialised by running kmeans on the
embedded features z′i, as detailed in Algorithm 2. From here, a normal target
distribution pi,j (defined in Eq. 3.4) was used as the ground truth during model
training.

pi,j =
q2i,j/

∑
i qi,j∑

j q
2
i,j/

∑
i qi,j

(3.4)

The learning framework for the proposed DCEAC (Algorithm 2) was carried
out by minimising a custom loss function (Eq. 3.5), where Lr and Lc are
the reconstruction and clustering losses, respectively. γ > 0 is a temperature
parameter used to prevent the distortion of the feature space, as γ = 0 would
be equivalent to training just the CAE architecture.

L = Lr + γLc (3.5)

Specifically, the clustering loss was defined as Kullback-Leibler divergence
(KL = (P ||Q)) according to Eq. 3.6, whereas the MSE was used as a
reconstruction loss function.

Lc =
∑
i

∑
j

pij log
pi,j
qi,j

(3.6)

As mentioned above, the autoencoders are responsible for preserving the local
structure of the data, so the clustering term must provide only a slight
contribution to the updating of the weights in order to avoid latent space
corruption. Therefore, we empirically set γ = 0.3 for all experiments in the
training process detailed in Algorithm 2.

Learning details for DCEAC training. As in the previous CAE pre-
training, given an input batch Xb of N = 32 samples, we made use of the
Adadelta optimiser with a learning rate of 0.5 to minimise the custom loss
function L detailed in Algorithm 2. In this case, a single epoch takes 12.42
seconds to train each batch of B = 94 histological samples.
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Algorithm 2 DCEAC training.
Data: Unlabelled training dataset X = {X1, ..., Xb, ..., XB}
Results: Cluster assignment ŷi for each histological sample xi.

Step 1: Cluster centres initialisation
ϕ, θ ← pre-trained CAE parameters;
Z← fϕ(X);
{µj}Kj=1 ← kmeans(Z);

Step 2: DCEAC training
for e← 1 to ϵ do

for b← 1 to B do
X ← Xb ⊂ X;
for i← 1 to N do

zi ← fϕ(xi);
ri ← gθ(zi);
z′i ← GAP (zi);
qi,j ← (1+||z′i−µj ||2)−1∑

j(1+||z′i−µj ||2)−1 ;

pi,j ←
q2i,j/

∑
i qi,j∑

j q2i,j/
∑

i qi,j
;

Lr ← 1
N

∑N
i=1 ||xi − ri||2;

Lc ←
∑

i

∑
j pij log

pi,j
qi,j

;
L← Lr + γLc;
Update ϕ, θ, µj using ∇ϕ,θ,µjL;

Step 3: Label prediction
for b← 1 to B do

X ← Xb ⊂ X;
for i← 1 to N do

z′i ← GAP (fϕ(xi));
qi,j ← (1+||z′i−µj ||2)−1∑

j(1+||z′i−µj ||2)−1 ;
ŷi ← argmaxj(qi,j);

3.4 Experimental results

3.4.1 Comparison with other state-of-the-art methods

In this section, we show a comparison between the proposed DCEAC model
and the most relevant deep clustering-based works in the literature. In
particular, we adapted the study carried out in [142], where the authors
proposed a two-step learning strategy based on a Deep Embedded Clustering
(DEC) model composed of fully connected layers. In the first step, they trained
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the autoencoder network to extract domain knowledge from the unlabelled
images. In the second step, after encoding the specific image information, Xie
et al. [142] discarded the decoder structure to directly address the clustering
phase from the learned feature space without considering the reconstruction
error. However, later works such as [140] claimed that CAEs are more powerful
than fully connected AEs for dealing with images. Thus, we adapted the
previous DEC methodology by including convolution operations instead of
fully connected layers. To do this, we followed the methodology proposed
in [156], where stacked CAEs were originally proposed for hierarchical feature
extraction. To perform a reliable state-of-the-art comparison, we fused both
clustering [142] and CAE [156] to provide a refined DEC model (rDEC ).

We also replicated the experiments conducted by Guo et al. [140],
who proposed a hybrid learning for deep-clustering with convolutional
autoencoders. The main difference with respect to the previous rDEC is that
[140] kept the decoder term untouched during model training, resulting in a
hybrid framework that combines reconstruction Lr and clustering Lc losses.
The idea behind this is that the feature space embedded in rDEC could be
distorted if only clustering-oriented loss is used. Therefore, they proposed
leveraging the decoder structure to avoid latent space corruption by also
considering the reconstruction error. Note that one of the main contributions of
Guo et al. [140] lies in the proposed bottleneck, as they forced the dimension
of the embedded features to be equal to the number of clusters along the
fully connected layers. However, this is not scalable to other classification
problems with higher-dimensionality input images or with a reduced number
of clusters. Specifically, they applied the algorithms on the MNIST dataset
composed of samples xi ∈ R28×28×1 and provided an embedded space zi with
10 features, depending on the k = 10 number of clusters. In our case, we
deal with 128 × 128 × 3 pixel images, where the high resolution is essential
for the classification performance, unlike in the MNIST dataset. Furthermore,
our goal is to classify the histological samples into k = 3 classes, so replicating
the architecture of [140] is unfeasible as the decoder term would be unable to
reconstruct the images from only three feature values. Therefore, to drive a
convincing comparison with [140], we kept the same architectures and training
details proposed in this work, but removed the convolutional attention module
as it is one of our own main contributions. Henceforth, we will refer to this
approach as rDCEC.
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3.4.2 Quantitative results

In this section, we report the unsupervised classification performance achieved
by the aforementioned rDEC [142] and rDCEC [140] algorithms in comparison
to our proposed DCEAC model. Conventional methods based on running
the clustering algorithms (kmeans, spectral and agglomerative) on the feature
space were also considered to find out the performance difference between the
proposed model and traditional techniques. These conventional approaches
will be referred to as AE+kmeans, AE+spectral and AE+agg, respectively. In
Table 3.1, we present the class performance obtained from the conventional
clustering methods to show how well the three algorithms classify the 2995
histological patches with non-tumour (NT), mild (M) and infiltrative (I)
patterns. Similarly, we also evaluate the per-class behaviour of the deep
clustering-based algorithms (rDEC, rDCEC and DCEAC ) in Table 3.2. In
addition, the micro- and macro-average classification results are reported
in Table 3.3. Both metrics provide information about the overall average
performance of the classification models, but the micro-average takes into
account the imbalance between classes, which allows for a truer picture of
the models’ behaviour than does the macro-average. Comparison among the
different methods is handled by means of different figures of merit, such as
sensitivity (SN), specificity (SP), F-score (FS), accuracy (ACC) and area under
the ROC curve (AUC).

To improve the comparison between the six learning approaches, we represent
in Figure 3.5 the latent space laid out by each clustering model with its
respective confusion matrix. While the confusion matrix provides information
about the classification ability of each model, the representation of the
embedded features contributes to a more comprehensive clustering scenario for
bladder cancer grading. Thus, while the latent space representation would fit
better in the qualitative section, the confusion matrix provides a quantitative
perspective that aids the interpretation of the embedded feature map.

Table 3.1: Unsupervised results per class from conventional methods.

NON-TUMOUR MILD INFILTRATIVE
AE+kmeans AE+spectral AE+agg AE+kmeans AE+spectral AE+agg AE+kmeans AE+spectral AE+agg

SN 0.9345 0.9227 0.9869 0.5020 0.6327 0.7415 0.5105 0.5827 0.2533
SP 0.9870 0.9718 0.9960 0.7659 0.8210 0.6249 0.6556 0.7398 0.8307
FS 0.9475 0.9203 0.9875 0.5754 0.6958 0.6960 0.4052 0.4969 0.2896

ACC 0.9736 0.9593 0.9937 0.6364 0.7285 0.6821 0.6187 0.6938 0.6838
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Table 3.2: Unsupervised results per class from deep-clustering methods.

NON-TUMOUR MILD INFILTRATIVE
abcrDECab abcrDCECabc DCEAC abcrDECab abcrDCECabc DCEAC abcrDECab abcrDCECabc DCEAC

SN 1 1 0.9987 0.8082 0.8952 0.9041 0.4659 0.5105 0.6168
SP 0.9319 0.9780 0.9978 0.8262 0.7862 0.8118 0.8782 0.9319 0.9364
FS 0.9094 0.9689 0.9961 0.8129 0.8458 0.8613 0.5112 0.5971 0.6841

ACC 0.9492 0.9836 0.9980 0.8174 0.8397 0.8571 0.7733 0.8247 0.8551

Table 3.3: Unsupervised results in terms of micro- and macro-average achieved from both
conventional and deep clustering methods.

MICRO-AVERAGE MACRO-AVERAGE
AE+kmeans AE+spectral AE+agg rDEC rDCEC DCEAC AE+kmeans AE+spectral AE+agg rDEC rDCEC DCEAC

SN 0.6144 0.6938 0.6798 0.7699 0.8240 0.8551 0.6490 0.7127 0.6606 0.7580 0.8019 0.8399
SP 0.8072 0.8469 0.8399 0.8850 0.9120 0.9275 0.8028 0.8442 0.8172 0.8788 0.8987 0.9153
FS 0.6144 0.6938 0.6798 0.7699 0.8240 0.8551 0.6427 0.7043 0.6577 0.7445 0.8039 0.8472

ACC 0.7429 0.7959 0.7865 0.8466 0.8827 0.9034 0.7429 0.7959 0.7865 0.8466 0.8827 0.9034
AUC 0.7259 0.7784 0.7389 0.8184 0.8503 0.8776 0.7259 0.7784 0.7389 0.8184 0.8503 0.8776
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Figure 3.5: TSNE outcomes and confusion matrices. The top row with the scatter
graphics corresponds to the latent space representation from the clustering classification
achieved by each method. The T-distributed Stochastic Neighbour Embedding (TSNE)
tool was employed to illustrate the feature space in a 2D map. Well- and missclassified
embedded features are represented by spots and crosses, respectively. The green, blue and
red colours refer to the non-tumour (NT), mild (M) and infiltrative (I) patterns. In the
bottom row, a confusion matrix per method shows the ability of each one to discern the
MIBC aggressiveness.

3.4.3 Qualitative results

In an attempt to incorporate an interpretative perspective for the reported
quantitative results, we computed the class activation maps (CAMs), which
highlight the regions to which the model pays attention in order to predict the
class of each sample. This often helps to find hidden patterns associated with
a specific class or to determine whether the label prediction is based on the
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same patterns as the clinicians’ findings. In this way, the reported heat maps
lead to a better understanding of the embedded feature space by pinpointing
areas of the histological patches that are decisive in cluster assignment.

As can be deduced from Figure 3.5, the major challenge in the classification of
MIBC lies in distinguishing mild (M) and infiltrative (I) cancerous patterns,
as expected. For this reason, in Figure 3.6 we present several examples of heat
maps corresponding to missclassified samples to elucidate why the proposed
model is flawed. We also show examples of well-predicted CAMs to evidence
the relevant structures to which the network pays attention when predicting
correctly. Specifically, we show five examples per case to make clear the
criteria followed by the proposed model to determine the class. In the green
frame of Figure 3.6, we illustrate well-classified mild (a-e) and infiltrative (f-j)
histological patterns. Additionally, in the red frame, we show bladder cancer
samples with a mild pattern missclassified as tumour budding (k-o), and vice
versa (p-t). The findings from the CAMs will be discussed in Section 3.5.

3.5 Discussion

3.5.1 On quantitative results

From Table 3.1 and 3.2, we can observe that all models work well for
detecting the non-tumour class. In the conventional approaches (Table 3.1),
the AE+agg algorithm shows slightly better performance, but at the cost of
greatly compromising detection of the rest of the classes. In contrast, the
proposed DCEAC model (Table 3.2) achieves the highest performance for
all metrics except for sensitivity, as the model missclassifies a non-tumour
sample as an infiltrative case (see Figure 3.5). Concerning the mild (M)
and infiltrative (I) patterns, the deep-clustering models notably improve the
success of unsupervised classification compared to conventional approaches.
Regarding the mild class, AE+spectral and AE+agg clustering methods show
similar behaviour, but the proposed model provides the highest performance
with an increase in accuracy of 12.85% with respect to the best conventional
approach. Only rDEC surpasses it in any metric (by 1% in specificity), but
in exchange for a 10% drop in sensitivity relative to the proposed DCEAC.
During the evaluation of the infiltrative class, the AE+agg method drops
strongly, which places AE+kmeans and AE+spectral as much more reliable
conventional clustering algorithms. Comparing all algorithms side-by-side, the
proposed DCEAC method shows the best results for all metrics, specially the
F-score, where DCEAC outperforms the other approaches by more than 10%.
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Well-predicted
mild pattern

Well-predicted
Infiltrative pattern

Mild pattern
wrongly predicted as 

infiltrative pattern

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Infiltrative pattern
wrongly predicted as 

mild pattern

Figure 3.6: Class activation maps highlighting the regions that the proposed DCEAC
model considers relevant for the class prediction. The green frame refers to well-predicted
images with mild (M) and infiltrative (I) patterns, whereas the red frame corresponds to
missclassified samples where disease aggressiveness has been confused. The more important
the areas, the warmer the colour in which they are represented in the heat maps, so that the
blue tones denote less important regions, and red tones refer to more important ones.

Table 3.3 reports the overall performance of the models, in terms of micro-
and macro-average. As mentioned above, the micro-average results take into
account the imbalance between classes, which is an important aspect in this
study, as the samples with mild pattern are over-sampled. Nevertheless,
the proposed DCEAC model consistently outperforms the other clustering
methods by 2-3% across both micro- and macro-averaging, as can be seen
in Table 3.3. As a final remark on the quantitative results, it is worth noting
that the expert’s decision coincides with the proposed artificial intelligence
system in 90.34% of the cases, according to the average accuracy.
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A reinforcement of the quantitative results is reported in Figure 3.5. In the
confusion matrices, it is clear from the range of colours that all models tend
to confuse mild cancerous and infiltrative patterns. Conventional algorithms
demonstrate a very low ability to discern between cancerous samples as most
of the images are predicted as a mild pattern due to oversampling of that
class. This changes when deep-clustering algorithms are profiled. Specifically,
the rDEC model improves the classification of carcinogenic images but greatly
compromises that of the non-tumour class by missclassifying samples with
infiltrative pattern. In contrast, the rDCEC model improves the results by
significantly decreasing the instances of tumour budding samples erroneously
predicted as non-tumour cases. In addition, rDCEC increases the number
of true positives for tumour samples. However, this model presents a major
shortcoming in predicting infiltrative patterns, as a large number of them are
wrongly labelled as mild. Unequivocally, the proposed DCEAC model provides
the best classification results. The number of samples with tumour budding
missclassified as non-tumour cases decreases to a minimum, in contrast to the
aforementioned methods. Moreover, the number of true positives increases
for both mild and infiltrative patterns compared to the results of the other
methods, while false positives and false negatives are reduced.

The representation of the embedded feature space offers a visual perspective
of the quantitative results. We can observe that the conventional approaches
are able to roughly discern between non-tumour and carcinogenic histological
samples. However, the point clouds are too fuzzy to separate mild from
infiltrative classes. Contrarily, the rDEC model shows a better distribution
of the embedded data, although the features relative to each class are still
close together in the latent space. This improves in the case of the rDCEC
model, where independent clusters start to become apparent. The non-
tumour features (shown in green) become unmarked in the representation
space and the embedded tumour samples start to disperse into different
classes of cluster. Indisputably, the DCEAC algorithm provides the best
embedding representation as the features are distributed throughout the latent
space, forming independent clusters according to a specific class. This further
strengthens our confidence in the ability of the proposed model to discern
between non-tumour, mild and infiltrative histological patterns.

From the above in-depth analysis of the quantitative and interpretative
results, several conclusions can be drawn. The first is that the use of
deep learning techniques improves classification performance compared to
conventional clustering approaches. As expected, all deep clustering-based
methods, i.e. rDEC, DCEC and DCEAC, outperform the baseline based
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on the traditional kmeans, spectral and agglomerative algorithms. This
is because the deep-clustering models allow for a more extensive learning
stage in which the embedded features conform to a target distribution,
unlike conventional algorithms, which modify the clusters iteratively without
updating the feature learning. Additionally, we can observe that models
with both the reconstruction and clustering branches integrated into a unified
framework provide better results than the rDEC model, which carries out the
learning process in two independent stages. The reason behind rDCEC and
DCEAC outperforming rDEC lies in the preservation of the local structure
of the embedded data. Since rDCEC and DCEAC models have a connected
output between the clustering and reconstruction stages, the clustering term
can transfer class information to the reconstruction term, which is responsible
for updating the weights of the encoder network. In this way, the embedded
features can be optimised by incorporating the class prediction without
distorting the latent space, thanks to the decoder structure. Finally, the
proposed DCEAC model shows substantial performance improvements over
the rest of the approaches. This is due to the inclusion of the convolutional
attention block, which allows for the refinement of the latent space to provide
more suitable features for the clustering phase.

3.5.2 On qualitative results

As observed in Figure 3.6, the proposed DCEAC model focuses on tumour
cell nests (Figure 3.6, a-c) and interconnected tumour bands (Figure 3.6, d-e)
when predicting samples with a mild pattern. This implies that the proposed
network has learnt by itself to associate nodular and trabecular structures with
a mild pattern of disease. Furthermore, the DCEAC model recognises small
clusters of isolated buds (Figure 3.6, f-g) or tumour cell cords (Figure 3.6,
h-j) as structures characteristic of the infiltrative pattern. These findings are
evidenced in the heat maps corresponding of the well-predicted samples.

In the case of the wrong predictions (red frame in Figure 3.6), we can observe
that the proposed network maintains consistency in determining the class of
each sample. The histological patches in Figure 3.6 (k–o), in which the network
highlights small filaments reminiscent of tumour budding structures, are similar
in appearance to infiltrative patterns. However, the true label assigned by
the expert for these samples was a mild pattern, as trabecular structures are
often difficult to distinguish from the cell cords of the infiltrative pattern. The
qualitative results thus present an opportunity here for the model’s suggestions
to serve a role similar to that of a second opinion, and lead pathologists to
reconsider their diagnoses.
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In contrast, in the cases of the Figure 3.6 (p-t), samples with an infiltrative
pattern are erroneously predicted by the model as mild cases. In these
histological patches, the proposed network focuses on larger structures related
to nodular or trabecular patterns, but ignores small, isolated tumour cells that
lead to increased severity of bladder cancer. It follows that, although the final
prediction could be wrong, the pattern recognition accomplished by the model
maintains consistency. Note that the model is wrong because patterns that
belong to a different class coexist in the same histological patch, so we will
face this problem in future research lines.

In summary, the proposed DCEAC model demonstrates, through heat maps,
a high-confidence prediction as it is able to focus on the same patterns as
the clinicians, without having prior information from them. As mentioned
above, the expert’s opinion and the proposed model coincide in most cases
(specifically, 90.34% of cases). Thus, the artificial intelligence system could
help as a computer-aided system for process review, which would lead to an
improvement in the quality of diagnosis without the need to involve other
experts. In addition, the proposed system could be used to help inexperienced
pathologists by suggesting annotations for specific areas of interest.

3.6 Conclusion

In this paper, we have proposed a novel self-learning framework based on
deep-clustering techniques to grade the severity of bladder cancer through
histological samples. Immunohistochemistry staining methods have been
considered to enhance the NT, M and I patterns, according to the literature.
The proposed DCEAC outperforms other conventional and deep clustering-
based methods, achieving an average accuracy of 0.9034 for MIBC grading.
The CAMs show that the proposed system is able to self-learn the same
structures as clinicians to associate patterns with the correct aggressiveness
level, without incurring prior annotation steps. Therefore, our fully
unsupervised approach bridges the gap with respect to other supervised
algorithms, as the proposed system does not require the involvement of experts
for model training.

In future research lines, we will work on improving the accuracy of tumour
sample classification when structures of different growth patterns appear in the
same image. We will propose the use of convolutional variational autoencoders
considering probabilistic and deterministic attention modules. Finally, we will
pursue an end-to-end system in which no prior raw annotations are necessary.
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Chapter 4

Glaucoma Detection from Raw SD-OCT Volumes: a
Novel Approach Focused on Spatial Dependencies

The content of this chapter corresponds to the author version
of the following published paper: García, G., Colomer, A. &
Naranjo, V. Glaucoma detection from raw SD-OCT volumes: A
novel approach focused on spatial dependencies. Computer Methods
and Programs in Biomedicine, 200, 105855 (2021).
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Abstract

Glaucoma is the leading cause of blindness worldwide. Many studies based on
OCT imaging have been developed in the literature to help ophthalmologists
through AI techniques. Currently, 3D spectral-domain (SD)-OCT samples
have become more important, as they could enclose promising information for
glaucoma detection. To analyse the glaucoma-specific knowledge hidden in
3D scans, we propose for the first time a deep learning methodology based on
leveraging the spatial dependencies of the features extracted from the slides of
the volumes. The experiments were performed on a database composed of 176
healthy and 144 glaucomatous SD-OCT volumes centred on the optic nerve
head. The proposed methodology consists of a two-step learning methodology
to train: i) a slide-level feature extractor, and ii) a volume-based predictive
model. The slide-level discriminator consists of a new architecture designed
to extract the useful information from the slides of the SD-OCT cube. The
volume-based predictive model bases on Long Short-Term Memory (LSTM)
networks to combine the recurrent dependencies extracted from the slide-
derived feature space. A sequential-weighting module (SWM) is proposed to
map the latent embedding into a refined feature vector before the volume-level
classification. The discriminator reports AUC values higher than 0.93 both in
the primary and external test sets. The end-to-end system (discriminator +
LSTMs + SWM) achieves an AUC of 0.8847 in the glaucoma prediction from
SD-OCT volumes, which outperforms other state-of-the-art studies focused on
3D deep learning architectures. The class activation maps evidence that the
proposed model pays attention to the same OCT-specific areas that experts
focus on for glaucoma detection.



4.1 Introduction

4.1 Introduction

Glaucoma is a group of progressive optic neuropathies that affects the optic
nerve causing several visual field defects and structural changes [73]. This
chronic disease is the leading cause of blindness worldwide [74], with a
number of estimated cases of 111.8 million in 2040, according to [157]. Early
diagnosis of glaucoma is essential for timely treatment in order to avoid the
irreversible vision loss [74]. Currently, there is no single accurate test to certify
glaucoma, so that the procedure includes a lot of hardworking tests such as
pachymetry (to measure the thickness of the cornea), tonometry (to assess
the intraocular pressure), visual field tests and a subjective examination and
interpretation of optical features from different experts who often disagree
[158]. In this context, techniques based on image analysis like fundus image
and optical coherence tomography (OCT) have become very important for
the diagnosis and management of this degenerative disease. OCT imaging
modality [159] is a non-contact and non-invasive technique able to quantify
several retinal structures through generating high-resolution 2D and 3D images
of the retina. Ophthalmologists usually make use of these 2D-OCT images
centred on the optic disc to analyse structural changes in the retinal nerve
fibre layer (RNFL) and in the ganglion cell inner plexiform layer (GCIPL).
Both structures are reported as useful biomarkers of glaucoma for the disease
progression [160]. Otherwise, fundus image analysis is placed as a great cost-
effectiveness technique which has reported promising results in the detection
of several eye-focused diseases [5, 161, 162]. Fundus image-based studies
are cheaper than OCT, but OCT is the quintessential imaging technique for
glaucomatous damage evaluation [39]. This is because fundus photography
is colour-dependent on the training dataset and its interpretation remains
subjective [163, 164], whereas OCT modality can provide reproducible and
objective measurements of optic nerve head (ONH) and RNFL thickness [165].
Besides, glaucoma disease is evident in the deterioration of the cell layer around
the optic disc, which is very hard to distinguish in the 2D projection of the
fundus images. Therefore, as OCT imaging modality focuses on the depth
axis to identify structural retinal changes, glaucoma disease can be easier
detected via OCT, instead of fundus image. Furthermore, OCT system can
provide high-resolution three-dimensional images of the macula and ONH in
the spectral domain (SD), which emerges as a powerful tool for detecting
glaucoma [39]. However, due to around 30 million of OCT scans are acquired
each year, experts rarely scroll through the entire cube because it supposes a
workload difficult to face [166]. In this paper, we propose a promising volume-
based predictive model to claim the added value that SD-OCT volumes can
provide for glaucoma diagnosis.
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4.1.1 Related work

4.1.1.1 2D-OCT approximation for glaucoma detection

Many OCT-based studies have been proposed in the literature to address the
automatic detection of glaucoma aimed at reducing the workload and the rate
of discordance between experts.

Hand-driven learning on 2D-OCT projection. Most of glaucoma-
intended studies made use of 2D-OCT scans centred on the optic disc, a.k.a
circumpapillary images, due to their known potential when diagnosing [167].
To the best of the authors’ knowledge, all the circumpapillary-based works were
performed via hand-driven learning methods [16, 168], which requires hand-
crafted encoding phases before the classification stage for glaucoma detection.

Deep learning on 2D-OCT projection. The use of convolutional neural
networks (CNNs) is another way to address the glaucoma detection from
circumpapillary OCT images. This approach directly operates on the 2D-OCT
scans without defining previous biomarkers, as we proposed in our previous
study [62]. All the studies found in the literature under these conditions
are based on fundus images [5, 169] or RNFL probability maps [54, 170]
combining fundus images and OCT B-scans; however, no previous studies
were conducted just from circumpapillary OCT images. This fact could
be explained taking into account that the researchers focus their efforts on
identifying useful patterns (e.g. RNFL and GCIPL) capable of providing a
tangible interpretation for the clinicians. For that reason, many other studies
were carried out for the sole purpose of segmenting retinal layers[171, 172].

4.1.1.2 3D-OCT approximation for glaucoma detection

Going deeper into the glaucoma detection, the real challenge today lies in
the analysis of the unknown potential enclosed in the 3D-OCT scans, as the
specialists claim that SD-OCT volumes hide a key knowledge that is not
currently being traced due to their associated heavy workload. Therefore, we
propose here a clinical decision support system based only on the analysis
of ONH-centred cubes to claim the importance of the 3D cross-sectional
information about the glaucoma diagnosis.

Hand-driven learning on 3D-OCT approach. Similarly to the 2D
approximation, some studies in the literature applied hand-crafted algorithms
on 3D scans to face the glaucoma discrimination [173–175]. Both [173] and
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[174] manually extracted features related to the RNFL and the optic nerve
throughout the cube. The authors proposed a similar methodology, but they
tested their models on different databases. In [173], an AUC of 0.877 was
achieved using a random forest classifier from a database composed of 46
healthy and 57 glaucomatous patients, whereas in [174], the same researchers
provided an AUC of 0.818 by applying bagging methods on a database of 48 and
62 healthy and glaucomatous patients, respectively. Xu et al. [175] made use of
a superpixel segmentation technique before addressing the feature extraction
stage. They combined the features extracted from the superpixel maps with
other RNFL measurements to feed an adaptive boosting classifier. An AUC of
0.855 was reported from a database of 44 healthy and 89 glaucomatous eyes.

Deep learning on 3D-OCT approach. The use of deep learning methods
to address the glaucoma detection via SD-OCT volumes has been increased in
recent times. Most of the recent studies claims the current interest of OCT
volumes for glaucoma diagnosis [50, 53, 76]. A research group from Hong Kong
deserves a special mention because most of the contributions in this field come
from their work. They carried out two closely similar studies, [53] and [76] to
detect glaucoma by means of 3D-CNNs. The main differences between them
lied in the database and inclusion/exclusion criteria, as the authors concluded
in [53]. Noury et al. [53] made use of a private database composed of 316
glaucomatous and 247 healthy eyes from people of different ethnicity. They
developed an end-to-end classification model based on the network proposed
in [49]. The researchers achieved an AUC of 0.8883 in the primary test set,
but this value was lower when testing external datasets. In contrast, the
authors in [76] applied similar techniques on a homogeneous database only
composed of Chinese Asian people. Particularly, 2926 glaucomatous and 1961
healthy eyes. This work reported an AUC of 0.969, a sensitivity of 0.89, a
specificity of 0.96 and an accuracy of 0.91 when testing the primary dataset.
However, the results fell when assessing the network using an external database
from Stanford, reaching values of 0.893, 0.78, 0.79 and 0.80, respectively.
More recent works from the same authors [52, 75] performed a multi-output
architecture by including other well-known glaucoma-specific indices such as
Visual Field (VF), Mean Deviation (MD) and Pattern Standard Deviation
(PSD). In their method, a neural branch of the network was responsible for
the classification between normal and glaucomatous cases, whereas the other
branch was intended to regression tasks for predicting VF, MD and PSD
values. Therefore, the model was fed with information from VF, MD and
PSD metrics during the backward propagation step to update the weights
in each epoch taking into account interesting parameters associated with
the glaucoma disease. However, these two last studies are not comparable
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with our work because additional information was used besides the raw OCT
volumes, unlike the works [53, 76] accomplished by the same research group.
Another interesting study was carried out by the IBM research group in [50],
where the authors made a comparison between hand-driven and data-learning
approaches. They proposed a 3D-CNN architecture trained from scratch and
they achieved an AUC of 0.94 in the prediction of the test set. However,
it should be noted that, in this case, the experiments were performed on a
significant unbalanced database, whose test set was composed of 17 healthy
and 93 glaucomatous patients.

In this context, other works could be mentioned because they also applied
deep learning techniques on SD-OCT volumes, but with other purposes.
For example, in [176], Ran et al. proposed an algorithm for discriminating
ungradable OCT optic disc scans. In [166], the Kurmann et al. implemented
deep learning techniques to detect specific Age-Related Macular Degeneration
(AMD) patterns in the B-scans of the 3D cubes. Also, De Fauw et al. in [177]
applied artificial intelligence algorithms on OCT volumes to diagnosis several
retinal injuries via tissue segmentation.

4.1.2 Contribution of this work

This paper documents several key contributions concerning the glaucoma
detection from SD-OCT volumes. Unlike the previous studies that addressed
the problem using 3D CNNs, we reveal a new approach based on extracting
features from the B-scans by an innovative 2D-CNN, and preserving the
embedding dependencies via LSTM networks [178]. The combination of CNNs
and LSTM networks has been successfully performed in recent studies to
identify pathological biomarkers associated to AMD and diabetic macular
edema (DME) [166], as well as to predict the progression of other ophthalmic
diseases using different slit-lamp images [179]. However, as far as we are aware,
this is the first study that suggests the combination of CNNs and LSTMs to
address the glaucoma detection, by assuming each spatial slide of the volume
as a temporary instance. As a novelty, to attain the feature-extraction stage,
we propose a new slide-level discriminator based on a pre-trained 2D-CNN
model able to discern between healthy and glaucomatous cases just from raw
circumpapillary OCT images. The proposed 2D-CNN feature extractor is
composed of a novel combination of pre-trained convolutional blocks in parallel
with residual modules trained from scratch. Additionally, an attention block
was included via skip-connections to focus on local specific-glaucoma areas
during the training phase. We also propose an innovative way of codifying
the LSTM outputs by means of a sequential-weighting module (SWM), which

84



4.1 Introduction

allows for the refinement of the feature space before the classification stage.
The flowchart of the designed end-to-end system is exposed in Figure 4.1,
where we represent how the pre-trained 2D-CNN extracts the features from
the SD-OCT slides and how the 3D information is analysed making use of
LSTM networks to finally predict the class of each specific ONH-centred cube.
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Figure 4.1: Flowchart of the proposed glaucoma detection framework based on combining
CNN and LSTM networks to distinguish between healthy and glaucomatous eyes from raw
SD-OCT volumes.

In [50], Maetschke et al. defended the use of 3D convolutions to be able to
accomplish the 3D Class Activation Maps (CAMs), as otherwise, the resulting
CAMs would be 2D and the depth information would be lost. Contrarily,
our LSTM-based model is able to leverage the spatial dependencies extracted
from the SD-OCT slides to compute the 2D-CAMs sequentially. Thereby, we
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enable an interpretation of SD-OCT volumes based not only on identifying
the regions of interest (ROIs) of each slide, but also the most relevant B-scans
of the volume for glaucoma classification. It is important to note that we
also replicated several architectures proposed in the literature to make a direct
comparison between different methods. We tested in our database the state-of-
the-art architectures intended to glaucoma detection just from raw SD-OCT
volumes, i.e. the works performed in [76] and [50].

4.2 Material

Three different and independent databases were employed to accomplish this
study, as indicated in Table 4.1. Two of them are related to circumpapillary
OCT images and they were used to train and validate the proposed slide-level
feature extractor. The third database is composed of the SD-OCT volumes
from which we built the predictive models for glaucoma detection. Both the
circumpapillary and SD-OCT volumes databases are centred around the ONH
of the retina to extract the B-scans. Note that, although circumpapillary and
volume slides are extracted following different acquisition options, the structure
involved in both kind of scans is the same, i.e. the fibre layers of the retina.
For that reason, we used the models trained on circumpapillary images as a
feature extractor of the volume slides.

The first dataset (circ-DB-1 ), intended to train the slide-level discriminator,
consists of 249 cross-sectional images around the ONH of the retina.
Specifically, 156 healthy and 93 glaucomatous samples from 174 patients were
labelled by an expert to create the ground truth for training and evaluating the
models. The second circumpapillary database (circ-DB-2 ), which comes from
another hospital, was used to perform an external validation of the proposed
feature extractor. Particularly, circ-DB-2 is composed of 336 OCT images (143
glaucomatous and 193 healthy cases from 199 patients) which were annotated
by another ophthalmologist. It should be noted that a Heidelberg Spectralis
OCT -called system was used to extract the B-scans (496 × 768 pixels) from
both databases with an axial resolution of 4-5 µm. Patients with primary
open-angle glaucoma (POAG) were included in the study, whereas subjects
with other eye diseases, e.g. cataract, closed-angle glaucoma, and pseudo
exfoliation syndrome were excluded. More information related to the age and
gender of the patients is detailed in Table 4.2.

The third database (vol-DB-3) contains the spectral-domain OCT samples
that we used to develop our volume-based predictive model. It consists of
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320 OCT scans centred on the ONH which were captured on a Topcon 2000
OCT machine. This equipment enables measures up to 45º and a depth of 2.3
mm with a resolution of less than 6 µm. Specifically, vol-DB-3 is composed
of 176 healthy and 144 glaucomatous 3D-scans of 885 × 512 × 128 voxels
per volume, as detailed in Table 4.1. An expert ophthalmologist performed
a volume-level annotation of the database containing cases of 200 patients
with an age comprised between 18 and 80 years (see Table 4.2). Concerning
the inclusion and exclusion criteria for diagnosis, the healthy group included
samples with best-corrected visual acuity 20/40 or better, normal intra-ocular
pressure (IOP) and normal-appearing optic nerves. Contrarily, scans with
refractive error of >5D of the sphere, history retinal disease, intra-ocular
pressure >21 mmHg or unusable OCT were excluded from the study. For
the glaucoma group, the inclusion criteria lied in any glaucomatous visual field
defect, whereas the exclusion rules comprised refractive error of >5D of the
sphere, optic nerve-related diseases and unusable OCT samples.

Table 4.1: Breakdown of the databases used for glaucoma detection. circ-DB-1 refers to
the database employed to train the feature extractor model. circ-DB-2 corresponds to the
dataset used in the external validation of the feature extractor. circ-DB-3 refers to the
database utilised to train and evaluate the volume-based predictive model.

Database Label Patients Samples Dimensions

circ-DB-1 Healthy 107 (61.49%) 156 (62.65%)
496× 768Glaucoma 67 (38.51%) 93 (37.35%)

circ-DB-2 Healthy 99 (49.75%) 193 (57.44%)
496× 768Glaucoma 100 (50.25%) 143 (42.56%)

vol-DB-3 Healthy 100 (50.00%) 176 (55.00%)
885× 512× 128Glaucoma 100 (50.00%) 144 (45.00%)

Table 4.2: Demographic data related to the age and gender of the patients.

Age Gender
Range µ± σ Male Female

circ-DB-1 [15-89] 55.95±18.77 74 (42.54%) 100 (57.47%)
circ-DB-2 [24-93] 60.82±12.32 86 (43.22%) 113 (56.78%)
vold-DB-3 [18-80] 50.13±15.54 89 (44.50%) 111 (55.50%)

The protocol used for glaucoma labelling was carried out following the
European guideline for Glaucoma diagnosis. A thorough examination includes
intra-ocular pressure analysis (using Goldmann applanation tonometry), study
of the central corneal thickness, assessment of the anterior chamber angle
(Gonioscopy), optic nerve head assessment (via slit lamp examination),
Standard Automated Perimetry (using Octopus system) and measurement
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of the thickness of retinal nerve fibre layer and ganglion cell layer (with
OCT+HRT equipment). Based on these examinations, B-scans and SD-OCT
volumes were labelled as healthy or glaucoma. Note that any of the following
criteria, if repeatable, was considered sufficient evidence of glaucomatous visual
field defect: glaucoma hemifield test outside normal limits, pattern standard
deviation with p-value < 0.05 or a cluster of three points or more in the pattern
deviation in a single hemifield (superior or inferior) with p-values < 0.05, one
of which must have a p-value < 0.01.

4.3 Methodology

4.3.1 Slide-level feature extractor design

The objective here is to build a 2D-CNN architecture able to extract
discriminatory features from the slides of the SD-OCT volumes. In our
previous work [62], we carried out a validation of different architectures making
use of the raw circumpapillary OCT samples. We considered some of the
most common state-of-the-art architectures, as well as other CNNs trained
from scratch. As detailed in [62], we proposed shallow networks to deal with
the small amount of information and used data augmentation techniques to
alleviate that problem. Additionally, we fine-tuned some of the most popular
architectures of the literature, such as VGG16, VGG19, ResNet50, InceptionV3
and Xception [180], to take advantage of the wide knowledge acquired by
these networks when they were trained on the ImageNet dataset. Thus, we
loaded the weights ω pre-trained with around 14 million of natural images to
initialise the coefficients of the networks. Then, we performed a deep fine-
tuning strategy [111] to freeze the coefficients of the three first convolutional
blocks and retrain the last ones making use of the specific samples. Note that,
we replicated ×3 the channels of the grey-scale images to adapt the input
dimensionality to the fine-tuned CNNs. We also applied a ×0.5 down-sampling
to deal with the GPU memory constraints, which usually appear when data
volumes are addressed.

In [62], the VGG family of networks reported the best glaucoma detection
performance from raw circumpapillary OCT images. Therefore, to accomplish
this study, we made use of these family of architectures as a starting point to
develop the new feature extractor. We kept the same deep fine-tuning strategy
previously conducted in [62]; however, in this paper, we propose two innovative
modules to improve the models’ performance through residual convolutions.
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The first module (Mres) consists of a combination of the fine-tuned VGG16
architecture with a residual structure applied in parallel to the unfrozen
blocks, followed by a 1 × 1 convolution layer, as depicted in Figure 4.2.
We connected the fine-tuned structure with other convolutional blocks to
propagate the information from initial to final layers, using residual connections
in a novel way. This makes possible to mitigate the problem of vanishing
gradients by allowing the shortcut to flow through the gradient of a deeper
architecture. Unlike the traditional skip-connections defined in [181], where a
specific input fed the network at two different points, the proposed system
introduces a convolutional shortcut inspired by the basic structure of the
ResNet-50 architecture. Such structure aims to optimise the dimensionality
of the filters by alternating convolution layers of 1 × 1 and 3 × 3 kernel sizes,
which are represented in Figure 4.2 in green and blue boxes, respectively. In
addition, an initial batch normalisation layer (in brown) and a final max-
pooling layer (in red) were implemented as a part of the residual block (see
Figure 4.2). Note that kernel and stride sizes of 4×4 were specified for the max-
pooling layer, ensuring the consistency of the filter dimensions to concatenate
the residual features with the output from the Block_5 VGG16. Finally, the
Mres module containing a 1×1 convolution layer generates a volume of features
G = {g1, g2, ..., gk, ..., gC}, where C = 512 is the number of filters in the volume,
and gk the k-th feature map with dimensions H ×W = 7× 12.

The second module (Matt) of the proposed network includes an attention block
characterised by a succession of 1 × 1 convolutional layers intended to refine
the features in the spatial dimension. The proposed module is a kind of
bottleneck architecture composed of a batch normalisation layer followed by
two successive ReLu-activated convolutions, in which the size of the filters is
decreased progressively, as observed in Figure 4.2. Also, a 1 × 1 convolution
layer with a unique filter passing through a sigmoid function (purple) was used
to recalibrate the inputs. At the end of the bottleneck, it includes another 1×1
convolution layer which increases the number of filters to make possible the
concatenation between the inputs and the outputs of the attention block. In
this way, a basic skip-connection was implemented to flow larger gradients to
previous layers by learning an identity function as a shortcut, as depicted in
Figure 4.2. Finally, the second module Matt is provided with another 1 × 1
convolution layer to obtain a feature volume map F = {f1, f2, ..., fk, ..., fC}.
Regarding the top model, a spatial squeeze was performed by a Global Average
Pooling (GAP) layer, which provides a vector x ∈ R1×1×C according to
Eq. 4.1. Finally, we defined a softmax-activated dense layer with two neurons
corresponding to the two classes (healthy and glaucoma) in which the OCT
images had to be classified.
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xk =
1

H ×W

H∑
i=1

W∑
j=1

fk(i, j). (4.1)

Block_5 VGG16

Residual Block_1

Attention Block_1

31×48×128 7×12×51231×48×128 31×48×512

7×12×128

7×12×512

7×12×64
7×12×1

248×384×3

7×12×512 7×12×512

Block_4 VGG16

Blocks
VGG16

1 - 3 Identity shortcut

Residual shortcut

GAP

7×12×51214×24×51215×24×51231×48×512

𝑴𝒓𝒆𝒔
𝑴𝒂𝒕𝒕

Figure 4.2: Architecture of the proposed slide-level discriminator used to distinguish
between healthy and glaucomatous eyes from raw circumpapillary OCT images. Blue, red,
brown and green colours denote 3 × 3 convolution, max-pooling, batch normalisation and
1× 1 convolution layers, respectively.

As summarised in Figure 4.3, given an input image I ∈ RH′×W ′×C′
, being

H ′×W ′×C ′ = 248× 384× 3 the dimensions of I, the first module Mres of the
feature extractor generates a volume map G ∈ RH×W×C , Mres : I → G. From
here, G becomes the input to the second module Matt, which provides a refined
output F ∈ RH×W×C , Matt : G → F that corresponds to the feature volume
embedded in the latent space, which will be used to extract information from
each B-scan of the SD-OCT volumes.

OCT
image PredictionsModule 1

𝑴𝒓𝒆𝒔

Module 2
𝑴𝒂𝒕𝒕

Input Feature extractor Output

𝐼 ∈ ℝ!!×#!×$! 𝐺 ∈ ℝ!×#×$ 𝐹 ∈ ℝ!×#×$
Top model

Figure 4.3: Flowchart of the proposed circumpapillary architecture highlighting the
connections between the different modules of the feature extractor.
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4.3.2 Volume-based predictive model development

4.3.2.1 Data-volume conditioning

As reported by Maetschke et al. [50], it was necessary to prepare the SD-OCT
volumes database to face the constraints of the GPU memory caused by a large
amount of data. In this paper, we propose a conditioning step for the volume
slides based on extracting the useful information from each B-scan, instead of
down-sampling the images [50, 53]. First, we discarded the 32 initial and the
32 final slides from the total of 128 because the glaucoma-specific information
is located around the ONH, i.e. around the central slides of the cube [52].

Then, we developed a series of algorithms to remove useless pixels from each
slide ensuring the same dimensions for all the slides. In this way, given
S = {s1, s2, s3, ..., sP} and V = {v1, v2, v3, ..., vQ}, where S and V are sets
of slides and volumes composed of P and Q instances, respectively, the
algorithm is able to reduce the dimensions M ×N of each slide si ∈ vj, with
i = {1, 2, 3, ..., P} and j = {1, 2, 3, ..., Q}, to dimensions m×N (Algorithm 3).
To calculate m, it was first necessary to extract the dimensions of each specific
bounding box Bi ⊂ si corresponding to the region of the slide si that maximises
the target retina area. Specifically, Bi was obtained by applying the ROIret
function, which consists of a succession of morphological operations followed
by the Otsu’s binarisation method, as detailed in Algorithm 3.

Algorithm 3 ROIret function to extract the retina region Bi.
Data: Specific slide si ∈ vj .
Functions:
Otsu, to find the optimal threshold.
Rectangle, to extract the region from a mask.
Result: Bounding box Bi ⊂ si ∈ vj .

Initialisation:
EO ← 1; %Disk structuring element for opening
ED ← [10, 20]; %Rectangular structuring element for dilation
EC ← 10; %Disk structuring element for closing

Bounding Box extraction:
Iopen ← (si ⊖ EO)⊕ EO;
Idil ← Iopen ⊕ ED;
Iclose ← (Idil ⊕ EC)⊖ EC ;
th← Otsu(Iclose);
Mask ← Iclose ≥ th;
Bi ← Rectangle(Mask);
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Once all Bi,j were achieved, m was defined by the dimensions of the largest
Bi,j, according to Algorithm 4. Then, we extracted a new set of slides
I = {I1, I2, ..., Ii, ...IP}, where Ii ⊂ si ∈ vj corresponds to the region m × N
centred on the computed Bi, as detailed in Algorithm 4. After the conditioning
phase, each OCT volume was defined by P = 64 B-scans of dimensions
m × N = 550 × 512. However, to adapt the input dimensionality to the
trained circumpapillary feature extractor, we resized each new slide Ii ∈ vi to
248× 384 pixels, as illustrated in Figure 4.4.

Algorithm 4 Data-volume conditioning to remove useless pixels from the
slides of the SD-OCT volumes.
Data: Slides S ∈ V with dimensions M ×N .
Functions:
Centroid, to extract the centroid of the B ⊂ si ∈ vj .
ROIret, to extract the bounding box Bi from each slide si ∈ vj (Algorithm 3).

Result: New slides I ⊂ S ∈ V with dimensions m×N .

Data conditioning:
for j ← 1 to Q do

for i← 1 to P do
Bi,j ← ROIret from si ∈ vj ;
x, y ← Centroid from B ⊂ si ∈ vj ;
ci,j ← x;
di,j ← |B(1, 1)−B(end, 1)|;

m←MAX(d)

for j ← 1 to Q do
for i← 1 to P do

Ii,j ← si(ci,j − m
2

to ci,j +
m
2
, 1 to N) ∈ vj ;

4.3.2.2 LSTM network construction

In this stage, we propose the use of LSTM networks to feed the model with
the spatial dependencies of the latent features extracted from each new slide
Ii ∈ vj. LSTM is a kind of Recurrent Neural Network (RNN) for sequence
modelling, widely used in handwriting recognition [182], speech recognition
[183] and video classification [184], among other tasks. Unlike traditional
RNNs, LSTM networks contain a memory cell ct able to accumulate the state
information to avoid the long-term dependency problem. A common LSTM
unit is composed of a series of gates that control the flow of information around
the cell. An input gate it regulates the new information that enters the cell
to be accumulated. The activation of a forget gate ft determines whether the
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Algorithm 1 Algorithm 2
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Figure 4.4: Data volume conditioning to adapt the B-scans of the volumes to the slide-level
discriminator dimensions. This new set of volumes of dimensions P ×m×N will constitute
the input to the feature extraction stage.

past cell status ct−1 is forgotten or not. Finally, an output gate ot controls
the propagation of the latest cell output ct to the final state ht, being t each
temporary instance.

In this paper, we follow the CNN-LSTM strategy carried out in [184] to consider
sequences of CNN activations. Unlike the aforementioned video-based study,
the proposed approach is intended to OCT-volume classification, so that we
consider each slide as a frame, i.e. each spatial dependency as a temporary
instance. Once the slide-level discriminator and data-volume conditioning
stages were performed in the previous sections, we used the pre-trained base
model to extract the feature space from each conditioned volume slide. As
illustrated in Figure 4.3, given an input image Ii ∈ vj, an embedding fi was
obtained after the feature extraction phase. Then, 1D array ai was generated
from each feature volume fi by flattening their dimensions 7× 12× 512, which
correspond to the output of the last 1 × 1 convolution layer of the slide-level
discriminator (see Figure 4.5). According to this, the input to the LSTM
network consists of an array A = {a1, a2, ..., ai, ..., aP}, being P = 64 the
number of slides per volume. The output of each LSTM memory cell hi

corresponds to the concatenation of all the outputs hiu obtained from each
LSTM unit u, so that hi = [hi1 , hi2 , ..., hiu , ..., hiU ], where U is the number
of specified LSTM units, as deduced from Figure 4.5. Note that each hi

constitutes the input (together with the ai+1) to the next LSTM memory
cell ct, which is graphically represented by the discontinue lines in Figure 4.5.
Traditional LSTM networks can return, per volume vj, either a set of all spatial
dependencies Hj = {h1, h2, ..., hi, ..., hP} or just the last one hP , which contains
information from all the previous B-scans. As a novelty, we developed in this
case a sequential-weighting module (SWM) to take into account all LSTM
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outputs by weighting them, in a sequential way, to provide a holistic feature
vector Oj before the top model (Algorithm 5). Then, a flatten operation was
applied to concatenate the LSTM outputs Hj = {h1, h2, ..., hi, ..., hP} into
an array Rj of length T = P ∗ U . At this point, a weighting layer W =
{ 1
T
, 2
T
, ..., k

T
, ..., 1}, with k = {1, 2, 3, ..., T}, was included to generate a vector

Lj = Rj ◦W , so that Lj became a weighting output from the initial LSTM
output vector Hj. Additionally, as observed in Figure 4.5, a skip-connection
module was defined to map Fj into a squeezed array Zj via 3D global average-
pooling layer (3DGAP). Finally, a holistic feature vector Oj per volume was
obtained by concatenating Zj and Lj outputs (see Figure 4.5). Regarding the
top model structure, a classifier based on a Multi-Layer Perceptron (MLP)
was implemented to achieve the probability pj corresponding to the class
predicted from each specific volume vj (Algorithm 5). Aspects related to
the hyper-parameters of the architecture and the top model are detailed in
Subsection 4.4.2.2.
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Figure 4.5: Architecture of the proposed volume-based predictive model to address the
glaucoma detection just from raw SD-OCT volumes centred on the ONH.
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Algorithm 5 Pipeline of the end-to-end volume-based methodology to predict
glaucoma per volume.
Data: P slides per Q raw OCT volumes centred on ONH.
Functions:
DC ≡ Data Conditioning stage.
FE ≡ Feature Extraction phase
MLP ≡ Multi-Layer Perceptron classifier

Result: Predictions pj from each SD-OCT volume vj .

End-to-end LSTM approach:
for j ← 1 to Q do

for i← 1 to P do
Ii ← DC(si), where si ∈ vj ;
fi ← FE(Ii), where Ii ⊂ si ∈ vj ;
ai ← Flatten(fi);
hi ← LSTM(ai);

Sequential-Weighting Module (SWM):
Rj ← Flatten(Hj);
Lj ← Rj ◦W ;
Zj ← 3DGAP (Fj);
Oj ← Concatenate(Lj , Zj);

Top model:
pj ←MLP (Oj);

4.4 Results

4.4.1 Slide-level feature extractor

4.4.1.1 Data partitioning

To provide robust and reliable results about the feature extractor, we
performed a patient-level data partitioning of the circ-DB-1 database. In
particular, 52 circumpapillary images (20 glaucomatous and 32 healthy)
were grouped into an independent set to test the model. With the rest
of the data (training set), we conducted an internal 5-fold cross-validation
(ICV) stage to optimise the hyper-parameters of the neural networks.
Specifically, in each iteration, 4

5
of the training set (58 glaucomatous and

99 healthy eyes) were employed to train a specific model and 1
5

(15 with
glaucoma and 25 normal images) as a validation subset to monitor and
prevent overfitting. Subsequently, we used the entire training dataset (197
circumpapillary samples) to train the final model with the architecture and
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parameters that reported the best performance during the ICV stage. The
final model was validated using the test set and evaluated with the external
circ-DB-2 database, which is composed of 143 glaucomatous and 193 healthy
circumpapillary OCT images.

4.4.1.2 Validation phase

In our previous work [62], we carried out a rigorous comparison between
different neural networks for glaucoma detection just from raw circumpapillary
OCT images. As VGG family of networks reported the best performance, in
this paper, we perform a comparison between them and the proposed Residual
Attention Glaucoma Network (RAGNet).

Ablation experiments. In the exploration of the optimal hyper-parameters
for the feature extractor, we contemplated different training configurations.
In Table 4.3, we show a summary of the main hyper-parameters considered to
build the slide-level discriminator, as well as the range of values used during the
exploration. Additionally, in Table 4.4, we expose the configuration selected
to carry out each approach under study. The abbreviations set out in the
Table 4.3 correspond as follows: SGD - Stochastic Gradient Descent; MSE -
Mean Squared Error; WBCE - Weighted Binary Cross Entropy; MLP - Multi-
Layer Perceptron; GMP - Global Max Pooling; GAP - Global Average Pooling.

Table 4.3: Possible training configurations for the slide-level discriminator.

Hyper-params Range Top model Range Fine-tuning Range

Learning rate [5e−1, 1e−5] Initial dropout [0, 0.5] Unfrozen VGG blocks 1, 2, 3, 4, 5

Optimizer
SGD

Adadelta
Adam

Structure
Flatten + MLP
GMP + Dense
GAP + Dense

- -

Loss function
MSE

WBCE
Hinge

Final Activation Softmax
Sigmoid - -

Batch size 8, 16, 32, 64 - - - -

Number of epochs [50, 500] - - - -

Based on the experiments accomplished in [62], we performed a deep fine-
tuning strategy of the VGG16 and VGG19 architectures. For both CNNs,
data augmentation techniques [112] were implemented to face the overfitting
problem by increasing the number of images of the database with synthetic
samples. A factor ratio of 0.2 was applied to perform random geometric and
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Table 4.4: Selected configuration for the slide-level discriminator after the empirical
exploration of each feature extractor approach.

VGG16 VGG19 RAGnet
(with VGG16)

RAGnet
(with VGG19)

Model
hyperparameters

Learning rate 0.001 0.001 0.0005 0.0005
Optimizer Adadelta Adadelta SGD SGD

Loss function WBCE WBCE WBCE WBCE
Batch size 16 16 16 16

Number of epochs 125 125 120 120

Top Model
Initial dropout 0.4 0.4 0.4 0.4

Structure GAP GAP GAP GAP
Final activation Softmax Softmax Softmax Softmax

Fine-tuning Unfrozen blocks 3 3 3 3

dense elastic transformations from the original images, according to [62]. As
observed in Table 4.4, we unfroze the two last convolutional blocks of the
VGGs to retrain the weights with the specific information contained in the
circumpapillary OCT images. Additionally, a weighted binary cross-entropy
(WBCE) was used as a loss function by employing an optimal balanced factor
α = [1.35, 0.79], following the Eq. 4.2 and 4.3, to alleviate the unbalanced
problem between glaucoma and healthy classes, respectively (see Table 4.4).
The models reached the best performance when they were trained during 125
epochs, trying to minimise the WBCE loss function, using Adadelta optimiser
with a learning rate of 0.001 and a batch size of 16. It is noticeable that we
added an initial dropout layer with a coefficient of 0.4 before the top model,
as specified in Table 4.4.

WBCE = −α2 yi log(ŷi)− α1(1− yi)log(1− ŷi) , being (4.2)

αc =
Ns

Nc
∑

yc
i

, with c ∈ [1, 2] (4.3)

where ŷ and y represent the outputs and the ground truth, respectively. Ns
denotes the total number of samples and Nc = 2 the number of classes, being
c = 1 and c = 2 the glaucoma and healthy classes.

Regarding the proposed model (RAGNet), we performed the same deep fine-
tuning strategy as before. Besides, the same data augmentation processing
and weighted loss function were specified to make an objective comparison.
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The major innovation of the proposed method lies in the inclusion of the
residual Mres and attention Matt modules, whose filters and dimensions
parameters were illustrated in Figure 4.2. The combination of the best hyper-
parameters was carried out following the same empirical exploration as before
(see Table 4.3). In this case, we trained the models (using VGG16 and VGG19
architectures as a baseline) during 120 epochs, instead of 125 like in the VGGs
case. WBCE (Eq. 4.2) was selected as the loss function to be minimised,
using SGD optimiser with a learning rate of 510−4 and a batch size of 16
(see Table 4.4). As before, we also included a dropout layer of 0.4 to address
the classification stage. Concerning the top model, we made use of the same
structure for all approaches, which is described in Table 4.4. Particularly, we
included a Global Average Pooling (GAP) layer to obtain a spatial squeeze
before the softmax-activated dense layer, which is composed of two neurons
referring to healthy and glaucoma classes.

Quantitative results. Different figures of merit, such as sensitivity (SN),
specificity (SP), F-score (FS) and area under the ROC curve (AUC) are
reported in Table 4.5 to provide objective results. Note that AUC metric was
calculated by means of a polynomial approximation using a gradient descent
method, according to [185]. As a novelty, we also calculated quantitative
metrics related to the learning curves achieved during the training of the models
(see Table 4.6). In particular, we consider the validation accuracy (ACC)
and loss (LOSS) values and propose two additional measures to quantify the
overfitting (OVFT) and the quality (QLTY) of the validation learning curves.
According to Eq. 4.4, OVFT indicator aims to provide measurable information
related to the generalisation ability of the models, so that the closer OVFT is
to 0 the better. OVFT < 0 indicates underfitting, whereas OVFT > 0 denotes
overfitting, proportionally.

OV FT =
1

ϵ− p

ϵ∑
e=p

(V Le − TLe), OV FT ∈ (−∞,∞) (4.4)

V Le and TLe correspond to the validation and training loss curves at the
epoch e, respectively. ϵ denotes the total number of epochs and p the position
(epoch) in which the validation loss curve V L reaches the global minimum.

QLTY metric provides information about how stable is the model and how
much does it learn. Therefore, we measured the stability (STBL) of the
model taking into account the variations between adjacent epochs of the
validation loss curve. Specially, STBL was calculated according to Eq. 4.5,
where D = {d1, d2, ..., de, ..., dϵ−1} is a vector containing the differences between
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adjacent epochs. Each de = V Le − V Le+1 denotes the difference between the
values of the validation loss curve achieved for the epochs e and e+1. The closer
STBL is to 0, the more stable is the validation curve. Regarding the amount
learned by the model (LRNG), it was calculated as the difference between the
validation loss values at the initial and final epochs, according to Eq. 4.6. In
this case, negative values correspond to a significant overfitting, whereas higher
values denote greater learning. Finally, QLTY metric was achieved following
the Eq. 4.7, where LRNG and STBL measures were combined to evaluate the
quality of the model training. In this way, lower variations of validation loss
between adjacent epochs and higher positive differences between initial and
final epochs would entail a QLTY value closer to 1, which is associated with a
more reliable model.

STBL =

√∑ϵ−1
e=1(de − D̄)2

ϵ− 1
, STBL ∈ [0,∞) (4.5)

LRNG = V L1 − V Lϵ−1, with LRNG ∈ [−∞,∞) (4.6)

QLTY =


1

1+e
−LRNG

STBL

if STBL > 0

1

1+e
−LRNG

10−ϵ
if STBL = 0

QLTY ∈ [0, 1] (4.7)

Table 4.5: Cross-validation results reached from the circ-DB-1 dataset. Metrics are
reported in terms of mean ± standard deviation followed by a 95% confidence interval (CI).

VGG16 VGG19 RAGNet-VGG16 RAGNet-VGG19
SN 0.81±0.11 (0.70-0.91) 0.77±0.17 (0.60-0.93) 0.86±0.11 (0.75-0.97) 0.73±0.12 (0.61-0.84)
SP 0.96±0.03 (0.93-0.99) 0.95±0.03 (0.92-0.98) 0.95±0.04 (0.91-0.99) 0.97±0.02 (0.95-0.98)
FS 0.86±0.08 (0.79-0.93) 0.82±0.11 (0.72-0.93) 0.88±0.04 (0.85-0.92) 0.81±0.08 (0.73-0.89)

AUC 0.88±0.05 (0.85-0.91) 0.86±0.08 (0.83-0.88) 0.91±0.04 (0.87-0-94) 0.85±0.06 (0.82-0.88)

Table 4.6: Learning curves behaviour from the circ-DB-1 dataset. Metrics are reported in
terms of average ± standard deviation followed by a 95% CI.

VGG16 VGG19 RAGNet-VGG16 RAGNet-VGG19
ACC 0.90±0.05 (0.86-0.95) 0.88±0.06 (0.82-0.94) 0.92±0.02 (0.90-0.94) 0.89±0.05 (0.83-0.92)
LOSS 0.27±0.11 (0.16-0.37) 0.34±0.18 (0.17-0.5) 0.25±0.09 (0.16-0.35) 0.38±0.18 (0.2-0.54)
OVFT 0.11±0.10 (0.02-0.20) 0.16±0.14 (0.02-0.29) 0.12±0.08 (0.04-0.20) 0.17±0.10 (0.08-0.26)
STBL 0.01±0.01 (0.01-0.02) 0.02±0.01 (0.02-0.03) 0.07±0.03 (0.05-0.10) 0.08±0.01 (0.07-0.08)
QLTY 1±3e−13 (0.99-1) 0.99±0.01 (0.98-1) 1±2e−3 (0.99-1) 0.89±0.21 (0.69-1)
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4.4.1.3 Prediction stage

In this section, we detail the results for the prediction of the primary and
external test sets. Specifically, the results achieved when evaluating the
primary test set from the circ-DB-1 database are reported in Table 4.7. The
results corresponding to the external validation are exposed in Table 4.8. The
goal of this section is to demonstrate that the proposed slide-level discriminator
could be valid to perform the feature extraction from the B-scans of the SD-
OCT volumes. Therefore, we made use of the circ-DB-2 database as an
external test set to check how did the proposed feature extractor work with
new OCT samples centred on the ONH of the retina.

Table 4.7: Test results achieved on circ-DB-1 dataset.

VGG16 VGG19 RAGNet-VGG16 RAGNet-VGG19
SN 0.8500 0.8500 0.8500 0.9000
SP 0.8750 0.8438 0.9375 0.8750
FS 0.8293 0.8095 0.8718 0.8571

AUC 0.8625 0.8469 0.8938 0.8875
ACC 0.8654 0.8462 0.9038 0.8846

Table 4.8: External test results achieved on circ-DB-2 dataset

VGG16 VGG19 RAGNet-VGG16 RAGNet-VGG19
SN 0.8741 0.8951 0.8951 0.8741
SP 0.8446 0.8238 0.8756 0.8653
FS 0.8389 0.8393 0.8678 0.8503

AUC 0.8593 0.8595 0.8789 0.8697
ACC 0.8571 0.8542 0.8839 0.8690

4.4.2 Volume-based predictive model

4.4.2.1 Data partitioning

As before, we also carried out a data partitioning stage of the vol-DB-3
database to guarantee the rigour of the experiments performed with the SD-
OCT volumes. Particularly, 1

5
of the data (29 glaucomatous and 35 healthy)

was used as a test set to evaluate the proposed model. The rest of the database
was used to train the model through a 5-fold cross-validation technique. In each
of the five iterations, 4

5
of the training data (92 glaucomatous and 113 healthy

eyes) were employed to develop a specific model, whereas 1
5

(23 with glaucoma
and 28 normal volumes) was used as a validation set to control overfitting
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and optimise the hyper-parameters. The final model was built via training
the best architecture (optimised during the ICV stage) with the samples from
both training and validation sets.

4.4.2.2 Validation phase

In this section, we detail and compare the structure and the hyper-parameters
that compose the proposed architecture in relation to the state of the art.
Specifically, we show the differences between the developed method and other
basic LSTM structures to evidence the added value that the proposed SWM-
based structure introduces for glaucoma detection using SD-OCT volumes.
Note that RAGNet architecture (via fine-tuning the VGG16 network) was
selected as the slide-level discriminator to extract the features used as an input
to the LSTM networks.

Ablation experiments. To perform a comparison as reliable as possible
between different approaches, we established some fixed conditions by means
of an initial random exploration of several hyper-parameters. Firstly, we fixed
the input and output dimensions, as detailed in Table 4.9, to elucidate which
method extracted the most discriminatory features. Regarding the model
hyper-parameters, a nested loop was sweeping different loss functions, gradient-
based learning algorithms and sizes of batches to select the most promising. In
particular, we found WBCE loss function, Adadelta optimiser and batch size
of 16 the best hyper-parameter combination to address the next phase. In this
case, we calculated an optimal weighting factor α = [1.11, 0.91] to balance the
glaucomatous and healthy samples, respectively (see Table 4.9). In addition,
the number of training epochs and the learning rate were specified depending
on the approach. Concerning the LSTM architecture, we fixed specific hyper-
parameters, such as an input dropout of 0.3 to prevent overfitting, whereas the
number of LSTM units was adapted to each approximation to provide a holistic
feature map of size T = 512 before the classification stage. We also specified a
constant top-model structure defined by an MLP algorithm composed of two
fully-connected layers with 256 and 32 units, followed each one by a dropout
layer with a coefficient of 0.25. Finally, a softmax layer with two neurons
(healthy and glaucoma) was included to achieve the predictions per volume,
as collected in Table 4.9.

Once the aforementioned hyper-parameters were established, we compared
several useful LSTM options such as the shape of the final LSTM outputs
or the use of Bidirectional layers, as proposed in [166], where the authors
also performed a CNN-LSTM strategy to identify biomarkers associated with
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Table 4.9: Configuration of the volume-based predictive model..

Data shape
Input shape Q× P × 248× 384× 3
Output shape Q× 512 (before the top model)

Model hyper-parameters
Loss function WBCE

Weighting factor α=[1.11, 0.91]
Optimiser Adadelta
Batch size 16

Number of epochs Variable → [50, 500]
Learning rate Variable → [5e−1, 1e−5]

Architecture hyper-parameters
Feature extractor RAGNet (with VGG16)

Input dropout 0.3
LSTM units Variable → 4, 8, 256, 512

Top model
Dense units 1×(256, 32)

Dropout coefficients 2×(0.25)
Final activation Softmax (2 neurons)

the AMD disease. Regarding the output shape, basic LSTM networks can
provide 3D or 2D arrays depending on whether all LSTM outputs Hj are
considered or just the last one hP , which contains information from all the
previous slides. Both approaches are analysed in this study, under the name
of OS3D and OS2D, respectively (see Table 4.10 and 4.11). The use of
bidirectional layers (Bi) was also contemplated for both previous approaches
to determine the performance of this kind of layers. As evidenced in Table 4.10
and 4.11, bidirectional layers provide a slight outperforming, so that we carried
out another experiment, with the best-reported conditions, based on stacked
LSTM layers to consider more complex and deeper architectures. Note that
for all the aforementioned experiments, the models were trained during 60
epochs with a learning rate of 0.01, trying to optimise the compromise between
accuracy and overfitting metrics. The number of LSTM units defined to
adapt the size of the feature embedding space to T = 512 were 8, 512, 4,
256 and 1×(256, 512) for OS3D, OS2D, Bi+OS3D, Bi+OS2D and stacked
Bi+OS2D approaches, respectively. Note that OS3D-based models require
an extra layer to flattening the features extracted from all the slides, unlike
the OS2D-based methods which only output the features that come directly
from the last slide. For this reason, the LSTM units related to OS3D-based
models need to be lower than the associated with OS2D-based approaches. In
contrast, when bidirectional layers are included, LSTM units must be halved
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to keep the output dimensionality, as bidirectional layers generate a reverse
copy of the input sequence. An additional experiment using the conventional
VGG16 network as a feature extractor (VGG16+SWM ) was carried out to
find out how much the prediction results may differ depending on the slide-
level discriminator.

In the proposed strategy based on the combination of RAGNet-VGG16, LSTM
and SWM structures, we kept most of the hyper-parameters constant, but
thanks to the developed SWM, it was possible to decrease the learning rate
to perform a more stable training during more epochs, without reporting
overfitting. Specifically, we trained the models during 150 epochs with a
learning rate of 0.005. We also contemplated the use of bidirectional layers
combined with the designed SWM-based model (see Table 4.10 and 4.11).
Following the same criteria as before, we defined 4 and 8 LSTM units for the
proposed method with and without bidirectional layers, respectively.

Quantitative results. We show the results provided by the different
approaches during the ICV stage of the volume-based predictive model. The
training performance and the behaviour of the validation learning curves are
reported in Table 4.10 and 4.11, respectively.

Table 4.10: Cross-validation results reached from the vol-DB-3 database. Metrics are
reported in terms of average ± standard deviation followed by a 95% CI.

SN SP FS AUC

OS3D 0.68±0.04 (0.64-0.72) 0.77±0.09 (0.68-0.86) 0.70±0.065 (0.65-0.74) 0.73±0.05 (0.68-0.79)
OS2D 0.73±0.12 (0.60-0.86) 0.79±0.03 (0.77-0.82) 0.73±0.08 (0.64-0.82) 0.76±0.07 (0.70-0.81)

Bi+OS3D 0.72±0.05 (0.67-0.77) 0.75±0.08 (0.68-0.82) 0.71±0.06 (0.66-0.77) 0.74±0.05 (0.68-0.80)
Bi+OS2D 0.66±0.14 (0.51-0.81) 0.85±0.11 (0.74-0.97) 0.71±0.07 (0.63-0.79) 0.76±0.04 (0.72-0.80)
Stacked

Bi+OS2D 0.75±0.13 (0.63-0.86) 0.71±0.20 (0.52-0.90) 0.72±0.06 (0.66-0.77) 0.73±0.06 (0.68-0.76)

VGG16+SWM 0.70±0.11 (0.59-0.80) 0.69±0.05 (0.64-0.73) 0.67±0.07 (0.60-0.73) 0.69±0.04 (0.65-0.73)
Proposed 0.76±0.11 (0.64-0.87) 0.79±0.08 (0.70-0.87) 0.75±0.05 (0.70-0.80) 0.78±0.04 (0.72-0.82)

Proposed + Bi 0.75±0.09 (0.66-0.83) 0.77±0.15 (0.63-0.91) 0.74±0.07 (0.68-0.80) 0.76±0.05 (0.71-0.80)

4.4.2.3 Prediction stage

This section consists of two parts. In the first one, we compare the
results achieved on the vol-DB-3 test set from the different approaches (see
Table 4.12). In the second part, we show the computed CAMs, which
highlight the ROIs obtained from the SD-OCT volumes. CAMs allow for
the identification of the areas in which the proposed deep learning model pays
attention to classify each SD-OCT volume as healthy or glaucomatous. As the
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Table 4.11: Learning curves behaviour from the vol-DB-3 dataset. Metrics are reported in
terms of average ± standard deviation followed by a 95% CI.

ACC LOSS OVFT STBL QLTY

OS3D 0.71±0.06 (0.65-0.78) 0.57±0.09 (0.48-0.67) 0.28±0.08 (0.19-0.37) 0.04±0.02 (0.02-0.07) 0.82±0.21 (0.61-1)
OS2D 0.75±0.07 (0.68-0.82) 0.54±0.16 (0.38-0.72) 0.27±0.13 (0.14-0.40) 0.12±0.04 (0.08-0.16) 0.70±0.29 (0.42-0.98)

Bi+OS3D 0.74±0.05 (0.68-0.80) 0.53±0.08 (0.45-0.61) 0.21±0.08 (0.13-0.30) 0.05±0.01 (0.04-0.05) 0.91±0.16 (0.75-1)
Bi+OS2D 0.77±0.33 (0.73-0.80) 0.55±0.12 (0.42-0.67) 0.28±0.08 (0.19-0.37) 0.15±0.01 (0.14-0.16) 0.71±0.17 (0.55-0.88)
Stacked

Bi+OS2D 0.73±0.07 (0.66-0.80) 0.59±0.18 (0.40-0.79) 0.20±0.10 (0.10-0.31) 0.10±0.02 (0.09-0.12) 0.66±0.35 (0.33-0.99)

VGG16+SWM 0.69±0.04 (0.65-0.73) 0.64±0.07 (0.57-0.71) 0.41±0.06 (0.35-0.47) 0.01±0.01 (0.01-0.02) 0.99±0.01 (0.99-1)
Proposed 0.77±0.04 (0.73-0.81) 0.49±0.09 (0.39-0.59) 0.13±0.09 (0.04-0.23) 0.02±0.01 (0.01-0.03) 0.99±0.03 (0.96-1)

Proposed+Bi 0.77±0.07 (0.69-0.84) 0.53±0.15 (0.37-0.69) 0.18±0.11 (0.11-0.26) 0.05±0.01 (0.04-0.07) 0.92±0.13 (0.77-1)

proposed SWM-based method outperforms the rest of approaches, we report
the CAMs extracted from the test set making use of the developed volume-
based predictive model (without bidirectional layers). The combination of
CAMs and LSTM units enables the detection of the ROIs of each B-scan,
as well as the key slides inside the volume. In Figure 4.6, we show several
examples of the heat maps generated by the model from random SD-OCT
volumes of the test set. In particular, we show a sweep of several heat maps of
representative slides Ii corresponding to four randomly selected volumes from
each class vcr, being r ∈ [1, Q] a random integer and c the class. Note that the
hot-coloured areas indicate greater discriminatory differences.

Table 4.12: Test results achieved on vol-DB-3 dataset.

SN SP FS AUC ACC

OS3D 0.7586 0.7982 0.7547 0.7793 0.7813
OS2D 0.6897 0.6857 0.6667 0.6877 0.6875

Bi+OS3D 0.7586 0.8286 0.7719 0.7936 0.7969
Bi+OS2D 0.7586 0.7714 0.7458 0.7650 0.7656
Stacked

Bi+OS2D 0.72414 0.8286 0.7500 0.7764 0.7813

VGG16+SWM 0.8276 0.6857 0.7500 0.7567 0.7500
Proposed 0.7586 0.8571 0.7857 0.8079 0.8125

Proposed+Bi 0.7586 0.7714 0.7458 0.7650 0.7656

In Table 4.13, we compare the proposed method with other state-of-the-art
studies. It is important to highlight that, to the best of the authors’ knowledge,
there are no public databases of ONH-centred SD-OCT volumes to make
possible a direct comparison. For that reason, we have faithfully replicated the
experiments carried out in the SD-OCT volume-based works of the literature
intended to glaucoma detection. As we mentioned in Subsection 4.1.1, two
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Figure 4.6: Heat maps from the proposed volume-based predictive model to highlight
the most important regions of each B-scan when classifying specific random volumes as
glaucomatous or healthy samples. Four first columns of volumes vGr1 , ..., v

G
r4 bounded by the

red rectangle correspond to glaucomatous eyes, whereas the four last columns of volumes
vHr1 , ..., v

H
r4 marked with the green rectangle correspond to healthy samples.

recent studies [50, 76] could be directly compared with ours, as they focused
just on raw SD-OCT volumes to address the glaucoma detection, without
including other variables extracted from the patient, such as visual field,
intraocular pressure, mean deviation or fundus images, among others.
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The state-of-the-art experiments were replicated making use of the same deep
learning architecture and maintaining the original hyper-parameters during
the training of the models. However, some specific conditions were adapted in
each case to make possible the comparison between methods. In particular, the
batch size and loss function were not reported in [50], so that we defined them
according to our work, i.e. a batch size of 16 and the WBCE loss function.
In contrast, to replicate the network performed in [76], we used 4 samples
per batch aimed at facing the GPU memory problems associated with such
a deep neural network. We conserved the original architectures to provide a
comparison as objective as possible. In Table 4.13, we report the test results
by comparing the proposed methodology with the different state-of-the-art
approaches intended to glaucoma detection just from raw SD-OCT volumes.
Note that all the experiments were performed on an Intel i7 @4.00 GHz of 16
GB of RAM with a Titan V GPU of 12 GB of RAM.

Table 4.13: State-of-the-art comparison on vol-DB-3 test set

SN SP FS AUC ACC
Maetschke et al. 0.6207 0.8000 0.6667 0.7103 0.7188

Ran et al. 0.6348 0.7286 0.5858 0.6817 0.6873
Proposed method 0.7586 0.8571 0.7857 0.8079 0.8125

4.5 Discussion

4.5.1 On the slide-level feature extractor

Contrarily to the state-of-the-art studies, which performed the glaucoma
detection from SD-OCT volumes through 3D architectures, in this paper, we
propose a new way of addressing this task by using the spatial dependencies
between 2D images, instead of operating in the three-dimensional space. To
do this, We have developed a new slide-level discriminator able to extract
the features from the slides of the SD-OCT volumes. The proposed RAGNet
model was compared with other validated architectures, which reported the
best performance in our previous work [62] for glaucoma detection using
circumpapillary OCT samples. In Table 4.5, different figures of merit
extracted from the 5-fold cross-validated iterations are exposed to compare
the different approaches. The proposed RAGNet method, characterised by
the combination of residual connections and convolutional attention blocks,
reported a significant outperforming with respect to the rest of networks.
Specifically, the RAGNet model (with the fine-tuned VGG16) achieved the best
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results for the most of metrics, except for SP measure, whose highest value was
reached by the RAGNet model (with the fine-tuned VGG19). However, taking
into account that this approach showed a significantly worse performance for
the rest of metrics, and the RAGNet model (with the fine-tuned VGG16)
provided a SP value closely similar to the best approach, the proposed network
could be considered superior. In any case, the inclusion of the proposed residual
and attention modules outperforms the popular pre-trained architectures of the
state of the art.

As a novelty, besides the accuracy and loss values, we also introduced
new metrics, such as OVFT, STBL and QLTY related to the learning of
the models, as observed in Table 4.6. These additional measures provide
information about the generalisation ability of the models to predict new
samples. In this case, RAGNet (with VGG16) was consolidated as the best
network, as it reported higher values for accuracy and loss metrics, besides
the aforementioned. Additionally, for OVFT, STBL and QLTY measures the
proposed model achieves closely similar results in relation with the reached
by the best architecture (pre-trained VGG16). The small reported differences
(0.01, 0.06 and 0.002 for OVFT, STBL and QLTY indicators, respectively)
are negligible in the model’s performance, as all of them represented a stable
learning, which can be deduced from Table 4.7 and 4.8.

To verify how the models would work with new OCT samples, we carried out a
prediction stage in which we evaluated the models on the primary test set of the
circ-DB-1 database (see Table 4.7). In line with the results obtained during the
ICV stage, RAGNet-based approaches also surpassed the results for all figures
of merit. In particular, RAGNet (with VGG16) worked as a more specific
model, whereas RAGNet (with VGG19) provided a more sensible behaviour.
For the rest of metrics, RAGNet (with VGG16) stood out for FS and ACC
measures, but it reported lower values estimating AUC. Nevertheless, both
RAGNet-based methods showed excellent performance, with results around 0.9
for all figures of merit. The results of the experiments make evident that the
proposed RAGNet approach based on residual and skip-connections improved
the performance of the traditional networks previously validated in [62].

To check the generalisation ability of the proposed slide-level discriminator,
we performed an external validation using the circ-DB-2 database. Note
that the final success of the volume-based predictive model largely depends
on the feature extractor performance. For that reason, an in-depth validation
is necessary to ensure that the proposed slide-level discriminator can predict
independent OCT samples centred in the ONH of the retina. Results
corresponding to this stage are detailed in Table 4.8, where the outperforming
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of the proposed RAGNet (with VGG16) model is evident. Additionally, the
results reached in the prediction of the primary and external test sets are
closely similar, which suggests that the proposed feature extractor is perfectly
applicable to other OCT databases. Furthermore, it has demonstrated to be
robust to the acquisition machine, as deduced from the volume-level results
reported in Table 4.12. After the validation process, we found the proposed
RAGNet model (with VGG16) as the best feature extractor, surpassing the
performance reported by the previously trained models in [62]. For this reason,
we made use of the proposed slide-level discriminator to extract the latent
features from the B-scans of the SD-OCT volumes.

4.5.2 On the volume-based predictive model

According to the state-of-the-art works [50, 53], a pre-processing stage is
necessary to face the GPU memory problems due to the large amount of
data contained in the SD-OCT volumes. However, unlike the aforementioned
studies where each OCT scan of the database was a cube of resolution of
200 × 200 × 1024, the proposed approach was addressed from volumes of
885 × 512 × 128. Specifically, [50] and [53] applied a down-sampling step
to obtain volumes of dimensions 64 × 64 × 128 and 100 × 100 × 128 voxels,
respectively. In contrast, the proposed method is able to take better advantage
of the useful information from each slide by focusing on the retina regions
around the ONH, as detailed in Figure 4.4.

To the best of the authors’ knowledge, we are the first that propose the
use of LSTM networks to address glaucoma detection just from raw SD-
OCT volumes. We introduce some novelties with respect to the basic LSTM
networks. In particular, we propose a SWM structure which to refine the
LSTM outputs to control the overfitting and improve the learning of the
models via skip-connections. SWM makes possible that each LSTM output
hi directly contributes to the volume classification, but in a weighted way.
To demonstrate the outperforming of the proposed SWM-based approach, we
compared it with other basic LSTM structures, as observed in Table 4.10. As
LSTM networks can output 3D or 2D arrays depending on the specified output
shape, we analysed both options (OS3D and OS2D, respectively) and we also
included bidirectional layers (Bi), according to the architecture used in [166].
As appreciated in Table 4.10, the use of bidirectional layers surpasses in both
cases the results achieved with the same models without including these layers.
For that reason, we based on the best model from the four previous experiments
to build deeper LSTM networks via stacking two LSTM memory cells. The
results reached by the proposed methods with and without bidirectional layers
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are reported in Table 4.10. We can observe in that table that the Bi+OS2D
model reports better specificity, but in exchange for compromising the rest of
the metrics. However, the proposed model provides higher values for the SN,
FS and AUC metrics. Additionally, when the traditional VGG16 architecture
is used as a feature extractor, the performance of the model notably decreases
for all figures of merit in contrast to the proposed method.

In Table 4.11, the superiority of the proposed model is accentuated as it
achieves the best results related to the learning stage for most of the metrics.
Note that, in line with the results reported during the evaluation of the feature
extractors, when the traditional VGG16 architecture is used, the stability
(STBL) and the quality (QLTY) of the models are better. However, in this
case, the end-to-end system with VGG16 as a feature extractor reports a lot
of overfitting (OVFT), which explains the poor performance of the model
affecting to the rest of figures of merit. The proposed method also stands
out for STBL and QLTY metrics, besides the OVFT, being the differences in
this case remarkably enough to affect the future behaviour of the model when
predicting new SD-OCT volumes. Specially, OVFT metric shows a notorious
better performance, which allowed for the convergence of the model during
more epochs with a lower learning rate. This resulted in a higher quality
(QLTY) of the training model, as greater and more stable learning (higher
LRNG and lower STBL values) was reached. In Table 4.11, we can also see
that the proposed model reaches the best results for validation accuracy and
loss measures.

Finally, we carried out a prediction stage to evaluate the models’ performance
making use of the test set. The SWM-based models stand out for all the
metrics, as expected. According to Table 4.12, the VGG16+SWM reports
higher sensitivity values, but in exchange of greatly compromising other
indices. In contrast, the proposed method (using RAGNet-VGG16 as a
feature extractor) surpasses the rest of the metrics, without unduly affecting
sensitivity. Therefore, the results reported during both training and testing
phases place the proposed model as the best system for glaucoma detection
using SD-OCT volumes, taking into account that they are not being currently
traced due to the large involved workload.

From the results achieved by the end-to-end system, we can conclude that
the proposed feature extractor is not camera-specific because, although it was
developed using circumpapillary OCT images, the latent features extracted
from each cross-sectional slide of the volume lead to a high performance
after including the LSTM and SWM elements. This evidences that the
proposed discriminator is also robust to different types of acquisition cut-offs

109



Chapter 4. Glaucoma Detection from Raw SD-OCT Volumes

(circumpapillary or linear), as it founds the relevant information around the
ONH of the retina independently of the acquisition mode.

Unlike the rest of the state-of-the-art works, which reported CAMs from
single slides of each volume, we show different representative slides for
several random volumes to determine which B-scans become more relevant
for glaucoma diagnosis (see Figure 4.6). In particular, the first slides of
the volumes (I1, I2, I3, ...) do not seem to matter much when predicting the
healthy class, in contrast to the glaucoma label, as the heat maps highlight
specific areas around the RNFL. Central slides (..., I21, I22, I23, ...) are more
interesting because, in the case of healthy volumes, the LSTM model pays
attention to the left and right bounds of the retina areas, whereas central
regions corresponding to the optic disc cupping seem more discriminative
for the glaucoma class. Additionally, a prominent activation usually appears
highlighting the neuroretinal rims for glaucomatous volumes, especially on the
left part. More advanced central slides, i.e. ..., I41, I42, I43, ..., reports a clear
discriminatory ability to determine the healthy class, but no obvious signs of
glaucoma are evidenced by the proposed model. Concerning the last slides
(..., I62, I63 and I64), the heat maps also manifest differences depending on the
class, as the proposed model tends to highlight the external areas of the retina
for healthy slides, and the central zones for glaucomatous samples. In summary,
the findings achieved by the CAMs are directly in line with the reported in
the literature [50, 76], as the heat maps focus on the edges of the retinal layers
in the normal volumes, whereas retinal structures such as RNFL, neuroretinal
rims and lamina cribrosa are evident in the glaucomatous cases.

As no public SD-OCT databases are available, in an attempt to compare
our method with other state-of-the-art studies, we replicated the experiments
performed in [50, 76] to objectively contrast the differences (Table 4.13).
The results show a clear outperforming of the proposed model with respect
to the rest of the state-of-the-art methods. In Table 4.13, we can observe
the superiority of the proposed RAGNet+SWM model in detecting glaucoma
from SD-OCT volumes, where the differences between exceeds more than
10% for all the figures of merit. Note that the results reported by the other
networks could be underperformed, as we trained them on our database, but
they were originally intended to be trained on larger datasets. Leaving aside
the limitations during the state-of-the-art comparison, it can be concluded
that the proposed method, based on the combination of LSTM and SWM
networks using the RAGNet-VGG16 as a baseline, is the best system to detect
glaucoma from SD-OCT volumes, surpassing other methods focused on 3D
architectures.
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4.6 Conclusion

In this paper, we have proposed a predictive model based on a novel
two-step learning methodology to detect glaucoma just from raw SD-
OCT volumes. The proposed slide-level feature extractor (RAGNet with
VGG16) has improved the discrimination between healthy and glaucomatous
circumpapillary OCT B-scans thanks to the attention module included via
residual connections. Regarding the volume-based predictive model, the
proposed recurrent framework, focused on transferring the knowledge of the
spatial dependencies across the slides of the SD-OCT cube, has been shown
to outperform other state-of-the-art architectures focused on 3D deep learning
architectures. Additionally, the proposed sequential-weighting module (SWM)
has led to a better performance by refining the feature space extracted from
the volume slides. The reported CAMs could suppose a promising tool for an
easier 3D scan analysis, as the ophthalmologists could scroll the heat maps that
highlight the areas of interest to determine the class of each sample. Taking
into account that we did not include VF, IOP or other external tests to develop
the predictive models, we can conclude that SD-OCT volumes could provide
a great added value for glaucoma diagnosis and help ophthalmologists to face
the workload associated with the analysis of the cross-sectional OCT images.

As future research lines, better results for SD-OCT volumes could be reported
by training a slide-level discriminator focused on the specific knowledge of
the SD-OCT B-scans, instead of the circumpapillary images. The proposed
volume-based predictive model could be considered as a good starting point
to build a reliable computer-aided diagnosis system. This would require a
significant increase in the number of samples to train the predictive model, as
well as labelled external data sets to test it.
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Chapter 5

Circumpapillary OCT-Focused Hybrid Learning for
Glaucoma Grading Using Tailored Prototypical

Neural Networks

The content of this chapter corresponds to the author ver-
sion of the following published paper: García, G., Del Amor,
R., Colomer, A., Verdú-Monedero, R., Morales-Sánchez, J. &
Naranjo, V. Circumpapillary OCT-focused hybrid learning for glau-
coma grading using tailored prototypical neural networks. Artificial
Intelligence in Medicine, 118, 102132 (2021).
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Abstract

Glaucoma is one of the leading causes of blindness worldwide and Optical
Coherence Tomography (OCT) is the quintessential imaging technique for its
detection. Unlike most of the state-of-the-art studies focused on glaucoma
detection, in this paper, we propose, for the first time, a novel framework for
glaucoma grading using raw circumpapillary B-scans. In particular, we set
out a new OCT-based hybrid network which combines hand-driven and deep
learning algorithms. An OCT-specific descriptor is proposed to extract hand-
crafted features related to the retinal nerve fibre layer (RNFL). In parallel,
an innovative CNN is developed using skip-connections to include tailored
residual and attention modules to refine the automatic features of the latent
space. The proposed architecture is used as a backbone to conduct a novel
few-shot learning based on static and dynamic prototypical networks. The
k−shot paradigm is redefined giving rise to a supervised end-to-end system
which provides substantial improvements discriminating between healthy, early
and advanced glaucoma samples. The training and evaluation processes of
the dynamic prototypical network are addressed from two fused databases
acquired via Heidelberg Spectralis system. Validation and testing results reach
a categorical accuracy of 0.9459 and 0.8788 for glaucoma grading, respectively.
Besides, the high performance reported by the proposed model for glaucoma
detection deserves a special mention. The findings from the class activation
maps are directly in line with the clinicians’ opinion since the heatmaps pointed
out the RNFL as the most relevant structure for glaucoma diagnosis.



5.1 Introduction

5.1 Introduction

Glaucoma is a chronic and progressive disease that affects the optic nerve
head (ONH) of the retina causing several structural changes and functional
damage [73]. Nowadays, this optic neuropathy has become the leading cause of
blindness worldwide, according to [74]. Recent studies suggest that the impact
of this disease will continue to rise, affecting 111.8 million people in 2040 [157].
Therefore, early diagnosis of glaucoma could be essential for timely treatment
in order to prevent irreversible vision loss [74].

Currently, there is no single accurate test to certify glaucoma, the diagnostic
procedure includes several time-consuming tests such as pachymetry, tonom-
etry and visual field tests, as well as the examination of different kinds of
interpretable retinal images. Specifically, techniques based on image analysis
like fundus photography and optical coherence tomography (OCT) have be-
come very important in the context of glaucoma detection. Fundus image is a
great cost-effectiveness technique which has reported promising results in the
diagnosis of several eye-focused diseases, e.g. diabetic retinopathy [14, 186] and
age-related macular degeneration [15, 187]. However, OCT imaging modality
[159] is the quintessential technique for glaucomatous damage evaluation [39],
as it enables the quantification of glaucoma-specific regions such as retinal
nerve fibre layer (RNFL) and ganglion cell inner plexiform layer (GCIPL),
which are useful biomarkers for the progression of this disease [160]. Addition-
ally, glaucoma is evident in the deterioration of the cell layers around the optic
disc, whose information could be exploited by the OCT imaging modality, as
it focuses on the depth axis of the retina to identify structural changes, unlike
the 2D projection of fundus image (see Figure 5.1).

Note that, although fundus image modality is cheaper than OCT, it is colour-
dependent on the training dataset and its interpretation remains subjective
[163, 164]. In contrast, OCT is a non-contact and non-invasive technique that
provides objective information about the ONH and RNFL structures [165].
Glaucoma detection entails a subjective examination from different experts,
whose mismatch ratio is usually high [158]. Consequently, many state-of-the-
art studies developed different machine learning algorithms intended to detect
glaucoma via fundus image and OCT samples.
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(b)(a) (c) (d) (e)

Retina

Optic nerve

Figure 5.1: Illustration of the OCT images provenance. (a) Eyeball with interesting regions.
(b) Fundus image focused on the optic nerve head (ONH). (c) Arrangement of the retinal
fibre layers. (d) A-scan corresponding to the depth of retinal cells at a specific point. (e)
B-scan representing the fibre layers of the retina with different grey-intensity levels.

5.1.1 Related work

According to [188], where a review of deep learning methods for glaucoma
detection is described, spectral domain (SD) OCT has become the most
widespread diagnostic tool for analysing glaucomatous pathologies. OCT
system is routinely used in clinical practice for determining glaucoma severity,
as it is able to emphasise the significance of the structural changes of the
retina [189]. There are several clinical studies which claim the potential of
the OCT imaging modality in the glaucoma detection paradigm. Medeiros
et al. [190] enhanced the importance of the RNFL structure demonstrating
that an early pathological degeneration of the retinal cells is associated with a
thinning of the RNFL. Leung et al. [189] evidenced the usefulness of the RNFL
thickness to determine pathological variations of the retina associated with
different glaucomatous stages. Ojima et al. [191] also demonstrated that the
RNFL thickness has a higher potential for glaucoma diagnosis than a complete
macular volume. Moreover, in [192], the authors declared that RNFL features
extracted from SD-OCT scans are a powerful indicator to detect glaucoma,
which is directly in line with our previous works [63, 65].

Inspired by the aforementioned clinical studies, many researchers have
developed predictive models to discern between normal and glaucomatous
patients via OCT scans analysis. Most of them focused on the optic disc
due to the known potential of the circumpapillary OCT images for glaucoma
detection [167]. In [16, 168], authors extracted hand-crafted features from the
B-scans and combined them with transformations of A-scans and visual field
parameters to discriminate between healthy and glaucoma classes. They used
different machine learning classifiers such as support vector machine (SVM),
random forest (RF) and k -nearest neighbour (KNN). In [193], an automated
framework to estimate the thickness of specific OCT layers was presented
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in order to monitor retinal abnormalities, similarly to [194, 195], where the
proposed methods were intended to quantify retinal layers thicknesses in
search of abnormal retinal pathologies. Gao et al [196], made a comparison
between the thickness measurements automatically reported by the Topcon
OCT system and its end-to-end framework composed of a segmentation stage
followed by a feature extraction based on the average of the RNFL thicknesses.
This kind of hand-driven learning methodologies usually requires a previous
manual or automatic segmentation of the retinal layers to delimit the regions
from which extracting the discriminative features [188]. For that reason, several
studies have been proposed in the literature for the sole purpose of addressing
this task [171, 172, 197–202].

However, segmentation algorithms should entail errors which are transferred
to the feature extraction stage [188]. To avoid this shortcoming, deep learning
techniques arise to provide alternative ways of quantifying structural damage,
as they can learn features from data automatically without reliance on previous
segmentation stages or predefined features. In this context, ophthalmology has
risen to a forefront in which application of deep learning (DL) algorithms can
boost to a better artificial intelligence-based diagnosis in the medical fields.
Specifically, glaucoma broadly meets the conditions to aid in the management
of the vast amount of information coming from SD-OCT scans, according to
the review outlined in [188]. Following the deep learning trend, Thompson
et al. [203] demonstrated in a recent study that its segmentation-free DL
algorithm (trained with raw SD-OCT B-scans) surpassed the conventional
RNFL thickness parameters to directly discern between glaucomatous and
healthy eyes. Maetschke et al. [50] also conducted a comparison between
hand-driven and data-driven learning strategies applied on raw OCT volumes
around the ONH of the retina for glaucoma detection. The main outcomes
revealed that the deep learning approach outperformed conventional SD-OCT
parameters to discriminate glaucomatous from normal samples. It should be
noted that there are other studies which addressed the binary classification
between healthy and glaucomatous cases by applying deep learning algorithms
on SD-OCT volumes [52, 53, 75], including our previous work [65].

To the best of the authors’ knowledge, deep learning is not very widespread
on circumpapillary OCT images. A recent review of the literature found
that most of the deep learning-focused studies using B-scans are conducted
in combination with fundus image to detect glaucoma via RNFL probability
maps [54, 170, 204]. To fill this gap in the literature, we previously proposed
different hand-driven and automatic learning strategies for glaucoma diagnosis
in [62, 63, 65], whose outcomes support the basis of this paper.
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5.1.2 Contribution of this work

Inspired by the high performance reported from our previous circumpapillary-
based studies, we have expanded the database of B-scans around the ONH to go
deeper into the glaucoma paradigm. We propose in this paper an innovative
framework based on prototypical networks for glaucoma grading using raw
circumpapillary images. As far as we know, this work is the first OCT-
focused study intended to grade the glaucoma severity by discerning between
healthy, early and advanced classes, which adds significant value to the body
of knowledge. Most of the previous studies centred on B-scans are designed
to discriminate glaucoma from healthy samples [203, 205–209]. Other state-
of-the-art studies also pursued the classification of healthy and glaucomatous
cases, but using the OCT volumes as an input to their models [50, 52, 53,
65, 75]. Additional glaucoma-related studies were addressed from B-scans to
accomplish different discrimination tasks such as pre-perimetric vs perimetric
glaucoma [210, 211], progressing vs non-progressing glaucoma [212, 213] and
close angle vs open-angle glaucoma [214, 215], among others. Furthermore,
there are studies which used a different kind of input data, e.g. visual field
tests [216, 217] to discern between healthy and glaucomatous patients. On a
wider level, the sub-classification of early and advanced glaucoma has already
been conducted in the literature, but throughout fundus image [218–220].

Noticeably, a very recent work [6] also proposes a kind of glaucoma grading
set up making use of the Armed Forces Institute of Ophthalmology (AFIO)
dataset [221], which contains OCT scans centred on the ONH. However,
it pursues the discrimination between healthy, suspects and glaucomatous
samples by computing the distance of different retinal layers of interest
previously segmented. In particular, Raja et al. in [6] propose an encoder-
decoder architecture to carry out the glaucoma classification. The encoder
structure was used to provide a feature map capable of discerning between
healthy and glaucoma classes via softmax function; whereas the decoder
component was intended to segment the interesting layers of the retina to
distinguish between suspect and glaucoma cases from the samples previously
predicted as glaucoma. To accomplish this part, the mean of the segmented
layers was used as a feature input of an SVM classifier. Unlike AFIO database,
whose labels correspond to non-successive phases of the disease (healthy,
suspect and glaucoma), our dataset includes different levels of glaucoma
severity annotated according to the medical literature [222, 223]. Contrary
to Raja et al. [6], we can conduct a learning framework that enables the
analysis of glaucoma progression by differentiating between healthy, early and
advanced glaucomatous samples. Another essential difference with respect
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to [6] is that we develop the predictive models from raw gray-scale B-scans,
whereas Raja et al. [6] made use of pre-processed RGB scans containing
manual annotations and highlighted structures. Furthermore, the proposed
work documents additional key contributions concerning the deep learning
application in the glaucoma field. For the first time, we raise a glaucoma
scenario based on prototypical neural networks (PNN) [224], which have
demonstrated a high rate of performance in recent image analysis tasks, such
as domain adaptation [225], noisy evaluation [226], text classification [227],
etc. Note that PNN are usually formulated as a baseline within the few-shot
paradigm [228–231], but in this paper, we exploit the prototypical concept in
the k -shot methodology to optimise the learning process for glaucoma grading.

Tatham et al. [232] argued that circumpapillary RNFL (cpRNFL) thickness
was the best structure to measure glaucoma progression and the most widely
used parameter in clinical practice. According to this, and inspired by our
previous works [62, 63], we outline in this paper a novel OCT-based hybrid
backbone as a feature extractor of the prototypical framework. From [63], we
observed that hand-crafted features could outperform the automatic features
extracted by deep learning models trained from scratch. Nevertheless, from the
study carried out in [62], we detected that fine-tuned models also improved the
model’s performance compared with algorithms trained from scratch. For that
reason, in this approach, we propose a novel backbone composed of pre-trained
deep learning networks (with additional attention modules and residual blocks)
in a combination of hand-crafted RNFL-based features, similar to the hybrid
methodology that reported the best performance in [63].

In summary, the main contributions of this work are:

• Raw circumpapillary OCT images are used for the first time to measure
the glaucoma severity.

• Tailored prototype-based solutions are formulated in a novel framework
for glaucoma grading.

• An adapted k -shot supervised learning, inspired by the few-shot
paradigm, is conducted to exploit the specific-glaucoma knowledge.

• A new OCT-based hybrid backbone is proposed as a feature extractor to
combine automatic and hand-crafted information from B-scans.
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5.2 Methods

5.2.1 Backbone development

In this paper, we pay special attention to the base encoder development,
as the performance of the prototypical framework largely depends on the
representation vectors encoded in the latent space by the feature extractor.
The original study of the PNNs [224], as well as others derived from it [225,
228], made use of a 4-layer CNN trained from scratch as an encoder of the
feature representation. However, we observed from our previous glaucoma-
based works [62, 63] that deep learning models trained from scratch reported
the poorest performance in comparison to fine-tuning the models or even
extracting hand-crafted features. For that reason, we built on our previous
experience to propose in this work a new tailored backbone able to capture the
OCT-specific cues for an optimal glaucoma grading. Specifically, we inspired on
the OCT hybrid methodology followed in [63], but using pre-trained networks
according to [62, 65], to provide a novel base encoder Ψϕ with key novelties
that lead to a better performance. The proposed backbone is composed of two
learning branches giving rise to a multi-input feature model, as observed in
Figure 5.2. Each independent module is detailed in the following subsections.
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Figure 5.2: Illustration of the end-to-end backbone proposed as a benchmark to conduct
the prototype-based learning strategies. Blue, yellow and green frames correspond to the
base encoder network which consists of deep learning and hand-driven learning branches
followed by a combination module, respectively. A projection head (red) maps the feature
embedding in a lower-dimensional space to optimise the classification stage (cyan).
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5.2.1.1 Deep learning branch

From the sweep of the pre-trained networks carried out in [62], we selected
the VGG16 architecture as the baseline of our deep learning branch Γϕ. In
particular, we applied a deep fine-tuning strategy [111] to freeze the weights
of the three first convolutional blocks, which were pre-trained with around
14 million of natural images corresponding to the ImageNet dataset. As a
novelty, we propose a glaucoma-specific residual structure which allows the
information from the initial VGG layers to be propagated to the last ones, via
convolutional-skip connections. This shortcut flows through the gradient of a
deeper network to mitigate the problem of vanishing gradients. The proposed
residual block aims to optimise the dimensionality of the filters by combining
1 × 1 convolutions (green boxes) with a customised 3 × 1 convolutional layer
(yellow box). This tailored kernel size is able to take advantage of the domain-
specific knowledge of the OCT images to provide local cues for the glaucoma
learning process. In this way, the network is encouraged to focus on the
OCT vertical axis to learn the glaucoma-specific information underlying the
contrast differences of the retinal layers. An additional 1 × 1 convolutional
layer was included to reduce the filters’ dimension after concatenating the
feature maps from the VGG and residual structures. At this point, we also
included an attention module via skip-connections to refine the features in
the spatial dimension. The proposed module works as a kind of autoencoder
composed of 1×1 convolutions in which the filters are decreased and increased,
respectively. At the bottleneck, a single convolutional filter activated by a
sigmoid function (purple layer) was included to recalibrate the inputs and
forcing the network to learn useful properties from the input representations.
The skip-connection propagates larger gradients to previous layers throughout
an identity shortcut. At the end of the deep learning branch (see Figure 5.2),
another 1 × 1 convolutional layer was defined to provide a volume map
G = {g1, g2, ..., gk, ..., gC}, where C = 8 is the number of feature maps gk, of
size H×W = 7×12, which compose the set of the deep learning representations
Γϕ : I → G.

5.2.1.2 Hand-driven learning branch

Inspired by the clinical study [232], we conducted an additional hand-driven
learning branch Ωϕ focused on hand-crafted features extracted from the RNFL.
We made use of an innovative RNFL descriptor, which was proposed in our
previous work [63] to include RNFL thickness-based information by computing
a bespoke OCT-specific histogram. Unlike [6, 16, 168, 192, 233], among
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others, where descriptors were based on the RNFL mean, the proposed method
leverages the individual information provided by the RNFL thickness at each
point of the B-scan by considering bags of similar thicknesses values. Thus,
let I be a raw circumpapillary image of dimensions M × N × d, and S
its corresponding RNFL mask segmented automatically by the Heidelberg
Spectralis OCT system, a vector of thicknesses T = {t1, t2, ..., tj, ..., tN} was
computed, where tj is the thickness value at the position j of the B-scan I, with
j = 1, 2, 3, ..., N . The proposed histogram-based descriptor is able to quantify
the RNFL information into b = 4 bags depending on the thickness values. In
this way, each bag βb collects the number of thicknesses tj whose value is ranged
between Db and Db+1, being D = [0, 15, 30, 45,∞] a vector of relevant distances
optimised on the training images. Additionally, the minimum, maximum and
average of the RNFL thickness, besides the age of the patients, were also
considered according to the equations formulated in Figure 5.2. Finally, the
hand-driven learning branch provides a feature vector F consisting of C = 8
RNFL-specific features, such that Ωϕ : I → F .

5.2.1.3 Combination module

Once automatic and hand-crafted features were extracted from their respective
branches, a simple combination module was proposed to join the embedded
information in a holistic representation R composed of C ′ = 16 variables per
learning instance, as observed in Figure 5.2. In particular, the feature volume
G extracted from the deep learning branch was mapped to a vector G′ by
a Global Average Pooling (GAP) layer. This operation computes a spatial
squeeze from H ×W to H ′ ×W ′ that enables the concatenation between the
features G and F coming from the different branches. The proposed hybrid
encoder Ψϕ learns the embedding representations R from the input I as follows:
R = Ψϕ(I) = Γϕ(I)⊕ Ωϕ(I), where ⊕ denotes a concatenation operation.

5.2.1.4 Projection head module

We instantiates a projection head network Υϕ that maps the representations
R to an embedding vector Z where the classification stage is addressed in
a lower-dimensional space. The projection head Υϕ is comprised of a small
multi-layer perceptron (MLP) with one hidden layer activated by a ReLU
function (see Figure 5.2). The use of a projection head network is widely
used in very recent state-of-the-art techniques, such as contrastive learning
[151, 234, 235], to maximise the classification agreement. In this paper, we
project the representations of the latent space via Z = Ψϕ(R) to evidence that
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the new backbone Ψϕ is better than the previous feature extractors proposed
in [62, 63, 65]. According to the aforementioned studies [151, 234, 235], the
projection head network is then discarded during the prototypical learning
stage to measure the distances from the representations R = Ψϕ(I) to each
prototype. For comparison purposes, a softmax function with three neurons
was defined in the last dense layer to contrast a conventional classification
approach with the proposed both static and dynamic prototypical frameworks.

As a summary of the detailed base encoder backbone, we show a pipeline
in Figure 5.3 that collects the essential information. Given an input B-scan
I ∈ RM×N×d, with M ×N × d = 248× 384× 3 the dimensions of I, a feature
embedded map R ∈ RH′×W ′×C′

is provided by the encoder Ψϕ : I → R.
Then, the projection head module Υϕ maps R to a metric vector Z ∈ RU ,
Υϕ : R → Z, where U = 8 < C ′ denotes a lower dimensional space than the
latent space R. At the end of the convolutional network, a softmax-activated
dense layer is applied to address the classification stage.

#$%&'()
! ∈ ℝ!×#×$ $ ∈ ℝ%#×&#×'## % ∈ ℝ(

Ψ! Υ!

$%&'()*
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Ψ! Υ!

Figure 5.3: Pipeline showing the backbone architecture composed of the base encoder Ψϕ,
the projection head network Υϕ and the softmax function.

5.2.2 Prototype-based learning strategies development

PNNs were born from the idea that there exists an embedding space in which
the features from the same class cluster around a single latent group, a.k.a
prototype [224]. In this paper, we conduct an experimental methodology
to analyse the performance of two different prototype-based solutions with
respect to conventional learning strategies for glaucoma grading. To this end,
the traditional approach was defined according to the backbone architecture
exposed in Figure 5.3. In contrast, for the prototype-based strategies,
we propose two novel approaches -static and dynamic- that focus on the
embedding space R to determine the glaucoma severity.
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5.2.2.1 Static prototypes

In this paper, we introduce the concept “static” to reference the use of rigid
prototypes extracted from an encoder network Ψϕ whose weights ϕ were pre-
trained in a previous stage through a conventional approach. Thereby, the
frozen weights (denoted by Θ) are inferred to the base encoder model to extract
the embedding representations R from both training τ and validation ν sets.
Note that Rτ is used to obtain the prototypes and Rν to find the nearest class
prototype in the latent space.

A similar procedure based on measuring the similarity of the latent features
from different input data has been applied on different state-of-the-art
techniques, such as contrastive learning [151, 234, 235] or content-based image
retrieval (CBIR) [236–238]. In contrastive learning tasks, an encoder network
followed by a projection head is trained to differentiate between positive and
negative samples, being positive samples the augmented version of a query
(or samples with the same label in the case of supervised contrastive [234]),
and negative samples the entire remainder of the batch. Contrarily, CBIR
studies train convolutional autoencoders and extract the latent space from the
encoder structure to find relevant images retrieved from a set of reference that
shares similar embedding features with the query image. Previous systems
present some similarities with the proposed static prototype approach, as all
the methods train an encoder network that is then frozen to face a second
classification stage. In the case of contrastive-learning studies, the feature
map extracted by the encoder architecture is used to predict the class of the
query sample via MLP, KNN or inferred prototypes, according to [234]. In
contrast, CBIR studies are intended to find the reference set samples that
most closely resemble the query image by measuring the similarity of the
embedded representations extracted by the encoder structure. The proposed
approach differs from the previous ones in a critical point: the encoder network
is trained during the first stage for the same objective to be achieved in the
second one, i.e. glaucoma grading. Oppositely, contrastive-learning and CBIR-
based studies use backbones that were pre-trained for a different task during
the first stage.

Below, we detail the training of the proposed approach based on static
prototypes, which is composed of two (online and offline) stages, according
to Figure 5.4. In the online stage, a conventional classification pipeline was
conducted to optimise the weights of the proposed OCT-hybrid backbone
by minimising the categorical cross-entropy (CEE) loss function L(yτ , ŷτ )
in each training epoch e = 1, 2, 3, ..., ϵ, as detailed in Algorithm 6. In
the offline stage, the weights of the pre-trained encoder Ψϕ were frozen
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Figure 5.4: Proposed static prototype-based learning strategy. A conventional approach
is conducted in the online stage to optimise the encoder. In the offline stage, the weights of
the pre-trained backbone are inferred to extract a prototype ρc per class. In the prediction
phase, the class of a validation B-scan Vi is determined by measuring the latent distance
between each prototype ρc and the embedding representations Rν

i = Ψϕ(Vi).

(ϕ −→ Θ) and the projection head Υϕ and softmax modules were discarded
to avoid the non-linearity of the top model. The embedding representations
Eτ = {R1, R2, ..., Ri, ..., RP τ}, with P τ the number of samples of the minority
class in the training set τ , were used to infer the rigid prototypes. In particular,
each ρc was calculated as the mean of the latent representations Rτc

i = Ψϕ(Ii),
where Ii ∈ τc ⊂ τ denotes the i-sample of the training set τ associated with
the class c (see Eq. 5.1).

ρc =
1

P τc

P τc∑
i=1

Rτc
i (5.1)
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During the prediction phase, a matrix of distances δc,i was achieved by
measuring the Euclidean distance (Eq. 5.2) between each prototype ρc and
the embedding representation Rν

i = Ψϕ(Vi), where Vi ∈ ν corresponds to the
i-scan of the validation subset ν. A probability of belonging to each class was
calculated (Eq. 5.3) to determine the predicted class ŷν

i (Algorithm 6).

δc,i =
√
(ρc −Rν

i )
2 (5.2)

pi,c =
exp (−δc,i)∑
c′ exp (−δc′,i)

(5.3)

Algorithm 6 Static prototype-based learning strategy.
Data: Training τ = {(I1, yτ

1 ), (IPτ , yτ
Pτ )} and validation ν = {(V1, y

ν
1 ), (VPν , yν

Pν )} sets.
Results:
Online stage ← Trained base encoder Ψϕ;
Offline stage ← Inferred prototypes ρc;
Prediction stage ← Predicted labels ŷν

i ;

Algorithm:
Online stage:
ϕ← random;
for e← 1 to ϵ do

for i← 1 to Pτ do
Rτ

i ← Ψϕ(Ii);
Zi ← Υϕ(R

τ
i );

ŷτ
i ← softmax(Zi);

L(yτ , ŷτ )← −
∑

i y
τ
i log(ŷτ

i );
Update ϕ using ∇ϕL;

Offline stage:
for c← 1 to 3 do

ρc ← 1
Pτ

∑Pτ

i=1 ΨΘ(Ii);

Prediction phase:
for i← 1 to Pν do

Rν
i ← ΨΘ(Vi);

for c← 1 to 3 do
δi,c ←

√
(ρc −Rν

i )
2;

pi,c ← exp (−δi,c)∑
c′ exp (−δi,c′ )

;

ŷν
i ← argmax(pi,c);
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5.2.2.2 Dynamic prototypes

Inspired by [224], where PNNs were proposed for few-shot learning, we present
in this paper a PNN-based framework for grading glaucoma by exploiting the
k -shot methodology. The main difference with respect to the previous static
approach lies in the online stage, as dynamic prototypes are trained in an end-
to-end manner, such that prototypes are updated after each epoch e. In this
way, the base encoder network can be optimised according to latent distances,
instead of a conventional classification top model, as observed in Figure 5.5.
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Figure 5.5: Proposed dynamic prototype-based learning strategy. In the online stage, a
support set S and a query set Q are randomly selected from the training set τ to develop
a supervised PNN. The hybrid OCT-based backbone Ψϕ is used to extract the embedding
representations from both S, to determine the prototypes ρc, and Q, to map the latent
representations from the query samples. At the end of the training process, a softmax
function is applied to predict the query label based on the latent distances δi,c.

From here on, we will employ the terminology (N-way, K-shot) used in the
literature for few-shot learning, where K is the number of labelled samples
and N the number of classes in the training set [224]. In the state-of-
the-art studies based on prototypical networks [224, 239, 240], a labelled
support set S = {(s1, y1), ..., (si, yi), ..., (sK, yK)} and an unlabelled query set
Q = {q1, q2, ..., qi, ..., qU}, are considered to train the PNN-based models in
a few-shot scenario, being U the number of unlabelled samples selected from
the training set τ . Specifically, S is used to extract each of N prototypes ρc,
whereas Q is employed to find the nearest class prototype for an embedded
query point RQ

i = Ψϕ(qi). A negative log-probability loss is updated according
to the distance metrics from ρc and RQ

i .

The proposed dynamic prototype-based learning strategy differs from the state
of the art in multiple ways. Unlike aforementioned studies [224, 239, 240],
where authors selected a specific number of U = 5, 10 or 15 unlabelled samples,
depending on the database addressed, in this study we made use of U = P −K
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labelled query samples to get the most out of the training set τ . Note that
we propose, for the first time, the use of a labelled query set Q, giving rise
to a novel Supervised Prototypical Neural Network for Glaucoma Grading
(SPNN-GG). This results in another difference concerning the literature, as a
supervised approach allows the ground truth label yQ to be included in the loss
function, so that learning proceeds by minimising the CEE, instead of a log-
probability function. As a novelty, we move away from the few-shot setting by
proposing an optimal k−shot scenario in which K ∈ [1, P − U] is optimised as
an additional hyper-parameter, unlike in the previous studies where K ∈ [1, 5].

The online training of the proposed dynamic prototype-based approach is
conducted in a supervised end-to-end way, as observed in Figure 5.5. The
main difference between static and dynamic prototypes lies here, as the static
approach infers rigid prototypes from a backbone trained by a projection
head module, whereas the dynamic strategy updates the prototypes during
the training phase by optimising a backbone based on latent distances. Note
that the offline and prediction phases are addressed as in the static approach,
i.e. using the entire training set τ to extract the prototypes ρc (Algorithm 7).

From the training set τ containing P τ
c samples for each class c, a support

set S = {(s1, yS1 ), ..., (sK, ySK)} and a query set Q = {(q1, yQ1 ), ..., (qU, yQU)},
with U = P − K, are obtained after a randomisation process at every epoch
e. The hybrid OCT-based backbone Ψϕ was used as the encoder network
to extract the embedding representations from the support si and query qi
samples. Specifically, latent support set-coming features ES = Ψϕ(S) =
{RS

1 , ..., R
S
i , ...R

S
K} are used to extract each class-prototype ρc as the mean of

the embedded representations RS
i = Ψϕ(si). In contrast, query representations

EQ = Ψϕ(Q) = {RQ
1 , ..., R

Q
i , ...R

Q
U} are mapped in the latent space to find the

closest prototype ρc, in terms of Euclidean distance. Then, a softmax function
is applied to determine the probability of belonging to each class p(ŷQi = c|RQ

i ).
During the backward-propagation step, the embedding representations are
refined by updating the weights of the base encoder network at every epoch,
according to the CEE loss function, denoted by L(yQ, ŷQ). In this way, the
prototypes are optimised under the hypothesis that each class can be described
by just one subspace. Therefore, the learning progresses by minimising
the latent distances between RQc⊂τc

i and ρc, unlike in the static approach
where the encoder was updated according to the embedding representations
Z = Υ(Ψ(Ii)) extracted from the projection network.
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Algorithm 7 Dynamic prototype-based learning strategy.

Data: Training τ = {(I1, yτ
1 ), ..., (IP τ , yτ

P τ )} and validation ν =
{(V1, y

ν
1 ), ..., (VP ν , yν

P ν )} sets.
Results:
Online stage ← Trained base encoder Ψϕ.
Offline stage ← Refined prototypes ρc.
Prediction stage ← Predicted labels ŷν

i .
Online stage:
ϕ← random;
for e← 1 to ϵ do

for i← 1 to K do
(si, y

S
i )← (Irandom(i), y

τ
random(i));

RS
i ← Ψϕ(si);

for i← 1 to U do
(qi, y

Q
i )← (Irandom(i), y

τ
random(i)) /∈ S;

RQ
i ← Ψϕ(qi);

for c← 1 to N do
ρc ← 1

K

∑K
i=1 R

S
i ;

δi,c ←
√
(ρc −RQ

i )
2;

pi,c ← exp (−δi,c)∑
c′ exp (−δi,c′ )

;

ŷQi ← argmax(pi,c);
L(yQ, ŷQ)← −

∑
u y

Q
i log(ŷQi );

Update ϕ using ∇ϕL;

Offline stage:
for c← 1 to N do

ρc ← 1
P τ

∑P τ

i=1 ΨΘ(Ii);

Prediction phase:
for i← 1 to Pν do

Rν
i ← ΨΘ(Vi);

for c← 1 to 3 do
δi,c ←

√
(ρc −Rν

i )
2;

pi,c ← exp (−δi,c)∑
c′ exp (−δi,c′ )

;

ŷν
i ← argmax(pi,c);
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5.3 Ablation experiments

5.3.1 Datasets

Two private databases coming from different sources were used to develop
and evaluate the predictive models for glaucoma grading. Both datasets
(Database 1 and Database 2 ) contain high-resolution SD-OCT scans, which
were acquired from healthy, early and advanced-glaucomatous patients with
an axial resolution of 3-4 µm using the Heidelberg Spectralis OCT system.
This equipment provides circumpapillary B-scans centred on the ONH of the
retina throughout a super-luminescence diode with an infrared beam of an
average wavelength of 870 nm and a bandwidth of 25 nm. The samples were
extracted with a resolution of 496× 768 pixels.

Subjects with open-angle glaucoma (POAG) were included in the study,
whereas patients suffering other ocular disorders, such as closed-angle glaucoma
or pseudoexfoliation syndrome were discarded from both databases. Also,
patients with media opacity were excluded if the opacity disturbs the B-scan
OCT imaging critically. Thus, B-scans with a poor-quality OCT image were
discarded from the study. Two different senior ophthalmologists (with more
than 25 years of professional experience in clinical ophthalmology) carried out
the annotation of the databases. Specifically, each expert manually labelled
just one dataset, following the European guideline for Glaucoma diagnosis. The
examination included several tests such as Goldman applanation tonometry,
gonioscopy, slit lamp examination, standard automated perimetry and
thickness measurement of specific retinal layers of interest. According to
the clinical literature [222, 223], the mean deviation (MD) score plays an
essential role in the glaucoma grading scale, such that the severity of the
glaucoma depends on the range in which the MD value is found. Conforming
to [222], MD >= −6dB is Early; −6dB > MD ≥ −12dB is Moderate;
−12dB > MD ≥ −20dB is Advanced and MD < −20dB is Severe.
As our objective is contributing to the glaucoma grading just from OCT
images, without performing additional time-consuming tests, we simplified the
glaucoma staging scale by labelling as Advanced those glaucomatous samples
with an MD < −6dB. Note that the proposed system is not intended to serve
as a definitive glaucoma diagnosis, but as a diagnostic tool able to guide the
expert’s decision through approximate but reliable OCT-based results. Based
on the above analyses, all B-scans were classified as healthy, early or advanced.
In Tables Table 5.1 and 5.2, we show more information about the specifications
of each dataset.
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Table 5.1: Number of patients (pat.) and samples (samp.) in each database grouped by
categories, according to the experts’ annotation.

Healthy
(pat./samp.)

Early
(pat./samp.)

Advanced
(pat./samp.)

TOTAL
(pat./samp.)

Database 1 32 / 41 28 / 35 25 / 31 85 / 107
Database 2 26 / 49 24 / 37 21 / 26 71 / 112

TOTAL 58 / 90 52 / 72 46 / 57 156 / 219

Table 5.2: Additional demographic information about the age and gender of the patients.

Age Gender
Range µ± σ Male Female

Database 1 [19-88] 60.45±16.54 46 (54.12%) 39 (45.88%)
Database 2 [30-90] 64.80±13.93 26 (36.62%) 45 (63.38%)

TOTAL [19-90] 62.44±15.51 72 (46.15%) 84 (53.85%)

It is important to note that, as claimed in [6], there are no public glaucoma-
labelled OCT databases that enable an objective comparison with our work.
To the best of the authors’ knowledge, AFIO dataset [221] is the only
publicly available repository of ONH-centred SD-OCT scans of healthy and
glaucomatous subjects. However, the differences between those B-scans and
ours make the direct application of our algorithms impossible for multiple
reasons: i) B-scans from AFIO dataset present manual annotations and
highlighted structures of interest. ii) OCT images have been pre-processed
showing an RGB colour mode in which cup-to-disk regions appears remarked.
iii) AFIO database was acquired using Topcon 3D OCT-1000 machines.
iv) The experts’ annotations include healthy, glaucoma and suspect labels.
Differently, the databases used here contain the grey-scale OCT samples
extracted in raw by the Heidelberg Spectralis OCT equipment, without any
manual annotation or pre-processing. In addition, our database is explicitly
labelled into healthy, early and advanced glaucoma classes, according to the
visual field-based criteria of the medical literature [222, 223]. Another OCT
database (OCTID) (with raw ONH B-scans similar to ours) is publicly available
in [241]. However, OCTID dataset includes normal, macular hole, age-related
macular degeneration, central serous retinopathy and diabetic retinopathy
classes, but it does not contemplate the glaucoma class.

Data partitioning. In this paper, we fuse Database 1 and Database 2 to
increase the number of samples from which to develop our machine learning
algorithms and evidence the reliability of the predictive models using two
datasets coming from different sources. Making use of the entire fused
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database, we conducted a patient-level data partitioning procedure to separate
training and testing sets. Specifically, 1

6
of the data was used to test the models,

whereas the remainder of the database was employed to train the algorithms.
From the training set, we randomly split the data again into training and
validation subsets, according to Table 5.3, to optimise the models’ hyper-
parameters and monitor the overfitting.

Table 5.3: Data partitioning to train and evaluate the predictive models.

Healthy Early Advanced
Training 60 48 41

Validation 15 12 10
Test 15 12 6

5.3.2 Backbone selection

Unlike most of the state-of-the-art studies which used as a feature extractor
either well-known architectures such as ResNet or VGG [234, 240] or simpler
CNNs trained from scratch [224, 225], we pretend to exploit the feature
extraction stage to get the most out from the circumpapillary OCT scans. For
this reason, we propose a novel OCT-hybrid backbone inspired by ophthalmic
clinical studies [232] and our previous glaucoma detection-based experience
applying hand-driven [63] and deep learning algorithms [62, 65]. To address
an objective comparison with other state-of-the-art studies, we contrast in
Table 5.4 and 5.5 the validation results achieved by different architectures
trained in a multi-class scenario. The comparison was handled by means of
different figures of merit, such as sensitivity (SN), specificity (SP), positive
predictive value (PPV), negative predictive value (NPV), F-score (FS) and
accuracy (ACC). Notably, the backbone reporting the best performance during
the validation stage was selected as the base encoder network to address the
next prototypical-based learning strategy. Particularly, we compared four
approaches to select the best backbone:

1. RNFL features. A simple MLP was trained using the output of the hand-
driven learning branch Ωϕ(I) as an input data, similarly to [63].

2. Fine-tuned VGG16. This very popular architecture was used (freezing
the three first convolutional blocks) as a feature extractor followed by the
same MLP classifier as before, according to [62].
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3. Fine-tuned RAGNet. An expanded version of the previous approach was
conducted by including residual and attention modules in the feature
extraction architecture. This approach, corresponding to the deep
learning branch Γϕ(I), was introduced in our previous work [65].

4. OCT-hybrid network. This approach corresponds to the end-to-end
backbone Ψϕ(I) exposed in Figure 5.2, which proposes a combination
of hand-crafted and automatic features before the top model.

Table 5.4: Backbone selection: Validation results per class achieved from different
architectures in a multi-class scenario.

HEALTHY EARLY GLAUCOMA ADVANCED GLAUCOMA
RNFL

features [63]
Fine-tuned
VGG16 [62]

Fine-tuned
RAGNet [65]

OCT-hybrid
network

RNFL
features [63]

Fine-tuned
VGG16 [62]

Fine-tuned
RAGNet [65]

OCT-hybrid
network

RNFL
features [63]

Fine-tuned
VGG16 [62]

Fine-tuned
RAGNet [65]

OCT-hybrid
network

SN 1 1 0.9333 1 0.6667 0.5833 0.7500 0.7500 0.8000 0.9000 0.9000 0.9000
SP 0.8636 0.8636 0.9545 0.9091 0.9200 0.9600 0.9200 0.9600 0.9630 0.9259 0.9259 0.9630

PPV 0.8333 0.8333 0.9333 0.8824 0.8000 0.8750 0.8182 0.9000 0.8889 0.8182 0.8182 0.9000
NPV 1 1 0.9545 1 0.8519 0.8276 0.8846 0.8889 0.9286 0.9615 0.9615 0.9630
FS 0.9091 0.9091 0.9333 0.9375 0.7273 0.7000 0.7826 0.8182 0.8421 0.8571 0.8571 0.9000

ACC 0.9189 0.9189 0.9459 0.9459 0.8378 0.8378 0.8649 0.8919 0.9189 0.9189 0.9189 0.9459

Table 5.5: Backbone selection: Average validation results achieved from different
approaches in a multi-class scenario.

Micro-Average Macro-Average
RNFL

features [63]
Fine-tuned
VGG16 [62]

Fine-tuned
RAGNet [65]

OCT-hybrid
network

RNFL
features [63]

Fine-tuned
VGG16 [62]

Fine-tuned
RAGNet [65]

OCT-hybrid
network

SN 0.8378 0.8378 0.8649 0.8919 0.8222 0.8278 0.8611 0.8833
SP 0.9189 0.9189 0.9324 0.9459 0.9155 0.9165 0.9335 0.9440

PPV 0.8378 0.8378 0.8649 0.8919 0.8407 0.8422 0.8566 0.8941
NPV 0.9189 0.9189 0.9324 0.9459 0.9268 0.9297 0.9336 0.9506
FS 0.8378 0.8378 0.8649 0.8919 0.8262 0.8221 0.8577 0.8852

ACC 0.8919 0.8919 0.9099 0.9279 0.8919 0.8919 0.9099 0.9279

Training details. All the approaches were implemented using Tensorflow
2.3.1 on Python 3.6. Experiments were conducted on a machine with Intel(R)
Core(TM) i7-9700 CPU @3.00GHz processor and 16GB RAM. A single
NVIDIA GeForce RTX 2080 having cuDNN 7.5 and a CUDA Toolkit 10.1
was used to develop the deep learning algorithms. All the models were trained
during 200 epochs using a learning rate of 0.0005 with a batch size of 16.
Stochastic gradient descent optimiser was applied trying to minimise the CEE
loss function at every epoch. The rest of the architecture hyper-parameters
and input dimensions are shown in Figure 5.2.
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5.3.3 Prototype-based learning strategies

In this section, we report the validation performance of the static and
dynamic prototype-based methods in comparison to the conventional multi-
class approach. The comparison was conducted using the proposed OCT-
hybrid backbone as a feature extractor for all the scenarios. Following the
organisation of the previous section, Table 5.6 and 5.7 show the comparison
between the three involved learning strategies during the validation phase.

Table 5.6: Learning strategy: Validation results per class using the proposed OCT-hybrid
backbone for glaucoma grading.

HEALTHY EARLY GLAUCOMA ADVANCED GLAUCOMA
Conventional
multi-class

Static
prototypes

Dynamic
prototypes

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

SN 1 1 1 0.7500 0.7500 0.8333 0.9000 0.8000 0.9000
SP 0.9091 0.9091 1 0.9600 0.9200 0.9600 0.9630 0.9630 0.9259

PPV 0.8824 0.8824 1 0.9000 0.8182 0.9091 0.9000 0.8889 0.8182
NPV 1 1 1 0.8889 0.8846 0.9231 0.9630 0.9286 0.9615
FS 0.9375 0.9375 1 0.8182 0.7826 0.8696 0.9000 0.8421 0.8571

ACC 0.9459 0.9459 1 0.8919 0.8649 0.9189 0.9459 0.9189 0.9189

Table 5.7: Learning strategy: Average validation results using the proposed OCT-hybrid
backbone as a feature extractor.

Micro-Average Macro-Average
Conventional
multi-class

Static
prototypes

Dynamic
prototypes

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

SN 0.8919 0.8649 0.9189 0.8833 0.8500 0.9111
SP 0.9459 0.9324 0.9595 0.9440 0.9307 0.9620

PPV 0.8919 0.8649 0.9189 0.8941 0.8631 0.9091
NPV 0.9459 0.9324 0.9595 0.9506 0.9377 0.9615
FS 0.8919 0.8649 0.9189 0.8852 0.8541 0.9089

ACC 0.9279 0.9099 0.9459 0.9279 0.9099 0.9459

Training details. The same hardware and software systems as before were
used to accomplish this section. However, some differences in the dynamic
prototypical approach are worth noting. Dimensions of the input image
must be downsized to 124 × 192 × 3 to face the GPU memory constraints.
Additionally, a decreased learning rate of 0.001 allowed the convergence of
the model in 50 training epochs. A batch size of 16 samples was defined
to minimise the CEE loss function using the SGD optimiser. Regarding the
specific parameters of the dynamic prototype-based strategy, the number of K
shots and the number of U query samples were determined after an optimisation
process, according to Figure 5.6. Specifically, K = 20 support samples
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were selected to extract the prototypes ρc as the mean of the embedding
representations ES, whereas U = 21 query samples were used to measure the
Euclidean distance between the latent features EQ and each ρc. Note that
P = 41 denotes the number of training samples of the minority class (see
Table 5.1). In addition, other statistics and distance metrics were considered
during the optimisation of the models, as observed in Table 5.8. The rest
of the hyper-parameters related to the dynamic prototypes is detailed in
Subsection 5.2.2.2.
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Figure 5.6: Performance of the proposed model depending on K. The graphic shows
validation accuracy and loss results (in blue and red, respectively) using K samples from
each class c to define the prototypes ρc, and U = P − K query samples to measure the
embedding distances to minimise the loss function.

Table 5.8: Validation accuracy reached by the dynamic prototypical approach using
different statistics and distance metrics.

Distance
Euclidean Cosine Manhattan Canberra

Statistic
mean 0.9459 0.9099 0.9279 0.8739

median 0.9279 0.9279 0.9099 0.8559
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5.4 Prediction results

Quantitative results

In this section, we show the quantitative results achieved by the three
learning strategies conducted during the prediction of the test set. All the
approaches contrasted here were addressed using the proposed OCT-based
hybrid backbone as a feature extractor, as it reported the best results in the
validation phase. As before, we evaluate the models’ performance both per
class (Table 5.9) and in terms of micro- and macro-average (Table 5.10).

Table 5.9: Prediction stage: Test results per class reached by the different proposed learning
strategies for glaucoma grading.

HEALTHY EARLY GLAUCOMA ADVANCED GLAUCOMA
Conventional
multi-class

Static
prototypes

Dynamic
prototypes

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

SN 0.9333 0.9333 0.9333 0.5000 0.4167 0.6667 1 0.8333 0.8333
SP 1 1 1 0.9524 0.9048 0.9048 0.7778 0.7407 0.8519

PPV 1 1 1 0.8571 0.7143 0.8000 0.5000 0.4167 0.5556
NPV 0.9474 0.9474 0.9474 0.7692 0.7308 0.8210 1 0.9524 0.9583
FS 0.9655 0.9655 0.9655 0.6316 0.5263 0.7273 0.6667 0.5556 0.6667

ACC 0.9697 0.9697 0.9697 0.7879 0.7273 0.8182 0.8182 0.7576 0.8485

Table 5.10: Prediction stage: Average test results achieved by the different proposed
learning strategies at the test time.

Micro-Average Macro-Average
Conventional
multi-class

Static
prototypes

Dynamic
prototypes

Conventional
multi-class

Static
prototypes

Dynamic
prototypes

SN 0.7879 0.7273 0.8182 0.8111 0.7278 0.8112
SP 0.8939 0.8636 0.9091 0.9101 0.8818 0.9189

PPV 0.7879 0.7273 0.8182 0.7852 0.7103 0.7857
NPV 0.8939 0.8636 0.9091 0.9055 0.8768 0.9106
FS 0.7879 0.7273 0.8182 0.7446 0.6825 0.7865

ACC 0.8586 0.8182 0.8788 0.8586 0.8182 0.8788

In Figure 5.7 (a), we show the confusion matrix obtained by the best approach,
i.e. the dynamic prototype-based model, to evidence the overall behaviour
of the proposed method when predicting new samples. To provide a more
comprehensive interpretation of the glaucoma grading scenario, we illustrate
in Figure 5.7 (b) a 2D map corresponding to the latent space arranged by the
dynamic learning. The prototypes (denoted by asterisks) were calculated from
the training and validation sets, whereas spots and crosses make reference
to the embedding representations of the well and missclassified test data,
respectively. In addition, the Euclidean distance-based probabilities from the
missclassified samples are detailed in Figure 5.7 (b) to manifest the confidence
of the dynamic model when it is wrong in the prediction.
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Figure 5.7: Confusion matrix and TSNE. (a) Confusion matrix obtained by the dynamic
prototype-based approach during the prediction phase. (b) Latent space showing the
prototypes and the embedding test features on a 2D map via t-distributed Stochastic
Neighbour Embedding (TSNE) tool. Blue, green and red colours denote the ground truth
labels of the healthy-, early- and advanced-derived representations, respectively.

Qualitative results

Class activation maps (CAMs) [147] were computed to remark the regions in
which the proposed dynamic prototypical network paid attention to predict
the class of the test samples. The reported heat maps allow for a better
understanding of the CNN-extracted features by highlighting the most relevant
information of the B-scan for the predictions. These activated maps may
provide an additional interpretation of the results for glaucoma grading
depending on the patterns highlighted for each class. However, it should be
mentioned that CAMs usually do not present a high precision at pixel-level, as
the heat maps are created from the last layers of the proposed model, which
output a down-sampled map from the input image.

In Figure 5.8, we show several examples of CAMs corresponding to correctly
and wrongly predicted samples to elucidate the relevant patterns found by the
dynamic prototypical network to address the B-scans prediction. Specifically,
we expose three well-classified heat maps for each class to demonstrate the
criteria followed by the proposed model to determine the predicted labels. Also,
we report in the red frame of Figure 5.8 some examples of missclassified B-scans
to visually evidence the reason why the model gets wrong in the prediction.
Rows and columns represent the predictions and labels, respectively.
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Figure 5.8: Class activation maps showing the regions of interest in which the proposed
prototypical-dynamic model pays attention to predict each class. Heat maps over the green
background (a-c) correspond to well-classified images, whereas the red frame (d-f) represents
the missclassified samples.

5.5 Discussion

OCT B-scans contain information too limited to provide a complex diagnosis
based on glaucoma grading. For this reason, additional tests are usually carried
out to accomplish a more exhaustive and reliable glaucoma grading diagnosis
considering all the stages of the disease. Currently, the OCT systems can
provide a result indicating if the B-scan is within normal limits, borderline or
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outside normal limits, which is equivalent to discern between healthy, suspect
and glaucomatous cases. At this point, our system has demonstrated to
provide a very high performance achieving an accuracy of 100% and 96, 97%
during the validation and testing phases, respectively. However, with the
proposed system, we pretend to go beyond the binary classification of healthy
vs glaucoma by means of a prototypical framework able to discern early from
advanced glaucoma only using OCT samples, which adds significant value to
the body of knowledge. Below, we discuss the different CNN configurations
and learning strategies carried out in this work for glaucoma grading.

5.5.1 On ablation experiments

Backbone selection. One of the main novelties addressed in this paper lies
in the proposed OCT-based hybrid network, which combines hand-crafted and
automatic features extracted from the input B-scans. In order to elucidate the
superiority of the proposed model with respect to similar approaches, we raise
a multi-class glaucoma-grading scenario comparing different methodologies.
Note that a direct comparison with other state-of-the-art studies was not
possible because of the lack of public repositories with annotations of different
glaucoma severity levels, as claimed in [6]. For that reason, in this paper, we
contrasted the proposed model with other own glaucoma-detection methods
recently published in [62, 63, 65]. It should be mentioned that all the
approaches were adapted to the multi-class environment to provide a reliable
comparison during the validation stage, as detailed in Table 5.4 and 5.5.
Particularly, from Table 5.4 we can observe that the fine-tuned RAGNet
model [65] introduces slight improvements compared to the traditional VGG16
architecture and the hand-crafted RNFL features. The use of tailored
residual blocks and attention modules lead to a better results for most
of the metrics, by providing more distinctive feature maps. However, the
proposed OCT-based hybrid network outperforms the rest of the models in
the discrimination of all the classes. Focusing on the healthy column, RNFL
features, VGG16 architecture and the proposed hybrid backbone report a
more sensible behaviour highlighting for the SN and NPV metrics, whereas
RAGNet model showcases more specific results by outstanding for the SP
and PPV figures of merit. More global metrics, such as FS and ACC
show higher values for RAGNet and OCT-hybrid approaches. Contrarily,
the models differ to a greater extent in the discrimination of the glaucoma
severity grades. Specifically, the proposed OCT-hybrid network report the best
performance distinguishing between early and advanced glaucomatous samples
for all the measures. The results detailed in Table 5.5 further strengthens
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our confidence in the proposed OCT-hybrid network, as it reports the higher
values for all the figures of merit in terms of micro- and macro-average.
Table 5.5 is especially interesting to compare the model’s performance,
as it gives an idea of their overall precision. In such a table, we can
observe that hand-driven and basic deep learning approaches present a similar
behaviour, whereas more sophisticated CNNs provide substantial performance
improvements. Nevertheless, the combination of hand-crafted RNFL-based
features and refined CNN architectures yields the best model for glaucoma
grading, achieving an average accuracy of 0.9279.

Prototype-based learning strategy. The best approach reported during
the validation phase was used as a feature extractor to address the next stage
corresponding to the prototype-based learning strategy. Therefore, according
to the previous statements, the proposed OCT-hybrid network Ψϕ was selected
as the backbone of the prototypical architectures. At this point, several
contributions are proposed in a novel framework for glaucoma grading. The
method based on static prototypes was conducted for the first time by inferring
the weights (ϕ → Θ) of class-based prediction networks, instead of auto-
encoders, as in the case of CBIR-based studies [236–238], or architectures
intended to discern between positive and negative classes, as in the contrastive
learning works [151, 234, 235]. Notwithstanding, the main novelties related to
the prototypical environment were introduced in the dynamic approximation.
As detailed in Subsection 5.2.2.2, state-of-the-art studies usually made use
of K ∈ [1, 5] labelled images to extract the prototypes and U = 5, 10 or 15
unlabelled query samples to measure the latent distance to the prototypes
during the training of the models. Unlike them, in this paper, the few-shot
paradigm was redefined by dealing the K and U = P −K variables as any other
hyper-parameter to be optimised in the validation phase. As another novelty,
we made use of labelled samples to build the query set Q in order to make the
most of all available information about the B-scans for glaucoma grading. Our
hypothesis claimed that the use of more than K = 5 support images to extract
the prototypes would provide better results. However, it would be necessary to
find the optimal balance between the number of support and query samples,
because the data used to extract the prototypes ρc is just as important as
the data employed to know how well the prototypes work. For that reason,
we show in Figure 5.6 the categorical accuracy and the loss value achieved
by the dynamic prototypical model using K ∈ [1, P ] samples, being P = 41
the total number of the training samples of the minority class (see Table 5.3).
As expected, the model’s performance using a few K samples remains low
and it improves as the number of support samples increases. However, the
model reaches the best in the middle of the plotting, and then, the curve
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stabilises or even worsens. This fact consolidates our hypothesis which holds
the importance of a similar splitting of the support and query samples to train
the models. In particular, the highest performance is reached using K = 20
shots and U = 21 query scans, which reports a validation accuracy of 0.9459
and a loss value of 0.3209, according to Figure 5.6.

In Table 5.6 and 5.7, both static and dynamic prototype-based approaches are
compared with a conventional multi-class system based on the OCT-hybrid
network trained for glaucoma grading. The classification of healthy samples
in Table 5.6 deserves special attention, as the fully supervised dynamic PNN
perfectly works for detecting the non-glaucomatous data, achieving the 100% of
performance for all the figures of merit. The discrimination of the middle class,
i.e. early class, makes the outperforming of the dynamic prototypical network
evident. However, the conventional multi-class strategy surpasses the results
for advanced glaucoma cases in all the metrics. In addition, Table 5.7 provides
a comparison of the models’ behaviour in terms of micro- and macro-average.
Specifically, the dynamic prototype reaches the best results with values higher
than 0.90 for all the indices. It should be highlighted that the baseline approach
outperforms the strategy based on static prototypes, which reveals that end-
to-end methodologies provide more robust models, as expected.

Furthermore, we carried out an empirical exploration of different distance
metrics and statistical parameters to maximise the classification agreement
in the latent space between the prototypes and the embedding query
representations. Particularly, statistics based on mean and median operations
were considered to extract the prototypes from the support samples, whereas
Euclidean, Cosine, Manhattan and Canberra distances were subject to study
to determine the class of the query representations according to the closest
prototype in the latent space. As detailed in Table 5.8, the highest validation
accuracy was reached using the Euclidean distance and the mean statistic,
which reported a validation accuracy of 0.9459.

5.5.2 On prediction results

Quantitative results. In this section, we compare the performance of the
different proposed learning strategies during the prediction of the test set. As in
the validation phase, results per class and in terms of micro and macro-average
are reported in Table 5.9 and 5.10, respectively. According to the previous
section, the discrimination between healthy and glaucoma classes is successfully
accomplished by achieving results higher than 0.93 in the prediction of healthy
samples for all the figures of merit (see Table 5.9). It is remarkable that
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the three contrasted models provide the same effectiveness in distinguishing
the healthy class. However, the glaucoma grading results make clear the
differences between the models. In particular, the dynamic PNN shows better
SN and NPV results, whereas the baseline approach out stands for SP and
PPV metrics in the early glaucoma detection. The opposite happens in the
advanced glaucoma case, as the conventional approach reveals a more sensitive
behaviour (higher recall and NPV), whereas the dynamic prototypical model
provides more specific results (better specificity and precision). Note that F-
score (FS) and Accuracy (ACC) metrics reach higher values using the dynamic
PNN-based strategy. Additionally, the results in Table 5.10 are directly in line
with the reported in the validation phase, as the dynamic prototypical method
is consolidated as the best model, followed by the conventional multi-class
approach and leaving the static prototypical network in the last position. From
here, we can conclude that end-to-end trained systems are more compelling and
allow providing more reliable and robust models.

From the confusion matrix in Figure 5.7 (a), promising results are evidenced
for glaucoma detection, as the dynamic prototype strategy almost perfectly
distinguishes glaucomatous from healthy samples. Only a specific healthy
B-scan was wrongly predicted as a sample with early glaucoma. However,
the proposed model makes more mistakes predicting the early class since
it sometimes confuses early and advanced patterns of the disease. In the
case of the advanced glaucoma class, the prototypical network only disagrees
with the experts once, in which a severe glaucomatous scan was classified
as early glaucoma. To visualise the results of the confusion matrix in
a more interpretable scenario, we illustrated the latent space environment
arranged by the proposed dynamic SPNN-GG in Figure 5.7 (b). The TSNE
technique shows the distribution of the embedding test representations on a
2D map, as well as the prototypes extracted from the training samples. Three
well-differentiated sub-spaces arise on the 2D map locating the healthy and
advanced representations in the opposite corners and the prototypes of early
and advanced classes very close, as expected. Additionally, early glaucoma-
derived features are mapped in the middle of the plotting, which matches
with the order of the glaucoma severity scale. The prediction probabilities
for the missclassified samples are detailed in Figure 5.7 to demonstrate the
coherence of the proposed model using the embedding features for glaucoma
grading. For example, the nicknamed representations 1−4 correspond to early
glaucomatous samples which were missclassified as advanced glaucoma items
with a level of confidence less than 0.8 in some cases. Regarding the tagged
representation 5, the dynamic prototypical network wrongly predicted an early
B-scan as an advanced sample, but with serious difficulties, as the prediction
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probabilities are 0.53 and 0.39 for early and advanced classes, respectively.
Something similar occurs for the nicknamed point 6, which was missclassified
as an early glaucoma sample when it was actually healthy. In spite of this,
the representation 6 is located near the decision boundary between early and
healthy classes, which manifests the robustness of the proposed model.

Qualitative results. The findings from the CAMs reported in Figure 5.8 keep
consistency with the clinical interpretation provided by the ophthalmologists,
who claim that a thinning of the RNFL structure is usually associated with
glaucomatous patterns, whereas a thickening of the RNFL denotes cues of
healthy samples [189, 190]. As appreciated in Figure 5.8, the proposed model
pays special attention to specific regions of the RNFL depending on the
reported prediction, according to the outcomes found in our previous work
[62]. In the green frame of Figure 5.8, three random examples are illustrated
to demonstrate that there is a repeating pattern for each of the classes. Well-
classified samples corresponding to the healthy class (Figure 5.8. (a)) show
heat maps with highlighted pixels in regions characterised by a thickening
of the RNFL. Oppositely, well-classified early and advanced glaucomatous
samples (Figure 5.8. (b), (c)) provide apparent cues of RNFL deterioration,
which is visible in the heat maps highlighting regions where a thinning of the
RNFL is evident. As observed, the degradation level of the RNFL thickness is
accentuated the greater the severity of the disease.

The wrongly predicted CAMs can be also appreciated in the red frame of
Figure 5.8. Particularly, the example showed in Figure 5.8 (d) shows a healthy
B-scan missclassified as an early glaucoma sample. Nevertheless, the model’s
decision shows to be coherent with the established patterns, as the B-scan
presents several areas in which the RNFL appears slightly thinned. Something
similar happens with the remainder of cases of the red frame. Specifically,
the example in Figure 5.8 (e) is striking because the RNFL seems to be
widely deteriorated throughout the entire B-scan, so that the model associates
the image with an advanced glaucomatous sample. The opposite occurs in
Figure 5.8 (f), where an advanced glaucoma OCT image is predicted with the
early label. In this case, the B-scan shows several regions in which the RNFL
thickness agrees more with early than advanced glaucoma patterns. Therefore,
from the red frame of Figure 5.8, it is possible to elucidate the complexity in the
diagnosis of the different grades of glaucoma, even for expert ophthalmologists,
who often disagree. In future research lines, it would be interesting to include
additional data to provide the model with the necessary information that
clinicians take into account to determine the glaucoma severity.
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5.6 Conclusion

In this paper, we have proposed several artificial intelligence solutions for
glaucoma grading using raw circumpapillary OCT images. A new base encoder
network has been developed improving the multi-class methodologies addressed
to date for glaucoma severity detection. The proposed model introduces a
residual convolutional block with tailored kernel sizes to get the most out from
the B-scans, and an attention module able to refine the features of the latent
space to maximise the classification agreement. The encoder network uses, for
the first time, a combination of hand-crafted and automatic features giving rise
to an OCT-based hybrid model which adds substantial improvements in the
final prediction. As a novelty, this architecture was employed as the backbone
of a novel framework based on prototypical learning, in which the limits of
the few-shot paradigm have been redefined for an optimal glaucoma grading
procedure. This innovative approach carried out in an end-to-end manner has
surpassed the multi-class baseline and it has reported promising results for both
glaucoma detection and glaucoma grading scenarios, achieving testing accuracy
of 0.9697 and 0.8788, respectively. In future research lines, the efforts should
be focused on improving the discrimination of the different grades of glaucoma
severity by including additional information outside the SD-OCT images.
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Chapter 6

Final conclusions

This chapter relates the findings from each paper to the final
aim of the PhD thesis. It summarises concluding remarks and
suggests future research lines for each proposed learning framework.
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6.1 Global remarks

6.1 Global remarks

In this thesis, we have designed, developed and validated different ML
algorithms for imaging-based diagnostic support in order to improve expert
efficiency and accuracy. We have proposed several cutting-edge AI-based
solutions to aid decision-making of the two most important research areas
in the field of medical imaging: histopathology and ophthalmology. For this
purpose, different modelling strategies from different learning paradigms have
been considered. Specifically, this PhD thesis compiles from conventional
approaches focusing on hand-driven learning to data-driven algorithms based
on deep learning techniques, as well as hybrid frameworks by combining both
manual and automatic learning perspectives. Regarding the conventional
approaches, novel descriptors have been proposed to perform robust hand-
crafted feature extraction. Moreover, in-depth statistical analyses have been
performed for feature selection, and classical ML algorithms such as SVM
and MLP have been implemented to address the classification stage. As for
deep learning-based approaches, innovative methods from different supervision
scenarios have been proposed to deal with the lack of labelled data. In
addition to the supervised setting performed under ideal conditions, this thesis
also includes other methods based on fully unsupervised learning via deep
clustering, recurrent learning from 2D slides with volume-level labels, few-
shot learning through prototypical neural networks, and self-training under
the presence of domain shift.

6.2 Specific remarks

In Chapter 2, we have presented a comparison between hand-driven and
deep learning methods for identifying the first stage of prostate cancer
from previously segmented histological gland candidates. Both learning
strategies have reported similar behaviour in distinguishing between artefacts
and glands. However, the conventional computer vision approach focusing
on morphological, textural, fractal-related and contextual features has
outperformed the deep learning methodology, as hand-crafted features can
take into account the size of specific elements, as well as spatial hierarchies
and orientations, which play an essential role in discriminating between healthy
and pathological glands. Additionally, the SVM classifier using a second-order
non-linear kernel has reported better results than other ML classifiers based on
artificial neural networks. The proposed system has also demonstrated higher
performance than other state-of-the-art methods based on gland classification,
surpassing multi-class accuracy by more than 10.4%. This study contributes
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to the accurate localisation of histological structures and their classification
into normal or pathological glands with an accuracy of 88.30%.

In Chapter 3, we have compared conventional clustering algorithms with
unsupervised deep learning methods for bladder cancer assessment, also using
histological images. In this case, an additional immunohistochemistry staining
was employed to enhance the cancer cells with the aim of self-recognising
different high-resolution bladder patterns, where the aggressiveness of each
pattern leads to a different clinical prognosis. In contrast to the previous
chapter, where the classification framework was approached from individual
structures, in this study we focused on a self-learning strategy carried out
from histological patches. Conventional and deep clustering methods have
been able to discern between tumour and non-tumour patterns with a very
high success rate, which is not a major finding as the differences are obvious.
The real challenge lies in distinguishing between mild and infiltrative patterns,
where the tumour structures are similar, but the patient’s prognosis is
completely different. In this context, the proposed deep learning method
(DCEAC), using an attention module to refine the features at the bottleneck,
has reported significant outperformance, especially regarding conventional
approaches, as they were unable to learn the differences between the cancer
patterns on their own. The proposed DCEAC model has shown an increase
in accuracy of 12.85% compared to the classical clustering approaches and
2 − 3% concerning other deep learning state-of-the-art methods. In addition,
the feature representation provided by the proposed DCEAC showcases the
high ability of the model to discern between non-tumour, mild and infiltrative
patterns, as the features derived from each of them appear as independent
clusters in the latent space. The heat maps extracted also reveal that
the proposed system can learn by itself the same histological structures as
clinicians to determine the aggressiveness of bladder cancer. This contributes
significantly to the body of knowledge, as a multi-class accuracy of 90.31%
has been reached without incurring prior annotation steps. Therefore, the
proposed AI-based solution is valuable in addressing human eye fatigue and
assisting inexperienced pathologists by suggesting inadvertent areas of interest
to avoid biased diagnosis.

In the previous chapters, different learning models, performing under different
setups, have been applied on histopathological images to demonstrate the
potential of artificial intelligence for cancer diagnosis, in particular prostate and
bladder cancer. Otherwise, Chapter 4 and Chapter 5 move away from digital
pathology to put AI knowledge at the service of glaucoma screening through
OCT-based data. In Chapter 4, we have proposed a supervised framework to

148



6.2 Specific remarks

detect glaucoma from annotated SD-OCT volumes composed of unlabelled
2D slides. The combination of a novel 2D-CNN, acting as a slide-level
feature extractor, with LSTM networks, responsible for leveraging the spatial
dependencies between adjacent slides, results in a model with better predictive
capability than other state-of-the-art architectures based on 3D-CNNs. For
the first time, to build the slide-level discriminator, we combined fine-tuned
architectures with residual and attention modules, which have been shown to
lead to better convergence by optimising the dimensionality of the filters during
the model training. For the volume-level prediction, the proposed recurrent
framework using a novel sequential-weighting module (SWM) has provided
higher performance regarding other LSTM-based configurations, as all the
slide-derived features contribute to the final prediction but in a sequential way.
Taking into account that SD-OCT volumes are not currently being traced by
ophthalmologists due to the large workload associated, the reported heat maps
highlighting the regions of interest at the slide level could lead to a promising
tool for the screening of the SD-OCT cubes. Therefore, this study has revealed
that SD-OCT volumes enclose valuable knowledge for glaucoma assessment,
as the proposed model has achieved an accuracy of 81.25%.

Contrary to the previous chapter, where glaucoma detection is addressed from
SD-OCT volumes, in Chapter 5, we have oriented glaucoma assessment using
2D circumpapillary images, rather than three-dimensional data. In this case,
we based on our previous glaucoma-related experience to propose a new hybrid
backbone to optimise the feature extraction process. The inclusion of hand-
crafted features, intended to enhance essential glaucoma-specific structures
associated with the deterioration of the retinal cells, has resulted in substantial
prediction improvements regarding other approaches only focused on deep
learning architectures. Nevertheless, results have proven to be even higher
when the proposed hybrid backbone was used as a feature extractor in a novel
few-shot learning framework based on prototypical neural networks (PNNs).
The learning process is shown to maximise classification agreement using
dynamic PNNs, instead of the non-linear operations associated with softmax
activation of the multi-layer perceptron. The performance improvement is
because the proposed dynamic PNN model allows the convolutional coefficients
to be refined during the back-propagation step as a function of the success
of latent embedding assignment. By providing the prototypical learning for
supervision and optimising the few-shot paradigm, the proposed system has
reported very promising results on both binary and multi-class classification
tasks. At the time of testing, an accuracy of 96.97% has been achieved in
discerning between healthy and glaucomatous samples. However, the most
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remarkable feat is the 87.88% accuracy achieved for OCT-based glaucoma
grading, which was addressed for the first time in this work.

In summary, the AI-based methods detailed in this thesis have proven to be a
valuable tool to assist in diagnostic imaging, whether for prostate and bladder
cancer diagnosis making use of histological samples or for glaucoma assessment
using OCT-based data. Nevertheless, this thesis has covered just a very small
part of the full potential of AI for medical imaging.

6.3 Future work

Many research lines remain open for future works in the fields of digital
pathology and ophthalmology, as well as for other imaging modalities.
Currently, histopathological imaging is being widely studied in the literature
using ML algorithms. Contributions in this line should be directed towards
the development of computer-aid systems capable of processing complete
digitised biopsies without resorting to patches or local structures to aid decision
making. This would represent a huge leap in quality and lead to more
reliable models for application in clinical practice. A powerful hardware setting
would be needed to cope with the large size of images (in the order of GB)
and the large number of operations involved in this learning process. The
CVBLab research group has recently acquired a hardware machine capable of
supporting that computing power: the NVIDIA DGX A100 system, which
integrates eight tensor cores with up to 320GB of GPU memory. The
exclusive use of such a system would allow the training of the models using
as input data the whole-slide images (WSIs). However, this solution would
take up a significant part of the CVBLab’s hardware, leaving the rest of
the team’s components without important resources. The centre’s hardware
infrastructure is expected to be upgraded to more computationally powerful
individual experiments. Additionally, interesting contributions could also be
made in developing unsupervised ML algorithms, similar to those carried out in
Chapter 3, that can compete against the fully supervised approaches. It would
suppose a breakthrough in cancer detection from histological images, as no
prior annotation steps would be necessary, thus relieving some of the experts’
workload. To address this research line, algorithms based on weakly-supervised
segmentation, unsupervised anomaly detection or domain adaptation, among
others, would be of interest.

Regarding glaucoma assessment, there is still much work to be done before
an automated AI-based diagnosis system using only OCT data can be
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implemented in ophthalmology departments. The proposed frameworks
provide a reliable starting point to assist experts in decision-making. However,
it would be necessary to significantly increase the number of samples in the
training dataset, as well as to test the reliability of the proposed models with
external databases. This is a long-standing problem, as there are no public
OCT-specific datasets with glaucoma annotations. We have already started
to work in this direction by compiling annotated databases for glaucoma
detection. Currently, we are collaborating with the Polytechnic University
of Cartagena to bring together the OCT databases with glaucoma annotations
and make them public to contribute to the scientific community. Furthermore,
one of the main challenges facing OCT-based glaucoma diagnosis is the
discrimination of different stages of the disease. This is an arduous task because
OCT only provides simple data with sparse and very localised information,
making it difficult for CNNs to discover hidden patterns associated with
different patterns of aggressiveness. In our works [64, 66], we propose some
initial solutions to discern between different levels of glaucoma severity just
from OCT-based data. In future works, it would be interesting to combine the
OCT images with another kind of data, such as fundus images or indicator
parameters like the visual field or intraocular pressure. It would provide
a more reliable decision as it would be supported by the combination of
different diagnostic tests with richer information when finding distinct levels
of aggressiveness. Another major challenge lies in providing high-confidence
glaucoma predictions from SD-OCT volumes. Our work [65] suggests a novel
way to address this problem, but additional datasets containing other ethnic
groups would be necessary to strengthen the reliability of the proposed model.
This would add significant value to glaucoma diagnosis, as experts would draw
on additional information that they are not using today due to the associated
high workload. Finally, a relevant contribution could be made in the field
of glaucoma diagnosis if the evolution of a specific patient would be traced.
To this end, different OCT samples should be collected in several temporary
instances for a particular patient. Then, by applying recurrent learning, e.g.
LSTMs or transformers-based algorithms, it would be possible to determine a
patient’s prognosis taking into account its temporal evolution.
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