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A B S T R A C T   

Homogeneous low-crested structures (HLCSs) on hard seabed are designed to protect beaches and regenerate 
coral reefs. The height of a HLCS depends on the placement grid which determines the crest freeboard, wave 
transmission and concrete consumption. In real seafloor conditions, it is not easy to define feasible placement 
grids for HLCSs on uneven sea bottoms. In this study, the parameters of the numerical model Bullet Physics 
Engine (BPE) are calibrated and validated using the results of small-scale physical model placement tests of five- 
layer Cubipod HLCSs on horizontal rigid bottom. The BPE model showed a low sensitivity to variations in the 
calibrated parameters; the numerical model estimated the layer coefficients with global mean relative errors of 
1.04% and 1.39% in the triangular and rectangular placements grids, respectively. Once the numerical model 
was calibrated, new numerical and physical model tests on a 4% rigid bottom slope were compared for vali
dation. A five-layer Cubipod HLCS on a 4% bottom slope was simulated using the BPE numerical model showing 
a global mean relative error of 2.75% compared to the small-scale physical model tests. A good agreement was 
found between numerical and physical model tests of five-layer Cubipod HLCSs on both horizontal as well as 4% 
rigid bottom slope. The BPE numerical model was found a suitable tool to estimate the structure height of HLCSs 
and to optimize placement grids of HLCSs on real cases with hard sea bottom.   

1. Introduction 

Coral reefs act as a natural protection against beach erosion and 
coastal flooding in areas such as the Caribbean Sea (Mesoamerican 
Barrier Reef System) or Australia (Great Barrier Reef). Coral reefs reduce 
the wave energy attacking the neighbouring beaches in the short term 
and generate biogenetic sand in the long term. Climate change, ocean 
acidification, pollution and other anthropogenic causes are responsible 
for the global degradation of coral reefs in the world. Rinkewich (2014) 
estimates coral reefs have been retreating more than 1% annually in the 
past four decades, and Ferrario et al. (2014) noted that this degradation 
have been affecting numerous beaches in the world. New measures for 
the regeneration of coral reefs is a priority to keep the risk of the soci
eties protected by coral reefs under tolerable limits. To this end, Odériz 
et al. (2018) pointed out that homogeneous low-crested structures 
(HLCSs) can be an adequate natural-based solution to regenerate 
retreating coral reefs. HLCSs can withstand intense wave storms 

providing a stable porous hard substrate to fix the coral larvae while 
protecting the neighbouring beaches. 

For centuries, mound breakwaters have been constructed to shelter 
harbors and to protect coastal areas. Detached breakwaters parallel to 
the coast are commonly used for shore protection with the main goal of 
reducing the wave energy flux on the coastline. Conventional detached 
breakwaters are low-crested structures (LCSs), submerged or slightly 
emerged mound breakwaters usually with core, filter and armor layers. 
Odériz et al. (2018) proposed the construction of HLCSs similar to 
conventional LCSs but using large rocks or concrete units without core; 
this typology minimizes the environmental impact and, if necessary, 
dismantling is easy and the units are re-useable. HLCSs are highly porous 
structures which favour local biodiversity increasing their value as green 
infrastructure (Medina et al., 2019) making them adequate to regenerate 
coral reefs. Retreating coral reef areas usually provide hard seabeds 
above which a HLCS can be placed; therefore, the settlement of a typical 
application of a HLCS is negligible. Fig. 1a and b illustrate the 
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cross-section of a conventional LCS and a HLCS, respectively. 
The crest freeboard of a HLCS is crucial for estimating the amount of 

energy transmitted to the shoreline (Medina et al., 2019). However, it is 
not easy to measure and control the structure height of a HLCS because it 
depends on the placement grid. Given a hard sea bottom, the placement 
grid determines the structure porosity and layer thicknesses (Medina 
et al., 2020) and, contrary to conventional LCSs, structure height of 
HLCSs decreases if armor porosity increases (De Keyser and Jacobs, 
2020). Adequate placement grids for HLCSs are not straightforward and 
have only received limited attention in the literature. 

Small-scale physical model tests using the Froude similarity have 
been the main source of scientific information for coastal engineers to 
design mound breakwaters. Small-scale physical model tests usually 
provide a reliable and realistic response of the structures which are 
useful for design optimization or validation. However, small-scale 
physical model tests require special facilities (wave flumes, wave ba
sins, etc.), they are time-consuming and the model and scale effects are 
always a matter of concern, which may be reduced with the appropriate 
scale and model layout. The placement grid of the armor layers of 
conventional mound breakwaters significantly affects the armor 
porosity, armor stability, wave overtopping, and concrete consumption 
(Medina et al., 2014). Based on realistic small-scale physical model 
placement tests, Yagci and Kapdalsi (2003), Özkan-Cèvik (2005), and 
Pardo et al. (2014) analyzed feasible armor porosities that can be con
structed using Antifer, Core-loc, and Cubipod concrete units for break
water armoring. Realistic physical model placement tests such as those 
of Pardo et al. (2014) are time-consuming and require special equipment 
such as small-scale crawler cranes, as well as trained crane operators. 

Compared to small-scale physical model placement tests, numerical 
model placement tests are considered a valuable and competitive tool to 
analyze the feasibility of placement grids (Latham et al., 2013). The 
armor unit behavior is usually simulated using: (1) discrete and finite 
element models (Latham et al., 2008) or (2) rigid body models (Cooper 
et al., 2008). The first approach is based on the discretization of the 
structural element into finite or discrete elements and requires a high 
computational time, while the second approach is based on the second 
Newton law and requires the use of Physics Engines from the gaming 
industry (PhysX or Bullet) with a relatively low computational time. 

In this study, physical and numerical model placement tests were 
conducted to simulate different placement grids of Cubipod HLCSs 
measuring the layer thickness of each layer. The Bullet Physics Engine 
(BPE) incorporated in the Blender Free and Open 3D Creation Software 
(Blender, 2019) is used to conduct the numerical model placement tests, 
validated later with physical model placement tests without water. This 
study is divided into the following sections. Firstly, a literature review is 
provided. Secondly, the physical and numerical model placement tests 
are described. Thirdly, the numerical model placement tests are vali
dated. Fourthly, an application is analyzed. Finally, a summary and 
some conclusions are given. 

2. Literature review 

2.1. Physical placement techniques for concrete armor units 

Concrete armor units can be uniformly, patterned or randomly 
placed on mound breakwaters (Dupray and Roberts, 2009). All the 
armor units, even those which require unit orientation, are placed using 

a cartesian X–Y grid which allows the crane operator to achieve the 
desired armor porosity at prototype scale. The placement technique 
depends on the type of unit, number of layers, armor porosity and 
interlocking. It is recommended to carry out realistic placement tests in 
laboratory to optimize placement grids (Medina et al., 2010) and to 
control the armor unit placement at prototype scale. Unfeasible place
ment grids or uncontrolled placement may lead to costly conflicts, 
miscalculations and repair works because armor units can be lost during 
placement or the actual armor porosity may be lower than prescribed, 
changing the breakwater hydraulic performance. 

Yagci and Kapdalsi (2003) analyzed different placement methods for 
Antifer cubes and concluded that the placement technique affects armor 
stability, wave run-up and placement costs. Özkan-Çevik et al. (2005) 
compared two placement grids for Core-Locs and concluded that 
random placement was preferable since it had higher armor stability. 
Muttray et al. (2005) tested two different sling methods to place Xblocs; 
the method with the sling attached to one leg of the X-shaped showed 
higher armor stability and easier handling and construction. Pardo et al. 
(2014) tested different placement grids on trunk and roundheads for 
Cubipod armored mound breakwaters using a small-scale crawler crane. 
Considering a double-layer Cubipod armored mound breakwater with 
target armor porosity of 42%, Pardo et al. (2014) recommended a 
placement grid in the trunk and roundhead with measured armor po
rosities p = 41.3% and p = 45.4%, respectively. 

Recently, De Keyser and Jacobs (2020) have conducted physical 
model placement tests of Cubipod five-layer HLCSs measuring the layer 
thicknesses corresponding to six different placement grids which affect 
the layer thicknesses, porosity and structure height of HLCSs. These 
authors concluded that placement grids with larger horizontal distances 
among units leaded to lower layer thicknesses, higher prosotities and 
lower HLCS height; two physical model placement grids (RPG and TPG) 
were analyzed in section 3.1 of this study. 

2.2. Numerical placement techniques 

Numerical modeling can be used to analyze the armor porosities and 
concrete stresses in armor units. The individual armor unit behavior is 
usually simulated using discrete and finite element models or rigid body 
methods. The Finite Element Method (FEM) is widely used for modeling 
stress and deformation of solids while the Discrete Element Method 
(DEM) is capable of modeling the collision and motion tracking of solids 
(multi-body interaction). The combined finite-discrete element method 
(FEMDEM) is used to handle complex deformable shapes; Latham et al. 
(2008), Xiang et al. (2011), Latham et al. (2013) and Guo et al. (2015), 
solved the contact mechanics using a distributed contact force approach. 

Latham et al. (2008) modeled several armor units using DEM and 
FEMDEM techniques and Computational Fluid Dynamics (CFD). The 
authors compared laboratory pull-out tests of cube and X-bloc armor 
with DEM simulations, concluding that the force distributions and ab
solute values were similar. The authors concluded that FEMDEM simu
lations are more versatile than DEM simulations and can give accurate 
geometry representation whereas the required computational time is 
much higher. Latham et al. (2013) used FEMDEM techniques to 
construct a Core-Loc armored mound breakwater. The authors con
ducted five tests and controlled the packing density, spacing, orientation 
and contact between elements. Latham et al. (2013) obtained packing 
densities between 0.59 and 0.63, similar to prototypes, and detected that 

Fig. 1. Cross-section of a Cubipod-armored: (a) conventional LCS, and (b) 4-layer HLCS.  
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the higher the packing density, the higher the average maximum contact 
force per unit. 

Guo et al. (2015) used a fracture model combined with FEMDEM 
techniques to investigate the structural integrity of Dolosse and 
Core-Locs under dynamic and extreme loading conditions. The authors 
simulated the deformation, fracture initiation and post-fracture 
behavior of both armor units under drop tests and interactions be
tween armor units on the slope (simulating real mound breakwaters). 
Anastasaki et al. (2015) used FEMDEM techniques to generate recom
mendations on the placement grids of Core-loc armor layers. The au
thors improved the placement protocol reported in Latham et al. (2013) 
with better representation of the contacts and orientation between units 
(avoiding units with legs normal to the slope). The first row of units was 
carefully placed according to technical guidelines (Smith and Melby, 
1998). The other armor units were vertically dropped over a slope H:V 
= 4:3. When the first solid contact occurred, the lowering velocity of the 
armor unit was set to zero and the friction coefficient between armor 
units was artificially lowered. To improve the contacts between units, a 
horizontal vibration together with a slight compaction force was 
applied. Once the dropped armor unit was in the slope, the friction co
efficient between units was increased to ensure a state of equilibrium. 
Thus, the authors calibrated two friction coefficients, the vibration to 
improve the settlement and the compaction force. Anastasaki et al. 
(2015) concluded that both the placement grid and relative orientation 
between armor units are crucial to achieve the desired packing densities 
in Core-Loc armored mound breakwaters. 

Cooper et al. (2008), Greben et al. (2008), Cooper et al. (2010) and 
Greben et al. (2010) used the PhysX Physics Engine (a rigid body 
method) to construct Dolos and Antifer armored mound breakwaters 
and analyzed the armor stability against oscillatory forces. These au
thors used a concrete density ρ = 2 350 kg/m3 but they did not calibrate 
any of the parameters of the numerical model. They proposed different 
parameters for the numerical model without any sensitivity analysis or 
validation. The numerical construction of the armor layers was con
ducted by sequentially dropping at a constant velocity the armor units 
and released them when the first contact with the slope appeared 
following the given placement grid. 

Centi (2020) used the Bullet Physics Engine (BPE) to construct 
Cubipod and Antifer HLCSs. Centi (2020) used a concrete density of ρ =
2 300 kg/m3 and conducted a sensitivity analysis of some of the pa
rameters of the numerical model within a small range of variation. Centi 
(2020) measured the layer thicknesses of five-layer Cubipod HLCSs and 
found a good agreement between the numerical results and the 
small-scale physical model placement tests carried out by De Keyser and 
Jacobs (2020). 

2.3. Layer thickness 

According to USACE (1984), the armor thickness can be calculated as 
follows: 

t = nkΔDn (1)  

where n is the number of layers in the armor, kΔ is the layer coefficient, 
Dn=(W/ϒ)1/3 is the nominal diameter, W is the armor unit weight, and 
ϒ is the specific weight. Placing density ϕ(units/m2), controlled by the 
placement grid, is related to the layer coefficient (kΔ) and the nominal 
porosity (P) as detailed in Eq. (2). 

ϕ = nkΔ
(1 − P)

D2
n

(2) 

The dimensionless placing density is the packing density ϕ = φDn
2. 

Frens (2007) pointed out that the different criteria found in the litera
ture to define the layer coefficient caused some misunderstandings; for 
instance, both USACE (1984) and CIRIA, CUR, and CETMEF (2007) 
recommend a nominal armor porosity of 50% for double-layer Tetrapod 

armors, but different layer coefficients, kΔ = 1.04 and kΔ = 1.02, 
respectively. In the design stage, the layer coefficient (kΔ) and the 
nominal porosity (P) determine the placing density and the estimation of 
the total number of armor units required to armour the breakwater. 

In the case of a HLCS, the layer thickness is a key parameter to 
calculate the crest elevation which determines the amount of wave en
ergy transmission. In this study, a BPE numerical model is validated to 
measure the layer thicknesses and crest elevation of Cubipod HLCSs. 
Fig. 2 shows the front view and relative dimensions of the Cubipod units 
(three orthogonal planes of symmetry) modeled in Blender (2019). 

3. Validation of the numerical model 

3.1. Small-scale physical model placement tests 

3D physical and numerical model placement tests were conducted to 
estimate the layer thicknesses of five-layer Cubipod HLCSs. When con
structing a HLCS, rectangular and triangular placement grids can be 
considered (Odériz et al., 2018). The type of placement grid and its 
geometric parameters (Fig. 3) will determine the layer thickness and 
armor porosity. The geometric parameters of the placement grids are 
related to the nominal diameter of the units. Fig. 3a illustrates the 
rectangular placement grid (RPG) used in this study with separations of 
a/Dn = 1.40 and b/Dn = 1.30 along the X and Y directions, respectively, 
and Fig. 3b illustrates the triangular placement grid (TPG) with sepa
rations of a/Dn = 1.58 and b/Dn = 1.27. Wave direction corresponds to 
the Y-direction (Odériz et al., 2018). 

The 3D physical model placement tests were conducted in the Lab
oratory of Ports and Coasts at the Universitat Politècnica de València on 
a horizontal rigid bottom (De Keyser and Jacobs, 2020). For each 
placement grid, the first layer of Cubipods was randomly oriented and 
placed by hand over a printed scheme of the unit centers of gravity; the 
Cubipods of the first layer always rested with a side on the flat rigid 
bottom (minimum potential energy). The following layers were 
randomly placed by hand on the hollows of the lower layer (minimum 
potential energy) following the conventional placement approach. A 
rigid structure with a mobile horizontal beam was placed on the physical 
model to measure distances to a reference horizontal plane. A laser 
measuring device was placed on the horizontal beam to measure the 
vertical distance from the plates placed on the top of each layer to the 
reference horizontal plane (Fig. 4 and Fig. 5a). Once each layer was 
placed, the layer coefficient, kΔj, was calculated as 

Fig. 2. Relative dimensions of a Cubipod unit.  
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kΔj =

(
hj− 1 − hj

)

Dn
(3)  

where the difference between the mean vertical distance from top of the 
armor units (Fig. 4) measured on the previous layer (hj-1) and the actual 
one (hj) is divided by the nominal diameter (Dn [cm] = 3.80 in this case). 
For the first layer (j = 1), h0 was the distance between the horizontal and 
rigid bottom and a reference envelope plane on top of the armor units. 
Fig. 4 illustrates the evaluation of the layer coefficient with Eq. (3). 

The measurement of the layer coefficient with this methodology is 
dependent on the area where the envelope is measured. In this study, 
squared plates of dimension 2Dnx2Dn were manufactured using a rigid 
material and were placed on top of the layers. The measurements of 
structure height were taken at the center of the squared plates (see 
Fig. 5b). Since several measurements of the structure height were ob
tained per each layer (j), the mean value was calculated (hj). In order to 
assess the variability on the layer coefficient, five repeatability physical 
model placement tests of five-layer Cubipod HLCSs were conducted for 
both the RPG and TPG grids. 

Fig. 5a shows the framework used to measure the layer thickness in 
the laboratory. Fig. 5b illustrates a detail of the squared plate with size 
2Dnx2Dn used to measure the structure height with the laser device. 

3.2. Numerical model placement tests 

3.2.1. Mathematical model 
Millington (2007) defined the mathematical model of any physics 

engine. The Bullet Physics Engine (BPE) is based on Newton’s laws of 
motion: 

F=m⋅a (4)  

M = I⋅α (5)  

where the three-component vector F is the resultant of all the forces 
acting on the object, the 3 × 3 (diagonal) matrix m is the mass of the 
object, a is the linear acceleration, the three-component vector M is the 
resultant of all the moments acting on the object, the 3 × 3 (symmetric) 
matrix I is the inertia of the object and α is the angular acceleration. 
Given a set of forces and moments acting on the object, BPE integrates 
twice the linear and angular accelerations to obtain the position and 
orientation of the object. BPE calculates the position on each time step 
until the object is in the final position without any movement. 

In order to decrease the computational time, Eqs. (4) and (5) are 
numerically solved using the Euler’s Method. Indeed, some inaccuracy is 
considered acceptable in the simulation to make feasible the numerical 
analysis. Euler’s Method evaluates the velocity at a time interval t and 
predicts the next velocity at t+Δt assuming a constant velocity during 
Δt. The smaller the Δt, the better the accuracy, but the higher the 
computational time. BPE considers a non-physical reduction on the 
linear and angular velocities at each time step using damping factors in 
order to obtain realistic and stable simulations. The estimation of the 
linear and angular velocities at each time step can then be expressed as 
follows: 

ṡi+1 = ṡi − ṡid + s̈it (6)  

θ̇i+1 = θ̇i − θ̇i(da) + θ̈it (7)  

where d and da are linear and angular damping parameters, respectively, 
ṡi+1 and θ̇i+1 are the linear and angular velocities of the object at t=
(i+1)Δt = ti+1, ṡi and θ̇i are the linear and angular velocities of the object 
at t = iΔt = ti, s̈i and θ̈i are the linear and angular accelerations of the 
object at t = ti, and Δt is the time step. 

When the simulation has more than one object, they can collide with 
each other. To solve the collision problem, Izadi and Bejuizen (2018) 
explain that DEMs use the soft contact models proposed by Cundall 
(2001) while Physics Engines use the hard contact models proposed by 
Moreau (1999) and Jean (1999). On the one hand, soft contact models 
accurately solve the collision in small increments of discrete time so they 
provide the variation of velocity during the collision. On the other hand, 
hard contact models are not interested in the collision itself but only in 
the post-collision velocities of the objects which are estimated as a result 
of momentum exchange; therefore, hard contact models do not 

Fig. 3. Geometric parameters of the placement grids: (a) RPG and (b) TPG.  

Fig. 4. Measurement of the layer thickness of layer j (Eq. (3)).  

Fig. 5. Physical model placement tests: (a) general view and (b) detail of the plates used to measure layer thickness.  
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explicitly solve the collision. The time interval used for hard contact 
models can be much higher than those for soft contact models, 
decreasing the computing time, especially when a large number of ele
ments has to be modeled. 

BPE uses a hard contact model with a relatively large time-stepping 
scheme to solve rigid body collisions. In that model, a collision-detection 
procedure identifies the colliding objects. The velocities post-collision 
are then calculated based on the pre-collision velocities. Finally, the 
velocities, positions and orientations of the rigid bodies are updated 
based on Eqs. (4) and (5). The fundamentals of hard contact models are 
discussed below. For further details, readers are referred to Izadi and 
Bejuizen (2018) and Radjai and Richefeu (2009). 

The collision of two objects can be modeled with normal and 
tangential contact velocities, ṡnand ṡt, respectively, and normal and 
tangential contact forces, f nand f t( = μf n), respectively, where μ is the 
friction coefficient. Hard contact models split the contact velocities into 
the velocities at t = ti and t = ti+1, therefore the contact velocities are 
rewritten as 

ṡn =
ṡn,i+1 + en ṡn,i

1 + en
(8)  

ṡt =
ṡt,i+1 + et ṡt,i

1 + et
(9)  

where en and et are the normal and tangential parts of the restitution 
coefficients, ṡn,iand ṡn,i+1 are the normal contact velocities at t = ti and 
ti+1, respectively, and ṡt,iand ṡt,i+1 are the tangential contact velocities at 
t = ti and ti+1, respectively. The hard contact method allows writing the 
equations of motion of each object considering the velocities given by 
Eqs. (8) and (9) in the Newton’s laws of motion given by Eqs. (4) and (5). 

3.2.2. Parameters that affect the Bullet Physics Engine (BPE) simulations 
The physics fundamentals of the numerical approximation used by 

BPE are described in Section 3.2.1. which pointed out the existence of 
some parameters which may influence the numerical simulation. The 
reliability of the numerical simulation will depend on the adequate se
lection of the five parameters listed below.  

(1) Friction (μ): It is the relationship between normal and tangential 
forces. In BPE model, it represents a mean value between static 
and dynamic friction coefficients. The friction coefficient mainly 
depends on the unit material; for concrete commonly used for 
armor units, it is usually in the range 0.5< μ < 1.0. The higher the 
friction factor, the higher the tangential force between objects.  

(2) Bounciness (e): It is related to the restitution coefficient of the 
object. Considering two objects after a collision, it is the ratio of 
the final to the initial relative velocity. Bounciness is in the range 
0≤ e ≤ 1, where a value e = 0 indicates a fully inelastic collision 
and a value e = 1 indicates a fully elastic collision.  

(3) Linear Damping (d): It is a numerical parameter in the range 
0≤ d ≤ 1 included in Eq. (6) to obtain realistic and stable simu
lations reducing the amount of linear velocity at each time step. 
The higher the linear damping factor, the higher the reduction in 
the linear velocities of the objects.  

(4) Angular Damping (da): It is a numerical parameter in the range 
0≤ da ≤ 1 included in Eq. (7) to obtain realistic and stable sim
ulations reducing the amount of angular velocity at each time 
step. The higher the angular damping factor, the higher the 
reduction in the angular velocities of the objects.  

(5) Collision Margin (CM): It is the threshold of distance where 
collisions are still considered. It is used to improve the stability of 
rigid-bodies during the numerical simulation; a collision margin 
gives the BPE a margin of error in detecting and resolving con
tacts. The lower the Collision Margin, the closer the collisions are 
detected and the more realistic is the response. 

3.2.3. Numerical model placement tests of cubipod HLCSs 
Physical model placement tests were carried out using small-scale 

Cubipods units with a nominal diameter Dn [cm] = 3.80. The corre
sponding numerical model placement tests were conducted at prototype 
scale with Dn [m] = 1.07, corresponding to a Cubipod with side L [m] =
1.00, because instabilities were observed with small units due to nu
merical precision. Fig. 2 shows the front view and dimensions of the 
Cubipod units modeled in Blender (2019). The mass of those Cubipods 
was considered to be W [t] = 2.3xDn3 corresponding to typical unre
inforced concrete units. The simulations were conducted with e = d = da 
= 0, μ = 0.6, Dn [m] = 1.07 and CM/Dn = 0.008. Falling distance (FD) 
was FD/Dn = 0.25 and gravity acceleration was set to g [m/s2] = 9.81. 
FD was measured from the total height of the previous layers consid
ering the layer coefficient of each layer. 

Each layer of Cubipods was placed according to a placement grid. To 
follow the hand placement of the physical model tests in the numerical 
model, the placement grid of each layer was referred to a single Cubipod 
unit placed on the lower layer (namely “layer reference”), and all units 
of the layer were dropped under the gravity acceleration from the falling 
distance (FD). All the armor units of each layer were dropped at the same 
time; once the unit movements ceased, the units of this layer were fixed 
and those armor units did not interact as moving rigid bodies with the 
next layers. 

Fig. 6a and b illustrate the placement of the second layer of Cubipod 
units before and after dropping the elements with RPG (a/Dn = 1.40 and 
b/Dn = 1.30). Fig. 7a and b shows the front view and side view of a five- 
layer Cubipod HLCS model with RPG (a/Dn = 1.40 and b/Dn = 1.30). 

The placement of the 2Dnx2Dn squared plates used to measure the 
height of the structure in the physical model tests was reproduced in the 
numerical model. The plates were dropped and the distances between 
the horizontal rigid bottom and the centers of the squared plates were 
measured. Fig. 8a and b illustrate the squared plate placement corre
sponding to the third and fourth layers. At least six measurements were 
taken in each layer to calculate the mean value of the height of the 
structure to estimate the corresponding layer coefficients given by Eq. 
(2). In order to assess the variability on the layer coefficient, five 
repeatability numerical model placement tests corresponding to five- 
layer Cubipod HLCSs were conducted for both the RPG and TPG grids. 
The armor units of the first layer were randomly oriented with one edge 
on the flat rigid bottom while the second to fifth layers were placed on 
the previous one with random orientation. Two videos are available to 
see the performance of the numerical simulations with TPG and RPG. 

3.2.4. Sensitivity analysis 
The sensitivity of the simulations to the physical and numerical pa

rameters described in Section 3.2.2 (μ, e, d, da and CM) as well as the 
falling distance (FD) is analyzed here. To this end, 250 Cubipods were 
used to build up a numerical three-layer Cubipod HLCS using BPE; the 
corresponding layer coefficients were calculated following the meth
odology defined in section 3.2.3 with a RPG grid. The numerical simu
lations were conducted with parameters given in Table 1. 

For each layer, the relative error between the physical and numerical 
model tests was estimated as 

εrj =

⃒
⃒kΔjP − kΔjN

⃒
⃒

kΔjP
(10)  

where kΔjN is the estimated layer coefficient in the numerical model tests 
and kΔjP is the measured layer coefficient in the physical model tests. 
The global mean relative error of the layer coefficients was evaluated as 

εR =

∑M
j=1εrj

M
(11)  

where εrj is the relative error of the jth layer and M is the number of 
layers of the model. In this case, M = 3 and 1.9< εR (%) <7.6; the BPE 
was found to be a robust software with low sensitivity to the values of 
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the physical and numerical parameters (μ, e, d, da, CM, FD and Dn) used 
to measure the layer coefficient of Cubipod HLCSs. The parameters 
which showed the lowest εR were μ = 0.6, e = 0, d = 0, da = 0, CM/Dn =

0.008, FD/Dn = 0.25 and Dn [m] = 1.07 which corresponds to L [m] =
1.0. 

3.3. Calibration 

Table 2 shows the mean value kΔj and the coefficient of variation 
CV(kΔj) of the layer coefficients (1≤ j ≤ 5) measured in physical (De 
Keyser and Jacobs, 2020) and numerical (Centi, 2020, and this study) 
model placement tests. kΔj were similar for physical and numerical 
model tests while CV(kΔj) were slightly higher for the physical model 
placement tests and also in numerical model tests conducted by Centi 

(2020) when compared to the tests conducted in this study. Here, the 
BPE parameters (μ, e, d, da, CM, FD, and Dn) were selected after the 
sensitivity analysis described above, while the parameters used by Centi 
(2020) were not optimized. The numerical model tests conducted in this 
study showed a low global mean relative error: ƐR (%) (RPG) = 1.39 and 
ƐR (%) (TPG) = 1.04 (Table 2). Five-layer Cubipod HLCSs placed using 
RPG (a/Dn = 1.4 and b/Dn = 1.3) showed a total height of the structure 
lower than that using TPG (a/Dn = 1.58 and b/Dn = 1.27). The 
dimensionless placing densities were ϕ = 0.55 and 0.50 for RPG and 
TPG, respectively. The mean value of the layer coefficient measured in 
the physical model placement tests was satisfactorily estimated with the 
BPE numerical simulations. 

The first layer, j = 1, is influenced by the horizontal rigid bottom, 
providing a much higher layer coefficient compared to layers placed on 
a previously placed layer of Cubipods. The second layer, j = 2, is indi
rectly influenced by the horizontal rigid bottom and showed a signifi
cantly higher layer coefficient compared to the upper layers. The third 
layer and upper layers of Cubipods have a similar layer coefficient. 

Fig. 9 illustrates the 95% confidence interval of the layer coefficients 
(kΔj) measured in the physical and numerical model placement tests 
analyzed in this study. The 95% confidence intervals are estimated as 

kΔj

/ ̅̅̅̅
N

√ [
1 ± 1.96CV

(
kΔj

) ]
(1 ≤ ⋅j⋅ ≤ 5) (12)  

where N is the number of tests, kΔj is the mean value and CV(kΔj) is the 

Fig. 6. Placement of the second layer of units in a two-layer Cubipod HLCS using RPG (a/Dn = 1.40 and b/Dn = 1.30): (a) before the second layer placement and (b) 
after the econd layer placement. 

Fig. 7. Five-layer Cubipod HLCS using RPG with a/Dn = 1.40 and b/Dn = 1.30: (a) front view and b) side view.  

Fig. 8. Numerical placement of squared plates to measure the structure height: (a) top view of the third layer and (b) general view of the fourth layer.  

Table 1 
Parameters used in the numerical simulations.  

Parameter Value 

μ 0.6, 0.7, 0.8 
e 0.00, 0.05, 0.10 
d 0.0, 0.5, 1.0 
da 0.0, 0.5, 1.0 
CM/Dn 0.008, 0.010, 0.012 
FD/Dn 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 
L [m] (Dn [m]) 0.5 (0.53), 1.0 (1.07), 1.5 (2.14)  
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coefficient of variation which depends on the layer number (j). The 95% 
confidence intervals for kΔj overlap for physical and numerical model 
tests for most of the tested cases. It can be concluded that any difference 
in the measurements of kΔj is well explained by the measurement error 

described by CV(kΔj); BPE may be considered a suitable tool to estimate 
the layer coefficients of Cubipod HLCSs placed on horizontal rigid 
bottoms. 

De Keyser and Jacobs (2020) noted that the layer coefficient of the 
first layer of Cubipod units, placed on a horizontal rigid bottom, can be 
calculated theoretically from the geometry of the Cubipod units (see 
Fig. 2) as kΔ1 = 1.298 (position with the lowest center of gravity). 
Considering both physical and numerical model placement tests con
ducted in this study (see Table 2), a reasonable estimation of the mean 
layer coefficient of a Cubipod HLCS on horizontal rigid bottom is given 
by  

kΔ1 = 1.30                                                                                  (13a)  

kΔ2(RPG) = 1.07 and kΔ2(TPG) = 1.10                                          (13b)  

kΔj(RPG) = 0.93 and kΔj(TPG) = 0.99; 3≤ j ≤ 5                              (13c) 

In which RPG refers to a rectangular placement grid with ϕ = 0.55 
(a/Dn = 1.4 and b/Dn = 1.3) and TPG refers to a triangular placement 
grid with ϕ = 0.50 (a/Dn = 1.57 and b/Dn = 1.28). The height of a n- 
layer Cubipod HLCS on a horizontal rigid bottom slope (H) can be 
estimated using Eq. (14) with the layer coefficients defined in Eqs. (13), 
considering the height as the distance between the upper and lowest 
plane envelopes of the HLCS. 

H =
∑j=N

j=1
kΔjDn (14)  

4. Validation and application 

Once the BPE numerical model was calibrated using results from 
physical model placement tests on horizontal rigid bottom, nine addi
tional realistic five-layer Cubipod HLCS models were constructed in the 
wave flume at the Universitat Politècnica de València (30 × 1.2 × 1.2 
m). The new Cubipod HLCS physical models were placed by hand 
following a TPG with ϕ = 0.50 (a/Dn = 1.58 and b/Dn = 1.27) on a 4% 
rigid bottom slope. Fig. 10a shows the side view of the five-layer 
Cubipod HLCS. The layer coefficient was measured with a method 
similar to that described in section 3.1. The measurements were taken at 
a fixed distance from the wave paddle and at three different locations 
along the HLCS model. 

The BPE was used to simulate the construction of Cubipod HLCSs on 
the wave flume. In order to somehow emulate the physical hand 
placement, a “layer reference” was assumed: the placement grids of the 
second to the fifth layer were referred to the measured position of one of 
the Cubipod units placed in the lower layer. Thus, the placement grid of 
each layer is somehow dependent on the final positions of the Cubipod 

Table 2 
Physical and numerical measurements of the layer coefficients of Cubipod HLCSs corresponding to RPG (a/Dn = 1.4 and b/Dn = 1.3) and TPG (a/Dn = 1.58 and b/Dn =

1.27) on horizontal rigid bottom.    

Horizontal rigid bottom   

Physical model 
placement tests (kΔj) 

Numerical model 
placement tests from this 
study (kΔj) 

Numerical model 
placement tests from  
Centi (2020) (kΔj) 

Ɛrj (%) from this study 
Eq. (10) 

Ɛrj (%) from Centi (2020) 
Eq. (10) 

ƐR (%) from this study 
Eq. (11)  

kΔj  CV(kΔj) kΔj  CV(kΔj) kΔj  CV(kΔj)

RPG L1 1.319 0.005 1.319 0.000 1.321 0.012 0.01 0.14 1.39 
L2 1.052 0.014 1.081 0.007 1.086 0.049 2.79 3.20 
L3 0.939 0.019 0.960 0.005 0.931 0.123 2.24 0.87 
L4 0.949 0.018 0.935 0.013 0.943 0.143 1.47 0.64 
L5 0.915 0.040 0.919 0.019 0.906 0.112 0.45 0.94 

TPG L1 1.294 0.008 1.317 0.000 1.312 0.009 1.83 1.39 1.04 
L2 1.076 0.008 1.079 0.012 1.125 0.043 0.32 4.51 
L3 0.980 0.016 0.980 0.016 1.001 0.082 0.03 2.18 
L4 0.970 0.022 0.983 0.011 1.024 0.125 1.32 5.53 
L5 0.984 0.020 0.968 0.022 0.991 0.082 1.68 0.72  

Fig. 9. Layer coefficient (kΔj) as a function of the layer number (j). Mean values 
and 95% confidence intervals for physical and numerical model placement tests 
using (a) RPG (ϕ= 0.55) and (b) TPG (ϕ= 0.50) on a horizontal rigid bottom. 
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units in the lower layers. The units of the first layer were randomly 
oriented with an edge on the bottom following the TPG (a/Dn = 1.58 and 
b/Dn = 1.27) on a 4% rigid bottom slope, while the units of the second to 
the fifth layer were placed on the previous layer with random orienta
tion. Five numerical model tests were conducted using BPE with the TPG 
described above and the parameters which showed the lowest εR given 
in section 3.2. The layer thickness was measured on 12 areas in the first 
layer, 9 areas in the second and third layer, 6 areas in the fourth layer 
and 3 areas in the fifth layer. Fig. 11a and b shows the side and top views 
of the five-layer Cubipod HLCS numerical model. Each test took 
approximately 20 min on a conventional PC using 24 frames per second. 

Table 3 shows the mean value kΔj and the coefficient of variation 
CV(kΔj) of the layer coefficients (1≤ j ≤ 5) measured in physical and 
numerical model placement tests. kΔj were similar for physical and nu
merical model tests while CV(kΔj) were slightly higher for the physical 
model placement tests. 

Fig. 12 compares the layer coefficients measured in the physical and 
numerical model tests (mean value and 95% confidence interval). 
Fig. 12 illustrates that the BPE and physical model tests showed similar 
results. The numerical model tests conducted in this study on a 4% 
bottom slope showed a global mean relative error ƐR (%) = 2.75 in the 
estimation of the layer coefficients, higher than ƐR (%) = 1.04 given in 
Table 2 but good for practical applications. 

Construction at prototype scale in real conditions is usually affected 
by poor underwater visibility which compel crane operators to strictly 
follow the prescribed placement grid. The BPE can be used to study 
conditions similar to the blind placement of a Cubipod HLCS to assess 
the workability of a given placement grid in these unfavorable but 
frequent conditions. To this end, a simulation with “blind reference” was 
conducted by referring the placement grids of all the layers to only a 
single Cubipod unit to be placed in the first layer. Fig. 13 illustrates the 
placement grids of three layers with “blind reference”. 

Fig. 14a shows the side view of the five-layer Cubipod HLCS placed 
with BPE using TPG (a/Dn = 1.58 and b/Dn = 1.27) and “blind refer
ence”; the result is clearly worse (misplacement of some units) than that 
obtained using BPE with “layer reference”. Fig. 14b shows that some 
Cubipod units fall out of the structure; the TPG (a/Dn = 1.58 and b/Dn 
= 1.27) is adequate in laboratory (construction by hand) and also at 

prototype scale with good visibility, but it may be challenging to 
construct such HLCS if the underwater visibility is poor. The BPE can be 
used to analyze the feasibility and quality of placement grids similar to 
those used in the laboratory to construct reliable Cubipod HLCSs in cases 
with good or poor underwater visibility. 

5. Discussion 

At prototype scale, an uneven bathymetry can be mapped using echo 
sounders to be considered in the BPE numerical simulations. Thus, BPE 
simulations can be used to analyze the performance of different place
ment grids over the singularities of the bathymetry at the construction 
site and to select the most adequate placement grid. A HLCS for coral 
reef recovery will usually be placed on a hard sea bottom with insig
nificant settlement; however, if HLCSs were placed on sandy seabeds 
without a rock foundation, relevant scour and settlement would likely 
occur and the results of this study would not be directly applicable. 

The performance of BPE simulations for simple armor unit geome
tries and random placement may be similar to Cubipod HLCSs analyzed 
in this study. Further research is necessary to evaluate the performance 
of BPE simulations using complex armor unit geometries or special 
placement techniques for interlocking. 

The packing density of precast concrete armor units critically 

Fig. 10. Five-layer Cubipod HLCS model placed in the wave flume: (a) side view and (b) measuring system to estimate the layer coefficients.  

Fig. 11. Five-layer Cubipod HLCS constructed with BPE following a TPG (a/Dn = 1.58 and b/Dn = 1.27) with “layer reference”: (a) side view, and (b) top view with 
three squared plates placed on the fifth layer. 

Table 3 
Physical and numerical measurements of the layer coefficients corresponding to 
TPG (a/Dn = 1.58 and b/Dn = 1.27) on a 4% rigid bottom slope with “layer 
reference” placement.    

4% rigid bottom slope   

Physical model 
placement tests 
(kΔj) 

Numerical model 
placement tests (kΔj) 

Ɛrj (%) 
Eq. (10) 

ƐR (%) 
Eq. (11)   

kΔj  CV(kΔj) kΔj  CV(kΔj)

TPG L1 1.316 0.018 1.329 0.001 0.99 2.75 
L2 1.022 0.042 1.083 0.021 5.99 
L3 0.967 0.047 0.981 0.030 1.47 
L4 0.961 0.050 0.977 0.030 1.58 
L5 0.946 0.046 0.982 0.039 3.74  
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depends on the placement grid and packing density affects the cost and 
logistics of the breakwater construction and also the breakwater per
formance (armor hydraulic stability, overtopping, etc.). BPE simulations 
can be used to test different placement grids in order to select the one 
which provides the optimum packing density on the trunk, the round
head and other sections of the breakwater. Moreover, mound break
waters are frequently damaged by storms and BPE may be a suitable tool 
to assess the workability of a given repair strategy; the damaged 
breakwater can be mapped with echo sounders and different units and 

placement grids can be considered to choose the best feasible repair 
process. 

6. Summary and conclusions 

This study analyzes the feasibility of the numerical model Bullet 
Physics Engine (BPE) in representing the construction of Cubipod HLCSs 
in order to estimate the HLCS height and layer coefficients. The BPE 
numerical model is calibrated and validated with physical model 
placement tests of five-layer Cubipod HLCSs on 0% and 4% flat rigid 
bottom slopes. The layer coefficients are measured for specific rectan
gular and triangular placement grids considered for small-scale hy
draulic stability testing focusing the experimental effort in the triangular 
placement grid TPG with ϕ = 0.50 (a/Dn = 1.58 and b/Dn = 1.27) 
proposed by Odériz et al. (2018) for Cubipod HLCSs. 

BPE numerical model showed a very low sensitivity to the physical 
and numerical parameters; good results were found using: μ = 0.6, e = d 
= da = 0, CM/Dn = 0.008, FD/Dn = 0.25, and Dn [m] = 1.07 (L [m] =
1.00). BPE using a TPG (a/Dn = 1.58 and b/Dn = 1.27) with “layer 
reference”, somehow emulating hand placement, showed a global mean 
relative error of ƐR (%) (TPG) = 1.04 when compared to the measure
ments taken in small-scale physical model tests of five-layer Cubipod 
HLCSs placed on a horizontal rigid bottom. The mean value of the layer 
coefficients, kΔj , measured in both physical and numerical models were 
similar, and the coefficient of variation, CV(kΔj), were slightly higher for 
the physical model tests. As expected, layer coefficients and structure 
height of Cubipod HLCSs depend on the placement grid; for each type of 
placement grid, the lower the placing density, the lower the layer 
thickness and structure height, except the layer coefficient of the first 
layer which is related to the unit geometry and characteristics of the 
bottom (kΔ1 = 1.30 for Cubipod units on flat rigid bottom). 

BPE using a TPG (a/Dn = 1.58 and b/Dn = 1.27) with “layer refer
ence”, emulating hand placement, showed a global mean relative error 
of ƐR (%) = 2.75 when compared to the measurements taken in small- 
scale physical model tests of a five-layer Cubipod HLCS placed on 4% 
rigid bottom slope. BPE also indicates that several units were incorrectly 
placed when using “blind reference”, emulating placement with poor 
underwater vision, contrary to no unit lost when using “layer reference”, 
somehow emulating placement with good underwater vision. The BPE 
numerical model was found to be a suitable tool to study the workability 
of placement grids of Cubipod HLCSs in realistic conditions. 

The total height of HLCSs affects crest freeboard, wave transmission 
and the functionality of the structure. Crest freeboard is relatively easy 
to control and measure in laboratory tests whereas it is very difficult to 
control and measure at prototype scale. Small-scale physical models are 
usually placed by hand with a perfect vision, while prototypes are 
usually constructed using cranes with poor underwater vision. Changing 
only the “layer reference” by “blind reference”, BPE simulations have 
shown significant differences in the workability of the same placement 
grid. The quality of the underwater vision during construction affects 
the most adequate placement grid to be used and BPE is a valuable tool 
to find the best placement grid for the prescribed construction 
conditions. 

Fig. 12. Mean values and 95% confidence intervals of layer coefficient (kΔj) as 
a function of the layer number (j) corresponding to TPG (ϕ= 0.50) on a 4% rigid 
bottom slope with “layer reference” placement. 

Fig. 13. Triangular placement grid (TPG) used in BPE to simulate the blind 
placement: first layer (black), second layer (red), and third layer (green). 

Fig. 14. Five-layer Cubipod HLCS constructed with the BPE following a TPG (a/Dn = 1.58 and b/Dn = 1.27) with “blind reference”: (a) lateral view, and (b) 
top view. 
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Nomenclature 

List of symbols 
a placement grid separation in the X axis 
a linear acceleration 
b placement grid separation in the Y axis 
da angular damping 
d linear damping 
Dn nominal diameter 
e bounciness 
fn normal contact forces 
ft tangential contact forces 
F resultant of all forces acting on an object 
g gravity acceleration 
hj mean vertical distance measured from the measurement device to the tope of layer j 
I intertia 
kΔ layer coefficient 
kΔj mean value of the layer coefficient of layer j using all the laboratory measurements of the layer 
L: length of the Cubipod edge 
m mass 
M resultant of all moments acting on an object 
M number of layers in a HLCS 
n number of layers to estimate the placing density in conventional mount breakwaters 
N number of tests to estimate the confidence interval of kΔj 
P nominal Porosity 
s, ṡ, s̈ linear position, velocity, acceleration 
W weight 
α angular acceleration 
ƐR global mean relative error 
Ɛr relative error 
φ placing density 
ϕ packing density 
ϒ specific weight 
μ friction factor 
ρ mass density 
θ, θ̇, θ̈ angular position, velocity, acceleration  

Subscripts 
j layer number  

Acronyms 
BPE Bullet Physics Engine 
CFD Computational Fluid Dynamics 
CM Collision Margin 
CV Coefficient of Variation 
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DEM Discrete Element Method 
FD Falling Distance 
FEM Finite Element Method 
HLCS Homogeneous Low-Crested Structure 
LCS Low-Crested Structure 
RPG Rectangular Placement Grid 
TPG Triangular Placement Grid 
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