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Featured Application: The method described in this document makes it possible to use the tech-
niques usually applied to load prediction efficiently in those situations in which the series clearly
presents seasonality but does not maintain a regular pattern.

Abstract: Distribution companies use time series to predict electricity consumption. Forecasting tech-
niques based on statistical models or artificial intelligence are used. Reliable forecasts are required
for efficient grid management in terms of both supply and capacity. One common underlying feature
of most demand–related time series is a strong seasonality component. However, in some cases,
the electricity demanded by a process presents an irregular seasonal component, which prevents
any type of forecast. In this article, we evaluated forecasting methods based on the use of multiple
seasonal models: ARIMA, Holt-Winters models with discrete interval moving seasonality, and neural
networks. The models are explained and applied to a real situation, for a node that feeds a galva-
nizing factory. The zinc hot-dip galvanizing process is widely used in the automotive sector for the
protection of steel against corrosion. It requires enormous energy consumption, and this has a direct
impact on companies’ income statements. In addition, it significantly affects energy distribution
companies, as these companies must provide for instant consumption in their supply lines to ensure
sufficient energy is distributed both for the process and for all the other consumers. The results show
a substantial increase in the accuracy of predictions, which contributes to a better management of the
electrical distribution.

Keywords: time series; demand; load; forecast; DIMS; irregular; galvanizing

1. Introduction

Demand management is a primary process in the development of industrial activity.
Distribution companies must ensure a supply is provided at a reasonable cost, and for this
reason, they need to manage resources efficiently. The use of electrical prediction models
contributes to their management of the distribution lines by offering tools to estimate future
demand with great precision. The techniques allow for forecasting based on time series
using statistical models or artificial intelligence (AI).

The most widely used univariate forecasting tools for electricity demand can be
classified into three broad groups [1]: fundamental models, statistical models, and compu-
tational models. There is growing interest in the use of computational models, although the
most widely used models are statistical models, both exponential smoothing models and
autoregressive integrated moving average (ARIMA) models.

The fundamental models are made up of hybrid models that introduce all the possible
physical variables, adopting a complex relationship between them and also using the
techniques of statistical models.

Computational models are based on AI and emulate natural behaviors through the
use of mathematical models. These are algorithms whose learning is automatic and are
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part of the science of Machine Learning [2]. At present, deep learning techniques represent
an evolution and have found applications in demand forecasting, especially in areas where
prediction is difficult, such as renewable energies [3]. The most widely used techniques for
electricity demand are artificial neural networks (ANN) [4], particularly non-linear autore-
gressive neural networks with exogenous variables (NARX) [5,6]. Support vector machines
(SVM) [7] and bagged regression trees (BRT) [8] also stand out, and these occasionally
apply fuzzy logic [9].

Electricity demand series show stochastic behavior, and they have traditionally been
modeled using statistical methods. The ARIMA models are considered to be the econo-
metric models par excellence. The Box–Jenkins methodology [10] is used to determine
which ARIMA model to use, although some authors [11] state that simpler methods are
better than this methodology at providing forecasts. The application of ARIMA models
to demand is usually carried out in a general way in Seasonal Autoregressive Integrated
Moving Average Exogenous (SARIMAX) models [12–14] in which exogenous variables
are included to improve demand. The introduction of two seasonalities allows substantial
improvement in the predictions of these models [15].

State-space models (SSM) are a form of exponential smoothing representation. They are
commonly applied to demand [16], especially since the introduction of the Kalman filter
(see [17]). They also allow the introduction of various seasonalities in a complex way [18]
and with covariates [19]. De Livera and Hyndman include modifications that include
adjustment of the error using autoregressive moving average (ARMA) models and with
Box-Cox transformations (BATS [20]) and trigonometric seasonality (TBATS [18]).

Other very common smoothing techniques are the Holt-Winters models [20].
These models are excellent predictors for time series with marked seasonality [1,21].
The inclusion of more seasonality [22–24] improves their forecasts, leading to the de-
velopment of multiple seasonal Holt-Winters models (nHWT). Trull et al. [25] introduce dis-
crete seasonality that takes into account seasonalities whose occurrences are not regular
(nHWT-DIMS models).

The current trend is to create hybrid models in which traditional techniques are
combined with machine learning [26,27]. An example can be found in [28], which applies
an exponential smoothing method and neural networks to divide the forecasting process
between a linear part and a non-linear part.

The use of wavelets for irregular series has been combined with ARIMA models [29],
Holt-Winters models [30], or ANN [31].

Regularization techniques have also been applied to prevent over- and under-fitting is-
sues, based on a Least Absolute Shrinkage and Selection Operator (LASSO) [32],
and have been applied to short-term load forecasting models based on multiple linear re-
gression [33]. Banded regularization is also used to estimate parameters without overfitting
in autoregressive models [34].

Newer methods use an anti-leakage least-squares spectral analysis (ALLSSA)
to simultaneously estimate the trend and seasonal components before making a regulariza-
tion and make forecasts [35]. The ALLSSA method determines the statistically significance
of the components preventing under- and over-fitting issues. The least-squares wavelet
analysis (LSWA) is a natural extension of the least-squares spectral analysis and allows
the forecaster to obtain spectrograms for equally and unequally spaced time series and
identify statistically significant peaks in the time series [36].

One common feature of most demand-related time series is their strong seasonality
components [37]. In some cases, the electricity demanded by a process could present an
irregular seasonal component that seriously distorts the behavior of the series in a way that
the models cannot deal with.

The zinc hot-dip galvanizing process is a process that is widely used in the automotive
sector to protect steel against corrosion [38,39]. It requires an enormous consumption
of energy, and this has a direct impact on companies’ income statements. However,
the process also significantly affects energy distribution companies, since they must foresee
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the instantaneous consumption in their lines in order to ensure the distribution of energy
both for the process and for the other consumers. A characteristic of the demand in this
process is the presence of seasonal patterns that resemble seasonality but, because of their
irregular behavior, are difficult to assimilate to seasonality.

The structure shown by the series in this study means that it is more suitable to
work with time series models rather than frequency or signal analysis. We have therefore
considered it convenient to preferably use traditional time series models with seasonality.

In this article, we present several solutions to this problem based on the use of
ARIMA models, multiple seasonal Holt-Winters models with and without discrete interval
moving seasonalities (DIMS), state space models, and neural network models. To verify
the effectiveness of the techniques described, they are applied to the industrial process of
hot-dip galvanizing.

The article is organized as follows: Section 2 conducts a review of the forecasting
methods as well as an explanation of the production process; Section 3 demonstrates
the results and their analysis; Section 4 discusses the results; and finally, in Section 5,
the conclusions are summarized.

2. Materials and Methods
2.1. Study Area

The study has been applied to the consumption node of a hot-dip galvanizing company.
The process is carried out by coating extruded steel strips with a zinc foil that forms an alloy
with the steel and gives the desired properties. This process is continuous and produces
high-quality products [40].

Figure 1 shows a general scheme for the galvanizing process, where the greatest
consumption is in the zinc bath. In the annealing furnace, the steel strip is preheated,
and then it is immersed in a bath of molten zinc at 460 ◦C. Subsequently, the galvanized
steel strip goes through the skin-pass process [41–43] after it has cooled down.
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Figure 1. Representation of a hot dip galvanizing process.

The zinc bath consists of a molten alloy of Zn in a bath, which is kept at 460 ◦C by the
action of two heating inductors located at the bottom of the bath. Figure 2 schematically
shows the operation of the zinc bath. The bath temperature is measured as an average of
the local temperatures provided by the thermocouples Ta, Tb and Tc. The inductors heat
from the bottom of the bath and a natural flow inside the bath is produced so that the bath
achieves the targeted temperature.
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Figure 2. Galvanizing section (hot dip zinc bath). Pretreated steel goes into the zinc pot, which is
filled with an Al–Zn solution at 460 ◦C. Thermocouples Ta, Tb and Tc measure the local temperatures
in the bath. Induction heaters located at the base of the bath keep the temperature as targeted.
After the bath, the steel is coated with Zn.

The electrical consumption associated with the process can be seen in Figure 3.
This graph shows the consumption for eight working days, measured every six minutes.
It begins on 14th November, 2009 at 00:00 am and ends on 22nd November, 2009 at 08:00 am.
There are in total 2000 measurements. The oscillations shown in the time series are pro-
duced by the action of induction heaters that keep the bath at the targeted temperature.
The big peaks in consumption are produced when the bath needs to be recharged, and new
Zn (dropped in ingots) is added into the bath. At this moment, the heaters must be put
into full operation. From this dataset, the first 1800 observed values are used for training
purposes, and the last 200 ones are used for validation.
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Figure 3. Electricity demand for the hot-dip galvanizing. The ticks represent the beginning of each day. The blue dataset
designates the data used for training, whereas the red one represents the data used for testing and validation.
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A series of cyclical patterns can be observed (oscillations) that are repeated through-
out the series, with a short–length pattern that is repeated continuously throughout
the series clearly standing out. There are other patterns that are repeated irregularly,
with differentiated behaviors. A closer view of the series is shown in Figure 4. In graph (a)
and graph (b), a common underlying pattern can be identified, with a length of around
ten time units (which means an hour, as the temperature is measured every six minutes).
This first pattern is repeated regularly over the whole time period, and it is considered as
a seasonality.
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Figure 4. Close-up version of Figure 3, where different seasonal patterns can be located: a first pattern along the whole
series, with sort oscillations as shown in (a,b); and a second pattern covering the consumption peaks, as shown in (c,d).
This second pattern has a different length on every appearance.

Figure 4, graph (c) and (d) show the time series after removing the first seasonal
pattern. It can also be seen that other patterns develop throughout the series in such
a way that the time of their appearance or their length are not constant. Technically,
this non-regular behavior cannot be considered as a seasonality, since it is not possible
to predict the fluctuation pattern that will develop in the future. To make consumption
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predictions, it is necessary to take into account this seasonal behavior, even though it is
not regular.

2.2. Forecasting Methods

In this section, we describe the forecasting methods applied to the time series un-
der study. The most common methods applied to short-term electricity demand forecasting,
using both AI and statistical methods, have been chosen. First, the methods used
with regular seasonal behavior are described, and then we describe the models with
discrete seasonality.

2.2.1. Artificial Neural Networks

Neural networks are computational models structured in the form of layers with
nodes interconnected as a network. They are named because of their resemblance to the
human brain structure. The nodes, called neurons, perform simple operations in parallel
and are located in each of the layers of the network. The layers are of three different types:
the input layer, where neurons receive direct information from the inputs; hidden layer (s),
whose neurons use the information from the neurons of previous layers and feed the next
layers; and the output layer, where neurons use the information from the hidden layers to
produce an output. Thus, there is an input layer, one or more hidden layers, and an output
layer. The connections between the different layers are made through the connection of
their neurons, which are called synapses. The strength of the connection between neurons
is determined by a weighting established at the synapse.

The most suitable structure for forecasting time series is the NARX type
structure [44,45]. It is a recurrent dynamic neural network, with feedback connections.
Figure 5 shows a close-loop representation of the NARX structure [46]. Neurons receive
information from exogenous input variables in addition to the target series itself and the
feedbacks. In order to improve forecasts, it can be used the past predicted and observed
values delayed through a tapped delay line (TDL) memory. The circles after the input
layers denote the TPL delay (e.g., one to two delays in the figure).
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Circles represent tapped delay line (TDL).

The input variables xt are exogenous variables used in the model. Both xi and yt are
connected by axioms to which weights wi are assigned, and with an activation function f
that is integrated with an aggregation function Σ. The output ŷt+1 provides future forecasts
after the network has been trained. b stands for the bias whose presence increases or
decreases the neuron’s processing capacity.
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The mathematical and non-linear representation that governs the network is shown in
(1), where xt represents the inputs and yt the objective function, while ŷt+1 represents the
prediction. Dx and Dy are the time delays applied in the network.

ŷt+1 = f
[

xt, xt−1, . . . , xt−Dx+1, yt, yt−1, . . . , yt−Dy+1

]
. (1)

The NARX neural network maps the function through the multilayer perceptron,
using the time delays for both the input variables and the output feedback [47].

An alternative to this neural network is a function fitting neural network. This is a
type of shallow neural network based on multilayer perceptron (MLP) with which we
can make adjustments to non-linear functions (non-linear regression, NLR). The use and
application of such a network for the prediction of electricity demand has been discussed
previously [48]. The mathematical representation that governs this network is shown in
(2).

ŷt+1 = f [xt, xt−1, . . . , xt−Dx+1]. (2)

Here xt are the predictors, which are several variables (including the observed values
of the time series) used to feed the model. A representative schema for this neural network
is shown in Figure 6.
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By training the network, weights are assigned to the synaptic connections, minimizing
an error criterion. The ANNs used in this work are trained using the Levenberg-Marquardt
algorithm [49], and minimizing the mean squared error (MSE). After the training process,
to give the predictions, a closed loop network is performed, and forecasts are provided.

2.2.2. ARIMA Models

ARIMA models were introduced by Box and Jenkins [50] to model non–stationary
series and allow predictions to be made. A description and in-depth analysis can be found
in [51] and in the book by Brockwell and Davis [52]. Seasonal ARIMA models are usually
denoted by ARIMA(p, d, q)x(P, D, Q)S. S indicates the length of the seasonal pattern under
consideration. The compact representation of the ARIMA model is usually, as shown in (3),
a function of autoregressive polynomials and polynomials of moving means, and of the
difference operators.

φp(B)ΦP
(

BS)∇d∇D
S

(
y(λ)t − c

)
= θq(B)ΘQ

(
BS)εt,

{εt} ∼ N
(
0, σ2). (3)

{yt, t = 0,±1,±2, . . .} are the observed data of the univariate series. If the variability
in the data grows with time, it is necessary to transform the data to stabilize the variance.
The Box-Cox power transformation family is a general class of variance-stabilizing trans-
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formations. The Box-Cox transformation of yt with power parameter λ to the transformed
data y(λ)t is defined by (4).

y(λ)t =

{
yλ

t −1
λ ; i f λ 6= 0,

ln yt; i f λ = 0 .
(4)

The power parameter λ is estimated by the maximum–likelihood method. The poly-
nomials φp(B) = 1− φ1B− φ2B2 − · · · − φpBp and θq(B) = 1− θ1B− θ2B2 − · · · − θqBq

represent the regular or non–seasonal autoregressive and the moving averages compo-
nents, respectively, and the polynomials ΦP

(
BS) = 1− Φ1BS − Φ2B2S − · · · − ΦPBPS

and ΘQ
(

BS) = 1 − Θ1BS − Θ2B2S − · · · − ΘQBQS represent the seasonal autoregres-
sive and the moving averages components, respectively, with B as the lag operator.
∇ is the is the backward difference operator, [Byt = yt−1; BSyt = yt−S; ∇ = (1− B);
∇d = (1− B)d; ∇D

S =
(
1− BS)D]. d and D are the number of differencings required

to make the time series stationary (d, D ≤ 2). {εt} is a Gaussian white noise process,
[{εt} ∼ N

(
0, σ2)]. c is the model constant.

The orders of the polynomials {p, d; P, Q} are selected using the Akaike’s Informa-
tion Criterion (AIC, AICc) or Schwarz’s or the Bayesian Information Criterion (SIC or
BIC). The model coefficients

{
φ1, φ2, . . . , φp; θ1, θ2, . . . , θq; Φ1, Φ2, . . . , ΦP; Θ1, Θ2, . . . , ΘQ

}
and σ2 are estimated by the maximum likelihood method.

ARIMA models can present more than one seasonality, as indicated in (5). To do this,
the models are expressed as ARIMA (p, d, q)x(P1, D1, Q1)S1

x(P2, D2, Q2)S2
where S1 and S2

indicate the two seasonalities to which they refer.

φp(B)ΦP1

(
BS1
)

ΩP2

(
BS2
)
∇d∇D1

S1
∇D2

S2

(
y(λ)t − c

)
= θq (B)ΘQ1

(
BS1
)

ΨQ2

(
BS2
)

εt. (5)

The polynomials ΩP2

(
BS2
)

and ΨQ2

(
BS2
)

represent the second seasonal autoregressive
and the moving averages components, respectively.

2.2.3. Multiple Seasonal Holt-Winters Models

Exponential smoothing uses information from the past through weighted averages to
make predictions. The weight decreases as newer values are entered into the time series,
giving more importance to newer data over older. A smoothing parameter determines
this weight. The introduction of these models dates back to the 1960s with the work
of Holt [53] and Brown [54]. Winters [20] presented the Holt-Winters models, in which
exponential smoothing techniques are performed on the three components of the series:
level (lt), trend (bt) and seasonality (st). The model includes a series of structured equations,
called smoothing equations, the information from which is compiled by a forecast equation
to provide forecasts. The equations can be combined with additive or multiplicative trends
and seasonality.

Gardner and McKenzie [55] introduced a damping factor for the trend, and their
model outperforms the previous models when the trend shows high variations [56].
Taylor broke down seasonality into two or three nested components so that the models
can capture the series that present more than one seasonality, such as series for short-term
demand [22,23]. Taylor also included in the model an adjustment using the one-step-ahead
error as proposed by Chatfield [57]. This adjustment adds an AR(1) model for the residuals,
obtaining the parameter at the same time as the smoothing parameters are obtained. In the
same way, García-Díaz and Trull [24] generalized the model including the way the initial
values are obtained, to n seasonalities. The nHWT models are shown in Equations (6)–(9).

lt = α

 yt

∏ s(i)t−si

+ (1− α)(lt−1 + $bt−1), (6)
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bt = γ(lt − lt−1) + (1− γ)$bt−1, (7)

s(i)t = δ(i)

 yt

lt ∏j 6=i s(j)
t−sj

+
(

1− δ(i)
)

s(i)t−si
, (8)

ŷt+k =

(
lt +

k

∑
j=1

$jbt

)
∏

i
s(i)t−si+k + ϕk

ARεt. (9)

The smoothing equations include the smoothing parameters α, γ and δ(i) for smooth-
ing the level, the trend and the different seasonal indices (i) of length si. The equation
ŷt+k provides the k–future prediction values from the observed values of the series yt.
Here, εt is the one–step–ahead error, and the parameter ϕAR is the parameter for the AR(1)
adjustment. The damping parameter for the trend is denoted by $ [58].

The equations of the model are recursive, and therefore they need initial values so that
they can fit the model. Several methodologies for initialization have been documented [56,57].
To be able to use the models, it is necessary to estimate the smoothing parameters by minimizing
the error using non-linear algorithms [59,60]. The Nelder-Mead [61,62] simplex method has
been used, which minimizes the root of mean squared error (RMSE).

2.2.4. State Space Models

The SSM refers to a form of graphical–probabilistic representation [63] to describe
the dependence between an observed measurement and a series of latent state variables
through equations called state equations that describe its evolution. Taking into account the
fact that a time series can be decomposed into components of level, seasonality and trend,
this terminology applied to time series would be understood as the model that interprets
the evolution of the relationship of the observed variables (yt) with the latent unobservable
variables (level, trend, and seasonality).

SSMs have a great variety of formulations. In this paper, the formulation indicated by
Durbin and Koopman [64] and Hyndman et al. [16] applied to univariate stochastic time
series is used. These models are structured through a formulation of two matrix equations,
as shown in (10)–(11):

yt = µt + rxt−1 + εt, (10)

xt = fxt−1 + gεt. (11)

Equation (11) is known as the state transition equation, and Equation (10) is known
as the observation equation. Here xt−1 is known as the vector of states, yt is the vector of
observations, while εt is a vector of Gaussian white noise and is known as the innovation
process. r, f and g are matrices and vectors of coefficients with appropriate dimensions.
f explains the evolution of xt and g provides the innovation correction of εt. The term µt is
the one step ahead forecast, and r is a term to include the error additively.

De Livera [18] introduced modified models, based on the exponential smoothing
methods, in which a Box-Cox transformation is applied to the data, and the residuals are
modeled using an ARMA process and include the damping factor for trend and multiple
seasonalities. The acronym for this method is BATS (Box-Cox transform ARMA errors
Trend and Seasonal Components). This model is described in (12)–(16).

y(λ)t = lt−1 + $bt−1 +
ns

∑
i=1

s(i)t−si
+ dt, (12)

lt = lt−1 + $bt−1 + αdt, (13)

bt = (1− $)b + bt−1 + γdt, (14)

s(i)t = s(i)t−si
+ δidt, (15)
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dt =
p

∑
i=1

ϕidt−i +
q

∑
i=1

θiεt−i + εt. (16)

In these equations, y(λ)t indicates the value of the observed data after the Box-Cox

transformation with the value λ, described in (4). lt, bt and s(i)t are the values of the level,
trend and seasonalities with smoothing parameters α, γ and δi. The subscript i denotes the
seasonality under consideration, of seasonal length si, and ns is the number of seasonalities.
dt is an ARMA (p, q) process with residuals whose coefficients are determined by ϕi and
θi. $ is the damping factor for trend. The term bt stands for a long–run trend term. εt is a
Gaussian white noise process N

(
0, σ2). The nomenclature for BATS includes the following

arguments (λ, $, p, q, s1, . . . , sns).
Additionally, De Livera et al. [18] presented the same model but with seasonality

based on trigonometric models. The seasonality Equation (16) is replaced by the set of
Equations (17)–(20), a seasonal component based on Fourier series. These are known as
TBATS (Trigonometric seasonal BATS).

s(i)t =
(ki)

∑
j=1

s(i)j,t , (17)

s(i)j,t = s(i)j,t−1 cos
(
ωj,i
)
+ s∗(i)j,t−1 sin

(
ωj,i
)
+ δ

(i)
1 dt, (18)

s∗(i)j,t = −s(i)j,t−1 sin
(
ωj,i
)
+ s∗(i)j,t−1 cos

(
ωj,i
)
+ δ

(i)
2 dt, (19)

ωj,i = 2π j/si. (20)

Every seasonal component of the model s(i)t results from the sum of the ki stochastic

levels s(i)j,t of period i. s∗(i)j,t is the stochastic growth for each period. δ
(i)
1 and δ

(i)
2 are the

smoothing parameters. The nomenclature for TBATS includes the following arguments
(λ, $, p, q, {s1, k1}, . . . , {si, ki}).

Obtaining the values of the previous matrices and vectors requires the application of
an algorithm based on the Kalman filter and the maximum likelihood function using the
sum of squared errors (SSE) as the minimization criterion. This algorithm carries a high
computational load and manages to obtain these parameters iteratively. The reference [18]
explains in detail the process to be carried out in order to use the BATS and TBATS methods.

2.2.5. Multiple Seasonal Holt-Winters Models with Discrete Interval Moving Seasonalities

nHWT models are robust to variations in the series, but sometimes special situations
occur in which it is interesting to take these anomalies into account. One of the clearest
examples is the influence of the calendar effect on electricity demand [65]. These anomalous
and specific situations can sometimes be modeled as a discrete seasonality, if they follow a
repetitive pattern. Despite being seasonal, since they are discrete, they have the particular
quality that they are not located at fixed moments in the time series; therefore, they are
not linked to a deterministic appearance, as would be the case for regular seasonality.
These seasonalities are called discrete interval moving seasonality (DIMS).

Trull et al. [25] include the use of discrete seasonality in their model, so that the model
seen in (6)–(9) now results in (21)–(25), which is named nHWT–DIMS:

lt = α

 yt

∏ s(i)t−si
∏ D(m)

t∗h−s∗m

+ (1− α) (lt−1 + $bt−1), (21)

bt = γ(lt − lt−1) + (1− γ)$bt−1, (22)
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s(i)t = δ(i)

 yt

lt ∏j 6=i s(j)
t−sj

∏m D(m)
t∗h−s∗m

 +
(

1− δ(i)
)

s(i)t−si
, (23)

D(h)
th
∗ = δ

(h)
D

 yt

lt ∏j s(j)
t−sj

∏m 6=h D(m)
th
∗−s∗m

+
(

1− δ
(h)
D

)
D(h)

th
∗−s∗h

, (24)

ŷt+k =

(
lt +

k

∑
v=1

$vbt

)
∏

i
s(i)t−si+k ∏

j
D(h)

t∗h−s∗h+k + ϕk
ARεt. (25)

Here the term D(h)
th
∗ is included, which represents the discrete seasonal indices,

for each DIMS (h) considered up to nDIMS. DIMS are only defined in the time inter-
vals in which the special event takes place. These time intervals are designated using
t∗h for each DIMS (h). This nomenclature is chosen in order to distinguish this from the
continuous time interval t.

The great difference between this model and other methods of modeling special
situations is that the effect produced by the anomaly in the series is modeled as an internal
part of the model, as one more seasonality, and is smoothed with each new appearance,
unlike the use of models with dummy variables and/or modifications of the original series.

In the nHWT models, the seasonality equation shows a fixed recurrence for each
seasonal pattern (si) being considered. With DIMS, this is not possible, since the occurrences
of special events are not subjected to a deterministic pattern in the series. Therefore,
the use of the variable s∗h indicates, for each DIMS and each occurrence, which is the
recurrence to consider.

One possible situation with special events is the simultaneous occurrence of two
events. In such a case, the forecaster should consider the option of using only one of the
DIMS that occur at that time, or using both, if the effects produced by the two special
events add up.

An important aspect to consider is the initialization of the DIMS. A DIMS may have
few occurrences in the time series and, therefore, its seasonal indexes must be calculated in
such a way that it converges rapidly to the desired effect.

The initialization method consists in first obtaining the initial values of the level,
the trend, and the seasonal indices for the regular seasonality. Subsequently, a decompo-
sition of the series is carried out using trend and multiple seasonality. It is common to
use the multiple STL method (Seasonal–Trend decomposition procedure using Loess [66],
where Loess is a method to estimate linear relationships).

From the decomposition, the series can be reconstructed without including the irregu-
lar part, which is where the information necessary to obtain the desired indices is found.
The initial values are obtained by weighting the time series against the reconstructed series.

The adjustment of the parameters is carried out following the same procedure as
for the nHWT, with the exception that, if necessary, this adjustment can be carried out
in two steps—first adjusting the parameters of the regular model and then adjusting the
parameters associated with the DIMS. Adjusting all the parameters simultaneously obtains
models with more reliable predictions, while the second option is faster. Thus, the first
option is chosen for this work.

3. Results

The approach proposed for the work described below has the following scheme. First,
a study of the series is carried out to determine the seasonal periods. The study is carried
out using continuous seasonality models and discrete seasonality models, all as described
in the previous section. Although it is preferable to use an error minimization criterion for
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each technique when fitting the models, the RMSE—defined in (26)—is used to standardize
and compare the fitted results.

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)
2 . (26)

Here N stands for length of the dataset used for the training. The final comparison
will be made according to the forecasts made in the validation set.

3.1. Analysis of the Seasonality of the Series

The series shown in Figure 3 clearly presents a seasonality with periodicity of one
hour. However, to study the following seasonal patterns it is necessary to perform an
analysis on the frequency domain. To investigate the appreciable frequencies in the time
series, a spectral density analysis is carried out, the result of which is shown in Figure 7 in
the form of a smoothed periodogram. A smoothed periodogram is the preferred tool here
as the periodic cycles do not show a regular periodicity [67].
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Analyzing the figure, the presence of a clearly dominant frequency is observed,
which corresponds to the periodicity of ten units of time (one hour). Also, the presence of
another dominant frequency can be observed. This corresponds to a second seasonality
with a period of 106 time-units. However, this is the second seasonality and is associated
with a greater variability around its value, which confirms what is seen in Figure 3.

To confirm these hypotheses, an ALLSSA analysis is performed. This method is
robust against unequally spaced time series, estimating trend and seasonal components
simultaneously, and providing statistically significant components in the time series [35].
The analysis shows three main and significant frequencies at periodicities of 10, 118,
and 203 time-units. This disagreement between the two methods suggests that, despite var-
ious seasonalities clearly coexisting, non-dominant seasonalities do not occur continuously
and may influence the analysis.

In contrast to this result, an analysis based on the use of wavelets is also carried out.
The advantage of using wavelets to analyze the spectral content of the series is that we
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obtain a map in the time-scale plane. The concept of frequency in spectral analysis is
now replaced by the scale factor, and therefore, instead of using a periodogram, we use
a scalogram. The scale measures the stretching of the wavelets, being directly related
to frequency, as the greater the scale is, the higher the frequency of the series, which is
related to the inverse of a frequency, that is, to a period [68]. This map allows the non–
stationary characteristics of the signal, including changes in periodicity, to be studied,
which is the objective.

Figure 8 shows the average wavelet power graph. This graph shows the means of
the powers developed over time for each period or frequency. Although the results are
similar to those shown in the previous graph, a greater variability is observed in the longer
periods. Three main periods are located at 10, 94, and 196 time units. The results are very
close to the previous one.
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Figure 8. Plot of wavelet power averages across time. The red bullets show the significance level
(0.05).

The need for a robust analysis using the time and frequency domain motivates the
use of LSWA [35,69]. The software LSWAVE [70] in MATLAB® is an easy and intuitive
tool for performing this analysis. This software computes the least square wavelet spec-
trum (LSWS) for the series, with no need for preprocessing, transforming, or detrending.
LSWA considers the correlations of the sinusoidal functions and constituents and the noise
at the same time. We apply LSWA to the training set, with the results shown in Figure 9.

The abscissa axis indicates the time scale used, while the ordinate axis shows the
cyclical frequencies (as 1/period). The level of variance explained is reflected by colors,
according to the scale to the right of the graph.

The first conclusion is clear from the graph: the one–hour seasonality remains practi-
cally throughout the series as the predominant seasonality (with a percentage of variance
greater than 90%), but discontinuously. In the sections where this does not occur, a series of
sawtooth-shaped formations stand out from the rest, although the percentage of variance
that it reflects does not exceed 30%. Some areas are shaded with more than 40% of the
variation within high frequencies areas. This graph is shown in closer detail of in Figure 10.
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Figure 9. Least-squares wavelet analysis (LSWA) applied to the training set of electricity consumption.
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Figure 10. Detail in 3D for the lowest cyclic frequencies in the LSWA analysis.

We decided to use a 3D representation because it is then easier to appreciate the
lowest cyclic frequencies. Between 14 November and 15 November and later between
19 November and 21 November, two frequencies with a percentage of variance of over
40% appear. This corresponds to a period of 100 time-units. In the middle, between the
two intervals, some peaks with 30% of the variance are also located. This corresponds to a
periodicity of 200-time units.
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The conclusion from this analysis is that there is clearly one seasonality that occurs
every hour (ten-time units), and a second pattern with unregular behavior over time and a
periodic length that has been established at between 94 and 118 units. Although it is not
strictly a seasonality, it can be modeled as a second seasonality. A marginal seasonality can
be obtained for long cycles but will not be taken into account as it seems that its influence
on the time series is very small compared to the previous one.

3.2. Application of Models with Regular Seasonality

Given this disparity of values for the determination of the length of the seasonal
periods, we choose to carry out one analysis with the models using a single seasonality
(ten-time units) and another using two seasonalities.

For the models with regular seasonality, the second seasonality to be tested will be for
a range of periods of between 90 and 110 time-units.

3.2.1. Application of ANN

One of the most powerful tools for working with neural networks is the MATLAB®

Deep Machine Learning toolbox. This toolbox includes a great variety of possibilities and
different neural networks. From this range of possibilities, the NARX network and the NLR
network are used. These two networks have been proven to be efficient in predicting future
electricity demand values. The method of working with them is described in Figure 11.
Here, it can be seen that it is first necessary to use the historical information about demand.
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Table 1. Neural network parameters and RMSE for fitted results. 

Neural Network Parameters 
Fit 

RMSE 

NARX  
1 input layer  

1 hidden layer with 20 neurons  
33.95 

Figure 11. Working scheme with neural networks using the Deep learning machine tool from MATLAB.

To address the observed seasonality, the series is additionally given a delay,
according to the seasonality. In this case, the seasonality of one hour corresponds to
ten units of time of six minutes, so a delay of ten units is introduced to the series.
Additional variables are added to the information provided by the time series. The exoge-
nous information supplied to the model is:

• Previous hour’s average electricity consumption.
• Consumption of electricity from the previous hour.
• Timestamp (only in NARX model).
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The networks used are described in Table 1. The NARX model includes a single
hidden layer and a TDL of three time units. It was checked that greater TDL did not
improve the results. NLR model also include a single hidden layer.

Table 1. Neural network parameters and RMSE for fitted results.

Neural Network Parameters Fit RMSE

NARX

1 input layer
1 hidden layer with 20 neurons

1 output layer
TDL = 3

33.95

NLR
1 input layer

1 hidden layer with 20 neurons
1 output layer

33.21

The training process is performed by minimizing the MSE and using the Levenberg-
Marquardt algorithm. The training result is displayed as the RMSE in Table 1.

In the same way as the first seasonality was introduced, the second seasonality is
added, following what we have seen in Section 3.2. The result of adding a new seasonality
does not improve the result. The chosen model has only one seasonality.

3.2.2. Application of ARIMA Models

To apply the ARIMA models, MATLAB® is the chosen platform, using Econometrics
Toolbox and SSMMATLAB [71] for double seasonal ARIMA. R is also tested with the
‘forecast’ package, but the MATLAB® results outperformed the R results. Like the previous
models, models with one and two seasonalities according to Section 3.2 are tested. The best
results are found using a single seasonality of one hour (ten-time units). The best model is
ARIMA (4,2,4) × (4,1,4)10, for which the parameters are shown in Table 2.

Table 2. ARIMA parameters and RMSE for fitted results.

Parameters Fit RMSE

AR φ1 =−0.145; φ2 = −0.472;
φ3= − 0.190; φp = 0.170

50.42
MA θ1 = 0.861; θ2 =−0.601;

θ3 =0.443; θ4= 0.174

SAR Φ1 =−0.487; Φ2 =0.067;
Φ3 =−0.260; Φ4 =−0.067

SMA Θ1 =0.142; Θ2 =0.069;
Θ3 =−0.292; Θ4 = −0.065

3.2.3. Application of nHWT Models

To perform the analysis using the nHWT models, a proprietary tool developed in
MATLAB ® is used. This tool comes in the form of a toolbox, but it has not been published
yet. Models with one and two seasonalities are tested.

The results show that the model that best adapts to this series presents a single
seasonality, with the parameters α = 0.0001, γ = 0.0001, δ10 = 0.4856 and ϕAR = 0.9286.
The damping factor $ is set to 0. Models including this parameter were tested, but results
were not improved, thus it was removed from the model. The RMSE of the fit process
is 54.93.

The result is not surprising since the nHWT models are structural and do not allow
for a relaxation of seasonality. Once seasonality is established, the model will continue to
develop the same pattern, even though this is not really reflected in the series. When using
a single seasonality, the information provided by the second seasonal pattern is lost, but it



Appl. Sci. 2021, 11, 75 17 of 24

has less influence than the error caused by a second seasonality that does not coincide with
the real seasonality of the series.

3.2.4. Application of SSM Models

To work with the state spaces, the ‘forecast’ library is used in R [72]. Models with
a single seasonality are tested, as well as models that include several seasonalities as
indicated in Section 3.1. Here again, the use of the trend damping parameter did not
provide better results and was removed from the model.

As in the previous cases, the models with several seasonalities do not show better
results than the models with a single seasonality. Table 3 shows the models used—including
their arguments—in the first column, the parameters obtained after the adjustment process
in the second column, and the RMSE value of the adjustment in the third column.

Table 3. SSM models, their parameters, and fit RMSE for fitted results.

Model Arguments Parameters Fit RMSE

BATS (0.717,0, 5,2, 10)

λ = 0.717, α = 0.120, γ = 0.206,
δ = − 0.004,

φ1= 0.945, φ2 = − 0.625, φ3 = 0.022,
φ4 = 0.104, φ5 = − 0.500,
θ1 = − 0.153, θ2 =0.515.

46.77

TBATS (0.756,0, 5,2, {10,1})

λ = 0.756, α = 0.862, γ = 0.105, δ1 = − 0.0004,
δ2 = 0.0001,

φ1= 1.293, φ2 = – 0.552, φ3 = − 0.359, φ4 = 0.227,
φ5 = – 0.1968,

θ1= −1.358, θ2 = 0.783.

45.44

3.3. Application of Discrete Seasonality Models (nHWT-DIMS)

The application of discrete seasonality carries with it a differentiated strategy.
The use of nHWT-DIMS models makes it possible to model localized seasonality at specific
instants of time, independently of other seasonality. In Figure 12, we show two differ-
ent periods for the series. In addition to the seasonal pattern described at the beginning
(of one hour), a new pattern can also be observed in Figure 12a, whose length is established
at 27 time units (2 h and 42 min). This pattern is framed between two dashed lines including
the demand peaks. Figure 12b shows another seasonal pattern that has the same length,
but a different behavior. These two patterns will be called DIMS a and DIMS b.

The appearance of each discrete seasonality does not occur on a regular basis.
This situation causes the recursion required in the Holt-Winters models to be variable.
This is indicated in Figure 12 by the lines with arrows. The solid lines indicate the recur-
sion for the DIMS a, and the dashed lines indicate it for the DIMS b. The information
regarding the DIMS is organized in Table 4. This table includes the locations of the discrete
seasonalities on every appearance (starting and ending time when the DIMS is defined,
used in the variable t∗h) and the associated recursivity in minutes, which corresponds to s∗h.
As an example, the time interval when the second appearance of DIMS a is defined starts at
04:00 pm on the 14th and ends at 06:42 pm on the 14th. The recursivity s∗h during this
interval is 618 min.
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Table 4. Location in the time series of the discrete seasonalities (DIMS) and their recursivity. The column Nr. indicates the
order of appearance of the corresponding DIMS. ‘Time starts’ and ‘Time ends’ reflect the moving interval in which DIMS is
defined, and ‘Recursivity’ shows the length of time since the previous appearance.

DIMS Nr. Time Starts Time Ends Recursivity

DIMS a 1 14th November at 05:42 am 14th November at 08:24 am —————-
2 14th at 04:00 pm 14th at 06:42 pm 618 min.
3 15th at 00:18 am 15th at 03:00 am 498 min
4 15th at 07:30 am 15th at 10:12 am 432 min
5 15th at 06:42 pm 15th at 09:24 pm 672 min
6 16th at 07:24 pm 16th at 10:06 pm 1482 min
7 17th at 10:42 am 17th at 01:24 pm 918 min
8 18th at 06:06 am 18th at 08:48 am 1164 min
9 19th at 02:30 am 19th at 05:12 am 1224 min
10 19th at 08:48 pm 19th at 23:30 pm 1098 min
11 21th at 06:06 pm 21th at 20:48 pm 2718 min

DIMS b 1 16th November at 07:06 am 16th November at 09:48 am —————-
2 20th at 05:06 am 20th at 07:48 am 5640 min
3 20th at 05:24 pm 20th at 08:06 pm 738 min
4 21th at 02:36 am 21th at 05:18 am 552 min
5 22th at 02:24 am 22th at 05:06 am 1428 min

The general model described by Equations (21)–(25) now results in the Equations
shown in (27)–(32), with one seasonality of length ten time units and two DIMS as described
in Table 4.

lt = α

 yt

I(10)
t−s10

D(a)
t∗a−s∗a

D(b)
t∗b−s∗b

+ (1− α) (lt−1 + bt−1), (27)

bt = γ(lt − lt−1) + (1− γ)bt−1, (28)
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s(10)
t = δ(10)

 yt

ltD
(a)
t∗a−s∗a

D(b)
t∗b−s∗b

+
(

1− δ(10)
)

s(10)
t−10, (29)

D(a)
ta∗

= δ
(a)
D

 yt

lts
(10)
t−s10

D(b)
t∗b−s∗b

+
(

1− δ
(a)
D

)
D(a)

ta∗−s∗a
, (30)

D(b)
tb
∗ = δ

(b)
D

 yt

lts
(10)
t−s10

D(a)
t∗a−s∗a

+
(

1− δ
(b)
D

)
D(b)

tb
∗−s∗b

, (31)

ŷt(k) = (lt + kbt)s
(10)
t−s10+kD(a)

t∗a−s∗a+kD(b)
t∗b−s∗b+k + ϕk

ARεt. (32)

Here, s(10)
t is the seasonal equation for the regular seasonality of ten-time units with

smoothing parameter δ(10). D(a)
ta∗

and D(b)
tb
∗ are the DIMS as described in Table 4 with

smoothing parameters δ
(a)
D and δ

(b)
D defined only in time t∗a and t∗b . The recursivity s∗a and

s∗b is defined in Table 4.
To use the model, the procedure described in [25] is carried out. Initially, the initial

values for the level are obtained as the moving average of the first period of one hour;
for the trend as the slope between the first and second cycle of one hour; and for the seasonal
indices, the weighting of the series in the first cycle on the moving average. Subsequently,
the seasonal indices of the DIMS are obtained. The time series is decomposed into its
trend, seasonality, and irregular components using STL decomposition with the period
length of one hour. From these components, the series is rebuilt, but without the irregular
component being included. The seasonal indices are obtained by weighting the original
series over the reconstructed one.

Once the initial values of the model have been determined, the model is fitted by
minimizing the RMSE, and the smoothing parameters are obtained. The tool for this anal-
ysis is software developed in MATLAB (R) for this purpose. The obtained RMSE is 58.65.
The smoothing parameters of the model obtained are α =0.0001, γ =0.0001, δ(10) = 0.4853
for the first regular seasonality, δ(a) =0.0005 for DIMS type a (see Figure 12a), δ(b) = 0.0652
for DIMS type b (see Figure 12b) and ϕAR =0.9056. Here again, it has is decided not to use
the damping parameter for trend. The RMSE of the fitted model is 58.65.

3.4. Model Fit Comparison

A benchmark summary is reported in Table 5, where the RMSE in the fit process is
summarized. The RMSE used to compare the models while fitting shows that the ANN fits
better than the other models to the time series. The worst case seems to be nHWT-DIMS.
The comparison shows that the state space models and the ARIMA models fit the observed
data better than the nHWT and nHWT–DIMS models. Similar behavior is expected in
the forecasts.

Table 5. Main benchmarking results. RMSE used to compare fitted results. MAPE used to compare
forecasts accuracy.

RMSE on Fit Average MAPE for Forecasts

NARX 33.95 26.63%
NN-NLR 33.21 13.94%
ARIMA 50.42 24.03%
nHWT 54.93 18.55%
TBATS 46.77 37.60%
BATS 45.44 37.61%

nHWT-DIMS 58.65 16.00%
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3.5. Forecasts Comparison

The greatest interest is in forecast reliability. To compare the results of the forecasts
given by the different methods, the mean absolute percentage error (MAPE) as a percent-
age is used, as indicated in (33). This is a common indicator used to compare forecasts
of demand [73].

MAPE(h) =
1
h

h

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣. (33)

Here, h is the forecast horizon to evaluate. As the forecasts are made one hour ahead
(ten units) throughout the validation subset, h can take values from one to ten time units.
From the forecasts of one hour ahead, the MAPE is obtained by comparing these with the
real values of the validation set, using the procedure described in [74]. The benchmark
summary in Table 5 includes the average of the MAPE. The average is obtained as the
mean of the MAPE(h) with h = 1,2, . . . ,10. The best forecasts, on average, are produced
by the NLR. The nHWT-DIMS models are revealed as a competitive method against the
regular seasonal models, outperforming the other models.

Figure 13 shows the MAPE of these forecasts as a function of the forecasting horizon.
It is clear from the results obtained that traditional models with one seasonality are not
capable of working with this type of series. The BATS and TBATS models of state spaces do
not drop below 30% MAPE. The ARIMA model starts by making very short-term forecasts
that have MAPE of below 15%, but beyond three time units it is not capable of making
good predictions. The nHWT models improve the forecasts with respect to the previous
ones, although the use of the DIMS allows the level of the predictions to be always kept
below 20%. However, the method that produces the best results is NN–NLR. These models
give forecasts that remain almost constant with an accuracy of about 14% of MAPE.
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Figure 13. Mean absolute percentage error (MAPE) comparison of one hour-ahead forecasts.

4. Discussion

The results obtained in the previous exercise show that the fact that having irregu-
larities in the series has an enormous influence on the result in statistical models used
in this article. The models that use regular seasonalities require that they appear with
a regular length, regardless of whether the pattern varies. When dealing with series
whose seasonality is not completely defined, the models cannot overcome these variations.
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The use of models with discrete seasonality allows for progress in this problem, since it is
capable of introducing seasonality only where it occurs.

Though the periodicity of 200-time units did not show a consistent pattern over time
in this data set, having a longer time series more than seven days (e.g., two-month record
or more) may reveal discontinuous patterns repeating themselves at that low frequency,
which may help to better train the model for forecasting such signals. This requires further
investigation and research.

However, the best tool for this series is the use of AI to address these irregularities.
Curiously, the NARX neural network does not offer good results, but the NLR neural
network manages to improve the results. This situation responds to the fact that the
previously described models require seasonal stability if they are to make predictions,
since they are based on linear or structural models. The neural network model is not
subject to these restrictions and uses these irregularities to make forecasts.

Future studies in this area should aim to ensure that the structural models are ca-
pable of introducing an ambiguity between their seasonal processes produced by the
inconsistency of the series in terms of seasonality.

5. Conclusions

In this article, we have analyzed time series forecasting methods applied to a pattern
of electricity demand that has an irregular periodicity, so that the seasonality is not well
defined. We have analyzed models of neural networks, ARIMA, multiple seasonal Holt-
Winters models and state spaces using regular seasonalities, and multiple seasonal Holt-
Winters models with discrete interval moving seasonalities.

To compare the behavior of all the models discussed, they were applied to the situa-
tion of a connection node with a hot-dip galvanizing company, where the time series of
electricity consumption due to the heating of the bath causes seasonalities. A frequency
analysis using spectral density and least square wavelets with the series showed that a
first seasonality of one hour could be easily located; some other seasonalities could be
considered, but their period was not clear. The problem with irregular seasonality is that
the models need to use patterns that constantly repeat themselves, so the pattern must
be defined for the entire time series. Nevertheless, the use of Holt-Winters models with
discrete seasonality (nHWT-DIMS) allows these seasonalities to be separated efficiently
and reliable predictions to be made.

The results showed that the use of nHWT–DIMS models improves the results com-
pared to the rest of the models. This is an interesting proposal for companies because
of the simplicity of its application and good results—the MAPE obtained is around 16%.
However, NLR (ANN) showed better predictions, with a MAPE of 14%.

Our study contributes to the improvement of forecasting systems with time series
by including discrete seasonality in the model. This allows for an efficient method of
prediction to be applied in situations of electrical demand with marked seasonality but
non–regular periodic appearances.
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Abbreviations
AI Artificial intelligence
Al Aluminum
AIC, AICc Akaike’s information criterion
ALLSSA Anti-leakage least-squares spectral analysis
ANN Artificial neural networks
AR(1) Auto regressive model of order 1
ARIMA Autoregressive integrated moving average
ARMA Autoregressive moving average

BATS
Exponential smoothing state space model with Box-Cox transformation,
ARMA errors, trend and seasonal components

BIC Bayesian information criterion
BRT Bagged regression trees
DIMS Discrete interval moving seasonalities
LASSO Least absolute shrinkage and selection operator
LSWA Least-squares wavelet analysis
LSWS Least square wavelet spectrum
MSE Mean squared error
MAPE Mean absolut percentage error
MLP Multilayer perceptron
NARX Non-linear autoregressive neural networks with exogenous variables
nHWT Multiple seasonal Holt-Winters
nHWT-DIMS Multiple seasonal Holt-Winters with discrete interval moving seasonalities
NLR Non-linear regression
RMSE Root of mean squared error
SARIMAX Seasonal autoregressive integrated moving average exogenous model
SIC Schwarz’s information criterion
SSM State-space models
STL Seasonal–trend decomposition procedure using Loess
SVM Support vector machines

TBATS
Exponential smoothing state space model with Box-Cox transformation,
ARMA errors, trend and trigonometric seasonal components

TDL Tapped delay line
Zn Zinc
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