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ABSTRACT 

 

NEW PROPOSALS FOR MODELING THE THERMO-
MECHANICAL RESPONSE OF STEEL STRUCTURES UNDER FIRE 

USING BEAM-TYPE FINITE ELEMENTS 

by Myriam Rocío Pallares Muñoz 

 

Fire is one of the main hazards that can affect steel structures. The impact of fire on these 

structures is highly adverse and complex to simulate, mainly in realistic fire scenarios, where 

heating in steel members is non-uniform and in slender steel members because they fail 

prematurely by local buckling. In order to accurately predict the response of steel structures to 

fire, advanced and complex FE models with shell and solid elements have been developed. 

However, these shell models are computationally expensive, complicating the carrying out of 

more complex analyses that require many simulations in a short time and at low computational 

costs. Therefore, there is a need to develop simple, accurate, and low-cost computational models 

as reliable as shell-type models that open the path more easily towards modeling more complex 

steel structural problems in fire conditions. This thesis presents simple and low-cost proposals 

to simulate the mechanical response of steel structures under fire using Timoshenko’s beam-

type finite element available in Ansys. One of the proposals consists of a new methodology for 

the 3D-analysis of steel frames subjected to non-uniform temperatures by fire. The others 

consist of two modeling strategies for analyzing the lateral-torsional buckling in class-4 steel 

structural members at elevated temperatures. The proposals significantly simplify the structural 

modeling and satisfactorily validate numerical and experimental results. That means that 

complex fire engineering problems, such as probabilistic and optimization analyses, can be 

handled much more easily, representing a significant step toward the generalized application 

of performance-based approaches to deal with fire effects on steel structures.  
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UNIVERSIDAD POLITÉCNICA DE VALENCIA 

 

RESUMEN 

 

NUEVAS PROPUESTAS PARA MODELIZAR LA RESPUESTA 
TERMOMECÁNICA DE ESTRUCTURAS DE ACERO BAJO FUEGO 

UTILIZANDO ELEMENTOS FINITOS TIPO VIGA 

por Myriam Rocío Pallares Muñoz 

 

El fuego es uno de los principales riesgos que pueden afectar a las estructuras de acero. El 

impacto del fuego en estas estructuras es muy adverso y complejo de simular, principalmente 

en escenarios de fuego realistas, donde el calentamiento en los miembros de acero no es 

uniforme y en miembros de acero esbeltos porque fallan prematuramente por la aparición de 

abolladuras locales. Para predecir con exactitud la respuesta de las estructuras de acero al fuego, 

se han desarrollado modelos avanzados y complejos de EF con elementos de cáscara y sólidos. 

Sin embargo, estos modelos son costosos desde el punto de vista computacional, lo que 

complica la realización de análisis más complejos que requieren muchas simulaciones en poco 

tiempo y con bajos costes computacionales. Por lo tanto, es necesario desarrollar modelos 

computacionales sencillos, precisos y de bajo coste, tan fiables como los modelos de cáscara, 

que abran el camino más fácilmente hacia la modelización de problemas estructurales de acero 

más complejos en situación de incendio. En esta tesis se presentan propuestas sencillas y de 

bajo coste computacional para simular la respuesta mecánica de estructuras de acero en 

condición de incendio utilizando un elemento finito de viga de Timoshenko de Ansys. Una de 

las propuestas consiste en una nueva metodología para el análisis en 3D de estructuras de acero 

sometidas a temperaturas no uniformes por el fuego. Las otras consisten en dos estrategias de 

modelización para analizar el pandeo lateral torsional en miembros de acero de clase 4 a 

temperaturas elevadas. Las propuestas simplifican significativamente la modelización 

estructural y se validan satisfactoriamente con resultados numéricos y experimentales. Esto 

significa que problemas complejos de ingeniería de incendio, como los análisis probabilísticos 

y de optimización, pueden tratarse con mucha más facilidad, lo que representa un paso 

importante hacia la aplicación generalizada de enfoques basados en el desempeño para tratar 

los efectos del fuego en las estructuras de acero.  
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RESUM 

 

NOVES PROPOSTES PER A MODELIZAR LA RESPOSTA 
TERMOMECÀNICA D'ESTRUCTURES D'ACER BAIX FOC 

UTILITZANT ELEMENTS FINITS TIPUS BIGA 

per Myriam Rocío Pallares Muñoz 

 

El foc és un dels principals riscos que poden afectar les estructures d'acer. L'impacte del foc 

en estes estructures és molt advers i complex de simular, principalment en escenaris de foc 

realistes, on el calfament en els membres d'acer no és uniforme i en membres d'acer esvelts 

perquè fallen prematurament per l'aparició d'abonyegadures locals. Per a predir amb exactitud 

la resposta de les estructures d'acer al foc, s'han desenvolupat models avançats i complexos 

d'elements finits de corfa i sòlids. No obstant això, estos models són computacionalment 

costosos, la qual cosa complica la realització d'anàlisi més complexos que requerixen moltes 

simulacions en poc de temps i amb baixos costos computacionals. Per tant, és necessari 

desenvolupar models computacionals senzills, precisos i de baix cost, tan fiables com els 

models de corfa, que òbriguen el camí més fàcilment cap a la modelització de problemes 

estructurals d'acer més complexos en situació d'incendi. En esta tesi es presenten propostes 

senzilles i de baix cost per a simular la resposta mecànica d'estructures d'acer en condició 

d'incendi utilitzant un element finit de biga de Timoshenko d'Ansys. Una de les propostes 

consistix en una nova metodologia per a l'anàlisi en 3D d'estructures d'acer sotmeses a 

temperatures no uniformes pel foc. Les altres consistixen en dos estratègies de modelització 

per a analitzar el bombament lateral torsional en membres d'acer de classe 4 a temperatures 

elevades. Les propostes simplifiquen significativament la modelització estructural i es validen 

satisfactòriament amb resultats numèrics i experimentals. Açò significa que problemes 

complexos d'enginyeria d'incendi, com les anàlisis probabilístiques i d'optimització, poden 

tractar-se amb molta més facilitat, la qual cosa representa un pas important cap a l'aplicació 

generalitzada d'enfocaments basats en l'exercici per a tractar els efectes del foc en les estructures 

d'acer. 
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C h a p t e r  1  

INTRODUCTION 

Steel frames define the skeleton of many residential, commercial, industrial, and office 
buildings. In fact, according to data from the Council on Tall Buildings and Urban Habitat 
(CTBUH), in early 2020, 67% of the world’s 100 tallest buildings used steel or steel-concrete 
composite structural systems [1]. The list includes, e.g., Dubai’s Burj Khalifa and Princess 
Tower skyscrapers, Mecca’s Royal Clock Tower, and 30 Hudson Yards in New York. Steel 
members are also used to construct large projects such as long-span bridges. The main reasons 
are steel structures have a greater strength with less weight, can be built in most climatic 
conditions, and are versatile. However, in large-scale constructions, the open cross-sections of 
steel frame members need to be significant to carry the high load solicitations, resulting in 
heavier and more expensive structures. This situation makes optimizing costs at acceptable 
performance levels necessary, which implies using lighter high-strength sections. Recent cases 
demonstrated it. For example, in the Wirkowice bridge in Poland (2020), hot-rolled high-
strength lightweight steel sections were used to reduce the weight and increase the bridge span 
[2]. Another illustrative case is Chicago’s Union Station Tower (2020). In this 51-floor office 
steel building, designers reduced the total structural steel in the upper perimeter columns by 
almost 20% using stronger but lighter steel elements (552 MPa), creating more open space in 
upper floors [3]. However, the decrease in the amount of material in fabricating steel members 
to become lighter also makes them slenderer. That condition may compromise the structure’s 
stability because of the possible activation of global or local buckling failure phenomena that, 
in practice, are more critical when the steel structure is in a fire situation [4]. Examples of such 
fire failures have been observed in buildings (e.g., the 2001 fire in New York City’s World 
Trade Center 7 [5–7] or the 2017 fire in Tehran’s Plasco building [8,9]) and bridges (e.g., the I-
65 overpass fire in Birmingham, Alabama, USA [10] and similar cases reported in [11–14]). 

The risk of fire is one of the main hazards affecting all types of constructions, and steel 
constructions are especially vulnerable to fire because structural steel can compromise its integrity 
at high temperatures. For example, at 300ºC and above, structural steel begins to lose its strength 
gradually. It can withstand approximately 425ºC before it starts to soften, and between 600ºC 
and 650ºC, it will lose half of its resistance and be at risk of failure depending on the load it is 
supporting. This vulnerability vis-à-vis fire hazards has motivated the development of 
methodologies to predict the steel structures’ response to fire. These methodologies typically 
have three components: a fire model representing the effects of fire on the structure’s 
environment, a thermal model that predicts the temperatures in the structural members, and a 
mechanical model that provides the structure’s response caused by mechanical and thermal 
stresses. 

For the fire model, there are two design strategies. The most common fire design strategy is 
the prescriptive approach, where a nominal fire curve represents the fire (e.g., the ISO 834 fire 
curve), and the structure is requested to resist the effects of this fire curve for a code-specified 
time. More advanced is the performance-based approach, where an effort is made to represent 
the physical fire features. For this purpose, fire models of different complexity are available (e.g., 
parametric fires, zone models, localized fires, or computational fluid dynamics -CFD- models). 
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More realistic models, such as localized fires or CFD [15,16], do not uniformly heat the structure 
and, therefore, impose non-uniform temperature fields.  

When a performance-based approach is used, advanced finite element calculation models are 
required to conduct realistic analyses of fire-exposed structures. The thermal model involves a 
heat transfer analysis, including the effects of the non-uniform thermal exposure, the main 
thermal actions, and the variation of the material’s thermal properties with the temperature. The 
structural model includes the material’s temperature-dependent mechanical properties, the 
combined effects of mechanical and thermal actions, and the effects of geometric and material 
nonlinearity. 

Advanced models to obtain reliable approximations of the structural response in steel 
structures must also consider the following aspects: 

1. Residual stresses created in the fabrication of steel members remain in the 
whole section of the unloaded member, even after cooling, so they are present 
before member loading as an initial condition at room temperature. 

2. The geometries resulting from the fabrication process of steel members are not 
perfect, and therefore, initial imperfections are present. 

3. The steel members of slender cross-sections solicited in bending fail 
prematurely by local buckling. 

Typically, advanced calculation models for predicting the realistic response of steel structures 
under fire are built with shell elements [17–29]. That is because shell models naturally discretize 
the temperature variation in cross-section and can reproduce the buckling response of slender 
cross-section steel members; however, they are complex to build, and their computational 
times are high. 

Some assumptions are frequently adopted to reduce the high computational cost and 
complexity of shell models. These assumptions are: a) temperatures in the cross-section of steel 
members are uniform [17,18,22]; b) thermal expansion is negligible [21,23,30]; c) residual 
stresses are not relevant because they dissipate during the fire [21,23,24,31–33]. However, these 
assumptions might lead to results far from the real ones. For example, in realistic fire scenarios, 
the non-uniform temperature field in the cross-section causes steel being a homogeneous 
material at room temperature, to behave like a highly heterogeneous material. In other words, 
the thermal gradients make the sections behave as if they were composed of several materials 
due to the temperature dependency of steel mechanical properties leading to shear effects in 
the cross-section becoming relevant. Furthermore, the heterogeneity caused by the 
asymmetrical temperature field in the cross-section originates a coupling between the axial and 
bending [34]. As a result, an axial force produces a curvature and a bending moment induces 
elongation, making the non-uniform temperature field in the cross-section affects the 
displacements field of the structure. On the other hand, in localized fire scenarios, the steel 
structures do not heat uniformly so that adverse effects of the residual stresses can remain in 
zones less heated. 

The other aspect to consider is thermal strains. As the thermal expansion of steel is 
temperature-dependent, the non-uniform temperature field in the cross-section (time-varying) 
makes thermal strains in isostatic steel members vary in space and time. Furthermore, bending 
produced by the non-uniform temperature field in the cross-section creates thermal stresses 
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that add to the residual and the other stresses (self-weight and mechanical). In statically 
indeterminate steel members, the induced thermal stresses by the non-uniform temperature 
field of the cross-section produce bending in addition to that of the acting loads. These spatially 
and time-varying induced thermal stresses are combined with the residual and all other stresses 
(self-weight and mechanical). All of these interactions affect the strain-stress state and, 
therefore, the response of the structure. 

Regarding the geometric imperfections, these are residual thermal strains coming from the 
plate fabrication and cutting process. Since thermal strains occur in all three directions in 
realistic fire scenarios, transverse thermal strains and those induced by the Poisson effect 
intensify the geometrical imperfections of the steel structure members. The Poisson effect also 
induces thermal stresses at the points with restrained degrees of freedom; therefore, thermal 
strains must be considered to account for all temperature effects during the fire exposure time. 

Unlike high-cost shell elements, the finite beam elements are especially appealing because 
of their much easier modeling and lower computational cost, resulting in savings in modeling 
times, CPU times, memory, and storage demands. However, the use of beam-type elements to 
model the response of steel structures to realistic fires is very challenging due to the following 
reasons: 

a) The difficulty to properly discretize the cross-section temperature (varying in 
space and time) when transverse thermal gradients are present. 

b) The difficulty to adequately include both the residual stresses into the cross-
section and the initial imperfections on the geometry. 

c) The problems reproducing the local buckling in the cross-section parts subjected 
to high compressions in thin-walled members. 

One of the main focuses of research to date has been on studying instability, its occurrence, 
and its effect on fire-affected steel members, and most simulations in such studies have been 
carried out with shell elements [18–20,22–28]. Although the instability of steel members has 
been extensively investigated for room temperature conditions, instability in steel members 
heated to elevated temperatures is, in fact, a topic still under study and of great interest. Hence, 
experiments and simulations have been conducted to obtain more information and, e.g., to 
propose new design formulations in the Eurocode to ensure the safety and serviceability of 
steel structures in modern constructions [23,29]. 

Researchers have also recently been interested in building models with finite beam elements 
to analyze the thermo-structural response of steel structures to reduce shell elements’ 
complexity and high cost [35–43]. These simulations have focused on studying instability in 
fire-affected class-4 steel members involving beam-type finite elements [31,44–51]. The studies 
have concentrated mainly on analyzing flexural torsional buckling failures in slender section 
columns, with less frequent analysis of lateral-torsional buckling failures in beams. 

However, simulating steel structures under realistic fire scenarios using finite beam elements 
implies a good approximation of the temperature variation in the cross-section during the fire. 
That is because the accurate calculation of material properties, nonlinear stress-strain 
relationships, and thermal strains depend on it. Therefore, the structure’s response is more 
realistic, as long as the spatially and temporally varying temperature field is as well modeled as 
possible. In simulations of class-4 steel members, this is crucial because, under the same load 
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level, at the most heated points of the cross-section, the occurrence of local buckling failure 
due to material softening with increasing temperature will be more likely. In addition, the 
inclusion of the adverse effects of residual stresses and imperfections in the models is essential 
in studying the instability of thin-walled steel members heated at elevated fire temperatures. 
The reason is they act as initial conditions that modify the initial strain-stress state of the steel 
structure. 

To approximate the non-uniform temperature distribution of a finite beam element cross-
section, the temperatures over time of three cross-section points (the centroid of the top flange, 
the web, and the bottom flange) are typically used [35,36]. To do so, the temperature-time at 
one of these points (e.g., the temperature-time evolution of the web centroid) is taken as the 
amplitude curve1. Then, the temperature-time curves at the other two cross-section points are 
calculated as factors of that amplitude curve, constants over time. As a result, the amplitude 
curve is the parent curve, and the temperature-time curves at the other two cross-section points 
are its children. The problems of this non-uniform temperature approximation are that: 1) it 
depends on an exact definition of the factors that remain constant during the whole fire; 2) it 
assumes only a linear variation of the temperature in the web direction; 3) it cannot represent 
the changes produced in the heating/cooling rate of the cross-section points when insulation 
elements or radiative shadows are present. Furthermore, this approach involving heat transfer 
analysis of the cross-section by finite elements only uses the temperature results, ignoring the 
importance of thermal gradient results responsible for temperature changes in both cross-
section directions. It also ignores that the nature of fire is three-dimensional, and the effects of 
fire on structures are three-dimensional so that the non-uniform temperature fields in realistic 
steel structures are 3D. 

Moreover, Euler-Bernoulli beam elements are the most commonly used in simulations of 
steel structures exposed to fires with finite beam elements, including simulations of class-4 steel 
members [23,35,36,47–50,52]. However, Timoshenko beam elements are the most appropriate 
for analyzing the response of steel structures exposed to non-uniform temperature fields. That 
is because they assume a cross-section shear state (not present in Euler-Bernoulli’s theory) that 
better approximates cross-section deformation in deep members. This characteristic is 
advantageous since the material becomes heterogeneous under non-uniform temperature and 
shear effects are relevant in heterogeneous beams, so they behave like deep beams. 

Before this research, there was no simple, general, systematic, and low-cost methodology 
to represent the non-uniform temperature in the cross-section of finite beam elements to allow 
more realistic 3D structural analyses adapted to the three-dimensional nature of fire and the 
existence of 3D non-uniform temperature fields in real steel structures. Furthermore, there 
were also no proposals for modeling the lateral-torsional buckling phenomenon in slender 
section members with finite beam elements that could reproduce the behavior of the beam 
load capacity, the buckling limit state, and the local and global failure modes, involving all the 
phenomena that are present, such as: geometric and material nonlinearity, thermal strains, the 
Poisson effect, initial imperfections, initial residual stresses, and non-uniform temperature 
distribution in the cross-section. 

Due to this need for simple, accurate, and low-cost computational models as reliable as shell 
models, new proposals for modeling the thermo-mechanical response of the steel structures 

 
1 An amplitude curve is used (e.g., by Abaqus) to specify the time variations of a transient load. The amplitudes of the curve 

are defined as model data and do not depend on the integration scheme step used for the solution of the problem. 
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under fire were developed in this thesis and published in a high-impact journal [43,51]. The 
new proposals were built with 3D-BEAM189 finite elements included in Ansys. They are seven 
degrees-of-freedom Timoshenko’s beam finite elements (six are for translations and rotations 
in x, y, z, and the seventh is for the warping magnitude representing the cross-section 
deformations due to high temperatures). BEAM189 has a computational power that reduces 
the computational time as well as the model-building effort. These savings in time, memory, 
and storage demand enable addressing complex analyses more easily and making feasible more 
complex structural fire engineering studies in which millions of simulations must be run 
quickly, such as parametric, probabilistic, and optimization analyses. Therefore, this 
contribution represents a significant step toward applying performance-based approaches to 
address the fire effects on steel structures. 

The first proposal is a new low-cost computational methodology to analyze steel frames 
subjected to non-uniform temperatures due to fires. This methodology involves the space-time 
variation of the temperature and displacement fields. The non-uniform temperature space-time 
field is represented by a temperature mean value and the two mean values of the section 
thermal gradients, which vary in time during the fire. This methodology that captures 3D 
phenomena such as buckling, flexural-torsional buckling, and warping was satisfactorily 
validated with experimental and numerical results of the Cardington frame test. The second 
proposal includes two new modeling strategies for analyzing the lateral-torsional buckling in 
slender steel structural members at elevated temperatures, which significantly simplify the 
structural modeling. These strategies, called Fiber Beam Model (FBM) and Cruciform Frame 
Model (CFM), include initial geometric and material imperfections and thermal strains. In the 
FBM, the steel member is represented by a single fiber of I-section beam elements. In the CFM, 
a cruciform arrangement of rectangular beam finite element fibers idealizes it. Both strategies 
were satisfactorily validated with experimental and numerical results of Test-1 and Test-3 carried 
out in the “Fire design of steel members with welded or hot-rolled class-4 cross-section” 
(FIDESC4) research project on a slender beam of class-4 section. Although both strategies 
correctly capture the lateral-torsional buckling resistance, CFM can, in addition, adequately 
reproduce the local buckling failure and significantly reduce the computational time. 

OBJECTIVES 

General 

• Develop simple, accurate, and low-cost computational modeling strategies as 
reliable as complex shell models to address the effects of fire on steel structures. 

• Minimize the computational cost and effort of simulating the thermo-
mechanical response of steel structures under realistic fire scenarios. 

• Implement the beam-type finite elements to simulate the thermo-mechanical 
response of steel structures exposed to fire. 

 

Specifics 

1. Propose a simple, general, and systematic methodology for representing the 
non-uniform temperature in the cross-section of beam elements that enables 
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performing 3D structural analysis adapted to the three-dimensional nature of 
fire and the existence of 3D non-uniform transient temperature fields in realistic 
structures. 

2. Propose new modeling strategies for considering lateral-torsional buckling in 
slender steel beams with beam-type finite elements that take into account all the 
phenomena involved and reproduce the thermo-structural response of the steel 
beams, including global and local buckling. 

3. Validate the proposals with numerical and experimental results. 

 

This document is structured as follows: Chapter 1 introduces the problem statement, the 
objectives, and the research scope. Chapter 2 describes the Ansys finite beam element used in 
the new proposals. Chapter 3 presents the proposed methodology to analyze steel frames 
subjected to non-uniform temperatures by fire. Chapter 4 presents the new modeling strategies 
to analyze the lateral-torsional buckling in class-4 steel structural members at elevated 
temperatures. Chapter 5 develops the discussion of results. Finally, in Chapter 6, the main 
conclusions are drawn, and future works are presented.
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C h a p t e r  2  

FINITE BEAM ELEMENT USED 

Proposed new modeling strategies are made up of appropriate Timoshenkos’ BEAM189 
finite elements available in Ansys. This finite element is three-node quadratic (see Fig. 1a), with 
seven degrees of freedom at each node: 3 translations (Ux, Uy, Uz), 3 rotations about the x, y, 
z-global directions (ROTx, ROTy, ROTz), and the warping magnitude (WARP) to represent 
the cross-section deformations due to high temperatures. Each section of the BEAM189 finite 
element is a predetermined set of cells with nine nodes and four integration points per cell (see 
Fig. 1b). The number of cells influences the accuracy of the geometric and material properties 
and the ability to model the nonlinear stress-strain relationship in the element cross-section. 
The calculations of the material inelastic behavior and the section temperature variation are 
performed at the section integration points. The element supports uniform temperatures and 
thermal gradients that vary linearly in the two cross-section directions and throughout the 
element [53]. BEAM189 has an excellent capacity for static and dynamic geometrical and 
material nonlinear analysis, suitable for solving stability problems (buckling, post-buckling, and 
collapse). The Timoshenko theory of the BEAM189 element assumes a shear-state in the 
cross-section (not present in Euler-Bernoulli theory). This assumption better approximates the 
cross-section deformation in deep beams, which is considered necessary given the great 
relevance of shear effects in fire-affected members, where the material behaves as 
heterogeneous due to the effects of high temperatures on the steel mechanical properties 
[34,43]. Results such as deflections at the pseudo-mesh of the BEAM189 finite element cross-
section can be shown in extruded views in the post-processing stage. Results querying in 
extruded view are based on the post-processing query strings that interact with the database of 
the calculation results in the pseudo-mesh nodes of the section. This 3D-BEAM189 
computing power allows the implementation of the proposed modeling strategies. Fig. 1 shows 
the geometry, the nodes, the coordinate system (local and global), and the cross-section of the 
BEAM189-finite element. 

 

 
(a) Definition and local axes [53] 

 
(b) Cells and nodes of  the cross-section 

pseudo-mesh [53] 

Fig. 1 BEAM189 finite element 
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C h a p t e r  3  

METHODOLOGY TO ANALYZE STEEL FRAMES SUBJECTED TO NON-
UNIFORM TEMPERATURES BY FIRE USING BEAM-TYPE ELEMENTS 

This chapter includes the content from sections 1 to 8 from paper “A new methodology using 
beam elements for the analysis of steel frames subjected to non-uniform temperatures due to 
fires” published in the June 2021 issue of the Journal Structures, vol. 31; p 462–483. 
https://doi.org/10.1016/j.istruc.2021.02.008. 

 

3.1 Justification and antecedents 

The advanced calculation models for realistic analyses of fire-exposed steel structures can be 
built using the beam, shell [54], or solid finite elements [55]. Within these finite elements, beam-
types are especially appealing because of their much easier modeling and lower computational 
cost, resulting in savings in modeling times and CPU-times, memory, and storage demands. 
However, the use of finite beam elements to model the response of structures to realistic fires is 
very challenging. That is due to, among other reasons, the problems to adequately reproduce 
phenomena such as web buckling and the difficulty to properly discretize the temperature in the 
cross-section of the elements when longitudinal and/or transversal thermal gradients are present. 
These gradients appear, e.g., when the temperature fields around the structure are not uniform, 
as is the case for bridges [56–58] and perimeter columns [31], and/or when the steel members 
are joined to or protected by concrete elements [59]. 

Achieving a good approximation of the non-uniform temperature in the beam element cross-
section is justified insofar as the accurate calculation of material properties, nonlinear stress-strain 
relationships, and thermal strains depend on a good approximation of the temperature in the 
beam section. Therefore, the structure’s response is more realistic, as long as the temperature 
field in the beam cross-section is as well modeled as possible. A common approach to represent 
non-uniform temperature fields, i.e., thermal gradients, within the cross-section of a structural 
element is the use of multiplier values applied to the cross-section parts (e.g., the web and the 
two flanges). These multipliers are calculated as temperature factors from a pattern-curve, which, 
in some cases, is the gas compartment temperature [60] and, in others, it is the temperature curve 
of one of the section parts [35]. As a result, the patterns of the temperature evolution are the 
same in the entire section. Additionally, it is also common to assume a uniform temperature by 
parts (i.e., web and two flanges), or, e.g., a linear temperature variation with distance from the 
top/bottom face of the cross-section (linear interpolation along the vertical axis of the cross-
section). 

Several authors have taken all or part of these approaches to use beam elements from several 
software packages such as Ansys, Abaqus, LS-Dyna, Vulcan, and Safir to model structures under 
fire. For example, Burges and Alexandrou used Vulcan software to apply different factorized 
temperatures to each part of an I-profile section steel beam in fire based on the gas temperature 
curve [37–39]. Santiago et al. built a structural 2D model of the Cardington framework fire test 
using Abaqus and Safir beam elements. They applied a linear temperature variation, constant 
through time, within the vertical direction of the steel member sections [35,36]. To do so, they 
first calculated the temperature time-history at a representative part of the cross-section with a 

https://doi.org/10.1016/j.istruc.2021.02.008
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2D-heat transfer analysis, which then is scaled to obtain the time history at other representative 
parts. This section temperature distribution based on multipliers and pattern curves (also called 
amplitude curves) has several disadvantages, for example, 1) it depends on a very good definition 
of the multipliers that remain constant throughout the fire, 2) only considers the temperature 
variations in the web direction, 3) cannot represent the changes produced in the heating/cooling 
speed of the section points in the presence of isolation elements. In addition, these approaches 
that have involved previous section heat transfer analysis have only used temperature results and 
have ignored the importance of thermal gradient results responsible for temperature changes in 
both directions of the section. 

Kumar et al. applied a linear temperature variation in the vertical direction of the I-profile 
section steel members of a framework tested in fire using Ansys beam elements [40]. To do so, 
they first built a thermal model of the entire framework using shell elements to know the 
temperatures at specific framework cross-sections. Then, they determined the average 
temperature in those sections and in the two flanges to calculate, between these three values, a 
linear vertical variation of the temperature of each section that they later applied to the beam 
elements of a structural model. The disadvantage of entire member heat transfer analyses using 
shell (or solid) elements is that they are very robust and involve unnecessary modeling effort 
compared to the information that can be processed from them when structural models are built 
with beam elements. In contrast, the heat transfer analyses only of the sections with plane 
elements allow a good detail of the section thermal phenomenon characteristics if structural 
models are built with beam elements later. Moreover, this type of heat transfer analysis is easier 
to model and collect adequate and enough information on the thermal phenomenon of each 
section. 

More advanced is the LS-Dyna software beam element approach, based on the formulation 
of a degenerated solid element where the temperatures at the integration points of the beam 
section are calculated by linear interpolation from the previously defined temperature in some 
points of the section using the normalized coordinates. Rackauskaite et al. used LS-Dyna to build 
a 2D model of the Cardington framework. These authors directly applied the temperature-time 
curves at the experiment temperature’s three points of the section [41]. However, the LS-Dyna 
beam element has two drawbacks. First of all, it uses a particular formulation that cannot be used 
in other software. Secondly, LS-Dyna is an explicit analysis software, i.e., it uses explicit dynamics 
algorithms in which very small-time steps are required to maintain the calculations numerical 
stability. By contrast, fire phenomena in structures before collapsing do not take place in 
microseconds or seconds (as it happens, e.g., in impacts, explosions, collisions, and even 
earthquakes) but last minutes and, in some cases, even hours. Therefore, fire modeling in 
structures with explicit techniques requires many time steps that must be calculated one by one 
sequentially in time, i.e., the parallelism of computing can only be used for the subdivision of 
spatial domains. 

Within this context, a simple new general systematic methodology is proposed to model steel 
structures’ behavior under fire in non-uniform temperature conditions (i.e., under longitudinal 
and/or transversal thermal gradients). This methodology uses beam elements that incorporate 
the two spatially and temporally variable thermal gradients of the section from the thermal model 
and, therefore, reproduce the time-dependent thermal and mechanical structural response. 
Triangle-shape plane elements with quadratic approximation in the 2D-thermal model and 
seven-degree Timoshenko’s beam elements in the 2D/3D mechanical models are used. This 
methodology was validated with the full-scale experimental measurements carried out in 
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Cardington published in [61,62], and the 2D-numerical simulations carried out by Franssen et al. 
and Santiago et al. [30,35,36]. 

This chapter is organized as follow: Section 3.2 presents a description of the Cardington test 
used to validate the proposed methodology; Section 3.3 describe the numerical model of the 
Cardington framework; Section 3.4 explains the details of the proposed methodology; Section 
3.5 presents the heat transfer analysis of the framework cross-sections; Section 3.6 presents the 
structural analysis of the Cardington framework; Sections 3.7 presents an in-depth analysis of the 
temperature and thermal gradient results of the heat transfer models of the steel member cross-
sections, and finally, Section 3.8 presents an analysis of the framework’s mechanical results. 

 

3.2 Cardington fire test 

The experiment to validate the methodology to approximate the effects of non-uniform 
heating in the section and evaluate the influence of thermal expansion, lateral restraint, and the 
effects of 3D modeling was conducted by Latham et al. [61] on a loaded steel 2D-framework 
located inside a compartment built in Cardington for fire testing (Fig. 2). The beam of the 
framework is a 4.550 m length UB 406x178x54 profile. This profile was bolted to two columns 
materialized with a UC 203x203x52-profile of 3.530 m in height. The columns were filled with 
autoclaved aerated concrete blocks between the flanges to protect the web from fire, and a 
concrete slab was used on the beam to provide thermal insulation. A specially designed 
subsidiary framework avoided lateral and swaying instabilities. Loads were applied to columns 
and at four points along the beam through hydraulic jacks and remained constant in the fire 
test. The test lasted 30 minutes, and maximum temperatures above 750 °C on the beam and 
above 606 °C were observed on the column. 

 

 

Fig. 2 Cardington framework 
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3.3 Numerical modeling 

Due to the symmetry, the only half framework was modeled, and one spring was placed at 
the height of 3210.1 mm to represent the secondary framework support. Cardington 
framework was modeled in 2D and 3D; however, because the beam-finite element used for 
the modeling is 3D, out-of-plane translation constraints were added to the framework nodes 
to simplify that dimension in the 2D model. Furthermore, concrete elements in the framework 
only fill an insulating role, so they only participate in the thermal resistance but not in the 
structural response. 2D simulations of the Cardington experiment have been carried out by 
Franssen et al. and Santiago et al. using the Ceficoss, Safir, and Abaqus software [30,35,36]. 
However, the work presented in this paper introduces the following contributions: 

- The development of a simple methodology with beam elements to determine adequately 
and rigorously, the response to fire of steel frames subjected to non-uniform 
temperatures, spending less modeling effort, and calculation time against more complex 
models built with finite elements of a higher level of discretization such as shells or solids. 

- The use of the complete thermal response of the analyzed cross-sections to formulate the 
new methodology representing the non-uniform temperature field in the sections (variable 
in space and time), based on the average values of the temperature and the elementary 
thermal gradients. 

- The inclusion of thermal deformations and self-weight loads in the mechanical analysis to 
consider additional bending deformations into the framework response. 

- The inclusion of a Timoshenko’s 3D-beam element with the ability to: i) including cross-
section warping, ii) adequately reproduce the 3D-field of displacements when the element 
is subjected to non-uniform temperatures, iii) the deformability of the cross-section 
(Poisson effect), and iv) correctly model the mechanical 3D-response of the steel 
framework. 

 

3.4 Methodology description 

The Cardington steel framework was modeled in Ansys using 3D-BEAM189 structural 
elements (see Fig. 1). These finite elements only have displacement degrees of freedom and do 
not allow discretizing the temperature in the cross-section. Consequently, the non-uniform and 
time-varying temperature cannot be directly introduced into the beam structural finite element 
cross-section. However, it allows specifying an elemental uniform temperature and 
temperature gradients that vary linearly both in the cross-section and in the element length. 
For that reason, a methodology that approximates the non-uniform temperature distribution 
in the section of a 3D-beam structural finite element (Fig. 3a) through the following three time-
varying components has been proposed: 

a) A uniform temperature component equal to the average section temperature, variable in 
time (Fig. 3b). 

b) A temperature gradient component that varies linearly about the Y-axis: this component 
is equal to the section average horizontal gradient, variable in time (Fig. 3c). 

c) A temperature gradient component that varies linearly about the Z-axis: this component 
is equal to the section average vertical gradient, variable in time (Fig. 3d). 



 

12 

The Y and Z-axes used to describe the direction of the gradients match the 3D-beam 
structural finite element local directions (see Fig. 1a). 

 

 
Fig. 3 Representation of the temperature profile components 

(Referred to the local axes of a 3D beam finite element) 

In Fig. 3a, the time-varying non-uniform temperature in the 3D-beam finite element section 
is represented by three time-varying average components (Fig. 3b to Fig. 3d). Thus, the 
temperature applied at a point of the 3D-beam finite element section (for each time) can be 
determined through the three time-varying components of the non-uniform temperature 
described. Since 3D-beam-type finite elements are used, the average temperature component 
is applied at the centroid so that the temperature applied at one point of the 3D-beam section 
can be approximated by Eq. (1). 

T(Y,Z,t) ≈Tavg (t)+TGyavg (t)×Y+ TGzavg(t) ×Z (1) 

In Eq. (1), Tavg is the average section temperature applied at the centroid. TGy and TGz are 
the positive or negative average horizontal and vertical gradient values of the section, 
respectively. Y and Z are the point coordinates (positive or negative), according to point 
position concerning the origin of the reference system located at the centroid of the section. 
In Eq. (1), lines of average gradients pass through the section centroid so that average gradient 
components are null at the centroid, and the temperature applied at the centroid is equal to the 
average section temperature. 

Non-uniform temperature components in Figs. 3b to 3d are determined by carrying out 
thermal analyses of the framework sections. Thus, the full methodology requires that the 
following procedures be performed: 

1) 2D-thermal analysis of each framework mixed-section with plane elements to obtain the 
thermal response, i.e., the time-histories of temperature and thermal gradients 
(horizontal and vertical) in all of the mesh’s finite elements.  

2) The steel section results are separated to determine only the thermal response in this 
material because concrete elements are not present in the structural model. 
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3) Average temperature (Avg_Temp) and average thermal gradients (Avg_Grad_YY and 
Avg_Grad_ZZ) of the steel-section are calculated at each time to obtain the time-history 
results of each one. For calculating these three time-varying average components (see 
Fig. 3), the thermal gradient results in the steel section’s finite elements are averaged in 
each direction at each time. In addition, temperature results are also averaged in the steel 
section’s finite elements to obtain a temperature mean value of the steel-section at each 
time. 

4) The framework’s structural model is built with 3D-beam finite elements, where the time-
varying non-uniform temperature applied in the 3D-beam finite element section is 
represented by the three time-varying average components calculated from the section 
heat transfer models previously done. In this approach, average temperature and average 
gradients in the section vary at each time during the whole fire scenario. 

5) Static geometrically and materially nonlinear analysis (GMNA) of the framework is done 
to determine the framework’s fire resistance time and the structural response to this 
failure time. 

In this new proposal, the variation of the two average gradient components of the section 
in time makes the temperature applied to the 3D-beam element section be variable in the two 
directions of the section at each time; i.e., a non-uniform temperature is defined in both 
directions of the section at each time of the fire scenario. This temperature field varying 
spatially and temporally affects the temperature-dependent material properties. The elastic 
modulus, the steel stress-strain behavior, and the thermal expansion also change as a function 
of the steel temperature in space and time [63]. 

This simple methodology makes reasonable and natural use of gradient results of the 
section’s thermal model to represent as closely as possible the non-uniform time-varying 
temperature field that is applied in the 3D-beam steel section when this type of finite element 
is used to model the response of a structure in a fire situation. It is essential to highlight that 
the present methodology, unlike others [35–40,60], uses all available results of the heat transfer 
analysis in the section, i.e., all of the elemental temperature and elemental thermal gradients 
results. A summary of the methodology is presented in Fig. 4. 

Details of the full methodology are shown in Figs. 8, 9, and 13. The methodology also includes 
the time-varying temperature in the framework beam’s length, as Franssen recommended [30]. 
This longitudinal variation of the temperature in the framework’s beam is approximated 
through reduction factors (fx) determined by a sinusoidal function, which varies between 0.90 
approx. (at the beam/column connection, according to EN 1993-1-2 [64]) and 1.00 (at mid-
span), considering that the fire location is at the beam mid-span. Thus, the reduction factors 
(fx) are calculated at the mid-point of each 3D-beam finite element that discretizes the 
framework’s beam. Then, the factor (fx) at the midpoint of each 3D-beam finite element is 
multiplied by the average temperature component of the section (Tavg in Fig. 2b) to include a 
variation of the temperature in length. Since the average temperature component applied to 
the 3D-beam finite element section varies in time, the temperature along the beam also varies 
in time. 
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Fig. 4 Methodology summary 

3.5 Heat transfer analysis of the framework sections 

A complete heat transfer analysis was carried out in Ansys to determine the heat transferred 
to the framework sections. The thermal model includes conduction and convective-radioactive 
boundary conditions. The Cardington framework steel-concrete mixed-sections (beam-slab 
and column-block) for the transient thermal modeling are detailed in Fig. 5. 

The specific heat (Ca) and thermal conductivity (λa) of steel with temperature were 
determined according to EN 1993-1-2 [64]. The convective heat transfer coefficient (αc=25 
W/m2K), the resulting emissivity between the fire source and the steel (εres=0.7), and the 
radioactive shading effect on the outer flange of the column (ε=0.3) were taken from [36]. The 
density (ρa) of steel was assumed to be independent of temperature with a constant value of 
7850 kg/m3. Variations of the specific heat (Cp) and thermal conductivity (λc) with the 
temperature of the concrete slab were determined according to EN 1992-1-2 [65]. The 
convective heat transfer coefficient (αc) and the resulting emissivity between the fire source 
and the concrete slab (εres) were 25 W/m2K and 0.8, respectively. The density (ρc) of the 
concrete slab was assumed to be independent of temperature with a constant value of 2400 
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kg/m3. For the concrete blocks isolating the column, a variation of thermal conductivity (λc) 
given by 0.20+0.0004θa was considered, and the specific heat and density properties were 
assumed to be constant values of 1050 J/kg-K and 677 kg/m3, respectively. Franssen et al. and 
Santiago et al. used these thermal properties of the concrete blocks in the Cardington 
framework thermal simulations [30,35,36]. 

The discretization is carried out for: i) the UB 406x178x54 steel beam section, attached to 
the 1200x150 mm concrete slab section and, ii) the UC 203x203x52 steel column section 
attached to the aerated concrete block sections on the flanges to provide thermal insulation. 
Direct contact between the steel section and the concrete was assumed (as in the Cardington 
test) in order to consider the heat transferred from the steel section to the concrete. As a result, 
concrete elements produce non-uniform temperature distributions in the beam and column 
steel-sections. 

 

 
(a) Steel beam-slab 

 
(b) Steel column-blocks 

Fig. 5 Mixed cross-sections dimensions 

The temperature of the environment (combustion gases) is the main parameter that affects 
the heat exchange between the environment (the fire) and the structure. The temperature of 
these environment combustion gases in the experiment was measured for 30 min. The 
evolution of the gas temperature over time (natural fire curve) is shown in Fig. 6 [36]. 

 

 
Fig. 6 Natural fire curve 
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Based on the thermal properties and the convection-radiation boundary conditions, 2D-
heat transfer models of the steel beam-concrete slab and steel column-concrete blocks sections 
have been done in Ansys using PLANE35 elements. This finite element is a quadratic triangle 
of six (6) nodes, with a degree of freedom (temperature) per node, applicable to the transient 
state 2D-thermal analysis. Convection and radiation are introduced as surface loads at the 
model boundaries of each section. 

The heat transfer analysis allows knowing the variation in space and time of the temperature 
field and the thermal gradient field in the section. This variation in temperature and gradients 
is the starting point for the methodology proposed.  

Fig. 7 shows the discretization of the beam-slab and column-block sections with PLANE35 
elements. These meshes do not require significant refinement since the finite element shape 
functions introduce a quadratic temperature approximation. Unstructured meshes of 
triangular-shaped elements are used because of the adaptability to the section shape (fillet 
zones) and the good aspect ratio, so that very good meshes are automatically generated. The 
number of elements ne in the beam and column steel sections is shown in Fig. 7a and Fig 7b. 

 

 
(a) Beam-slab 

 
(b) Column-blocks 

Fig. 7 Cross-section’s discretization 

The beam and column steel-section temperatures obtained from the thermal analysis are 
non-uniform due to the slab on the beam and the concrete blocks in the column. The flowchart 
in Fig. 8a details the transient 2D-thermal analysis of the framework beam-slab and column-
blocks sections subjected to non-uniform temperature fields. 

The procedure starts with the input of the history-time curve of the gas temperature, the 
mixed-section geometry data (Fig. 8b and 8c), the temperature-dependent material properties, 
the Boltzman constant, the convection-radiation data, the time step ∆t, and the total simulation 
time (ts). The mixed-section domain is discretized with PLANE-35 elements, and the transient 
thermal analysis is solved with Ansys. Finally, the full thermal response in the mixed-section is 
obtained at each time step, i.e., the time-history results of the temperatures and the thermal 
gradients (horizontal and vertical) in each of the finite elements of the mixed-section mesh. 
The horizontal and vertical thermal gradients are expressed with YY and ZZ, respectively, to 
relate them to the local directions of the structural beam finite element used in mechanical 
modeling (see Fig. 1). 
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Fig. 8 Transient heat-transfer analysis flowchart of a mixed-

section 

Since concrete elements in the framework only fill an insulating role, only the thermal 
response in steel-section is considered at the end of the heat transfer analysis. Therefore, 
finalized the thermal analysis of the mixed-section in Fig. 8a, the procedure continues at  to 
calculate the three time-varying average components described in Figs. 3 and 4, i.e., the time-
history results of the average temperature and thermal gradients (horizontal and vertical) in 
steel-section. Before starting these calculations, temperature and gradient results in the steel-
section are selected. 

The flowchart in Fig. 9 details the methodology by which the three constituent components 
of the section temperature profile (in Fig. 4) are obtained. For each instant (t), the procedure 
starts from the steel-section elements thermal response obtained with the procedure detailed 
in Fig. 8a. The flowchart begins with the entry of the number of PLANE35 elements (ne) of 
the steel-section. To calculate the average temperature and the two average gradients of the 
steel-section at each instant (t), a cycle controlled by the counter (i) is performed, which counts 
the number of elements (ne) of the steel-section (i=1 to ne). In this cycle, the elemental 
temperatures and gradients YY and ZZ obtained from the transient thermal analysis are stored 
in the variables Temp(i), Grad_YY(i), and Grad_ZZ(i), then, they are accumulated in the 
variables Sum_Temp, Sum_Grad_YY and Sum_Grad_ZZ. Once the cycle is finished, the 
average temperatures and gradients of the steel-section are calculated, dividing each summation 
updated value by the number of elements (ne). The values of the averages are stored in 
(Avg_Temp), (Avg_Grad_YY), (Avg_Grad_ZZ) for each time (t). The process is repeated for 
each time (t+∆t) up to the total simulation time (ts). In the end, the complete tabulations of the 
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three history-time curves of average temperature, average YY gradient, and average ZZ 
gradient are obtained. The procedure is applied for each steel-section of the structural member 
considered. In the present case study, the number of sections analyzed is two, the beam steel-
section, and the column steel-section. In the flowchart in Fig. 9, the number of PLANE35 
elements in the beam steel-section is ne=244 and ne=278 for the column steel-section. 

 

 
Fig. 9 Methodology for non-uniform temperature approach 

in a steel-section 

3.6. Structural analysis of the framework 

Since concrete only plays an insulating role in the framework, it only participates in the 
thermal resistance and not in the structural response. Therefore, the mechanical properties of 
concrete are not considered, only those of steel. 

The real stress-strain ratio (σ-ε) of steel at high temperatures and the reduction factors ky,θ, 
kp,θ and kE,θ given by the EN 1993-1-2 standard, were used [64]. The yield stress of 408 MPa, 
the elastic modulus of 210 GPa, and the constant Poisson ratio of 0.3 were taken from [36]. 
The creep effect on the deformation of steel was considered implicit in the material model. 
The Ansys model multilinear isotropic hardening with temperature dependence was used, 
which can adequately represent the stress-strain relationships of steel with temperature (based 
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on Dounas and Golrand described in [66]). Variations of thermal expansion (α) of steel with 
temperature were also determined according to EN 1993-1-2 [64]. 

The thermal deformations introduced with thermal expansion (α) are very important in the 
mechanical analysis of the framework. Thus, the non-uniform field of temperature developed 
in the framework members sections by fire-action makes the material highly heterogeneous, 
resulting in additional bending deformations that increase with temperature. 

In the Ansys structural analysis, geometric nonlinearity is activated to introduce the 
formulations of large deformations and deflections (GMNA). The convergence criteria for the 
solution of the nonlinear equations systems of the Newton-Raphson methods are defined. As 
concrete slabs and blocks only provide thermal insulation, they are not modeled in the 
structural analysis. The Cardington experiment reported that the joint remained intact and at 
lower temperatures than those measured at the beam and columns during the test; thus, the 
beam-column joint is considered rigid. The mechanical behavior of the half Cardington 
framework was modeled in 2D and 3D. Fig. 10 shows half of the steel 2D-framework 
idealization considering the symmetry. In the 2D model, XY-plane-frame restraints were 
included in all nodes. Additionally, the axial translation in the x-global axis and the rotation 
around the z-global axis at the beam mid-span were restrained considering the symmetry 
conditions; translations in the x-global and y-global directions were also restrained at the column 
bottom-end. Since the beam-finite element used for the modeling is 3D, translations in the z-
global direction (out-of-plane) were restrained in all nodes in the 2D model. A bilinear spring 
with a nonlinear force-translation behavior was modeled at the position shown in Fig. 10 to 
represent the secondary framework constraint [30]. In the 3D model, XY-plane-frame 
restraints were released; additionally, symmetry condition at the beam mid-span remained (that 
means only translation in the y-global direction was allowed). Also, translations in three global 
directions and rotation about y-global direction were restrained at the column bottom-end in 
the 3D model. 

 

 
Fig. 10 Idealized Cardington framework 

The meshing of the steel-beam and column cross-sections and the framework discretization 
with BEAM189 elements are shown in Figs. 11a and 11b. Half of the beam in Fig. 11c was 
discretized with five elements (ne=5), and the column was discretized with ten elements 
(ne=10). 
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Fig. 11 Sections pseudo-meshing and BEAM189-

framework discretization 

Mechanical loads shown in Fig. 10 are applied at room temperature and remain constant 
during the fire. The non-uniform temperature in the steel-section is applied through the three 
time-varying components previously obtained from the procedure in Fig. 9. Besides, a linear 
variation of temperature in the beam length is considered. The longitudinal variation of the 
temperature in the beam is included through reduction factors (fx) determined by a sinusoidal 
function that varies between 0.90 (at the beam/column connection) and 1.00 (at mid-span), 
considering that the fire location is at the beam mid-span [30,64]. Based on the discretization 
of the half beam (see Fig. 11c), the reduction factors (fx) calculated at the mid-point of each 
BEAM189-element are shown in Table 1. Fig. 12 shows the approximation of the longitudinal 
temperature variation in half beam discretized with the five BEAM189 elements (ne=5). 

 

Table 1. Temperature variation factors along the beam 

 Relative 
distance 

Length 
(mm) 

Angle (x) 
(rad) fx=sin(x) 

Connection 0.0 0.00 1.120 0.900 
 • 0.1 237.85 1.165 0.919 
 • 0.3 713.55 1.255 0.951 
 • 0.5 1189.25 1.345 0.975 
 • 0.7 1664.95 1.435 0.991 
 • 0.9 2140.65 1.526 0.999 
Midspan 1.0 2387.50 1.571 1.000 

 

The factor (fx) at the midpoint of each BEAM189-element is multiplied by the average 
temperature component (Tavg in Fig. 3b) to include the beam temperature longitudinal variation, 
as shown in Fig. 12. As the average temperature component applied to the BEAM189 section 
varies in time, the temperature in beam length also varies in time. 
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Fig. 12 Longitudinal temperature variation in half beam 

The structural analysis under fire can be approached using a static pseudo-time scheme or 
a dynamic real-time scheme, including a quasi-static time integration method. In this 
methodology, a static pseudo-time scheme is used because the aim is to find the structure’s fire 
resistance time and the structural response to this failure time, so a static analysis is enough for 
this purpose. However, the methodology can be used in explicit or implicit dynamic analysis 
introducing the appropriate command sequences. Fig. 13a shows the mechanical analysis 
flowchart, in which the average temperature and average thermal gradients results of the steel-
section at each time obtained from the procedure illustrated in Fig. 9 are applied in the 
BEAM189 cross-section. Therefore, this approach can consider the different heterogeneous 
material behaviors produced by temperature changes in the section in time. This methodology 
can approximate the non-uniform temperature field in beam-type elements and is helpful for 
rigorously analyzing steel frames under fire, saving modeling and calculation times. 

In the mechanical analysis in Fig. 13a: i) the structural members are the beams and columns; 
ii) each structural member has a single section (the member is prismatic over the entire length); 
iii) the geometric and material properties are assigned to each section, the section is assigned 
to each member, and loads are assigned to each BEAM189-finite element that discretizes the 
member; iv) all BEAM189-finite elements have a single section; v) the members are grouped 
by section, and the elements are grouped by member. In this way of working, as in object-
oriented programming, heritages are transferred among objects, in this case, among sections, 
members, and elements. The analysis is defined through loops controlled by the following 
control variables: the pseudo-time (t), the number of sections counter (i), the counter of the 
members’ number with the same section (j) and, the counter of elements number of each 
member grouped by section (k). The limits of these control variables are respectively: the 
pseudo total simulation time (ts), the number of sections (ns), the number of members (nm(i)) 
in the same section (i), and the number of BEAM189-elements (ne(j,i)) that discrete the member 
(j) with section (i). The number of sections (ns) controls the entire process since the section 
carries the nonlinearity of the material and the three time-history components that approximate 
the non-uniform temperature field. In general, nm(i) is a size vector (ns), and ne(j,i) is a matrix 
dimensioned from the largest number of members with the same section and the number of 
sections (> nm(i),ns). 
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In this case study, there are two sections (ns=2) -Section 1 corresponding to the beam and 
Section 2 corresponding to the column-, so the loop controlled by the counter (i) goes from 1 
to 2 (i=1,2). The number of members with Section 1 (beam cross-section) is nm(1)=1, and the 
number of members with Section 2 (column cross-section) is nm(2)=1, so the highest number 
of members with the same section is 1, and the cycle controlled by the counter (j) goes from 1 
to 1 (j=1 to 1) for each section run. Therefore, the largest number of members with the same 
section is 1 (>nm(i)=1). The number of elements in Member 1 (beam) with Section 1 is 
ne(1,1)=5 and the number of elements in Member 2 (column) with Section 2 is ne(1,2)=10. The 
application of the procedure in the analyzed framework is detailed in Fig. 13b. The relations 
between the variables are shown in Fig. 13c, and the matrix forms of the variables nm(i) and 
ne(j,i) are presented in Fig. 13d. 

The analysis procedure in Fig. 13a starts with the next entries: the number of sections in the 
structure (ns), the definition of the pseudo time step (∆t), and the total pseudo-time of the 
simulation (ts). The term pseudo-time refers to the static analysis incremental control that 
solves geometrical and material nonlinearity without the inertial effects of the dynamic schemes 
controlled by the real-time parameter [67]. The sub-process (1) starts with the section data 
entries through a loop controlled by the section’s counter (i). In this loop (i=1 to ns), for each 
section, geometrical data (wf1,wf2,hw,tf1,tf2,tw, shown in Fig. 13e), the temperature-dependent 
material mechanical properties, and the number of members nm(i) with the same section (i) are 
entered. Then, through another loop (j=1 to nm(i)), each member (j) in section (i) is assigned: 
the member length L(j), the number of BEAM189-finite elements ne(j,i) that discrete the 
member, the section dimensions, the material properties, and the discretization are performed 
with BEAM189 elements. After assigning the boundary conditions to the model nodes 
according to the analysis dimension (2D or 3D) and the symmetry conditions, the sub-process 
(2) is started to assign the loads on the elements through a loop controlled by the elements 
counter (k) of each member (j) in section (i). In this loop (k=1 to ne(j,i)), the three components 
that approximate the non-uniform temperature field and the mechanical loads are assigned to 
each element (k). The reduction factor fx(j,k) is applied to each element (k) to discretize the 
longitudinal temperature variation. The uniform temperature component (Element Temp(j,k)) 
is the average section temperature (Avg_Temp(i)) multiplied by the factor fx(j,k), and the other 
two gradient components (Element Grad YY(j,k)) and (Element Grad ZZ(j,k)) are the average 
section gradients (Avg_Grad_YY(i)) and (Avg_Grad_ZZ(i)) respectively. Once the non-
uniform temperature components have been applied, the uniform load on each element (k) 
and the nodal loads are applied. The sub-process (2) is carried out for each pseudo time (t) 
through nested loops controlled by the control variables (i), (j), and (k). Loops continue while 
the loads are assigned in all of the elements, and the nonlinear static analysis is performed for 
each pseudo-time step (∆t) up to the total pseudo simulation time (ts). Finally, the time-history 
results of the node displacements and the results in the elements are obtained. 
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Fig. 13 Mechanical analysis flowchart 

3.7. Thermal results of sections 

Thermal results are temperatures and thermal gradients in the beam and column sections. 
In this case, the temperature is given by a field, T(Y,Z,t), so at each point (Y,Z) in a section, 
the two-dimensional field of the thermal gradient (TGy,TGz) shows the direction of 
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temperature rises. In contrast, the temperature gradient’s magnitude determines how fast the 
temperature rises in that direction. The thermal gradient is directed from lower to higher 
temperatures. The gradient vector module is proportional to the temperature change per unit 
of length, °C/m (e.g., large vectors of thermal gradient correspond to those areas where the 
temperature changes quickly). 

Figs. 14 and 15 show the temperature time-histories at three points (two on the flanges and 
one on the centroid indicated by the numbers 1, 2, 3) for the beam and column steel-sections. 
The temperature results at the three points obtained from the Ansys-heat transfer models 
(described in Fig. 8) compare very well with those of Franssen et al. and Santiago et al. done in 
Ceficoss, Safir, and Abaqus available in [30,35,36]. The temperature curves in the beam section 
top flange point and the column section web point are the lowest due to the concrete slab 
thermal insulation effect in the beam and concrete blocks in the column. Fig. 14 shows changes 
in the cooling speed at points 1 and 3 of the beam section. It can be seen that the highest 
heating rate during the first 25 minutes is on the web. After 25 minutes, the web cools faster 
than the bottom flange. In Fig. 15, the outer flange in the column has lower temperatures than 
the inner flange; therefore, the shadow effect is verified. This non-uniform temperature 
behavior influences the mechanical behavior of the framework. 

 

  

Fig. 14 Temperature at three 
points on the beam steel-

section 

Fig. 15 Temperature at three 
points on the column steel-

section 

Figs. 16a and 17a show temperature isocontours in sections (including the concrete 
elements) at the end of the test (t=30 min). In Figs. 16b and 17b, the temperature isocontours 
in the steel sections more clearly show the temperature variation in the two directions, 
demonstrating the non-uniformity of the steel section temperature field. There is an apparent 
symmetry in the horizontal distribution that is not present in the vertical distribution. The web 
temperature profiles show the thermal insulation due to concrete elements and the shadowing 
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effect on the column outer flange. Since the sections are not heated uniformly around their 
perimeter, internal thermal gradients along the local ZZ axis (Figs. 16c and 17c) are important. 
E.g., the concrete slab creates non-uniform heating of the beam that causes the temperature 
to drop towards the slab (Fig. 16c), so an approximation of the temperature distribution in the 
beam section with a linear variation is adjusted. However, the non-uniform heating of the 
column cross-section created by the concrete blocks causes the web to maintain lower 
temperatures than the flanges, and the temperature in the section increases from the center of 
the web to the flanges. The shading effect on the outer face and the exposure to the inner face 
fire establish two temperature variations in the section; one that goes from the web center to 
the outer flange and another that goes from the web center to the inner flange. Therefore, the 
temperature distribution approximation in the column with a single linear variation can 
influence the prediction of the column lateral displacement; despite this, an approximation of 
the temperature distribution in the column section with a linear variation is acceptable (see Fig. 
24). Horizontally (local YY-axis), the temperature variations are lower, so an approximation of 
linear variation in that direction is justified. 

In Fig. 16c, the gradient sign on the entire web is negative; this means that the temperature 
increases from top to bottom in the Z-axis’ negative direction as expected (see Fig. 16b). 
Similarly, in Fig. 17c, the gradient sign on the web is negative in the bottom-middle and positive 
in the top-middle since the temperature increases from the center to the web ends. That means 
the temperature increases in Z-axis’s negative direction in the bottom-middle and Z-axis’s 
positive direction in the top-middle, as expected (see Fig. 17b). In beam and column sections, 
it can be seen that: 1) the highest gradient values are at the ends of the web (just at the fillet), 
where the temperature values change more rapidly than other parts of the section, 2) in both 
flanges, the gradient slope changes because the gradient intensity becomes decreasing. 

 

  
(a) Complete section temperature, [°C] (b) Steel section and web detail, [°C] 
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(c) ZZ-Web gradient, [°C/m] 

Fig. 16 Temperature isocontours and ZZ-thermal gradient 
in the beam section at t=30 min 

  
(a) Complete section temperature, [°C] (b) Steel section and web detail, [°C] 

 
(c) ZZ-Web gradient, [°C/m] 

Fig. 17 Temperature isocontours and ZZ-thermal gradient 
in the column section at t=30 min 

Fig. 18 shows the horizontal and vertical thermal gradient isocontours in the beam steel-
section for three representative times (5, 15, and 30 min). Fig. 19 shows the horizontal and 
vertical thermal gradient isocontours in the column steel-section for three representative times 
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(5, 20, and 30 min). The two gradients show an initial upward behavior. The beam gradients 
grew up to about 15 min and in the column up to about 20 min. Then, they begin to decrease 
until an almost uniform distribution of temperatures exists towards the end of the test (t=30 
min).  

Thermal gradients are element results and are located at the centroid of each PLANE35-
element. Isocontours in Figs. 18 and 19 are the smoothed results of the sections’ thermal 
gradients in the indicated times. In these results, small localized areas are observed (denoted by 
MN (minimum) and MX (maximum)) where the gradients achieve relative values that are high 
(positive or negative) and which indicate large temperature changes in a small region of the 
section. These are shown, e.g., in Fig. 19e, where there are small zones where the vertical 
gradient ZZ in the steel beam section achieves a minimum value MN of -5.87 °C/mm and a 
maximum gradient MX of 1.34 °C/mm. Also, in Fig. 19b, there are small horizontal gradient 
zones YY in the steel column section where the MN gradient is -2.65 °C/mm, and the MX 
gradient is 2.64 °C/mm. Figs. 18 and 19 show simultaneous positive and negative gradient 
values, which tend to balance out, resulting in almost zero positive or negative values. 

 

   

(a) YY-Gradient (t=5 min) (b) YY-Gradient (t=15 min) (c) YY-Gradient (t=30 
min) 

   

(d) ZZ-Gradient (t=5 min) (e) ZZ-Gradient (t=15 min) (f) ZZ-Gradient (t=30 
min) 

Fig. 18 Isocontours of YY-horizontal gradient and ZZ-vertical 
gradient in the I-profile section of the steel beam, in °C/m 
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(a) YY-Gradient (t=5 min) (b) YY-Gradient (t=20 min) (c) YY-Gradient (t=30 min) 

   

(d) ZZ-Gradient (t=5 min) (e) ZZ-Gradient (t=20 min) (f) ZZ-Gradient (t=30 min) 

Fig. 19 Isocontours of YY-horizontal gradient and ZZ-vertical 
gradient in the I-profile section of the steel column, in °C/m 

Meanwhile, Figs. 20a and 20b show the average thermal gradient histories of the steel 
sections in the beam and the column, where most of the time, the resulting gradient is negative, 
indicating that the temperature decreases in the direction of the concrete slab in the beam and, 
the direction of the outer flange in the column due to the shading effect. In Figs. 20a and 20b, 
average thermal gradients are not constant in time, and their behavior is different in the heating 
and cooling phases. Fig. 20a shows that thermal gradients magnitude increases and decreases 
in the heating and cooling stage, respectively, i.e., gradients magnitude increases from start fire 
up to 15 min in the beam section and 17 min in the column section; then, gradients magnitude 
decreases until the end of the fire. Hence, knowing the gradients’ behavior in the whole fire 
scenario is important mainly for the subsequent three-dimensional analysis of post-buckling or 
collapse, which can occur in the cooling phase [68]. 

In Fig. 20a, the average ZZ gradient values (in the web) of the beam section are higher due 
to the asymmetry of the section in the vertical direction: 〈concrete

steel
〉, while the low average 

gradient values YY are due to the section symmetry in the horizontal direction: ⟨steel|steel⟩ on 

the bottom flange, and �concrete
steel

� concrete
steel

� on the upper flange. The average ZZ gradient values 

(in the web) of the column section are lower than those of the beam because of the concrete 
blocks between the flanges that protect the web from the high fire temperatures. 

In Fig. 20b, the horizontal average gradient values YY in both sections show a more 
uniform behavior. They are lower than the vertical ones, with the maximum horizontal average 
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gradient being one-seventh of the maximum vertical average gradient in the beam and half in 
the column. Although the horizontal average gradient values YY are similar in both sections, 
it takes only 5 min for the beam to get the maximum value. In comparison, the column takes 
15 min to get the same value. In both sections, horizontal average gradient YY values are lower 
than those of vertical average gradient ZZ; however, it was confirmed that horizontal gradients 
are indispensable in approximating the section’s non-uniform temperature distribution. Not 
including them creates problems of non-convergence of the solution. In Fig. 20a, the vertical 
gradient peaks ZZ in the beam and column sections are presented at t=15 and t=17 min, 
respectively. It can be seen that when the gradient is maximum, inflection points occur in the 
deflection curves of the beam and column where the deflection rate increases (see Fig. 24). 
This drop in the average values of the ZZ gradients is due to two considerations: i) the drop 
in the gas temperature in the compartment from t=15 min (see Fig. 6), and ii) the decrease in 
the steel thermal conductivity with the temperature. 

 

  
(a) Time-history of  ZZ-vertical average gradient (b) Time-history of  YY-horizontal average gradient  

Fig. 20 Average transversal gradient time-histories in the 
steel sections of the beam and column 

Figs. 21a and 21b show for the three points on the flanges and the web centroid of the 
beam and column sections (indicated by numbers 1, 2, and 3) the temperature histories 
calculated in the thermal model against temperature histories applied in the structural model 
using the proposed methodology. Temperatures applied at these points (for each time) are 
approximated by Eq. (1). According to this equation, the average section temperature is applied 
at the centroid where gradients are null so that, at the centroid, the temperature applied is the 
average section temperature. Figs. 21a and 21b show the average temperature histories Tavg(t) 
at the centroid of the beam and column sections used in the methodology for approximating 
non-uniform temperature in the section. Although these average temperatures are applied at 
the centroid, the Tavg(t) curve is not compared with the calculated temperature curve at the 
centroid in the thermal model because they have different meanings. I.e., the average section 
temperature applied at the centroid represents the uniform temperature component used to 
approximate the temperature applied at one point of the section in the structural model, which 
does no-match the centroid temperature calculated in the thermal model. Besides, the 
temperature time-history curves calculated in the thermal model and those applied in the 
structural model (at the two points of the flanges) do not match. That is because the applied 
temperature field using the average temperature and the two average gradients of the section 
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are approximations that balance the over and under errors in the section domain at each time 
step. 
 

  
(a) Beam steel section (b) Column steel section 

Fig. 21 Time-histories of average temperatures calculated 
and applied at three points in the sections 

By approximating the non-uniform temperature distribution in the section (a curved surface 
in space) through an average oblique plane, points of temperature above and below the plane 
(overheating in some cases and underheating in others) are located that balance the result in 
each time step. Figs. 22 shows this situation for a time t=15 min in the beam section and for a 
time t=20 min in the column section. These two figures represent the temperature curved 
surfaces from the thermal model calculations and the average temperature planes used in the 
methodology to approximate the non-uniform temperature in the structural model sections. 
On the surfaces, the isocontours indicate the temperature values, and the surface slopes 
represent the thermal gradients. 

E.g., in the beam section (Fig. 22a), the high slope of the temperature surface at the web 
reproduces the high vertical gradient value in the Z-direction. In contrast, the low slopes at the 
flanges denote the low horizontal gradient values in the Y direction. In the column section 
(Fig. 22b), high slopes are observed over the flanges and the web that mean high values of the 
horizontal and vertical gradient in the Y and Z directions, being the gradients in the web larger. 
This situation is verified by the gradient distributions in Figs. 18b and 18e on the beam and 
Figs. 19b and 19e on the column. On the other hand, the result of the approach-plane cut in 
the temperature surface explains the temperature balance. Above means, in the centroid of the 
section, the plane height is equal to the average section temperature, and the slope of this plane 
in each direction (Y and Z) coincides with the values of the average gradients (horizontal and 
vertical) of the section. E.g., in the beam section (Fig. 22a), the Z-direction slope approaching-
plane is higher than the Y-direction slope. In the column section (Fig. 22b), the slopes of the 
temperature approaching plane in the two directions (Y and Z) are more similar to each other 
because of the section symmetry. The highest average gradient values are in the Z-direction 
and the lowest in the Y-direction. The temperature surfaces are helpful insofar as they allow 
the influence of boundary conditions on the section to become evident. E.g., when comparing 
Figs. 22a and 22b, it is observed that the impact of the radioactive shadow on the steel thermal 
gradient (in the column) is less than the concrete boundary condition effect (in the beam). 
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 (a) Beam steel section (t=15 min) (b) Column steel section (t=20 min) 

Fig. 22 Calculated temperature surfaces and applied 
approximate temperature planes  

3.8 Framework’s mechanical results 

In this work, three different mechanical models have been done to validate and verify the 
proposed methodology: 

- A 2D model with the spring shown in Fig. 10, whose calibration allows representing the 
bending of the beam-column assembly properly. This 2D model was done to verify the 
2D simulations of the experiment carried out by Santiago et al. available in [36]. 

- A 3D model with the same spring as the 2D model mentioned above. This model is 
necessary to check 3D effects such as section warping and flexural-torsional buckling that 
can appear in frames at elevated temperatures and cannot be captured with 2D models. 

- A springless 3D-model for evaluating the influence of the subsidiary framework lateral 
resistance on the three-dimensional fire response of the framework. 

 

The validation of the proposed methodology is carried out based on the following results 
of: (a) the Cardington test, which are included in the Latham et al. report [61,62], and (b) the 
2D-numerical simulations of the experiment carried out by Santiago et al. [36]: 

- Maximum deflection in midspan beam. 
- Lateral displacement at column mid-height. 
- Column end extension. 
- Fire resistance time. 

 

Lateral displacement at column mid-height and column end extension are both new 
analyses that make it possible to validate the proposed methodology and take advantage of the 
3D-modeling capabilities using 3D-beam finite elements. 

Fig. 23a compares the experimental beam mid-span deflections with those obtained by 
Santiago et al. [35,36] and the three proposed mechanical models. It is observed that all models 
make a good prediction. Safir results match those of the Ansys-3D models up to about the 
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16th minute. The 2D model, on the other hand, is closer to results given by Ceficoss and 
Abaqus. Fig. 23b compares only the lateral (central) displacements at half the column height 
obtained with the different programs. All deflection predictions are in the centroid. It can be 
seen again that the results obtained with all of the models are similar. 

 

  
(a) Max. vertical displacement - beam 

midspan 
(b) Lateral displacement - column 

mid-height 

Fig. 23 Deflection comparison of the framework members 
(centroidal results) 

Fig. 24 compares the lateral displacement at column mid-height measured by the 
extensometer (located about a quarter of the outer flange width: ¼wf) with those obtained from 
the Ansys-3D models. Deflection predictions are obtained outside the centroid at the 
extensometer position located on the column’s outer face. 

It is observed that, in the first 16 minutes, the calculated deflections are higher than 
measured, probably because the approximation of linear variation of the temperature in the 
section does not completely represent the bi-laminate effect. This effect is the curvature 
produced by expanding the heated inner face when the section perimeter temperature is not 
uniform. The bi-laminate effect in the column, in turn, produces a balancing of internal forces 
by the temperature that makes the deflections in the column laterally smaller, as observed in 
the measurements of the experiment. However, it is essential to note that from 17 minutes (the 
same time of the average vertical gradient peak ZZ, see Fig. 20a and until the final failure time, 
the prediction of lateral displacement of the column is very close to the experiment (in the 
cooling zone, see Fig. 6). 
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Fig. 24 Lateral displacement - column mid-height, (¼wf) 

Figs. 25a and 25b show the lateral displacements at mid-height of the column at three points 
located on the outer face in the Ansys-3D models at t=20 min. The 39.43 mm model prediction 
without spring (in the extensometer position, indicated in red color) compares very well with 
the 41.6 mm reported in the experiment. If the spring is included, the prediction slightly 
increases to 41.3 mm, closer to the experiment value. These non-centroidal results are 
calculated into the pseudo-mesh nodes of the BEAM189 element section. Results querying in 
the nodes of the finite element outer face (in extruded view) are possible by interaction with 
the results’ database in the pseudo-mesh nodes of the section. 

 

   
a) Ansys-3D (No Spring) model (b) Ansys-3D (Spring) model 

Fig. 25 Lateral displacement on outer face (wf/4) - column 
mid-height (t=20 min), in extruded view 

Table 2 shows the fire resistance time according to the simulations carried out by Santiago 
et al. [35,36] and by the authors with the new methodology implemented in Ansys. The results 
are compared with the fire resistance time of 20’36” reported in the test. It is observed that the 
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Ansys-3D (No Spring) model gives the best prediction, although the results are similar for all 
the Ansys structural models. 

 

Table 2. Time of fire resistance (Rf) 

Numerical model Rf Ratio 
(Num./Exp.) 

Ceficoss 19’12’’ 0.93 
Safir 20’04’’ 0.97 

Abaqus 19’51’’ 0.96 
Ansys-2D (Spring) 21’00” 1.02 
Ansys-3D (Spring) 20’04’’ 0.97 

Ansys-3D (No Spring) 20’28’’ 0.99 
 

Finally, Table 3 shows the CPU time for the three models built in Ansys using parallel 
distributed memory-MPI calculation in 6 physical cores on a Dell Mobile Workstation 7530/64 
bits, Intel Xeon Processor-2.71 GHz, and Ram-32 GB. Despite the high nonlinearities present, 
the results show that CPU times are low in the three models (less than 1 minute). 

 

Table 3. Calculation time for Ansys models 

Numerical model CPU Time (sec) 
Ansys-2D (Spring) 27.000 
Ansys-3D (Spring) 40.625 

Ansys-3D (No Spring) 32.938 
 

From the analysis carried out, the capacity of the three models developed in Ansys with the 
strategy presented in this paper to correctly predict the response of the framework with a low 
computational cost is concluded. Considering that the two framework 3D-models’ deflections 
predictions are practically the same, the following results focus on analyzing the Ansys-3D (No 
Spring) model results as it is the model that includes 3D-phenomena that better approximates 
the failure time and has the smallest CPU cost. 

Fig. 26 shows the vertical deflection predictions at two points in the middle and corner top 
end of the outer flange (column end extension). The test report exactly no-specified the 
extensometer position, so it was assumed from the photographic evidence it was the midpoint. 
Both predictions show similar behavior to that measured in the experiment. The 20.68 mm 
calculated in the middle flange at t=20 min is closer to the 20.6 mm measured in the 
experiment. At the outer end of the flange, the computed value is 22.04 mm. The differences 
between the measured and simulated values depend on the experimental measurement point 
location as the section is rotated. 

A detail of the extruded column end is shown in Fig. 27. The colors of the vertical 
displacement isocontours (t=20.47 min) at the end of the column indicate the section rotation 
(differential displacements at all of the section points are not constant). This situation affects 
the measurement of vertical deflection. 
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Fig. 26 Column end extension in two points (t=20.47 min) 

 

Fig. 27 UY-displacements in the column end (t=20.47 min), 
in extruded view 

Fig. 28 shows the lateral column deflections (UZ) perpendicular to the plane of the 
framework. Deflections are calculated at the mid-height and the top end of the column. 
Initially, the values are small, and as time goes by, when the material weakens by fire, sectional 
warping and buckling appear, which can compromise the column stability. Some oscillations 
and startles are observed in small time fractions at the final times, allowing some instability to 
be inferred. The UZ values in the mid-height of the column are positive, and those at the top-
end are negative, indicating inflections. 
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Fig. 28 Normal column displacement (t=20.47 min) 

Fig. 29 shows the applied temperature distribution to the frame (t=20.47 min) using the 
non-uniform temperature approximation in the sections and the temperature reduction factors 
in the beam length. The different colors indicate the different temperature values in the 
sections and along the beam. With these temperature loads applied adequately in space and 
time through the proposed methodology, mechanical results are obtained reasonably adjusted 
to the structural response measured in the laboratory (see Figs. 23 to 26). The applied 
temperature values (806 °C in the beam and 605 °C in the column) look like the maximum 
temperatures calculated in Figs. 14 and 15.  

 

 

Fig. 29 Non-uniform temperature applied (t=20.47) min), in 
extruded view 

Fig. 30a shows the 3D deformation of the frame. A buckling is identified in the column of 
greater intensity towards the end time of the test. In the front view (Fig. 30b), a flexural-
torsional buckling is also observed in the column, which can only be seen when the complete 
framework response is modeled in 3D. The structural response shows that the non-uniform 

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22

U
Z 

-C
ol

um
n 

La
te

ra
l d

is
pl

ac
. (

m
m

)

Time (min)

UZ Column mid-height
UZ Column top-end

ANSYS 2019 R2
Build 19.4
NODAL SOLUTION
STEP=22          
SUB =3           
TIME=20.4688     
BFETEMP  (AVG)  
RSYS=0
PowerGraphics
EFACET=1
AVRES=Mat
DMX =63.7652     
SMN =477.261     
SMX =805.663     

1

MN

MX

X

Y

Z

477.261     
495.506     
513.75      
531.995     
550.239     
568.484     
586.728     
604.973     
623.217     
641.462     
659.706     
677.951     
696.195     
714.44      
732.684     
750.929     
769.173     
787.418     
805.663     PORTAL_FRAME_CASE3A                                                             



 

37 

temperature field in sections and elements affects the structure displacement field in all three 
dimensions. 

 

  
(a) Deformed-isometric view  (b) Deformed-frontal view 

Fig. 30 Flexural-torsional buckling (t=20.47 min), in 
extruded view 

Fig. 31 shows the three-dimensional displacement field presented in the framework by the 
simultaneous action of applied loads, the deformations due to non-uniform temperatures, and 
buckling phenomena due to high temperatures. The following reasons can cause the latter: i) 
the weakening of the material, ii) imperfections or second-order phenomena (instability 
because of large deformations which appear due to considerable differences between deformed 
and non-deformed shape) and, iii) the coupling of the displacements because of heterogeneity 
created in the material by the internal thermal gradients (under the fire action, each cross-
section becomes composed of a large number of different materials due to the different 
mechanical features which occur at each temperature, at each time and each point of the section 
[69]). In Figs. 31a to 31f, it can be seen that all the degrees of freedom vary within the section 
of the elements, confirming that the displacement field is 3D. Furthermore, the column 
rotation in the three global directions, x, y, z, demonstrates a biaxial stress state. In this case 
study, two bending planes are generated (produced by moments, buckling, flexural-torsional 
buckling, warping, and temperature), which cannot be considered when the frame is modeled 
for a 2D-displacement field. 
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(a) x-translation (mm) (b) y-translation (mm) 

  
(c) z-translation (mm) (d) x-rotation 

  
(e) y-rotation (f) z-rotation 

Fig. 31 3D-displacement field isocontours (t=20.47 min), in 
extruded view 

ANSYS 2019 R2
Build 19.4
NODAL SOLUTION
STEP=22          
SUB =3           
TIME=20.4688     
UX       (AVG)  
RSYS=0
PowerGraphics
EFACET=1
AVRES=Mat
DMX =63.7652     
SMN =-50.986     
SMX =.386065     

1

MN

MX X

Y

Z

-50.986     
-48.132     
-45.278     
-42.424     
-39.57      
-36.716     
-33.862     
-31.008     
-28.154     
-25.3       
-22.4459    
-19.5919    
-16.7379    
-13.8839    
-11.0299    
-8.17594    
-5.32194    
-2.46794    
.386065     PORTAL_FRAME_CASE3A                                                             

ANSYS 2019 R2
Build 19.4
NODAL SOLUTION
STEP=22          
SUB =3           
TIME=20.4688     
UY       (AVG)  
RSYS=0
PowerGraphics
EFACET=1
AVRES=Mat
DMX =63.7652     
SMN =-63.7622    
SMX =22.1766     

1

MN

MX

X

Y

Z

-63.7622    
-58.9878    
-54.2134    
-49.4391    
-44.6647    
-39.8903    
-35.1159    
-30.3416    
-25.5672    
-20.7928    
-16.0184    
-11.2441    
-6.46968    
-1.6953     
3.07908     
7.85345     
12.6278     
17.4022     
22.1766     PORTAL_FRAME_CASE3A                                                             

ANSYS 2019 R2
Build 19.4
NODAL SOLUTION
STEP=22          
SUB =3           
TIME=20.4688     
UZ       (AVG)  
RSYS=0
PowerGraphics
EFACET=1
AVRES=Mat
DMX =63.7652     
SMN =-7.87823    
SMX =23.5934     

1

MN

MX

X

Y

Z

-7.87823    
-6.12981    
-4.38138    
-2.63295    
-.884528    
.863898     
2.61232     
4.36075     
6.10918     
7.8576      
9.60603     
11.3545     
13.1029     
14.8513     
16.5997     
18.3482     
20.0966     
21.845      
23.5934     PORTAL_FRAME_CASE3A                                                             

ANSYS 2019 R2
Build 19.4
NODAL SOLUTION
STEP=22          
SUB =3           
TIME=20.4688     
ROTX     (AVG)  
RSYS=0
PowerGraphics
EFACET=1
AVRES=Mat
DMX =63.7652     
SMN =-.017348    
SMX =.012992     

1

MN

MX

X

Y

Z

-.017348    
-.015662    
-.013977    
-.012291    
-.010606    
-.00892     
-.007235    
-.005549    
-.003863    
-.002178    
-.492E-03   
.001193     
.002879     
.004564     
.00625      
.007935     
.009621     
.011306     
.012992     PORTAL_FRAME_CASE3A                                                             

ANSYS 2019 R2
Build 19.4
NODAL SOLUTION
STEP=22          
SUB =3           
TIME=20.4688     
ROTY     (AVG)  
RSYS=0
PowerGraphics
EFACET=1
AVRES=Mat
DMX =63.7652     
SMN =-.060681    
SMX =.007503     

1

MN

MX

X

Y

Z

-.060681    
-.056893    
-.053105    
-.049317    
-.045529    
-.041741    
-.037953    
-.034165    
-.030377    
-.026589    
-.022801    
-.019013    
-.015225    
-.011437    
-.007649    
-.003861    
-.732E-04   
.003715     
.007503     PORTAL_FRAME_CASE3A                                                             

ANSYS 2019 R
Build 19.4
NODAL SOLUTIO
STEP=22          
SUB =3           
TIME=20.4688     
ROTZ     (AVG   
RSYS=0
PowerGraphic
EFACET=1
AVRES=Mat
DMX =63.7652     
SMN =-.04171     
SMX =.02975      

1

MN

MX X

Y

Z

-.04171     
-.03774     
-.03377     
-.0298      
-.02583     
-.02186     
-.01789     
-.01392     
-.00995     
-.00598     
-.00201     
.00196      
.00593      
.0099       
.01387      
.01784      
.02181      
.02578      
.02975      PORTAL_FRAME_CASE3A                                                             



 

39 

The displacements by the steel-ductility and the thermal expansion cause plasticization of 
the material. Figs. 32a and 32b show the Von Mises plastic deformations produced by the 
action of mechanical loads and temperature loads (t=20.47 min), respectively. It can be seen 
that the order of magnitude of the plastic deformations produced by mechanical loads and 
those created by temperature loads in the final fire resistance time is very similar. 
Approximately 50% of the framework plastic deformation is produced by mechanical loads 
and the other 50% by temperature loads. Consequently, temperature deformations are 
significant for calculating the framework deformation field and studying its mechanical 
behavior. 

 

  
(a) Plastic deformation due to mechanical load (b) Plastic deformation due to temperature load 

Fig. 32 Von Mises plastic deformations in the framework 
(t=20.47 min), in extruded view 

Results of warping, bicurvature, and bimoment are important insofar as they allow inferring 
the presence of possible flexural-torsional buckling in places where large changes in the angle 
of torsion occur, suggesting zones of local instability in the members of the structure. Fig. 33 
shows the warping behavior in the frame (t=20.47 min). This effect is relevant as the open 
sections of the framework decrease the torsional stiffness with increasing temperature. Fig. 33a 
shows warping due to high temperatures, mainly in the column, verified with the bicurvatures 
and bimoments shown in Figs. 33b and 33c, respectively. The influence of warping in the 
simulation is more remarkable in the column than the beam because there was no restriction 
to warping (since there were no point loads along the column). For stability considerations, 
warping had to be restricted towards the beam midspan (due to the applied loads), precisely 
where the beam distortions were significant, according to the experiment. Solvers with greater 
capacity to overcome the convergence problems caused by the instability resulting from the 
high fire nonlinearity are necessary to get better results from the beam warping. 

The torsional rotation results, warping, bicurvature, and bimoment, are related to each other 
and make sense when analyzed together. I.e., since warping is the first derivative of torsional 
rotation, the zero-warping point is where the maximum torsion occurs (in the column, it is 
between the positive and negative warping points). This condition is verified in the middle 
zone of the column when Figs. 31e and 33a are compared. Similarly, being the bicurvature, the 
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first derivative of the warping, and the bimoment a function of the bicurvature, the two points 
of maximum and minimum value of warping present in the column (Fig. 33a) match the points 
of zero bicurvature shown in Fig. 33b. The bicurvature is significant at the column middle and 
upper zones where the lateral bending is registered (see Fig. 30). The column positively twists 
in the middle of the column and negatively at the end. Bicurvature signs indicate changes in 
the direction of twisting along the column. The almost constant values of bimoment in the 
central zone of the column in Fig. 33c just in the region where the bicurvature is maximum 
(between the positive and negative warping) suggest that in this region, the rotated sections no 
longer present large relative changes of position or shape between them. 

 

  
(a) Warping [mm-1] (b) Bicurvature (mm-2) 

 
(c) Bimoment (N-mm2) 

Fig. 33 Flexural-torsional effects in the framework (t=20.47 min) 
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C h a p t e r  4  

NEW PROPOSALS FOR MODELING LATERAL-TORSIONAL BUCKLING IN 
CLASS-4 STEEL MEMBERS AT ELEVATED TEMPERATURES USING BEAM-

TYPE ELEMENTS 

This chapter includes sections 1 to 6 from paper “New modeling strategies for analyzing lateral-
torsional buckling in class-4 steel structural members at elevated temperatures using beam-type 
elements” published in the December 2021 issue of the Journal Structures, vol. 34; p 3508–
3532. https://doi.org/10.1016/j.istruc.2021.09.087. 

 

4.1 Justification and antecedents 

Current requirements for building structures and large-scale roadway structures, such as 
bridges, are becoming increasingly demanding, requiring elements of larger dimensions that 
make them more costly [70]. On the other hand, current trends in the construction of large-
scale projects have made steel structures a major construction alternative [71]. The inevitable 
need to optimize costs under allowable performance levels has greatly interested in using lighter 
sections. Recent cases demonstrated it. For example, in the Wirkowice bridge in Poland (2020), 
hot-rolled high-strength lightweight steel sections were used to reduce the weight and increase 
the bridge span [2]. Another illustrative case is Chicago’s Union Station Tower (2020). In this 
51-floor office steel building, designers reduced the total structural steel in the upper perimeter 
columns by almost 20% using stronger but lighter steel elements (552 MPa), creating more 
open space in upper floors [3]. 

However, the decrease in the amount of material in the fabrication of steel members to 
make them lighter also makes them slenderer. That condition may compromise the structure’s 
stability because of the possible activation of global or local buckling failure phenomena that, 
in practice, are more critical when the structure is in a fire situation [4]. Examples of such 
failures have been observed in buildings (e.g., the 2001 fire in New York City’s World Trade 
Centre 7 [6,7] or the 2017 fire in Tehran’s Plasco building [8,9]) and bridges (e.g., the I-65 
overpass fire in Birmingham, Alabama, USA [10] and similar cases reported in [11–14]). 

The trend towards cost-benefit optimization has led to increasing the use of lightweight and 
slender sections classified by Eurocode as class-4 [72] in construction projects. Class-4 cross-
sections are those in which local buckling will occur before attaining yield stress at any cross-
section point because its parts have a minimal thickness compared to the width [64]. Therefore, 
the analysis is limited to the elastic range (see Fig. 34, which illustrates the ideal plastic behavior 
achieved for compact class-1 and class-2 sections but not for the non-compact class-3 and 
slender class-4 sections). These welded or hot-rolled class-4 cross-sections usually are built to 
safely cope with possible lateral-torsional buckling (LTB) phenomena in beams and flexural 
buckling in columns at room temperature [73,74]. However, it is also essential to know the 
performance of these sections when the adverse effects of imperfections and fires are present 
[4] because they may compromise the stability of the structure and, ultimately, its safety. 

 

https://doi.org/10.1016/j.istruc.2021.09.087
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Fig. 34 Moment-deflection relationship for a simply supported steel beam 
according to cross-section class. Adapted from [75]. My is the cross-section 

elastic bending moment, and Mp is the cross-section plastic moment 

The Geometrically and Materially Non-linear Mechanical Analysis with Imperfections 
(GMNIA, henceforth) is the most advanced and accurate method to solve the LTB problem 
in steel members [76]. GMNIA can predict the structural member critical loads considering 
local and global buckling failures (buckling loads), which can appear even before the cross-
section plastifies, and define the actual load-bearing capacity of the member [42,77]. The 
geometrical nonlinearity in the GMNIA is due to large displacements, which are especially 
important under fire. The material nonlinearity is caused by the creep and the elastoplastic 
behavior of steel. The imperfections of welded class-4 cross-section steel members come from 
geometrical and material defects appearing in the plate fabrication process and later in the cut 
and welding process [78]. Geometrical imperfections can be measured on trajectories along the 
flange and web plates of the steel member. They can then be drawn to define longitudinal 
imperfection profiles that approximate the imperfect shape of the flanges and web [23]. These 
imperfection profiles resemble sinusoidal shapes and provide an approximated idea of the 
number of undulations in a steel member area. The measured amplitude is the maximum 
imperfection value of the profile. For modeling purposes, the assumed shape of the initial 
global and local geometric imperfections can be obtained from combining elastic buckling 
mode shapes. This method enables the calculation of the amplitude of imperfections in slender 
steel members [79]. On the other hand, structural (or material) imperfections in steel members 
with class-4 cross-sections are caused by the high temperatures applied in the welding process 
that induce a state of residual stresses that remains in the whole section of the unloaded 
member, even after cooling [78]. Thus, these residual stresses are present before beam loading 
as an initial condition at room temperature in the modeling. 

Several numerical studies have considered that the increase of temperatures in steel 
members caused by fires relaxes the residual stresses and makes its influence on failure loads 
small or even neglectable. For example, in a study for predicting the plastic capacity of axially 
loaded steel beam-columns with thermal gradients, Quiel et al. [31] did not consider residual 
stresses in the computational models because they assumed these stresses relaxed due to 
increasing steel temperature. In an experimental study of the strength of wide flange columns 
at elevated temperature, Yang et al. [32] concluded that the initial residual stresses affected 
significantly less the local and global buckling failure modes in fire situations than at room 
temperature. Heidarpour and Bradford [33] showed similar results in a separate parametric 
computational study of the effects of residual stresses in heated steel members. The initial LTB 
numerical models of class-4 tested beams under bending carried out in the “Fire design of steel 
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members with welded or hot-rolled class-4 cross-section” (FIDESC4 henceforth) research 
project [23] neglected thermal expansion as well as residual stresses [26]. However, Couto et al. 
[29], in a later study based on the LTB results of FIDESC4, concluded that residual stresses 
negatively influence the LTB strength under fire of beams with slender cross-sections with 
LTB strength reductions under fire of a maximum of 15%. 

Practically all of the LTB numerical simulations of slender section steel members under fire 
have used models with shell elements (see, e.g., those of the FIDESC4 report [23] and later 
works based on the FIDESC4 test results [24–27] as well as other LTB assessment of steel 
beams included in [28,29]). Nguyen and Park [19] also used shell elements in numerical 
simulations to evaluate the LTB resistance of steel H-beams exposed to a localized fire 
considering the combined effects of initial geometric imperfections and residual stresses. 
Kucukler [20] used shell elements to study LTB in steel beams not susceptible to local buckling, 
without local imperfections, and under the combined effects of fire and a constant bending 
moment. Based on the results of an extensive parametric study, Kucukler [20] also proposed 
an equation for the LTB assessment, which can only be applied to steel beams with class 1 and 
2 cross-sections because only global buckling was studied. 

Typical shell models naturally capture buckling (local and global) in slender steel section 
members but at high modeling and CPU time costs, making them difficult to use in parametric 
and probabilistic studies [38]. Thus, it is necessary to devise simpler beam-type models as 
reliable as shell-type models to carry out these analysis types at lower costs. This type of model 
has eventually been used in the bridge deck analysis. For example, Hambly [81] explains the 
use of grillages and space frames to calculate bridge decks subjected to bending, shear, and 
torsion. In these methods, the structure is represented by equivalent beam elements. Following 
this trend, some LTB simulations have been carried out using beam-type finite elements. Quiel 
et al. [31] evaluated the fire response of beam-columns with an I-section subjected to flexural 
compression under non-uniform temperature gradients with a fiber model of beam elements 
without including global imperfections and residual stresses, finding a good correlation with 
the experimental results. These researchers concluded that the added computational cost and 
complexity of a shell model were unnecessary to predict fire-exposed behavior when the failure 
mode is entirely plastic. Smyrnaios et al. [44] applied an Equivalent Truss Model proposed in 
[81,82] to determine the LTB resistance of I-section beams at room temperature. The Truss 
Model idealizes the beam through an equivalent system where two T-sections represent the 
upper and lower third parts of the beam connected through X-bracing truss elements 
representing the remaining part of the web. This technique was satisfactorily verified at room 
temperature with shell models through a parametric study for different geometric imperfection 
levels. Still, it was not validated with experimental results and was not tested at high 
temperatures. The Truss Model disadvantage is the impossibility of including the residual 
stresses in the X-bracing elements, which are naturally present in localized zones of the I-
section. Possidente et al. [45] developed a 3D-beam finite element for modeling the fire 
behavior of open cross-section steel elements subjected to torsional effects. Displacement 
predictions in the LTB behavior of an L-frame carried out with a typical beam discretization 
model indicated a good agreement with shell-based models if local buckling, residual stresses 
and imperfections are not present. This work does not contain any validation of the 3D-beam 
element with experimental results and local buckling was not considered. Franssen et al. [46] 
proposed an effective stress-based method for slender steel members exposed to high 
temperatures, which was implemented on fiber-type beam finite elements in Safir. This model 
is a constitutive law of steel that considers the local instabilities in slender steel sections in 
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numerical models based on Bernoulli finite beam elements. The method was validated against 
experimental results from three FIDESC4 column tests at high temperatures [23]. The 
validation of the results was satisfactory, although conservative. Maraveas et al. [47] refined the 
methodology and revised some assumptions [48–50] to improve the original model proposed 
by Franssen et al. [46]. As a result, they developed an equivalent law to be used in the nonlinear 
numerical analysis of the fire resistance of thin-walled steel members. The constitutive model 
was implemented in Safir and validated against experimental results of columns subjected at 
elevated temperatures (FIDESC4 Test-3 [23] and others column tests reported in [83]). 
Although the simulation results revealed good agreement with the tests, the improved model 
still gave conservative results for large compressive load eccentricities, so the model is currently 
still under development. 

Within this context, this study proposes two new modeling strategies based on beam-type 
elements that reduce the high modeling and analysis time costs of shell models typically used 
to carry out the GMNIA analyses to determine the strength of class-4 steel members. These 
modeling strategies use 7-DOF second-order Timoshenko beam finite elements (Ansys 
BEAM189) and include: a) geometrical and material nonlinearity, b) thermal strains, c) Poisson 
effect on the cross-section owing to mechanical and thermal loading (i.e., the cross-section is 
scaled as a function of axial stretch), d) imperfections and residual stresses as initial conditions, 
e) non-uniform temperature, f) preliminary thermal conditioning (perturbed shape and 
additional thermal stresses), g) self-weight, h) non-linear stabilization of non-linear buckling 
and post-buckling solution. The first strategy is called the Fiber Beam Model (FBM) and uses 
a single fiber of I-section BEAM189 elements located at the center of the bottom flange to 
represent the steel member. The second strategy is called the Cruciform Frame Model (CFM) 
and idealizes the steel member with a cruciform grid of fibers, where rectangular BEAM189 
finite elements make up each fiber. The CFM grid provides flexibility and enables capturing 
local buckling. 

These new numerical strategies are validated using the test results (Test-1 and Test-3) of the 
FIDESC4 research project reported in [24] conducted with built-up welded steel beams with 
class-4 cross-sections heated and loaded until LTB failure. To get additional information about 
the accuracy and advantages of the proposed strategies, a full GMNIA of a shell model of both 
tests, including the application of residual stresses as zero state, imperfections, and thermal 
strains, were also carried out in Ansys. The numerical results and computational times of these 
shell models were compared with those of the FBM and CFM to analyze the performance of 
the proposed modeling strategies. In addition, FMB and CFM without residual stresses and 
thermal strains were also carried out to evaluate how the LTB response of the tested beams is 
affected by not including these two initial conditions. 

This chapter is structured as follows: Section 4.2 describes the setup of the FIDESC4 Test-
1 and Test-3 used to validate the proposed modeling strategies; Section 4.3 presents the FBM 
and CFM modeling strategies; Section 4.4 presents the implementation of the GMNIA in the 
FBM and CFM strategies; Section 4.5 presents the validation of the two strategies with 
experimental and numerical results of FIDESC4 Test-1 and Test-3. Section 4.5 also includes 
the numerical results of Test-1 and Test-3 simulations with the modeling strategies without 
residual stresses and thermal strains and their comparisons with those having them and some 
further important analyses of the LTB phenomenon in the FBM related to warping, bimoment, 
and bicurvature. 
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4.2 Description of the FIDESC4 tests used for validation 

The results of two fire experiments on constant cross-section beams (Test-1 and Test-3 of 
the FIDESC4 experimental and numerical investigation of class-4 beams [23]) were used to 
validate the proposed modeling strategies. Therefore, this section describes the main features 
of these fire tests. Both experiments were carried out with slender, simply supported, built-up 
welded beams with constant cross-section representing structures with a class-4 cross-section 
(see Fig. 35 and Fig. 36 for a detailed geometrical definition of the tests). The beams spanned 
5 m and were heated along the central part where the temperature was intended to be constant 
and uniform and then loaded until failure due to the local instability of the plates. 

 

 
Fig. 35 Dimensions and materials of tested beams. (a) Test-

1. (b) Test-3 [23] 

 
Fig. 36 Dimensions of welded I-sections, in mm. (a) Test-1. 

(b) Test-3 [23] 
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The loading consisted of two equal concentrated loads applied symmetrically so that the 
bending moment in the central heated part was constant. Fig. 37 illustrates the test setup, 
including the ceramic pads used to heat the beam and the devices used to load it. Fig. 38 
exemplifies the tested beam subjected to pure bending in the central heated zone. 

 

 
Fig. 37 Scheme of the experiment (based on [23]) 

 
Fig. 38 Tested beam subjected to pure bending (based on 

[23]) 

Before the tests, the steel properties of the beam plates were obtained at room temperature 
(see Table 4). According to EN 1993-1-2 [64], the slenderness of the web plate wasλp=1.33 
for Test-1 andλp=1.13 at the middle span for Test-3 [23]. After placing the beams on the 
supports, laser scanning and manual measurements established the initial geometry with 
imperfections. For the measurement of the global imperfection amplitude, the deviation 
between the stiffeners was measured. In the central zone of the tested beams, local 
imperfections were measured on the web and the top flange. Local imperfections on the web 
were measured in points placed in the compression part. On the top flange, they were measured 
over the edges where the cut-off imperfections of the plates are expected to be higher. Then 
local imperfection profiles were drawn. The maximum absolute value of these local 
imperfection profiles was assumed as the local imperfection amplitude. Table 5 lists the 
amplitude of local and global imperfections for each test [23]. 
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Table 4. Steel properties at room temperature [23] 

Test / Part of beam Steel 
samples 

Average Yield 
Stress (MPa) 

Elastic 
Modulus 

(MPa) 
Test-1/ Web 

Test-3/ Web middle span S2 392.8 176897 

Test-1/ Flanges S5 381.5 209988 
Test-3/ Web side span S4 368.5 199200 

Test-3/ Flanges S6 421.5 208900 
Stiffeners --- 355.0 210000 

 

Table 5. Amplitudes of local and global imperfections, in mm [23] 

Imperfection Test-1 Test-3 
Local (Top flange) 2.27  0.69 

Local (Web) 7.36  5.80 
Global 2.50 1.50 

 

Fig. 39a shows the setup of the experiments. Point pinned supports were located at the end 
extremities of the beam, as shown in Fig. 39b and Fig. 39c. All rotations and transverse 
deflections between these point supports were allowed, except at the stiffener points where 
the lateral deflection was restrained. Displacements in all directions were restrained in the left 
support, while only the axial displacement was released in the right support. In addition, both 
supports allow free torsion of the end cross-section. The beam was heated with Manning heat 
power units and flexible ceramic pads (see Fig. 37). Temperatures were measured from the 
beginning of the heating to the end of the tests. For this purpose, thermocouples along the 
beam according to the position of the ceramic pads were distributed. Both tests were set to be 
at 450 ºC. However, the measured temperatures slightly varied during the tests and were non 
uniform for the whole section. The average measured temperatures at each part of the beam 
(top flange, web, bottom flange) used for numerical modeling are shown in Fig. 40a. The load 
was applied through a hydraulic jack and introduced by a distributing beam at the edges of the 
heated central part, as shown in Fig. 37 and Fig. 39d. The two vertical load application points 
were laterally restrained by frames contacting the beam through gadgets, as shown in Fig. 39e. 
Four potentiometers were used to measure the displacements in the load application points 
and calculate the deflections in the bottom flange center and the lateral rotation of the beam 
at mid-span. The tests were deflection controlled with a vertical deflection rate of 3.5 mm per 
minute (see Fig. 40b). The final vertical deflection measured at mid-span at the end of the 
experiments was 50 mm [23]. 
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(a)  (b)  (c) 

 

  
 (d)  (e) 

  

Fig. 39 (a) Test setup. (b,c) Pinned supports. (d) Application 
of load through a distribution beam. (e) Gadget on beam 

for lateral restraint [23] 

 
Fig. 40 (a) Average steel temperatures in the heated zone of 

the beam. (b) Test boundary conditions and loads 

4.3 Proposed modeling strategies 

FIDESC4 investigation [23] used shell elements instead of beam elements in the numerical 
models because local buckling was one of the dominant failure modes, and it depends on 
localized residual stresses and imperfections that are difficult to include in beam elements. 
However, this paper proposes two new modeling strategies to analyze class-4 beams subjected 
to LTB under elevated temperatures using Ansys 3D beam finite elements. These modeling 
strategies are denoted by FBM (Fiber Beam Model) and CFM (Cruciform Frame Model). Both 
modeling strategies are made up of appropriate Timoshenko BEAM189 finite elements 
available in Ansys. 

In the FBM, the tested beam is discretized as a fiber (see Fig. 41a) of I-section BEAM189 
elements. In the CFM, the beam is represented as a cruciform arrangement of fibers (see Fig. 
41b) to make the model more flexible with a greater number of degrees of freedom and thus 
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be able to emulate the behavior of a model with shell elements at a lower computational cost, 
taking advantage of the extrusion of the BEAM189 element. CFM can also be understood as 
a grid of rectangular BEAM189 elements capable of reproducing the local buckling failure. In 
FBM, non-linear LINK180 compression truss elements are additionally included, just where 
the stiffeners are located, to reproduce the three-dimensionality of the test and the boundary 
conditions. In CFM, endplates and stiffeners are vertical fibers of rectangular BEAM189 
elements, and boundary conditions can be easily applied to the model nodes. 

 

 
Fig. 41 Idealization of the tested beam in each proposed 

modeling strategy. (a) FBM. (b) CFM 

4.4 LTB-GMNIA of the tested beams 

The LTB problem of the beam with class-4 cross-section in fire is solved through a GMNIA 
in Ansys, including a linear buckling analysis and the imperfection amplitudes measured to 
introduce the initial imperfections. GMNIA also involves non-linear buckling and post-
buckling analyses. Non-linear buckling analysis is a static analysis with large deflections active, 
extended to a point where the beam attains its limit load or maximum load, including the 
material nonlinearity. Meanwhile, the post-buckling analysis is a continuation of the non-linear 
buckling analysis after the load attains its buckling value. A special non-linear stabilization 
technique is applied to overcome the local and global buckling instability problems due to the 
post-buckling stage is unstable [53]. Numerical instability matches the instability of the 
structure. When instability appears in the structure, large changes in displacements occur with 
only small load perturbations. Ansys program uses an internal non-linear stabilization 
technique to solve the numerical instability by applying artificial dampers to the nodes with 
unstable degrees of freedom. A damping force is calculated proportionally to the pseudo 
velocity at these nodes, which is determined as the displacement increment divided by the 
pseudo time increment of the sub-step. For nodes with practically stable degrees of freedom, 
the influence of damping is negligible since the displacements and stabilization forces are 
relatively small compared to the physical forces. Although the stabilization forces (or damping 
factors) have the same unit and definition as the classical damping forces, the concept, in 
essence, is numerical and artificial for the calculation of non-linear stabilization [84]. The 
GMNIA steps applied in the FBM and CFM strategies are outlined below, followed by an 
explanation of each step. 
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1. Finite element model definition. Creation of the model and boundary conditions. 

2. Eigenvalue analysis (linear elastic buckling analysis). 

3. Implementation of initial imperfections. 

4. Implementation of internal residual stresses. 

5. Application of the first load phase called thermal conditioning, henceforth. This phase 
includes the progressive heating of the model up to the target temperature level and 
the activation of self-weight stresses. Additional thermal stresses and strains are 
generated in this phase. 

6. Application of the second load phase called post-conditioning, henceforth. This phase 
includes the application of loading by increments maintaining the loads from the 
previous stage. 

7. Results of displacements, applied load, ultimate load, and the ultimate moment of the 
section. 

 

4.4.1Finite element model definition 

A fiber model (FBM) and a cruciform model (CFM) are created to simulate the LTB of 
FIDESC4 Test-1 and Test-3 following the idealizations shown in Fig. 41a and Fig. 41b. In the 
FBM, lateral restraint in the global y-y direction and torsional restraints to ensure stability are 
applied to the two nodes on the fiber axis, matching the location of stiffeners. Lateral restraint 
in the y-y direction and an axial restraint in the x-x direction are imposed on the LINK180 end 
nodes where the stiffeners are located, as shown in Fig. 41a. In CFM, y-displacements are null 
in the four nodes where the imposed lateral restraint is, as shown in Fig. 41b. In both FBM 
and CFM modeling strategies, displacements in all global axes are restrained in the first point 
pinned support, and displacements in global y-y and z-z axes are restrained in the second one. 
The stress-strain ratio (σ-ε) of steel at high temperatures and the reduction factors ky,θ, kp,θ and 
kE,θ given by EN 1993-1-2 [64] were used in the models. The values of yield strength and 
elastic modulus of materials for flanges, web, and stiffeners at room temperature used for 
modeling were given in Table 4. A constant Poisson ratio (ν=0.3) was also assumed. The creep 
effect on the deformation of steel was considered implicit in the material model. The Ansys 
multi-lineal isotropic hardening with temperature dependence model was used to adequately 
represent the stress-strain relationships depending on temperature [66]. Variation of thermal 
expansion (α) of steel with temperature was also determined based on EN 1993-1-2 [64]. The 
geometric nonlinearity was activated to introduce the formulations of large deformations and 
deflections. All numerical model data were taken from the FIDESC4 investigation report [23], 
and some validation details were taken from Prachar et al. [24,80]. 

 

4.4.2 Eigenvalue analysis 

An eigenvalue analysis was carried out to establish the initial imperfections in the numerical 
models of the tested beams. The buckled mode shapes (global and local) resulting from 
eigenvalue analysis approximately represent the global and local imperfection shapes measured 
before the test. The eigenvalue buckling analysis process includes two steps: a linear static 
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solution and an eigenvalue buckling solution. The first step involves a linear analysis with unit 
loads (Fz=1 kN in Fig. 41). In the second step, the eigenvalues are calculated, and the elastic 
buckling analysis is expanded to find the buckling mode shapes associated with each calculated 
eigenvalue. Two buckling mode shapes are selected adequately after that, i.e., one consistent 
with the measured global imperfection shape and the other congruent with the local 
imperfection profile on the web measured in the central part of the beam. According to [23], 
a simple lateral curvature in the y-y direction characterizes the global buckling mode shape, and 
the local buckling mode shape resembles well-defined undulations in the y-y direction in the 
central part of the beam. E.g., six undulations (three peaks and three valleys) on the web for 
Test-1 and eight undulations for Test-3 [23]. The nodal solution for the global and local 
buckling modes can be expanded to the pseudo-mesh nodes of the BEAM189 element cross-
section in the post-processing stage. In the expansion, vertical undulations also appear in the 
top flange, which can be evidenced in the extruded view. These web and top flange undulations 
represent the shape of the initial geometric imperfections measured on the tested beams used 
in the LTB simulations. The amplitude or absolute maximum value of the imperfections is 
extracted from the two selected buckling mode shapes in order to scale them to the size of the 
measured amplitudes. In the proposed strategies, the global amplitude is the maximum lateral 
deflection, in the y-y direction, of the selected global mode shape. This global amplitude is 
extracted from the entire model. The local amplitude on the web is the maximum lateral 
deflection, in the y-y direction, of the selected local mode shape. The local amplitude in the top 
flange is the maximum vertical deflection, in the z-z direction, of the selected local mode shape. 
The local amplitudes are extracted from the heated zone (central part) of the beam model 
because this was the location where the imperfections were measured. 

 

4.4.3 Implementation of initial imperfections 

In order to simulate the initial shape with imperfections, the geometry of the finite element 
model is updated according to the displacement results of the global and local buckling mode 
shapes (obtained from the previous eigenvalue analysis) so that a modified geometry based on 
the deformed configuration of the previous analysis is created. In other words, the 
displacement results of the global and local buckling mode shapes on the original geometry are 
added. Before being added together, these displacements are multiplied by a factor that scales 
and weights them. This factor is responsible for adding a percentage of the displacements to 
the geometry of the finite element model (e.g., factor 1.0 adds the full value of the 
displacements to the geometry of the finite element model). This factor results from 
multiplying two other factors, i.e., one for scaling and one for weighting. The scale factor is a 
multiplier that adjusts the displacements of each buckling mode shape to the size of the 
measured imperfection amplitude. The scaling factor is determined as the ratio of the measured 
imperfection amplitude (given in Table 5) to the simulated amplitude. Therefore, three scaling 
factors are defined, one to scale the y-y displacements of the global mode shape, and two for 
scaling the y-y and z-z displacements of the local mode shape. These simulated amplitudes are 
extracted after the local and global buckling mode shapes are carefully chosen. The simulated 
global amplitude in the y-y axis is extracted from the entire model, while the simulated local 
amplitudes (on the web about the y-y axis and the top flange about the z-z axis) are drawn from 
the central part of the beam. GSF is the global scale factor, and LSF1 and LSF2 are the local 
scaling factors on the web and top flange, respectively. They are calculated by Eq. (2-4). 
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GSF=
Measured global imperfection amplitude 

Simulated global amplitude (y-y axis)  (2) 

LSF1=
Measured web local imperfection amplitude

Simulated local amplitude (y-y axis)  (3) 

LSF2=
Measured top flange local imperfection amplitude

Simulated local amplitude(z-z axis)  (4) 

 

The participation factor is responsible for weighting the displacements of each buckling 
mode shape (global and local). It defines the portion of the displacements of each two buckling 
mode shapes contributing to the initial imperfect geometry. GPF denotes the participation 
factor of the global mode shape displacements and, LPF1 and LPF2 are the participation 
factors of the web and top flange displacements of the local mode shape, respectively. In the 
proposed numerical modeling strategies, each participation factor is assumed to be 1/3 due to 
the number of imperfection amplitudes measured, as shown in Eq. (5). 

 

GPF = LPF1 = LPF2 = 1/3 (5) 

 

In this way, the imperfections added to the original geometry are the scaled and weighted 
displacements of the global and local buckling mode shapes. The nodal x, y, z-displacement 
results of global and local mode shapes are stored in arrays denoted as GMS and LMS, 
respectively. Therefore, GMS contains the nodal displacements of the global mode shape, and 
LMS contains those of the local mode shape in the central zone of the beam. Thus, the 
imperfections added by the global mode shape (called GI) and those added by the local mode 
shape (called LI) result from scaling and weighting the GMS and LMS arrays with the scaling 
and participation factors, as shown in Eq. (6) and Eq. (7). Therefore, GI and LI can be 
understood as arrays of nodal imperfections (equivalent to the scaled and weighted nodal 
displacements). GI stores the imperfections of each node of the finite element model, while 
LI stores the node imperfections in the central zone of the beam model. 

 

GI=GMS(GSF×GPF) (6) 
 Whole Beam   

 

LI=LMS ( LSF1×LPF1+LSF2×LPF2 ) (7) 
 Web  Top flange   

 Central zone    
 

However, in the FBM and CFM modeling strategies, the scaling factor over the local 
imperfection of the top flange (LSF2) cannot be considered in Eq. (7). That is because the 
simulated local imperfection amplitude in the z-z direction is on the fiber axis and not in the 
cross-section of the elements, so this amplitude cannot properly represent the maximum 
simulated imperfection at the top flange edges where the local imperfections were measured. 
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Nevertheless, it was considered that the imperfections on the top flange could be 
approximately included through the local cumulative participation factor (LCPF) of 2/3, as 
shown in Eq. (8), which compensates for the non-inclusion of the local top flange 
imperfection. In other words, the local mode shape contribution was increased by 1/3. 
Therefore, the local imperfection array (LI) results from scaling the nodal displacements (in 
the x, y, z-directions) of the local mode shape with the scaling factor LSF1 and weighting them 
with the local cumulative participation factor LCPF, as shown in Eq. (9). 

 

LCPF= LPF1+ LPF2=2/3 (8) 
 

LI=LMS (LSF1×LCPF ) (9) 
 Web (Central zone)   

 

To approximate the imperfect initial geometry (IIG) of the model, first, the global 
imperfections (GI) are added to the node coordinates of the finite element model. Then, from 
this revised geometry, local imperfections (LI, in Eq. 9) are added to the node coordinates of 
the central zone of the beam model, as illustrated in Eq. (10). The node coordinate array of the 
model is denoted in Eq. (10) as FGC (Full Geometry Coordinates), and that of the beam central 
zone is denoted as CGC (Central Geometry Coordinates). The largest displacements of the 
global and local buckling mode shapes are in the y-y direction, and displacements in the two 
other directions are too small (10E-13) so that the small displacements after scaling and 
weighting remain so. Therefore, x-x and z-z imperfections added to x, z-coordinates are too 
minor, so this methodology to create imperfections is correct. 

 

IIG= [FGC+GI] + [CGC+LI] (10) 
  Whole beam Central zone   

 

The web resulting shape in the central zone of the beam is a combination of the global and 
local imperfections. Out of the central part of the beam, only global imperfections are present. 
After that, the resulting imperfect shape is expanded to the cross-section pseudo-mesh nodes 
of the BEAM189 elements in the post-processing. As a result of the expansion, undulations 
appear out of the beam axis on the top flange edges. The resulting undulations on the web and 
the top flange after expansion depict the initial imperfections of the model. 

 

4.4.4 Implementation of residual stresses 

According to how the test was carried out, initial axial residual stresses are incorporated into 
the proposed numerical models of the tested beams before applying thermal and mechanical 
loadings. Residual stresses at room temperature are relevant because they act as an initial stress 
condition (σx0). In the finite element formulation of the problem, initial stresses and initial 
strains (εo) represent elementary equivalent nodal forces in the equilibrium equations. 
Therefore, they are part of the total equivalent nodal forces integrated by other force 
components such as body and surface forces and forces produced by initial strains coming 
from the thermal action [85]. In summary, the residual stresses are part of the global 
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equilibrium of the finite element mesh and the stress field of the structure, so they must be 
considered. 

BEAM189 finite elements allow the application of these axial residual stresses in the cross-
section pseudo-mesh cells. The cells are set so that the tensile and compressive residual stresses 
in the web and flanges can be applied as closely as possible over the cross-section regions 
where they are localized. Fig. 42 presents the residual stress pattern at room temperature for 
the welded I-section considered by FIDESC4 [23] based on [86] used in this study. In Fig. 42, 
the residual stresses act in the whole cross-section. The yield stress values fy are at room 
temperature, and red areas (T) represent tensile stress while blue areas (C) represent 
compressive stress. 

 

 
Fig. 42 Residual stress pattern for welded I-section at room 

temperature. Above: for both top and bottom flanges. 
Right: Web [23,86] 

4.4.5 Application of the thermal conditioning 

In the experiments, progressive heating of the central zone of the beam is performed from 
20 °C until the target temperature level at each part (top flange, web, and bottom flange) is 
attained before applying the mechanical load (thermal conditioning). This change in the 
temperature results in thermal strains (εxo ) [87]. The non-uniform temperature in the cross-
section causes initial bending resulting in thermal stresses (σx

o ) that combine with initial residual 
stresses (σx0) and self-weight stresses (σx) modifying the initial stress state. Moreover, the 
Poisson effect induces transverse thermal strains (εyo, εzo) in the central zone of the beam that 
intensifies the initial geometric imperfections; in consequence, a revised imperfect geometry is 
generated. Furthermore, the temperature degrades the material and changes the stiffness in the 
central zone. As the side spans are unheated, their stiffness is higher than the stiffness of the 
central zone, acting as semi-rigid boundaries over the middle span (see Fig. 43), causing some 
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y-rotation restraints in these frontiers. Additionally, lateral stresses (σy
o) are induced on the 

stiffener ends (red points in Fig. 43) due to the lateral restriction imposed by the frameworks. 
As a result, axial and vertical strains (εxo , εzo) are generated by the Poisson effect. In summary, 
the thermal conditioning modifies the initial state of the tested beams, among others, for the 
following reasons: 1) the appearance of a thermal stress-strain state caused by the temperature 
rise from 20°C to the target temperature in each part of the beam and bending due to non-
uniform temperature distribution in the cross-section; 2) the Poisson effect; 3) the appearance 
of additional imperfections; 4) the formation of semi-rigid boundaries. It should be noted that 
the geometric imperfections are the result of thermal strains. The initial geometric 
imperfections come from the thermal strains produced in the manufacturing and cutting 
process of the plates. In the thermal conditioning stage of the tested beams, the additional 
geometric imperfections come from the thermal strains produced by the temperature increase 
and the temperature differential of the cross-section. Finally, thermal strains must be activated 
in the simulation of the tested beams to account for all the effects of high temperatures in the 
thermal conditioning stage.  

 

 
Fig. 43 Semi-rigid boundaries produced by stiffness change 

According to how the test was carried out, the thermal condition is included in the 
numerical models of the tested beams before applying mechanical loadings. To do so, ramped 
temperature for a time t=1E-08 min is applied starting from the room temperature (20 °C) up 
to the target temperature at each part (top flange, bottom flange, and the web) shown in Fig. 
7a in which non-heated zones are assumed to have a room temperature of 20 °C. The time is 
arbitrarily chosen as a very small value close to zero because the analysis is static; therefore, the 
mechanical response in this stage is not dependent on time. Once the residual stresses, 
temperature from thermal conditioning, and self-weight loads are applied, a first GMNIA is 
done here. Results of deformed shape (perturbed shape) and all analysis results are the starting 
point for the second GMNIA carried out in the next phase, including the controlled 
displacement mechanical loading. 

 

4.4.6 Application of post-conditioning 

According to how the test was performed, this second loading phase starts from the 
deformed shape and the stress-strain results of the previous analysis. In this second phase, the 
self-weight and the temperatures in each part of the beam (flanges, web, and stiffeners) remain 
applied. Additionally, the vertical load is applied to the upper nodes of the stiffeners through 
the displacement-controlled method at a rate of 3.5 mm/min during 6.5 min. Therefore, Fz 
(see Fig. 41) is applied as a vertical displacement (Uz) until a target value of 22.75 mm. This 
target displacement value is enough to evidence the load behavior, including the ultimate load 
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and the load-bearing capacity decrease of Test-1 and Test-3. In the FIDESC4 simulations [23], 
the load capacity was registered up to 25 mm of mid-span vertical deflection for Test-1 and 30 
mm for Test-3. Once loads in this phase are applied, the full GMNIA-LTB is done. 

 

4.4.7 Results 

At the end of the GMNIA, time history results of the top flange vertical mid-span 
displacements, the applied load, ultimate load, and ultimate bending moment are obtained. The 
full GMNIA procedure implemented in the proposed numerical modeling strategies (FBM and 
CFM) is illustrated in Fig. 44. 

 

 
Fig. 44 Full LTB-GMNIA for the FIDESC4 tested beams 
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Hereafter the implementation of the LTB-GMNIA in the proposed FBM and CFM 
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LTB - GMNIA

Discretization 
Model: FBM, 

CFM

Material properties - 
Eurocode 3

Geometric model 
data and parameters

 Imperfections amplitude 
(Laboratory)

Load steps and simulation 
time

Target displacement at 
loading points

Model 
temperatures

Define sections 
and attributes

Model geometry and meshing 
attributes.

Assigment of element types, 
materials and sections

Assigment of boundary 
conditions.

Include LINK180 truss elements 
if required

Calculation of buckling mode shapes 
using Linear Buckling Analysis (LBA).

Select Global and Local Mode 
Shapes and their amplitudes

 Scale the amplitudes of the mode shapes to the 
amplitude values measured. Combination of mode 

shapes. Assigment of simulated geometric 
imperfections to the model

Assigment of localized 
residual stresses to the cross-

section regions

First loading phase - GMNIA: includes self-weight  
and thermal conditioning

Second loading phase - GMNIA: Starts from first loading 
phase response.

Includes self weight, temperatures and vertical 
displacement-controlled up to the ultimate load and some 

further loading steps to record decrease of the load-
bearing capacity before collapsing

Displacements, applied 
loads, ultimate load and 

ultimate bending moment 
of the section

 D
AT

A 
IN

PU
T

PR
E-

PR
O

CE
SS

IN
G

M
O

DE
L 

IM
PE

RF
EC

TI
O

NS
LT

B
 - 

G
M

N
IA

PO
ST

-
PR

O
CE

SS
IN

G

CONDITIONING

POST-
CONDITIONING



 

57 

4.5.1 Fiber Beam Model (FBM) 

The tested beam subjected to LTB is idealized as a single fiber of 342 BEAM189 finite 
elements with endplates and stiffeners included. In this model, each finite element has a cross-
section and a material depending on the part of the beam it represents, e.g., web, flange, 
endplate, or stiffener. The beam is made of three distinct types of cross-sections (welded I-
section, endplate, and stiffener) and three different types of materials (one for endplates and 
stiffeners, and two materials for flanges and web -S2 and S5, respectively as shown in Fig. 35a 
and Table 4-). Therefore, three different sections and three different materials are defined in 
the model. Cross-sections are assigned to finite elements, while materials are assigned to the 
pseudo-mesh cells of the cross-section. This way to assign materials by cells enables 
differentiating zones with different materials in the steel member, i.e., flanges and web 
materials, and endplate and stiffener materials. The number of cells in the cross-section is set 
to apply the residual stress pattern shown in Fig. 42. For this purpose, 75 cells were defined at 
each flange and 50 cells at the web, as shown in Fig. 45. 

 

 
Fig. 45 I-cross-section discretization and cells for Test-1 

The fiber axis is moved to the outer edge of the bottom flange, where the boundary 
conditions are applied, which means boundary conditions are eccentric. LINK180 truss 
elements between the two flanges transfer the load from the application points on the outer 
surface of the top flange to the outer surface of the bottom flange, where the fiber axis is 
located. Thus, LINK180 elements have the cross-section area of the stiffeners given in Fig. 
35a. The meshing and boundary conditions in the fiber are shown in Fig. 46a, and the tested 
beam extruded in which all its components are visible is shown in Fig. 46b. 
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Fig. 46 FBM meshing and boundary conditions for Test-1. 

(a) Non-extruded view. (b) Extruded view 

Fig. 47 and Fig. 48 show the global and local buckling mode shapes chosen from the 
eigenvalue analysis. In the extruded view of Fig. 47b, a simple lateral curvature in the y-y 
direction is clearly observed. In the local mode shape of Fig. 48b, the slight lateral undulations 
in the central part of the beam depict the local imperfections on the web. Although this is a 
single fiber model, the extruded local shape in Fig. 48b also shows undulations on the top 
flange, allowing for the simulation of the measured local imperfections. Undulations out of the 
central part of the beam in Fig. 48b are not considered because local imperfections are only 
applied to the central zone of the beam where they were measured. In the FBM, it is assumed 
that the displacements in the y-y direction are from the web. Therefore, the simulated amplitude 
in the y-y direction is the maximum lateral deflection obtained from the fiber nodes for the 
global buckling mode shape (in Fig. 47a) and from the nodes in the central part of the fiber for 
the local buckling mode shape (in Fig. 48a). 

 

 
Fig. 47 FBM global mode shape for Test-1. (a) Non-

extruded view. (b) Extruded view 
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Fig. 48 FBM local mode shape for Test-1. (a) Non-extruded 

view. (b) Extruded view 

The imperfect initial geometry is obtained by adding the imperfections to the node 
coordinates of the original model, according to Eq. (10). In both global and local mode shapes, 
x-displacements and z-displacements are almost zero on the fiber axis, so that x-imperfections 
and z-imperfections adding to x-coordinates and z-coordinates of the FBM are also almost 
null. Consequently, the x-coordinates and z-coordinates of the FBM are practically identical in 
the original and imperfect geometry. As y-coordinates, in this case, are zero, the imperfections 
in the y-y direction are equal to the y-coordinates of the FBM imperfect initial geometry. Since, 
in the FBM, the beam is modeled as a single BEAM189 finite elements fiber, it is assumed that 
the displacements in the y-y direction are from the web. Therefore, the y-y amplitude of the 
global and local mode shapes is used for calculating the global and local scale factor, GSF and 
LSF1, as shown in Eq. (2) and Eq. (3). Also, the global and local displacements occurring in 
the lateral direction are used to calculate the global and local y-imperfections, according to Eq. 
(6) and Eq. (9). The FBM y-y imperfections are plotted in Fig. 49. 

 

 
Fig. 49 Imperfect initial geometry of FBM for Test-1 (mm) 
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Imperfections in Fig. 49 are obtained from combining the scaled and weighted lateral 
displacements of both buckling mode shapes and are located in the central zone of the beam, 
as expected. The null imperfections in Fig. 49 match the points of the stiffeners and endplates 
where the y-displacement boundary condition is restrained in the model. Out of the central 
zone of the beam, very small imperfections are coming from global y-displacements. 

According to Fig. 42, compressive (blue) and tensile (red) axial residual stresses at room 
temperature in the web and flanges are applied to the cross-section pseudo-mesh cells of the 
BEAM189 element, as shown in Fig. 50. 

 

 
Fig. 50 FBM tensile and compressive residual stresses in the 

welded I-section for Test-1 [MPa] 

BEAM189 finite elements making up the fiber do not have temperature degrees of freedom. 
However, they support uniform temperature loading and linearly varying thermal gradients 
within the cross-section [53]. These two components allow representing the non-uniform 
transverse temperature distribution in the element. For this reason, in the thermal conditioning 
stage of the LTB-GMNIA (see Fig. 44), the target temperature is established by a uniform 
temperature and a vertical gradient (in z-z axis) [43] to be attained in the BEAM189 elements 
in the central part of the beam following the procedure described in the thermal conditioning 
phase. Additionally, a target uniform temperature equal to that of the web in the test (444.4 
°C) is specified in the BEAM189 elements symbolizing the stiffeners and LINK180 elements 
representing the load axes. 

The two components approximating the non-uniform temperature in the cross-section are 
calculated by linear regression from the temperatures measured in the web and flanges (shown 
in Fig. 40a), as illustrated in Fig. 51. 
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Fig. 51 Approximation of non-uniform temperature in the 

BEAM189 cross-section (Test-1) 

In this sense, the non-uniform temperature in the cross-section (Fig. 52a) is approximated 
by two components [43]:  

- A uniform temperature component (Fig. 52b) equal to the linear regression intercept 
(367.02°C in Fig. 51). 

- A component of thermal gradient varying linearly on the z-z axis (Fig. 52c) equal to the 
slope of the regression line (0.23°C/mm in Fig. 51). 

 

 
Fig. 52 Temperature components related to BEAM189 

element axes (Test-1) 

The uniform temperature component is applied at the lowest point of the BEAM189 cross-
section since the fiber axis is at the outer edge of the bottom flange. So, the temperature at one 
point of the cross-section is approximated by Eq. (11). 
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In Eq. (11), Unif Temp is the approximate temperature value at the bottom flange (367.02°C), 
Temp Grad(z) is the thermal gradient in the web direction (0.23 °C/mm), and Z is the coordinate 
of a section point. Z-coordinates are positive since the reference system origin is at the outer 
point of the section over the fiber axis. As the gradient line passes through the lowest point of 
the cross-section, the gradient component is null at that point. Consequently, the temperature 
applied at the lowest point of the section is equal to the uniform temperature. 

In the post-conditioning stage, the vertical load is applied at the upper-end nodes of the 
LINK180 elements by incremental displacements until the target value of 22.75 mm is attained. 
This target displacement value is adequate to record the ultimate load and the load-bearing 
capacity drop. A uniform temperature component and a z-z gradient are instantaneously 
applied to BEAM189 elements in the central part of the beam in this phase. The web 
temperature (444.4 °C) is also instantly applied as a uniform temperature in the BEAM189 
elements representing the stiffeners and LINK180 elements. Fig. 53 shows a detail of the 
extruded stiffener displaying the controlled-displacement boundary condition. Time histories 
of vertical deflection (Uz) at the midpoint of the fiber and the force (Fz) in the top-end node 
of LINK180 elements are obtained at the end of the GMNIA. 

 

 
Fig. 53 FBM stiffener detail for Test-1 

4.5.2 Cruciform Frame Model (CFM) 

In the CFM, the tested beam subjected to LTB is idealized as a cruciform arrangement of 
fibers, where each fiber is made up of BEAM189 elements with rectangular cross-sections. 
This grid arrangement enables considering two bending directions for the web and better 
predicts the localized buckling produced by the high compressions on the thin web plate. The 
discretization consists of a grid of BEAM189 elements representing the web (illustrated in Fig. 
54a in purple). Above and below the grid are grid lines idealizing the top and the bottom flange 
(cyan colored in Fig. 54a). The number of grid divisions in the vertical direction (ndv) is taken 
as 10, and the number of grid divisions in the longitudinal direction (ndl) is taken as 106. 
Therefore, the web is modeled with a grid with 11 horizontal fibers and 107 vertical fibers. In 
total, the web is made up of 1166 horizontal elements and 1070 vertical elements cruciform 
arranged. In turn, each flange is a fiber of 106 finite elements. Endplates and stiffeners are also 
vertical fibers of BEAM189 elements (red-colored in Fig. 54a), and they have the material and 
the cross-section indicated in the test (see Fig. 35a and Table 4). The cross-section dimensions 
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of the flange elements are the width and thickness of the thin plate defining the flanges 
(150.0×5.0 mm, in Fig. 36a). Besides, the material of the flange elements is that of the test (S5, 
in Fig. 35a). The cross-section dimensions of the web elements are 45.5×4.0 mm for the 
horizontal elements and 50.0×4.0 mm for vertical elements (4.0 mm is the thickness of the 
web plate, in Fig. 36a). The material of the web elements is the same as the web plate in the 
test (S2, in Fig. 35a). Lateral restraints in the global y-y direction are applied to the two nodes 
of the upper fiber where the load is applied and the two nodes of the lower fiber where the 
stiffeners are. Fig. 54b shows the finite element mesh extruded, showing all the components 
and the boundary conditions. Fig. 55 shows one vertical and one horizontal web fiber and the 
dimensions of their constituent BEAM189 elements. 

 

 
Fig. 54 CFM meshing and boundary conditions for Test-1. 

(a) Non-extruded view. (b) Extruded view 

 
Fig. 55 Details of the CFM web fibers and dimensions of the fiber 
elements for Test-1, in mm. (a) Vertical fiber. (b) Horizontal fiber 
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lower fiber as appropriate. The number of cells in the cross-section of elements forming the 
welded I-section is set to apply the pattern of residual stresses. 

 

 
Fig. 56 CFM cross-section discretization and element cells 

for Test-1 

Fig. 57 and Fig. 58 show the global and local buckling mode shapes chosen from the 
eigenvalue analysis, respectively. In Fig. 57b, the simple lateral curvature in the y-y direction 
typical of the global mode shape can be appreciated. In the local mode shape of Fig. 58a, the 
lateral undulations allow depicting the local web imperfections. Vertical undulations in the top 
flange in the extruded view of Fig. 58b are not visible in the non-extruded view of Fig. 58a. 
This occurs because, in the non-extruded deformed shape, only the fiber axes are shown. It 
means the fiber axis representing the top flange is not deformed, but its edges do, as expected. 
In the central zone of the beam, the extruded deformed shape of the top flange resembles a 
saddle surface containing various saddle points. The undulations of this surface depict local 
imperfections on the top flange. In the CFM, it is assumed that the displacements in the y-y 
direction are from the web. Therefore, the simulated amplitude in the y-y direction is the 
maximum lateral deflection obtained from the grid nodes for the global mode shape (in Fig. 
57) and the grid nodes of the central part of the grid for the local buckling mode shape (in Fig. 
58). 
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Fig. 57 CFM global mode shape for Test-1. (a) Non-

extruded view. (b) Extruded view 

 
Fig. 58 CFM local mode shape for Test-1. (a) Non-extruded 

view. (b) Extruded view 

The imperfect initial geometry is obtained by adding the imperfections to the node 
coordinates of the original finite element model, according to Eq. (10). In both local and global 
mode shapes, x-displacements and z-displacements are almost zero on the CFM fiber axes, so 
that x-imperfections and z-imperfections adding to x-coordinates and z-coordinates of the 
CFM are neglected. Consequently, the x-coordinates and z-coordinates are practically identical 
in the original geometry and the imperfect geometry. In the y-y direction, the imperfections are 
non-zero, but the y-coordinates of the original model, in this case, are zero. Therefore, the y-y 
imperfections are equal to the y-coordinates of the initial imperfect geometry. The global and 
local scale factors, GSF and LSF1, are calculated according to Eq. (2) and Eq. (3), and the 
global and local y-imperfections are calculated as shown in Eq. (6) and Eq. (9). The y-y 
imperfections plotted in Fig. 59 show similar positive and negative values. The imperfection 
values are obtained from combining the scaled and weighted lateral displacements of both 
buckling modal shapes and are present in the central zone of the beam, as expected. Out of 
the central zone of the beam and in the flanges, the y-y imperfections are null. 
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Fig. 59 Imperfect initial geometry of CFM for Test-1 (mm) 

Compressive (blue) and tensile (red) residual stresses at room temperature in the web and 
flanges are applied to the cross-section cells of the BEAM189 elements that comprise the 
welded I-section, as shown in Fig. 60. 

 

 
Fig. 60 CFM tensile and compressive residual stresses in the 

I-section for Test-1 [MPa] 

For the thermal conditioning stage of the LTB-GMNIA, the target temperature at each part 
(top flange, bottom flange, and web) in the central zone of the beam (show in Fig. 40a) is 
directly specified as a uniform temperature to be attained in the BEAM189 elements of the top 
and bottom fibers (flanges) and the grid elements (web). Additionally, the web temperature 
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(444.4 °C) is directly specified as a uniform temperature to be attained in the BEAM189 
elements representing the stiffeners. In the post-conditioning stage, the vertical load is applied 
at the top ends of the stiffeners by incremental displacements until the target value of 22.75 
mm is attained. Uniform temperatures measured at each part of the beam are again applied 
instantaneously in this phase. Fig. 61 shows a detail of the extruded stiffener with the 
controlled-displacement boundary condition indicated. Time histories of vertical deflection 
(Uz) at the mid-point of the grid lower fiber and the force (Fz) in the top-end node of 
BEAM189 stiffeners are obtained at the end of the GMNIA. 

 

 
Fig. 61 CFM stiffener detail for Test-1 

The summary of the full LTB-GMNIA implemented in both proposed Ansys modeling 
strategies for Test-1 and Test-3 is shown in the charts of Fig. 62a and Fig. 62b. The procedures 
are compatible with beams of constant cross-section. 

 

4.5.3 Shell Models for numerical validation 

Simulations of the tested FIDESC4 beams do not include residual stresses and thermal 
strains [23,24,80]. Therefore, they do not consider the same conditions as the FBM and CFM, 
making it challenging to compare numerical results directly. Consequently, new models with 
Ansys SHELL181 finite elements for Test-1 and Test-3, called Shell Models (SM, hereafter), 
were built to compare computation times. SHELL181 is a linear element with four nodes and 
six degrees of freedom at each node: three translations (Ux, Uy, Uz), and three rotations about 
the x, y, z-global directions (ROTx, ROTy, ROTz). This finite element is suitable in non-linear 
analyses of large rotations and large deformations where the thickness of the plates can change. 
It follows the first-order shear deformation theory of Reissner-Mindlin. A brief explanation of 
the LTB-GMNIA procedure implemented in a shell model is presented only for Test-1 
because the methodology is the same for Test-3. The shell model for Test-1 is based on a 
geometry of 79 areas shown in Fig. 63a. The discretization is carried out with 14596 SHELL181 
finite elements following the area distribution of Fig. 63a. The areas of the geometric model 
match the areas where the residual stresses are present, allowing their application to the shell 
elements following the tensile and compressive stress pattern of Fig. 42. According to the test 
setup, displacements in the global y-y axis are restrained at the eight points where the lateral 
restraint was applied (see red points in Fig. 40b). The load is applied at the edges where internal 
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stiffeners are located. Finally, the boundary conditions of the tested beam are imposed and 
shown in Fig. 63b together with the model mesh. 

 

 
Fig. 62 Full LTB-GMNIA flowchart. (a) FBM. (b) CFM 

 
Fig. 63 Ansys-SM for Test-1. (a) Geometrical model: 

division into areas. (b) Meshing and boundary conditions 
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simulation time

  Uz(t) at midspan (midpoint of  
    the lower fiber in the grid)
  Fz(t) in top-end nodes of         
    BEAM189 stiffeners
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Fig. 64 shows the global and local mode shapes chosen from the linear buckling analysis. It 
can be seen that the global and local mode shapes exactly match those of the CFM modeling 
strategy shown in Fig. 57 and Fig. 58. For the global mode shape, the amplitude in the y-y 
direction is the maximum lateral deflection calculated at all nodes. For the local mode shape, 
the amplitudes are extracted from the nodes of the central part of the beam. Thus, the y-
amplitude on the web is the maximum lateral deflection calculated at web nodes, and the z-
amplitude on the top flange is the maximum vertical deflection calculated at top flange nodes. 

 

 
Fig. 64 Ansys-SM for Test-1. (a) Global mode shape. (b) 

Local mode shape 

 

The SM discretization allows the scaling and combination of the two selected buckling 
modes considering the amplitudes of the measured and calculated imperfections in each beam 
region. Thus, the scaling factors (GSF, LSF1, and LSF2) are calculated by Eq. (2) to Eq. (4). In 
this model, the global and local buckling mode shapes contribute in half to the initial imperfect 
geometry of the web, meaning the participation factors GPF and LPF1 taking values of ½. On 
the other hand, the contribution of the local buckling mode shape to the initial imperfect 
geometry of the top flange is full, meaning the local participation factor LPF2 is 1. Therefore, 
the global and local imperfections (GI and LI) are estimated according to Eq. (6) and Eq. (7), 
respectively. Finally, the imperfect initial geometry (IIG) can be approximated by adding the 
imperfections to the node coordinates of the original model, according to Eq. (10). The web 
and top flange imperfections are plotted in Fig. 65a and Fig. 65b, respectively. After revising 
the geometry, these imperfections are obtained by combining the scaled and weighted 
displacements of the global and local buckling mode shapes. 
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Fig. 65 (a) Imperfections added to y-coordinates of the web 
for Test-1 (mm). (b) Imperfections added to z-coordinates 

of the top flange for Test-1(mm) 

The target temperature of the top and bottom flanges and the web in the thermal 
conditioning phase correspond to the measured temperatures. It is directly specified as a 
uniform temperature to be attained into the shell elements discretizing each part of the beam. 
The shell elements representing the stiffeners have the web temperature. In the post-
conditioning stage, the controlled displacement mechanical load is directly applied at the top 
flange nodes on the top edge of the stiffeners until a vertical displacement target value of 22.75 
mm is attained. The applied load is shown in Fig. 63b as green displacement boundary 
conditions. In this phase, measured temperatures are applied to the shell elements representing 
each part of the beam. 

 

4.6 Validation of the proposed strategies 

The proposed modeling strategies are validated using the experimental results of FIDESC4 
Test-1 and Test-3 and compared to the results of the Safir and Abaqus numerical simulations 
reported in [23]. 

 

4.6.1 Test-1 validation 

Fig. 66 shows the total force applied (P) versus the beam mid-span vertical deflection (Uz) 
at the bottom flange mid-point for Test-1, FIDESC4 simulations, and the proposed modeling 
strategies. Fig. 66 also includes the P-Uz relationships of the simulations carried out in Ansys 
without residual stresses and thermal strains to observe how these affect the force and 
displacement predictions. The total force P acting on the beam is obtained by adding the force 
in each stiffener. The P-Uz curves for Test-1, FIDESC4 simulations, and CFM and SM are 
drawn up to 25 mm of vertical deflection because it was the maximum deflection reported in 
the FIDESC4 numerical simulations included in [23]. The P-Uz relationship of the FBM is 
drawn up to 35 mm because the ultimate load is reached at 31.03 mm. The curves of Ansys 
simulations without residual stresses and thermal strains (indicated as FBM**, CFM**, and 
SM** in Fig. 66) are drawn at deflections higher than 25 mm because they all are advanced 

(a) (b) 
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from those including them. The total force and vertical deflection results show that both 
proposed modeling strategies (FBM and CFM) are validated satisfactorily against Test-1 results. 
Simulation results also reveal that CFM gets better deflection predictions than the FBM. 
Comparing the results of the FBM and CFM simulations with and without residual stresses 
and thermal strains shows that it is necessary to include these initial conditions in the GMNIA 
because they correct the force and deflection predictions, resulting in a P-Uz curve closer to 
the test. Including these initial conditions in the simulations significantly improve the P-Uz 
curve trajectory. It is noted that the predictions of the Ansys models without residual stresses 
and thermal deformations underestimate the stiffness for the early force values and 
overestimate the ultimate load and the deflections. Incorporating these initial conditions is 
manifested in an additional stiffness towards the first part of the P-Uz curve and a decrease of 
the ultimate load and the ultimate deflection. Since the beam is allowed axial displacement, the 
extra stiffness may be due to the tensile pre-stressing introduced by the initial thermal strains. 
The decrease in LTB strength is due to a mixture of the unfavorable effects of residual stresses 
and the adverse effects of geometric imperfections increased by thermal strains. In conclusion, 
modeling with residual stresses and thermal strains reproduces the conditions of tested 
FIDESC4 beams subjected to LTB since these are problems with initial stresses and initial 
strains. 

 

 
Fig. 66 Total applied load versus vertical deflection at the bottom 

flange mid-point in the beam mid-span for Test-1 

The ultimate load (Pult) and the ultimate vertical deflection (Uzult) at the bottom flange mid-
point in the beam center from the test, FIDESC4 simulations, and the proposed modeling 
strategies with and without residual stresses and thermal strains are compared in Table 6. The 
ultimate cumulative strain energy (Eε

ult) associated with the mechanical work in the beam is 
also included as a criterion to complement the evaluation of the simulation results. This 
mechanical work is related to the deformation (elastic and plastic) accumulated until the 
ultimate load capacity is reached; therefore, ultimate cumulative strain energy (Eε

ult) is calculated 
as the area under the curve P vs. Uz up to the ultimate load in Fig. 66. In Table 6, the best 
result of the two proposed modeling strategies, FBM and CFM, is underlined and bold. It can 
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be seen that CFM adequately predicts both total force and vertical deflection. FBM predicts 
the ultimate load value well, but its ultimate deflection is larger than the measured, so its 
ultimate cumulative strain energy is overestimated by 1.13 times regarding the test. It means 
FBM does not fully represent the beam buckling scenario since the ultimate load occurs at a 
higher deflection value than the actual one. Table 6 also lists the ultimate flexural moment (Mult) 
in the heated part of the beam in pure bending, which is calculated as half the ultimate load 
(½Pult) multiplied by the distance from the end support to the load application point (L2) (see 
Fig. 38). Again, FBM has a slightly better prediction of Mult than CFM, but CFM better 
reproduces the structure’s response up to the end of the test. 

 

Table 6. Comparison of results between FIDESC4 simulations, 
experimental test, and proposed modeling strategies with and without 

residual stresses and thermal strains for Test-1 

 Pult 

(kN) 
Uzult 
(mm) 

Eult
ε  

(J) 
Mult 

(kN-m) 
Pult

Num

Pult
Exp  

Uzult
Num

Uzult
Exp  

Eult
Num

Eult
Exp  

 TEST 1 FIDESC4 142.96 17.13 1635.63 78.63 --- --- --- 

BE
A

M
 

M
O

D
E

LS
 Ansys FBM** 144.93 35.79 3599.20 79.71 1.01 2.09 2.20 

Ansys FBM 141.61 31.03 3485.31 77.89 0.99 1.81 2.13 

Ansys CFM** 146.88 24.95 2322.34 80.79 1.03 1.46 1.42 

Ansys CFM 139.05 21.10 2147.61 76.48 0.97 1.23 1.31 

SH
E

LL
 

M
O

D
E

LS
 Ansys SM** 148.96 21.78 2040.44 81.93 1.04 1.27 1.25 

Ansys SM 139.85 18.37 1877.84 76.92 0.98 1.07 1.15 

Abaqus SM FIDESC4 107.26 13.02 756.48 58.99 0.75 0.76 0.46 

Safir SM FIDESC4 106.26 13.23 757.50 58.44 0.74 0.77 0.46 
** indicates that residual stresses and thermal strains are not included. The best result of the two proposed 

modeling strategies, FBM and CFM, is underlined and bold. 

 

Table 7 shows the percentage overestimation of Pult, Uzult, and Eε
ult by the modeling 

strategies without residual stresses and thermal strains compared to those including them. Not 
considering these initial conditions in the models leads to overestimates of all three predictions, 
with the overestimation of the Uzult being higher. SM** makes the highest overestimates in all 
three predictions, followed by CFM** and the lowest by FBM**. 

 

Table 7. Overestimation of the predictions of the proposed 
models without residual stresses and thermal strains for 

Test-1 

 Pult  
[%] 

Uzult 

[%] 
𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝜀𝜀   
[%] 

Ansys FBM** 2.34 15.34 3.27 
Ansys CFM** 5.63 18.25 8.14 
Ansys SM** 6.51 18.58 8.66 
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Table 8 shows the ratio of Test-1 ultimate moment (Mult) to the elastic bending moment of 
the section under non-uniform temperature (Myfire). The ratio indicates that the buckling limit 
state controlling failure occurs at an ultimate load (Pult) equal to 46.8% of the elastic load (Py= 
305.43 kN). 

 

Table 8. Relationship between the ultimate moment in the 
heated part of the beam and elastic bending moment for Test-1 

Mult
Test 

(kN-m) 

Myfire
Theor. 

(kN-m) 
[75,77] 

�
Mult

Test

Myfire
Theor� 

78.60 167.98 0.468 

 

Fig. 67 compares the buckling shape (failure mode) of Test-1 with those obtained in 
previous FIDESC4 numerical simulations (Fig. 67e and Fig. 67f) included in [23] and with 
those obtained with the proposed modeling strategies. At the beginning of the experiment, a 
white-colored grid of 18 equal spaces was drawn on the top flange (in the heated central zone) 
to evidence the site of the local failure. The experimental deformed shape (Fig. 67a) shows that 
the local failure in the top flange is offset from the beam mid-span section, i.e., at the end of 
the first third of the heated zone over the 5th grid line drawn on the top flange. The FBM 
deformed shape (Fig. 67b) represents the global LTB failure in the heated central part of the 
beam but cannot capture the local failure shape in the top flange. However, vertical deflection 
isocontours on the web (blue colored) evidence the high compressions taking place in the 
failure zone. The CFM deformed shape (Fig. 67c) correctly reproduces the site where the local 
buckling on the top flange occurs and shows the web local buckling depicted by some web 
undulations in the middle span and the typical curvature characterizing the global LTB. The 
local buckling phenomena of the top flange and the web reproduced by CFM and Ansys-SM 
are shown in Fig. 67c, Fig. 67d, and Fig. 68. Images are practically identical, and both reproduce 
well the experimental failure, demonstrating that CFM can correctly reproduce the global and 
localized LTB failures. The advantage of CFM over Ansys-SM is its simplicity and the 
significant reduction of the number of elements used for the discretization, which reduces the 
computational cost. These advantages (accuracy and simplicity) make CFM a simple and low-
cost alternative for simulating LTB in class-4 steel members under fire. 

Since the bending generates compression stresses in the top flange and most of the web, 
the occurrence of tensile stress patterns in these areas demonstrates that some tensile residual 
stresses remain after the LTB failure. This phenomenon can be observed in Fig. 69, where 
general and detailed views of the axial stress isocontours at the simulation end time for each 
Ansys modeling strategy are shown. The details in Fig. 69d to Fig. 69f show red and yellow 
tension stress bands in the top welded zone at the simulation end time, demonstrating the 
existence of tensile residual stresses in the top compressed part of the beam. Fig. 69 also shows 
that tensile residual stresses in the top compressed part, in the unheated zone of the beam, are 
less dissipated than in the heated zone. This behavior indicates that residual stresses should not 
be neglected in the structural analysis of steel members with class-4 cross-sections under 
localized fire scenarios where the temperature along the members is non-uniform. 
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Fig. 67 Deformed shapes of Test-1 models. (a) FBM Uz deflection. (b) CFM Uz 
deflection. (c) Ansys-SM Uz deflection (d) FIDESC4 Test-1 [23]. (e) FIDESC4 

Safir-SM [23]. (f) FIDESC4 Abaqus-SM [23] 

 
Fig. 68 Top flange and web local buckling detail. (a) CFM. 

(b) Ansys-SM 
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On the other hand, the tensile stresses localized on the web come from high web 
compressions produced by bending that generate buckling in the compressed zone of the web. 
Thus, the web behaves like a thin, slender plate subjected to compression, causing typical 
buckling undulations in the longitudinal direction, as shown in Fig. 69e and Fig. 69f. In other 
words, bending induces local buckling on the web. In Fig. 69, the compressive stresses are 
negative, and the tensile stresses are positive. 

 
(a) (d) 

  
 

(b)  (e)  

  
(c) (f)  

  

Fig. 69 Axial stresses at the end of the analysis [MPa]. (a,d) 
FBM. (b,e) CFM. (c,f) Ansys-SM 
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Some additional results at the end of the simulation related to torsional phenomena such as 
warping, bimoment, and bicurvature are shown in Fig. 70 to Fig. 72. These additional results 
are given only for FBM because they are easily available from the single fiber representing the 
tested beam. Fig. 70 and Fig. 71 show that the warping degree-of-freedom is null, and the 
bicurvature is significant at the beam mid-span where the maximum torsion occurs. The 
minimum (MN) and maximum (MX) warping points on the deformed shape (in Fig. 70) match 
the zero-bicurvature points (see Fig. 71). The changes of sign in the bicurvature diagram of 
Fig. 71 indicate warped torsion direction changes. The jumps in bicurvature and bimoment 
diagrams in Fig. 71 and Fig. 72 occur by the torsional resistance in the stiffener points. In turn, 
Fig. 73 shows the bicurvature-bimoment relationship representing the LTB evolution at mid-
span. Initially, the bimoment is negative and then becomes ascending, indicating that the 
twisting direction of the cross-section changes during the test. The increase of the bimoment 
in the section is consistent with the LTB failure occurring at the beam mid-span. Although 
FBM cannot capture the local failure shape in the top flange, torsional results show that it 
simulates well the LTB phenomenon. 

 

 
Fig. 70 Warping on the deformed 

shape 
Fig. 71 Bicurvature 

 

 
Fig. 72 Bimoment  Fig. 73 Bimoment-bicurvature relationship 
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4.6.2 Test-3 validation 

Fig. 74 shows the total force applied (P) versus the beam mid-span vertical deflection (Uz) 
at the bottom flange mid-point for Test-3, FIDESC4 simulations, and the proposed modeling 
strategies. Fig. 74 also presents the P-Uz curves of the simulations carried out in Ansys without 
residual stresses and thermal strains. The P-Uz curves for Test-3, FIDESC4 simulations, and 
CFM and SM are drawn up to 30 mm of vertical deflection according to FIDESC4 numerical 
simulations reported in [23]. The P-Uz relationship of the FBM is drawn past 35 mm because 
the ultimate load is only reached at 35.03 mm. The curves of Ansys simulations without residual 
stresses and thermal strains are drawn at deflections higher than 30 mm because they are 
advanced from those including them. Results indicate that the two proposed modeling 
strategies (FBM and CFM) validate satisfactorily against Test-3. Once more, CFM gets better 
deflection predictions than the FBM. Moreover, predictions of the Ansys models without 
residual stresses and thermal deformations again tend to underestimate the stiffness for the 
early force values and overestimate the ultimate load and defections. All other comments 
presented in Test-1validation are confirmed in Test-3 validation. 

 

 
Fig. 74 Total applied load versus vertical deflection at the 
bottom flange mid-point in the beam mid-span for Test-3 

In Table 9, the best result of the two proposed modeling strategies, FBM and CFM, is 
underlined and bold. Once again, FBM predicts the ultimate load value well, but its ultimate 
deflection is larger than the measured. FBM also has a slightly better prediction of Mult than 
CFM, but CFM better reproduces the structure’s response up to the end of the test. Finally, 
Table 10 shows the percentage overestimation of Pult, Uzult, and Eε

ult by the modeling strategies 
without residual stresses and thermal strains. Again, it is found that not considering these initial 
conditions in the simulations leads to overestimating all three predictions. SM** and CFM** 
make the highest overestimations for Uzult and Eult

ε .  
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Table 9. Comparison of results between FIDESC4 simulations, 
experimental test, and proposed modeling strategies with and without 

residual stresses and thermal strains for Test-3 

 Pult 

(kN) 
Uzult 
(mm) 

Eult
ε  

(J) 
Mult 

(kN-m) 
Pult

Num

Pult
Exp  

Uzult
Num

Uzult
Exp  

Eult
Num

Eult
Exp  

 TEST 3 FIDESC4 189.06 19.82 2410.10 103.99 --- --- --- 

BE
A

M
 

M
O

D
E

LS
 Ansys FBM** 193.82 39.99 5397.66 106.60 1.03 2.02 2.24 

Ansys FBM 188.03 35.06 5040.72 103.42 0.99 1.77 2.09 

Ansys CFM** 210.01 29.04 3794.94 115.50 1.11 1.47 1.57 

Ansys CFM 192.01 20.85 2684.44 105.61 1.02 1.05 1.11 

SH
E

LL
 

M
O

D
E

LS
 Ansys SM** 212.15 24.31 3125.80 116.68 1.12 1.23 1.30 

Ansys SM 189.23 17.91 2165.47 104.07 1.00 0.90 0.90 

Abaqus SM FIDESC4 151.95 13.71 1075.23 83.57 0.80 0.69 0.45 

Safir SM FIDESC4 168.92 14.60 1263.17 92.91 0.89 0.74 0.52 
** indicates that residual stresses and thermal strains are not included. The best result of the two proposed 

modeling strategies, FBM and CFM, is underlined and bold. 

 

Table 10. Overestimation of the predictions of the proposed 
models without residual stresses and thermal strains for Test-3 

 Pult  
[%] 

Uzult 
[%] 

Eult
ε   

[%] 
Ansys FBM** 3.08 14.07 7.08 
Ansys CFM** 9.37 39.27 41.37 
Ansys SM** 12.11 35.71 44.35 

 

All discussions given of the simulation results of Test-1 are confirmed in the validation of 
Test-3, demonstrating that the proposed modeling strategies correctly simulate the LTB 
response of steel members with class-4 cross-sections under fire conditions with constant 
cross-section. On the other hand, the ratio of Test-3 ultimate moment (Mult) to the elastic 
bending moment of the section under non-uniform temperature (Myfire) shown in Table 11 
points out that the buckling limit state controlling failure occurs at an ultimate load (Pult) equal 
to 45.4% of the elastic load (Py= 416.56 kN). 

 

Table 11. Relationship between the ultimate moment in the 
heated part of the beam and elastic bending moment for Test-3 

Mult
Test 

(kN-m) 

Myfire
Theor. 

(kN-m) 
[75,77] 

�
Mult

Test

Myfire
Theor� 

103.99 229.11 0.454 
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Fig. 75 compares the buckling shape (failure mode) of Test-3 with those obtained in 
previous FIDESC4 numerical simulations (Fig. 75e and Fig. 75f) included in [23] and with 
those obtained with the proposed modeling strategies. The experimental deformed shape (Fig. 
75a) shows that the local failure in the top flange is near the beam mid-span section, i.e., over 
the 9th grid line drawn on the top flange. The FBM deformed shape (Fig. 75b) reproduces the 
global LTB failure in the heated central part of the beam but cannot capture the local failure 
shape in the top flange while the CFM deformed shape (Fig. 75c) correctly reproduces the 
place where local buckling occurs. The CFM deformed shape resembles that of Ansys-SM (Fig. 
75d) and accurately represents the web undulations in the central part of the beam and the 
local buckling of the top flange. Details of the failure mode for CFM and Ansys-SM, evidencing 
their similarity, are shown in Fig. 76. 

 

 
Fig. 75 Deformed shape of Test-3 models. (a) FBM Uz 

deflection. (b) CFM Uz deflection. (c) Ansys-SM Uz 
deflection (d) FIDESC4 Test-3 [23]. (e) FIDESC4 Safir-SM 

[23]. (f) FIDESC4 Abaqus-SM [23] 
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Fig. 76 Top flange and web local buckling detail. (a) CFM. 

(b) Ansys-SM 

Finally, the CPU times spent for each modeling strategy to carry out the full-GMNIA in 
Ansys for Test-1 and Test-3 are shown in Fig. 77. It can be seen that the best computation 
time is for CFM due to the reduction in the degrees of freedom and the complexity level 
achieved by discretizing with BEAM189 elements making it the best alternative to model the 
LTB problem in class-4 beams. In Fig. 77, the number of nodes, elements, and degrees of 
freedom is related to the CPU. For example, in Test-1 (Fig. 77a), it is observed that correct 
results can be achieved with a low-cost CFM of 2488 BEAM189 finite elements, 3413 nodes, 
and 23891 degrees of freedom instead of a high-cost SM of 14596 SHELL181 finite elements, 
14789 nodes, and 88734 degrees of freedom. In Test-3 (Fig. 77b), the CFM nodes are slightly 
high (2508), whereas SM is still the same size. The time reduction of CFM versus SM is 52.2% 
in Test-1 and 46.7% in Test-3. Low-cost of CFM is caused by the quadratic interpolation of the 
BEAM189 finite element, which reduces the number of elements without losing the accuracy 
of results. On the other hand, the high refinement requirements in the cross-section pseudo-
mesh to achieve the accuracy of the ultimate load increase the FBM computational cost, 
penalizing the advantage gained by saving the number of elements making it the highest 
computational cost. CPU times are calculated in Ansys using parallel distributed memory-MPI 
calculation in 6 physical cores on a Dell Mobile Workstation 7530/64 bits, Intel Xeon 
Processor-2.71 GHz, and Ram-32 GB. 
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Fig. 77 Comparison of the CPU times of the proposed 

modeling strategies. (a) Test-1. (b) Test-3 
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C h a p t e r  5  

DISCUSSION OF RESULTS 

Generally speaking, performance-based approaches applied to structures under fire seek to 
understand in-depth the effects that fire triggers on structures to reduce the associated risks. 
These approaches require countless numerical simulations for predicting the response of fire-
affected steel structures, mostly with shell element-based models, because they enable high 
levels of detailing and better discretization. These approaches have provided valuable results, 
but they have a high computational cost. This aspect is essential because the most advanced 
analyses to understand better the structures’ behavior under fire with safety and risk criteria 
need to be based on low computationally cost models. The reason is that these advanced 
analyses involve calibration and optimization tasks and sensitivity and failure probability 
studies, requiring many simulation repetitions. For example, in the reliability and risk advanced 
analyses, it is required to quantify the uncertainties of the problem under investigation. The 
most straightforward technique to quantify these uncertainties is by repeatedly evaluating the 
numerical model considering a random sampling of the input parameters. The above means 
that the numerical model run time should be pretty short for the probabilistic analysis 
computation time not to be very long (many months or perhaps years). For example, if one 
million simulations were used to evaluate the failure probability of the Cardington framework, 
the approximate run time using the Ansys-3D(No Spring) model would be one year on the 
high-performance workstation described in 3.8. Furthermore, it should also be noted that the 
computation time increases exponentially when the problems increase in complexity, as in large 
multi-member structures and those involving buckling failure limit states. Such is the case of 
the lateral-torsional buckling failures in thin-section steel beams (class-4) studied in this thesis 
or flexural-lateral buckling failures in slender-section steel columns. Note that if a similar 
exercise to the previous one was performed to evaluate the failure probability of the class-4 
FIDESC4 beams subjected to lateral-torsional buckling, the approximate calculation time using 
the Ansys-CFM strategy would be 8.6 years in Test-1 and 6.5 years in Test-3 on the same high-
performance workstation as above. Also, note that although the proposed models in this thesis 
are low-cost, an analysis of millions of repeated simulations based on these models already 
would demand considerable analysis time. 

Unfortunately, most of the research, whether based on shell or beam models, has not paid 
close attention to the computational cost and has not reported computational times either, so 
it is difficult to make time comparisons. However, it could be verified in this thesis that the 
model built with finite beam elements using the Ansys-CFM strategy accurately reproduces the 
LTB response of the FIDESC4 class-4 beams (Test-1 and Test-3) with a significantly shorter 
computational time than the shell element-based model. For example, while an analysis of one 
million simulations with Ansys-CFM can last 8.6 years in Test-1 and 6.5 years in Test-3, the 
approximate run time with Ansys-SM would be 18 years in Test-1 and 13 years in Test-3 on 
the same high-performance workstation. Thus, in this case, the run time of analyses is 
duplicated when a shell element-based model is employed. That is not to count the 
computational cost overrun due to unforeseen events that often arise from unexpected 
execution stoppages by errors in the calculation codes that lead to debugging tasks, and so on. 
Although parallel computing, petaflops, and clusters can significantly reduce the computational 
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time, the time spent on probabilistic calculations can still be significant in many cases. Hence 
the importance of realistic models also having a low computational cost. 

Some finite beam elements adapted to fire analysis enable assigning temperatures at the 
cross-section integration points for more realistic models; however, this temperature handling 
capability translates into the increased computational cost (storage and computational time). 
In contrast, in the proposed methodology to address the non-uniform temperatures in steel 
members, a uniform temperature and two time-varying average gradients approximate the non-
uniform temperature in the cross-section of a Timoshenko finite beam element with 
satisfactory accuracy and low computational cost. The saving is related to the fact that the 
gradients are calculated explicitly with a bi-linear function without storing. 

More realistic models can increase computational times. Therefore, it is essential to keep in 
mind that there must be a balance between modeling reality and computational cost to favor 
more complex analyses of multiple repetitions (such as probabilistic ones) that allow making 
decisions with safety and risk criteria. In consequence, it is worth analyzing when it is justified 
to sacrifice a more comprehensive structure response in favor of faster analysis. For example, 
the Ansys-2D(Spring) model successfully predicts the deflection at the midspan of the 
Cardington framework beam in less time than Ansys-3D(No Spring), as shown in Fig. 23. 
Thus, although the 3D response is not present in the 2D model, predictions are satisfactory 
with a lower computational cost. 

In summary, to make more advanced analyses based on the repeated evaluation of 
numerical models of fire-affected steel structures feasible, computationally low-cost models 
should be sought, so beam-based models are suitable for this purpose. On the other hand, 
computationally high-cost models based on 3D-solid or shell elements are helpful in 
deterministic analyses of fire-affected parts of a structure and in deterministic analyses of the 
3D-response of connections under fire. 
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C h a p t e r  6  

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This thesis presents new proposals for modeling the thermo-mechanical response of steel 
structures under fire. The new proposals are built with the Ansys BEAM189 finite elements, 
which are simple but advanced seven-degree-of-freedom Timoshenko beam-type elements 
that reduce computational time and modeling effort. These savings in time, memory, and 
storage demand enable addressing complex steel structure analyses more easily and making 
feasible more complex structural fire engineering studies in which millions of simulations must 
be run quickly. 

Chapter 3 presents a new methodology to represent the effects of non-uniform heating in 
structures subjected to fire action. The procedure uses beam-type finite elements with the 
Timoshenko formulation and the temperature field representation through an average value of 
the temperature and the section thermal gradients. The methodology was validated with results 
of the behavior (displacements) of the Cardington framework and the 2D numerical 
simulations of the Cardington experiment carried out by Franssen et al. and Santiago et al. 
[18,22,27]. The following conclusions were drawn: 

- In a fire situation, the insulating elements in the frame members (the slab on the beam and 
the blocks between the columns) accentuate the thermal gradients, causing the steel (being 
a homogeneous material at environment temperature) to behave like a highly heterogeneous 
material. The non-uniform temperature makes the sections behave as if they were 
composed of several materials due to the temperature dependency of steel mechanical 
properties. This heterogeneity -asymmetrical- caused by the temperature field -
asymmetrical- in the section, originates a coupling between the axial and bending effects. 
Therefore, an axial force produces a curvature, and a bending moment induces elongation 
of the members that affect the displacements field of the 3D-framework, favoring the 
appearance of displacements, rotations, and additional shearing effects, buckling and 
warping. These considerations justify Timoshenko’s beam element in modeling the 
analyzed frame members. The above concludes that a good approximation of the 
mechanical structure response is determined by the type of beam element used to build the 
models. 

- The proposed methodology is general, systematic, and enables the correct representation 
of a non-uniform and time-varying temperature field in the structure. These are significant 
advantages over other used strategies that represent the non-uniform temperature 
distributions from pre-established and constant relationships throughout the fire (e.g., the 
included in [17–20,22]). 

- The methodology for determining the temperature field, including the variation of gradients 
in time, allows for 3D-structural analyses adapted to the 3D-nature of fire and the existence 
of non-uniform temperature fields in real structures.  

- The non-uniform temperature field in the 3D- beam section calculated from the simulation 
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results of the section heat transfer over the entire fire scenario makes it possible that 
structural effects in the cooling phase can also be modeled. Although in the Cardington 
framework only deflections were measured up to the fire resistance time (when the first 
failure occurs), it can be seen that from about 17 to 21 minutes, the framework structural 
effects in the cooling phase (of the gas) are being considered; e.g., buckling evidence in the 
column.  

- The proposed methodology with 3D-beam elements correctly predicts the 3D-field of 
displacements and 3D-effects that appear in structures under the action of fire (buckling, 
flexural-torsional buckling, warping, and coupling). Therefore, the methodology avoids 
using more complex finite elements (shell or solid), simplifying the structural modeling, and 
reducing its cost (modeling time, memory, storage, and computer calculation time). All of 
this allows tackling nonlinear phenomena present in structures subjected to fire action 
easily. It means that the proposed methodology represents a significant step forward 
towards the generalized application of performance-based approaches to deal with the 
effects of fire on structures. By doing so, this methodology also opens the path for a wider 
application of probabilistic models to complex structures under fire. 

Chapter 4 presents two new methodologies implemented in Ansys to predict the LTB 
strength in steel beams with class-4 cross-sections subjected to fire action. The procedures use 
beam-type finite elements with the Timoshenko formulation and are based on a GMNIA that 
includes imperfections, residual stresses, and thermal strains. In the first modeling strategy 
(FBM), the beam is represented by a beam-type finite element fiber. In the second modeling 
strategy (CFM), the beam is represented by a beam-type finite element grid arrangement. Both 
modeling strategies were validated with experimental and numerical simulations of Test-1 and 
Test-3 carried out in the FIDESC4 [24] investigation on a slender beam of class-4 section and 
with a specific shell model of the same test built with Ansys. In all three cases, the validation of 
the ultimate load capacity of both tests was satisfactory. From the studies performed, the 
following conclusions were drawn: 

- Both methodologies correctly predict the ultimate load of the class-4 steel members under 
fire and avoid using more complex finite element models. This simplification of the 
structural model is an important advantage over strategies that use shell elements (see, e.g., 
those included in [19,20]) and allows for full 3D analyses adapted to the 3D nature of the 
LTB phenomenon in real beams. 

- The FBM strategy discretizes the steel member using a fiber representing the beam axis 
located at the outer edge of the beam where the boundary conditions are applied. Two types 
of elements are used to build the model: BEAM189 elements to model the fiber axis and 
LINK180 elements to transfer the load from the application points to the fiber axis 
representing the beam. FBM correctly predicts the ultimate load and is easy to build, and 
the number of elements and model building time is small, which is useful for quickly 
building multi-member models. Furthermore, its nodal results are easy to process. Although 
FBM is easier to build than CFM, its main disadvantages are that (a) FBM does not 
reproduce the local buckling shape and (b) FBM has a higher computational cost than CFM. 
Therefore, its use is not recommended for (a) post-buckling performance analyses and for 
(b) LTB analyses in steel beams requiring a large number of simulations as it would be the 
case of probabilistic and optimization analyses and involving knowledge of the collapse 
load. However, FBM can be very useful when the designer is interested only in the ultimate 
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load as in the LTB analysis under fire of multi-member steel structures belonging to 
industrial facilities or building frames. 

- The CFM strategy discretizes the web and flanges of the steel member using a cruciform 
arrangement of BEAM189 element fibers to capture local buckling. This strategy is 
proposed to simplify the construction and reduce the computational cost of the shell 
models typically used for LTB analyses. CFM correctly predicts the structural response, the 
ultimate load, and even the local buckling failure of the tested beams. In addition, it is 
simpler, less computationally expensive than shell models. This reduction in computational 
cost opens the path for a wider application of probabilistic models to complex structures 
under fire and represents a significant step towards the generalized application of 
performance-based approaches to address fire effects. Therefore, CFM is recommended 
for evaluating the complete performance of the structure up to the collapse, as well as for 
optimization and probabilistic analyses. 

- The simulation of the configuration and the conditions of the FIDESC4 experiments in 
slender beams of class-4 cross-section at high temperatures constitutes a modeling problem 
where initial stresses and initial strains are present. Therefore, both are indispensable for the 
proper calculation of the global response to the problem. The results of simulations carried 
out to validate the tests with and without residual stresses and thermal strains point out that 
the inclusion of these two initial conditions favorably modifies the LTB response of the 
tested beams. As a result, substantial improvements are evident in the evaluation of the 
initial stiffness of the beams and also in the calculations of ultimate load, ultimate 
displacement, and strain energy accumulated up to the ultimate load. In addition, it was 
verified that some tensile residual stresses remained after LTB failure, especially in the 
unheated part of the beam. This is another reason for including them in the LTB analysis 
of class-4 steel members in localized fire scenarios where the temperature along the member 
is not uniform. 

- The study verified that the class-4 steel member strength under fire is significantly smaller 
than its elastic strength because buckling appears early [75,77]. In both tests, the buckling 
limit state established the ultimate load (Pult) at approximately 46% of the theoretical elastic 
load (Py). 

 

6.2 Future work 

The proposals developed in this thesis allow accurate, fast, low-cost, and easy to implement 
solutions. This contribution opens up a range of possibilities in modeling fire-affected steel 
structures that are still complex to solve today due to the high computational cost, such as 
optimization and probabilistic design studies of realistic steel structures affected by natural fire 
scenarios. Although researchers have developed several performance-based investigations and 
have found valuable results (mainly using FE models with many DOFs), the path is still vast. 
Accurate, low-cost predictive models of the behavior of steel structures under fire that make it 
feasible to carry out analyses to resolve uncertainties and reduce risks from fire attacks are 
needed. For example, in the case of class-4 fire-affected steel members, extreme situations 
aggravated by slenderness make it necessary to study the possible uncertainties arising in 
materials, loads, connections, prediction models for the comprehensive analysis of optimized 
members with safety criteria. These studies in class-4 steel members could also include, e.g., 
cyclic solicitations to evaluate the adverse effect of fire-triggering earthquakes, with low-cost 
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models being essential for these tasks. Likewise, for long-span steel portal frame beams, e.g., 
optimization studies based on low-cost models are necessary to find the optimum cross-section 
to reduce the weight, including fire solicitations and design criteria. However, before moving 
forward on this path, low-cost modeling strategies in class-4 steel members proposed in this 
thesis need to be extended to studying lateral-torsional buckling in steel beams with variable 
cross-sections and flexural-torsional buckling in steel columns with constant and variable 
cross-sections. Additionally, a combined methodology can also be formulated, taking 
advantage of the best of FBM and CFM modeling strategies for a more optimal steel structure’s 
response to fire. Finally, it remains to explore new simplified approaches to analyze steel portal 
frames subjected to non-uniform temperature fields with beam elements that better represent 
the bilaminar effect in concrete-protected steel columns without sacrificing accuracy and 
computational time. 
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