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Abstract

In this paper, we introduce the notions of order quasi-Cauchy se-
quences, downward and upward order quasi-Cauchy sequences, order
half Cauchy sequences. Next we consider an associated idea of continu-
ity namely, ward order continuous functions [2] and investigate certain
interesting results. The entire investigation is performed in (l)-group
setting to extend the recent results in [5, 6].
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1. Introduction

The concept of continuity and any concept involving continuity play a very
important role not only in pure mathematics but also in other branches of
sciences especially in computer science, information theory, biological science.
In 2010, Burton and Coleman first introduce the term quasi-Cauchy sequence
which is weaker than Cauchy sequence but interesting in their own right. They
defined the term quasi-Cauchy sequence as: any sequence of real numbers (xn)
is quasi-Cauchy if given any ε > 0 there exists an integer K > 0 such that
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n ≥ K implies |xn+1 − xn| < ε. Evidently Cauchy sequences are quasi-Cauchy
but the converse is not true in general as the counter example is provided by
the sequence of partial sums of the harmonic series. This and several such ex-
amples establish the important fact that the class of quasi-Cauchy sequences is
much bigger than the class of Cauchy sequences, taking in the process more se-
quences under the preview. Understandably mathematical consequence are not
analogous to the already existing notions bases on Cauchy sequences, like the
usual idea of compactness. In a current development of the study of generalized
metric space, the term ward continuity comes remembering the definition of
continuity in sequential sense. The concepts of ward continuity of real valued
function and ward compactness of subsets of R are introduced by Cakalli [5]. A
real valued function f is called ward continuous on E if for every quasi-Cauchy
sequence in E, the corresponding f -image sequence is also quasi-Cauchy.

The aim of this paper is to introduce the notion of order quasi-Cauchy se-
quences and some weaker versions of it [2]. We primarily investigate several
features of this new notion. Finally, a new concept, namely the concept of order
statistical ward continuity of a function is introduced and investigated[7]. In
this investigation we have obtained theorems related to order statistical ward
continuity, order statistical ward compactness, compactness, and uniform or-
der continuity. We also introduced and studied some other continuities involv-
ing statistical order quasi-Cauchy sequences and order convergent sequences of
points in l-group[8].

Throughout R and N stand for the sets of all real numbers and natural
numbers respectively and our topological terminologies and notations are as in
the book [9] from where the notions (undefined inside the article) can be found.
All spaces in the sequel are l-group.

2. Preliminaries

First we recall the concept of ‘natural density’ [9] of a set A of positive
integers, which is defined by

δ(A) = lim
n→∞

d(k ≤ n : k ∈ A)

n
,

Where d denotes the cardinality of the concerned sets.
The notion of statistical convergence which is an extension of the idea of

usual convergence, was introduced by H. Fast [10] and I. J. Schoenberg [13].
Any sequence (xn) in R is statistical convergent to the number L provided that
for each ε > 0,

lim
n→∞

d(k ≤ n : |xk − L| ≥ ε)
n

= 0.

Equivalently, |xk − L| < ε for almost all k. Topological consequences of sta-
tistical convergence were studied by Fridy [11] and Šalát [12]. The study of
statistical convergence and its numerous extensions and, in particular, of the
ideal convergence and its applications has been one of the most active areas of
research in the summability theory over the last 15 years.
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Now we recall some concepts related to lattice, order convergence and lattice
order group. A nonempty set L is said to be a lattice with respect to the partial
order ≤ if for each pair of elements x, y ∈ L, both the supremum and infimum of
the set {x, y} exists in L. We shall write x∨y = sup{x, y} and x∧y = inf{x, y}.
Definition 2.1. An abelian group (L,+) is said to be an (l)-group if it is
lattice and a ≤ b implies a+ c ≤ b+ c for all a, b, c ∈ L.

From now throughout this paper we will write L for (l)-group (L,+) and θ
denotes the identity element of the (l)-group (L,+).

Let x ∈ L be any element, we define |x| = x ∨ (−x) where −x denotes the
additive inverse of x. Also we use the notation a ≥ b equivalent as b ≤ a, and
a > b as equivalent to b ≤ a with b 6= a.

A sequence (xn) in L( i.e. a map : N → L) is said to be increasing(or
decreasing) if x1 ≤ x2 ≤ ... (or x1 ≥ x2 ≥ ...) and we write it symbolically as
xn ↑ (or xn ↓).

A sequence (pn) is called an order sequence if pn ↓ and inf pn = θ. In this
case we write pn ↓ θ. Some author use the term monotone sequences instead
of order sequence. It is easy to observe that if (an) and (bn) are two order
sequences then the sequence (an + bn) is also an order sequence.

A sequence (xn) in L is said to be order bounded if there exists an order
interval [a, b] such that a ≤ xn ≤ b for all n ∈ N.

A sequence (an) in L is said to be convergent in order(or order conver-
gence)to a ∈ L if there exists an order sequence (pn) such that |an − a| ≤ pn

holds for all n. We write it symbolically as an
ord−−−−→ a.

In the literature, there are two ways to define order convergence. Other than
the above way one can define order convergence as: A sequence (an) in L is
said to be order convergence to a ∈ L if there exists an order sequence (pn)
such that for each n0 ∈ N, there exists some m ∈ N satisfying |an − a| ≤ pn0

for all n ≥ m.
The later definition is useful for defining order convergence in filter. The

first definition is called 1-converging and the second one is called 2-converging.
If the lattice is Dedekind complete then the two definitions are equivalent[1]
Throughout the paper we use the second type definition of order convergence.

If a sequence (xn) is order convergent to x0 then we call the sequence (xn−
x0) as a null order sequence which converges to θ.

3. Main Results

3.1. Ward Continuity in (l)-group. In this section, we introduce the con-
cept of order quasi-Cauchy sequences and ward continuity in (l)-group L, and
we study some results related to it.

We know that any sequence of real numbers (xn) is said to be Cauchy if
given any ε > 0 there exists an integer K > 0 such that m,n ≥ K implies
|xm − xn| < ε.

In 2010, Burton and Coleman first use the term quasi-Cauchy sequence.
They defined the term quasi-Cauchy sequence as: any sequence of real numbers
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(xn) is quasi-Cauchy if given any ε > 0 there exists an integer K > 0 such that
n ≥ K implies |xn+1−xn| < ε. Using this idea we first introduce two definitions.

Definition 3.1. Any sequence (xn) in a (l)-group L is said to be an order-
Cauchy sequence if for any order sequence (pn) and for each n0 ∈ N there exists
m ∈ N such that |xi − xj | ≤ pn0

for all i, j ≥ m.

Definition 3.2. Any sequence (xn) in a (l)-group L is said to be an order
quasi-Cauchy sequence if for any order sequence (pn) and for each n0 ∈ N
there exists m ∈ N such that |xn+1 − xn| ≤ pn0

for all n ≥ m.

Remark 3.3. It is easy to verify that every order-Cauchy sequence is order quasi-
Cauchy but the converse is not true in general. For counter example we take
(l)-group (R,+) and consider the sequence (xn) where xn = 1 + 1

2 + 1
3 + ...+ 1

n .
Clearly this sequence is order quasi-Cauchy but not order-Cauchy.

Remark 3.4. Every order convergent sequence is also order quasi-Cauchy.

Remark 3.5. Also every subsequence of order-Cauchy sequence is order-Cauchy.
But the analogous property fails for quasi-Cauchy sequences. For instance we
take the sequence (xn) in R, xn =

√
n. (xn) is order quasi-Cauchy but the

subsequence (xn2) is not order quasi-Cauchy.

We know that if a function preserves Cauchy sequences, then it is called
Cauchy continuous function. Similarly we define quasi-Cauchy continuous
function in (l)-group. Some author rename it as ‘ward continuous function’.
Throughout this paper we use the name ward continuous.

Definition 3.6. Let L be a (l)-group. A function f : L → L is said to be
Ward Continuous on L if the sequence (f(xn)) is order quasi-Cauchy whenever
(xn) is order quasi-Cauchy in L.

Definition 3.7. A subset E of L is said to be ward compact if any sequence
in E has an order quasi-Cauchy subsequence.

The following theorems are obvious.

Theorem 3.8. (1) Every finite subset of L is ward compact.
(2) Union of any two ward compact subsets of L is ward compact.
(3) Intersection of any family of ward compact sets is ward compact.
(4) Any subset of ward compact set is ward compact.

We see that for any metric space, continuity can be described by using
sequence. Remembering this idea, we introduce continuity in (l)-group L. We
call it order continuity.

Definition 3.9. A function f : L → L is said to be order continuous at x0 if
for any sequence (xn) in L, which is order convergent to x0, the corresponding
image sequence (f(xn)) is order convergent to f(x0).

In the next theorem we will investigate the relationship between ward con-
tinuity and order continuity [3].
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Theorem 3.10. Let f : R → L be a ward continuous function, where R ⊂ L
then it is order continuous on R.

Proof. Suppose that f : R → L is ward continuous on R ⊂ L. Let (xn) be a

sequence in R such that xn
ord−−−−→ x0. Now we define a new sequence (yn) as :

yn =

{
x0, if n is even

xk, if n = 2k − 1, k ∈ N.

So,

yn − x0 =

{
θ, if n is even

xk − x0, if n = 2k − 1, k ∈ N.

As (xn) is order convergent to x0 so for any order sequence (pn) and n0 ∈ N
there exists m ∈ N such that |xn − x0| ≤ pn0 for all n ≥ m. Now using this
(pn) and n0 ∈ N with some suitable changes of m, from the construction of
yn − x0, we can easily conclude that (yn) is order convergent. Hence it is an
order quasi-Cauchy sequence. As f is ward continuous so it preserves order
quasi Cauchy sequence. Hence (f(yn)) is also order quasi-Cauchy, which is
given by:

f(yn) =

{
f(x0), if n is even

f(xk), if n = 2k − 1, k ∈ N.

Now for any order sequence (qn) and n′0 ∈ N, there exists m′ ∈ N such that
|f(yn+1)− f(yn)| ≤ pn′

0
for all n ≥ m′ which implies |f(xk)− f(x0)| ≤ pn′

0
, for

all k ≥ M , where M(∈ N) depends on m′. So f(xn)
ord−−−−→ f(x0). Hence f is

order continuous. �

Converse of the above theorem is not true in general, which follows from the
next example.

Example 3.11. Conisder the function f : R → R, given by f(x) = x2 and
consider the sequence (xn) given by xn =

√
n.

Theorem 3.12. Ward continuous function preserves ward compact set.

Proof. Let f : L→ L be a ward continuous map and E ⊆ L be ward compact
set. Let (xn) be any sequence in E, as E is ward compact so we get subsequence
(yn) of (xn) such that (yn) is order quasi-Cauchy sequence. Now as f is ward
continuous function, (f(yn)) is order quasi-Cauchy subsequence of the sequence
(f(xn)) in f(E). This completes the proof of the theorem. �

Definition 3.13. A function f : L→ L is said to be uniformly order continu-
ous on a subset E of L if for any order sequence (εn) and n0 ∈ N, depending on
this we get another order sequence (δn) andm ∈ N, such that |f(x)−f(y)| < εn0

whenever |x− y| < δm.

Theorem 3.14. If f : L→ L is an uniform order continuous map on E ⊂ L
then it is ward continuous on E.
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Proof. Let (xn) be any order quasi-Cauchy sequence of points in E. As f is
uniform order continuous so any order sequence (εn) and n0 ∈ N, depending
on this we get another order sequence (δn) and m ∈ N, such that |f(x) −
f(y)| < εn0

whenever |x− y| < δm. This implies for this δn and m,n0, we get
suitably N , depends on δn,m, n0 such that |xn+1 − xn| < δn for all n > N . So
|f(xn)− f(xn+1)| < εno

, for all n > N . �

From the above theorem we can easily conclude that uniform order contin-
uous functions are also order continuous.

Remark 3.15. Uniform order continuous image of ward compact set is ward
compact.

We use the following notations :
C[L,L] = Set of all order continuous functions on L.
WC[L,L] = Set of all ward continuous functions on L.
UC[L,L] = Set of all uniform order continuous functions on L.

Now from the above discussion we can easily conclude that,

Remark 3.16. UC[L,L] ⊆WC[L,L] ⊆ C[L,L].

We see that, a sequence (xn) in L is said to be order convergent to x0 ∈ L
if there exists an order sequence (pn) such that for each n0 ∈ N, there exists
some m ∈ N satisfying |xn − x0| ≤ pn0

for all n ≥ m. In this case choice of
m depends on x0. To deal this type of situation we introduce the concept of
uniform order convergence in (l)-group.

Definition 3.17. A sequence (xn) in E ⊂ L is said to be uniform order
convergent to x ∈ E if there exists an order sequence (pn) in L such that for
each n0 ∈ N, there exists some m ∈ N satisfying |xn − x| ≤ pn0

for all n ≥ m
and for all x ∈ E.

Theorem 3.18. Let (fn) be a sequence of uniform order continuous functions
on E ⊂ L and (fn) is uniformly order convergent to a function f then f is
uniform order continuous on E.

Proof. Suppose that (fn) is uniformly order convergent to some function f .
Then for a given order sequence (pn) in L and for each n0 ∈ N, there exists
some m ∈ N satisfying |fn(x) − f(x)| ≤ pn0 for all n ≥ m and for all x ∈ E.
Now each fn : L → L is uniform order continuous on E. Hence for this
order sequence (pn), n′ ∈ N, there exists order sequence qn and m′ ∈ N such
that |fn(x) − fn(y)| < pn′ , for all n ≥ m′, whenever |x − y| ≤ qn. Now
f(x) − f(y) = f(x) − fn(x) + fn(x) − fn(y) + fn(y) − f(y), sum of three null
sequences, hence f(x) is uniform order continuous on E. �

Theorem 3.19. Let (fn) be a sequence of ward continuous functions defined
on E ⊂ L and (fn) is uniformly order convergent to a function f then f is
ward continuous on E.
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Proof. Let (xn) be an order quasi-Cauchy sequence of points on E. As (fn) is
uniformly order convergent to f , given order sequence (pn) in L such that for
each n0 ∈ N, there exists some m ∈ N satisfying |fn(x) − f(x)| ≤ pn0 for all
n ≥ m and for all x ∈ E. Now each fn is ward continuous on E. So for this
(pn) and n′ ∈ N there exists m′ ∈ N with |fm(xn+1) − fm(xn)| < pn′ for all
n ≥ m′. Now

f(xn+1)−f(xn) = f(xn+1)−fm(xn+1)+fm(xn+1)−fm(xn)+fm(xn)−f(xn).

This implies f(xn+1)− f(xn) is sum of three null sequences, so we easily con-
clude that f is ward continuous on E. �

3.2. Statistical ward continuity in (l)-group. Recently, it has been proved
that a real-valued function defined on an interval A of the set of real numbers,
is uniformly continuous on A if and only if it preserves quasi-Cauchy sequences
of points in A. In this section we call a real-valued function order statistically
ward continuous if it preserves statistical order quasi-Cauchy sequences. It
turns out that any order statistically ward continuous function on a statisti-
cally ward order compact subset A of an l -group is uniformly order continuous
on A. We prove theorems related to order statistical ward compactness, or-
der statistical compactness, order continuity, statistical order continuity, ward
order continuity, and uniform order continuity.

Definition 3.20. We call a sequence (xn) of points in (l)-group L statistically
order quasi-Cauchy if for any order sequence (pn) and n0 ∈ N,

lim
n→∞

d(k ≤ n : |xk+1 − xk| ≥ pn0)

n
= 0.

Where d(A) denotes the cardinality of the set A.

It is clear that, any order quasi Cauchy sequence is statistically order quasi-
Cauchy.

Definition 3.21. A subset E of L is said to be statistically ward compact if
any sequence of points in E has a statistically order quasi-Cauchy subsequence.

Definition 3.22. A function f : E → L is said to be statistically order con-
tinuous on E ⊆ L if it preserves statistically order convergent sequences.

Definition 3.23. Let E ⊆ L. A function f : E → L is said to be statistically
ward continuous if it preserves statistically order quasi-Cauchy sequences.

Theorem 3.24. Every statistically ward continuous functions are also statis-
tically order continuous.

Proof. Let f : E → L be a statistically ward continuous function and (xn)
be any statistically order convergent sequence which converges to x0. For

any order sequence (pn), n0 ∈ N, limn→∞
d(k≤n:|xk−x0|≥pn0

)

n = 0. Hence the
sequence (x1, x0, x2, x0, ..., xn−1, x0, xn, x0, ...) is also statistically order conver-
gent to x0. Hence it is statistically order quasi-Cauchy. As f is statistically
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ward continuous so (f(x1), f(x0), f(x2), f(x0), f(x3), ...) is also statistically or-
der quasi-Cauchy. As the even terms of the sequence are f(x0), odd terms
are nothing but the sequence (f(xn)), we can easily conclude that (f(xn)) is
statistically order convergent to f(x0). This completes the proof. �

The converse is not true in general. For counter example we take the function
f : R→ R given by f(x) = x2 and consider the sequence (

√
n).

We know that any continuous function on a compact set is uniformly con-
tinuous. Similarly for statistically ward continuous function defined on a sta-
tistically ward compact subset of an (l)-group, we have the following result
:

Theorem 3.25. Let E be a statistically ward compact subset of an (l)-group
L and f : E → L be a statistically ward continuous function on E. Then it is
uniform order continuous.

Proof. If possible suppose that f is not uniformly order continuous on E. Then
there exists order sequence (εn) and n0 ∈ N such that for any δn and m ∈
N with |x − y| ≤ δm, |f(x) − f(y)| > εn0

. Now for each n ∈ N fix |xn −
yn| < δn and |f(xn) − f(yn)| ≥ εn0

. Since E is statistically ward compact so
(xn) has a subsequence (xnk

) which is statistically order quasi-Cauchy. Now
ynk+1

− ynk
= (ynk+1

− xnk+1
) + (xnk+1

− xnk
) + (xnk

− ynk
) which is clearly

sum of three null sequences hence (ynk
) is statistically order quasi-Cauchy

subsequence of (yn). As xnk+1
− ynk

= (xnk+1
− ynk+1

) + (ynk+1
− ynk

) so the
sequence (xnk+1

−ynk
) is statistically order convergent to θ. Hence the sequence

(xn1 , yn1 , xn2 , yn2 , ..., xnk
, ynk

, ...) is statistically order quasi-Cauchy. Which
implies that the sequence (f(xn1), f(yn1), f(xn2), f(yn2), ..., f(xnk

), f(ynk
), ...)

is also statistically order quasi-Cauchy in f(E). But this contradicts the fact
that |f(x)− f(y)| > εn0

. Thus f is uniformly order continuous on E. �

Theorem 3.26. Statistically ward continuous image of any statistically ward
compact subset of L is statistically ward compact.

Proof. Let f : A → L be a statistically ward continuous function defined
on a subset A of L and E be a statistically ward compact subset of A. We
want to show f(E) is statistically ward compact subset of L. Let (yn) be any
sequence of points in f(E). Then clearly yn = f(xn) for some sequence (xn) of
points in E. As E is statistically ward compact set so there exists subsequence
(zk) = (xnk

) of (xn) such that (zk) is statistically ward compact. Now as f is
ward continuous function so f(zk) is statistically order quasi-Cauchy sequence.
Thus we get a order quasi-Cauchy subsequence (f(zk)) of the sequence (yn) of
f(E). Hence f(E) is a ward compact set. �

Theorem 3.27. If (fn) is a sequence of statistically ward continuous functions
on a subset E of L and (fn) is uniformly order convergent to a function f then
f is statistically order ward continuous on E.

Proof. Suppose that (fn) is uniform order convergence to f . For any order
sequence (εn) and n0 ∈ N there exists m ∈ N such that |fn(x) − f(x)| < εn0 ,
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for all n ≥ m and for all x ∈ E. Consider any statistically order quasi-
Cauchy sequence (xn) of points in E. As fm is statistically ward continu-
ous on E so it preserves statistically order quasi-Cauchy sequence. Hence

limn→∞
d(k≤n:|fm(xk+1)−fm(xk)|≥εn0 )

n = 0. Now
f(xk+1)− f(xk) = [f(xk+1)− fm(xk+1)] + [fm(xk+1)− fm(xk)] + [fm(xk)−

f(xk)]. Hence using the fact that fm is statistically ward continuous and fm is
uniform convergent to f we can easily conclude that

lim
n→∞

d(k ≤ n : |f(xk+1)− f(xk)| ≥ εn0
)

n
= 0.

This completes the proof. �

The following result follows immediately:

Theorem 3.28. The set SWC[E,L], the set of all statistical ward continuous
functions is a closed set.

From the above discussion we see that UC[L,L] ⊆ WC[L,L] ⊆ C[L,L].
Now the obvious question is when these sets are equal. In [2], Burton and
Coleman gives some partial idea about the equality of UC[L,L] ⊆WC[L,L].

Theorem 3.29. Let I ⊆ R be any interval. Then UC[I,R] = WC[I,R].

Now we introduce another type of convergence in (l) − group called slowly
oscillating order convergence.

Definition 3.30. A sequence (xn) of points in (l)-group L is called slowly
oscillating order convergence if for any order sequence (εn) and n0 ∈ N there
exists m ∈ N such that |xi − xj | < εn0 for all i ≥ m and 1 ≤ i

j and i
j → 1 as

i, j →∞.

From definition it is clear that order Cauchy sequences are obviously slowly
oscillating and every slowly oscillating sequence is order quasi-Cauchy.

Definition 3.31 ([4, 14]). A function f : E → L is said to be slowly oscillating
continuous if it preserves slowly oscillating order sequences.

By SOC[E, L] we denote set of all slowly oscillating continuous functions
defined on E.

Now we introduce the concept of Connectedness in (l)-group L.

Definition 3.32. Let L be a (l)-group. Suppose that x ∈ U ⊆ L. U is called
order sequential neighborhood of x ∈ L if any sequence (xn) which is order
convergent to x then {xn : n ≥ m} ⊂ U for some m ∈ N.

Definition 3.33. U is said to be an order sequential open subset of L if for
each x ∈ U , U is order sequential neighborhood of x.

Definition 3.34. A is said to be an order sequential closed subset of L if L\A
is an order sequential open subset of L.

Definition 3.35. Let A ⊆ L, by Ā we denote closure of A, defined as inter-
section of all sequentially closed sets containing A.
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Definition 3.36. An (l)-group L is said to be order connected if there do not
exists any non empty subsets A,B such that X = A ∪B with Ā ∩ B̄ = φ.

Now we modify the Lemma 1 in [2] which is given in metric space setting.

Lemma 3.37. Let ((an, bn)) be a sequence of ordered pair of points in a con-
nected subset E ⊆ L such that given any ordered sequence (εn) there exists
n0,m ∈ N, we have |an − bn| ≤ εn0

for all n ≥ m. Then there exists an or-
der quasi-Cauchy sequence (tn) with the property that for any positive integer
i there exists a positive integer k such that (ai, bi) = (tj−1, tj).

It turns out that a function defined on a connected subset E of a metric
space is uniformly continuous if and only if it preserves either quasi-Cauchy
sequences or slowly oscillating sequences of points in E.

Now we are in the position of most desired result:

Theorem 3.38. Let E be an order connected subset of a (l)-group L then the
three sets UC[E,L],WC[E,L] and SOC[E,L] are equivalent.

Proof. UC[E,L] ⊆WC[E,L] : Let f : E → L be any uniformly order contin-

uous function on E. Let (xn) be any order quasi-Cauchy sequence of points in
E. As f is uniform order continuous so any order sequence (εn) and n0 ∈ N,
depending on this we get another order sequence (δn) and m ∈ N such that
|f(x)− f(y)| < εn0

whenever |x− y| < δm. This implies for this δn and m,n0,
we get suitably N , depends on δn,m, n0 such that |xn+1 − xn| < δn for all
n > N . So, |f(xn)− f(xn+1)| < εn0

, for all n > N .
UC[E,L] ⊆ SOC[E,L] : Let f : E → L be uniform order continuous. We

take slowly oscillating sequence (xn) of points on E. Let (εn) be any order
sequence. We get another order sequence (δn) and n0,m0 ∈ N such that
|f(xi) − f(xj)| ≤ εn0

whenever xi, xj ∈ E and |xi − xj | ≤ δm0
. As (xn) is

slowly oscillating so |xi − xj | ≤ δk, for all i ≥ m and 1 ≤ i
j and i

j → 1 as

i, j → ∞. Now using uniform continuity of f , |f(xi) − f(xj)| ≤ εk, for all
i ≥ m and 1 ≤ i

j and i
j → 1 as i, j → ∞. This implies (f(xn)) is slowly

oscillating. Hence f ∈ SOC[E,L].
SOC[E,L] ⊆ UC[E,L] : Let f : E → L be not uniformly continuous on

E. Now each n ∈ N, we fixed |xn − yn| < δn then as f is not uniformly order
continuous so there exists order sequence εn such that |f(xn)− f(yn) ≥ ε(k)|.
Now As it is given that E is order connected so by the Lemma 3.1, from (xn)
we can construct a slowly oscillating sequence (tn) but as f is not uniformly
continuous, so the transformed sequence (f(tn)) is not slowly oscillating. Hence
f /∈ SOC[E,L]. This implies SOC[E,L] ⊆ UC[E,L].
WC[E,L] ⊆ UC[E,L] : Suppose f is not uniformly order continuous on E.

Since we know that slowly oscillating sequences are also order quasi-Cauchy
hence the sequence (tn) constructed on previous case is also order quasi-Cauchy,
but as f is not uniformly order continuous so f(tn) is not order quasi-Cauchy.
So WC[E,L] ⊆ UC[E,L].

This completes the proof of the theorem. �
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4. Downward and upward order Continuity in (l)-group

In this section, we introduce and investigate the concepts of down order
continuity and down order compactness. A real valued function f on a subset
E of the set of real numbers is down continuous if it preserves downward half
Cauchy sequences, i.e. the sequence (f(an)) is downward half Cauchy whenever
(an) is a downward half Cauchy sequence of points in E. A sequence (ak) of
points in R is called downward half Cauchy if for every ε > 0 there exists an
n0 ∈ N such that am − an < ε for m ≥ n ≥ n0. It turns out that the set of
all down continuous functions is a proper subset of the set of all continuous
functions. First we introduce the following definition:

Definition 4.1. Let (xn) be a sequence in (l)-group L. Then (xn) is called
downward order quasi-Cauchy if for any order sequence (pn) and for each n0 ∈
N there exists m ∈ N such that xn+1 − xn ≤ pn0

, for all n ≥ m.

It is clear that every order quasi-Cauchy sequence is also downward order
quasi-Cauchy but the converse is not true in general. For example we take
the lattice order group (R,+) and the sequence (xn), where xn = −n. This
sequence is downward order quasi-Cauchy but not order quasi-Cauchy.

Any order Cauchy sequence is obviously order quasi-Cauchy and hence
downward order quasi-Cauchy.

Definition 4.2. A sequence (xn) of points in L is said to be downward order
half Cauchy if for any order sequence (pn) and for each n0 ∈ N there exists
k ∈ N such that xm − xn ≤ pn0

where m,n ∈ N with m ≥ n > k.

It is obvious that downward order half Cauchy sequences are also downward
order quasi-Cauchy and any subsequence of downward order half Cauchy se-
quence are same type. But for the downward order quasi Cauchy sequences the
situation is different. We take the sequence (xn) in (R,+) such that xn =

√
n.

Clearly (xn) is downward order half Cauchy but one of it’s subsequence, namely
(xnk

) is not downward order half Cauchy.
In [2], authors proved that a sequence of real numbers is Cauchy if and only

if every subsequence is quasi-Cauchy. In the next theorem we present similar
type result for downward order half Cauchy sequences in (l)-group.

Theorem 4.3. A sequence (xn) in L is downward order half Cauchy if and
only if every subsequence of (xn) is downward order quasi-Cauchy.

Proof. If (xn) is downward order half Cauchy then every subsequence of (xn)
is downward half Cauchy so is downward order quasi-Cauchy.

To prove the converse part, we use contrapositive statement. Let (xn) be
not downward order half Cauchy. Then there exists order sequence (pn) and
n0 ∈ N such that for every positive integer m, xni

− xnj
> pn0

, ni > nj ≥ m.
Now for m = 1 we get such ni, nj , we rename it as k1, k2. So k2 > k1 > 1 and

xk2−xk1 > pn0
. Similarly form = 2, 3, .... Inductively we get xkn+1

−xkn > pn0
,

where kn+1 > kn > kn−1 > .... Which shows that the subsequence (xkn) is not
downward order quasi-Cauchy. Hence the proof. �
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Now we study the sequential compactness like property. First of all we
introducing the idea of downward order compact set in a lattice order group
as:

Definition 4.4. A subset E of L is called downward order compact if any
sequence of points in E has a downward order quasi-Cauchy subsequence.

We know that a real valued function of real variables is continuous if it
preserves convergent sequences. In a similar way we already defined order
continuity. Now if a function preserves downward order quasi-Cauchy sequences
then we get a new type of continuity, we call it downward order continuity.

Definition 4.5. A function f : E → L is called downward order continuous
on a subgroup E of L if it preserves downward order quasi-Cauchy sequences.

Theorem 4.6. Sum of two downward order continuous functions is downward
order continuous.

Proof. Suppose that f : E → L and g : E → L are two downward order
continuous functions on E, a subgroup of L. Let (xn) be a downward order
quasi-Cauchy sequence in E. As f, g both are downward order continuous so
the sequences (f(xn)) and (g(xn)) both are downward order quasi-Cauchy. We
know that sum of two order sequences is also an order sequence. Take any
order sequence (pn) then (2pn) is also order sequence. So for order sequence
2pn and for n0 ∈ N there exists positive integers m1 and m2 such that f(xn+1)−
f(xn) ≤ pn0 for all n ≥ m1 and g(xn+1) − g(xn) ≤ pn0 for all n ≥ m2. Take
m = max{m1,m2}. Then f(xn+1) + g(xn+1) − g(xn) − f(xn) ≤ 2pn0

for all
n ≥ m. This proves the theorem. �

From definition it is quite obvious that every ward order continuous function
is downward order continuous. The following theorem make the link between
ward order continuity and order continuity.

Theorem 4.7. Every downward order continuous function is order continuous.

Proof. Let f : E → L be downward order continuous on E and (xn) be a
sequence which order converges to x0. Now we construct a sequence

(x1, x0, x1, x0, x2, x0, x2, x0, ...).

As (xn) is order converges to x0 so the new sequence is also order converges
to x0. Also from the construction it is clear that the new sequence is also
downward order quasi-Cauchy. As f is downward order continuous so

(f(x1), f(x0), f(x2), f(x0), f(x2), f(x0), ...)

is downward order quasi-Cauchy. From here we can easily conclude that f(xn)
order converges to f(x0). Hence f is order continuous. �

Theorem 4.8. Let E be a downward compact subgroup of L and f : E → L
be downward order continuous function. Then f(E) is also downward order
compact.
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Proof. Suppose that E is a downward compact subgroup of L. Let us take
any sequence (yn) in F (E). So yn = f(xn) where xn ∈ A for each n. As
E is downward order compact and (xn) is any sequence in E so (xn) has a
downward order quasi-Cauchy sub-sequence, say, (zk). As f : E → L is a
downward order continuous function, f(zk) is a downward order quasi-Cauchy
sequence. Hence we get f(zk) is a downward order quasi-Cauchy sub-sequence
of (yn). This completes the proof. �

Now the question arise that does the downward continuous function pre-
serves uniform limit? The following theorem gives the answer. The technique
of the proof is almost same as word continuous function. So we just state the
theorem.

Theorem 4.9. If (fn) be a sequence of downward continuous functions defined
on a subgroup E of L and (fn) is uniform order convergent to a function f then
f is downward order continuous on E.

If we change the position of xn+1 and xn in the definition of downward order
quasi-Cauchy sequence we get a new type of sequence, we call it upward order
quasi-Cauchy sequence. The results are similar. We just state the result.

Definition 4.10. Let (xn) be a sequence in (l)-group L. Then (xn) is called
upward order quasi-Cauchy if for any order sequence (pn) and for each n0 ∈ N
there exists m ∈ N such that xn − xn+1 ≤ pn0 .

It is clear that every order quasi-Cauchy sequence is also upward order quasi-
Cauchy. But the converse is not true in general. For example we take the
lattice order group (R,+) and the sequence (xn), where xn = n. This sequence
is upward order quasi-Cauchy but not order quasi-Cauchy.

Any order Cauchy sequence is obviously order quasi-Cauchy and hence up-
ward order quasi-Cauchy.
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