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Abstract: Globalization has given a powerful impetus to the development of international commercial
activity and logistics management systems taking full advantage of cross-border networking. The
solution lies at the intersection of information technologies, technical means of machine-to-machine
(M2M) interaction, mobile high-speed networks, geolocation, cloud services, and a number of
international standards. The current trend towards creating digital logistics platforms has set a
number of serious challenges for developers. The most important requirement is the condition of
sustainability of the obtained solutions with respect to disturbances in the conditions of logistics
activities caused not only by market uncertainty but also by a whole set of unfavorable factors
accompanying the transportation process. Within the framework of the presented research, the
problem of obtaining the conditions for the stability of solutions obtained on the basis of mathematical
models is set. At the same time, the processes of transferring not only discrete but also continuous
material flows through complex structured networks are taken into account. This study contains the
results of the analysis of the stability of solutions of differential systems of various types that simulate
the transfer processes in network media. Initial boundary value problems for evolutionary equations
and differential-difference systems are relevant in logistics, both for the discrete transportation of a
wide range of goods and for the quasi-continuous transportation of, for example, liquid hydrocarbons.
The criterion for the work of a logistics operator is the integral functional. For the mathematical
description of the transport process of continuous and discrete media, a wide class of integrable
functions are used, which adequately describe the transport of media with a complex internal
rheological structure.

Keywords: logistics; sustainability; digitalization; continuous mathematical model; discrete mathe-
matical model; optimization

1. Introduction

Different factors could facilitate the transformation of economies to sustainable
economies [1,2] as well as bioeconomies [3].

This study presents a thematic description of the process of transfer of continuous
and discrete media by formalisms of differential systems with continuously varying time
and differential-difference systems with discretely varying time. In 2010, the authors
completed a qualitative analysis of evolutionary transport equations with a spatial variable
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changing on a network or a network-like domain (the existence and uniqueness of the
solution, the correctness of the stated initial-boundary value problems). The latter led
to the emergence of further research by the authors that in 2020 ended with scientific
results in the direction of studying the properties of solutions (stability, stabilization, and
controllability of system solutions) and the practical use of the obtained results, the logical
conclusions of which were the results of this work. It should be noted that the use of the
mentioned mathematical results is a distinctive feature of this work and represents an
advantage over most studies of an economic orientation, in which the issues of the stability
of mathematical models of an economic nature, and therefore the stability of processes, are
extremely rarely and superficially studied or are not considered at all. The authors also
note that the results obtained are new—the authors are not aware of similar publications in
the studied direction.

The development of correct mathematical models reflecting the evolution of material
flows in networks is a complex task and requires the involvement of a serious mathematical
apparatus [4]. For the found theoretical solutions and algorithms, real-world business
puts forward the additional condition of the study of their sustainability. It is necessary
due to such factors as the instability of market conditions, the spread of parameters of
mathematical models, and the inaccuracy of the initial data.

2. Materials and Methods
2.1. The Purpose of the Research and Methods

The goal of the study, due to its complexity, includes two tasks.
The first task is to find the stability of the solution of an evolutionary parabolic system

with continuous time. The system has distributed parameters on the graph used as a
prototype of the logistics transport network [5,6]. The mathematical model itself describes
the process of transferring material flows through a spatial network. The parabolic system
is studied using the class of integrable functions reflecting mass transfer with a complex
internal rheology. A generalized solution or weak solution of the system in this case is
an integrable function that determines the variational formulation of the initial boundary
value problem.

The second problem involves the analysis of an analogue of the initial boundary value
problem for a differential system of parabolic type with a discretely varying time variable:
a differential-difference system of equations with a spatial variable changing on a graph
(network) that defines a mathematical model of the transfer process in discrete time. To
construct such an analogue, we use the E. Rote method of semi-sampling over a time
variable. The conditions for the existence of a weak solution of a differential-difference
system and the analysis of its stability are obtained. The results of the study can be used in
problems, such as initial boundary value problems and differential-difference systems of
equations, of the optimization of network-like transfer processes.

One of the most relevant problems is the discrepancy between the development of
hardware and brainware. The problem is that although hardware for logistics platforms is
represented by a full line of modern technical means for tracking the flow of goods and
cargo, as well as the exchange of information between all participants in the logistics pro-
cess, the brainware algorithms have only just begun to develop in the direction of network
logistics. For practice, we need algorithms that, first of all, are optimal by economic criteria
and acceptable for embedding in the software of servers of digital logistics platforms.

The following parameters are noted separately: the traffic level; the capacity of the
routes; the spread of the waiting time and the process of loading and unloading operations;
customs services when crossing state borders; the influence of weather conditions on the
speed of movement; technical failures of carriers; and other factors known to logistics
management. In addition, the costs are affected by fluctuations in the cost of stevedoring
operations, mileage rates in multimodal logistics, a difficult-to-predict range of prices for
the rental of port and station infrastructure, etc.
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Their impact can be assessed using the theory of random functions and the theory of
queuing (or queuing theory, QT). Traditionally, for these purposes, the methods of A. M.
Lyapunov have been used to assess the sustainability of systems described by differential
equations for small perturbations of the initial condition. The development of this approach
lies in the area of logistics networks modeling taking into account the sustainability of
material flows. This improvement considers the methods that use maps, graph theory, and
systems of equations from the apparatus of mathematical physics and applies methods of
the theory of optimal decision-making.

Within the framework of the presented research, the problem of obtaining the condi-
tions for the stability of solutions obtained on the basis of mathematical models is set. At
the same time, the processes of transferring not only discrete but also continuous material
flows through complex structured networks are taken into account. This study contains the
results of the analysis of the stability of solutions of differential systems of various types
that simulate the transfer processes in network media. The problems under consideration
are relevant to logistics, both for the discrete transportation of a wide range of goods and
for the quasi-continuous transportation of, for example, liquid hydrocarbons.

A generalized solution is a function that defines the variational formulation of an initial
boundary value problem or a differential-difference system. Going beyond the classical
continuously differentiable solutions is dictated by the need to describe more precisely the
physical nature of the processes of transport of continuous media (e.g., gas, oil, petroleum
products) or discrete flows (commercial goods and cargo) through logistics networks.

The analysis of the influence of perturbations of the source data on the behavior of
a real logistics system and an abstract mathematical model (the solutions obtained either
in the class of initial boundary value problems or the system of differential-difference
equations used) is critical primarily from the point of view of economic indicators of
commercial activity. This makes it possible to assess the risks for investors as well as
analyze the sustainability of the proposed business models.

Note that in the class of ordinary differential equations, the results of the mathematical
theory of stability have been obtained and are widely applied. The new tasks, dictated
by the need to manage economic processes, require optimization according to efficiency
criteria containing at least two variables, one of which is the current time of the process. In
such economic applications, due to the increasing complexity of algorithms for modeling
evolutionary transfer processes, there is a natural need to use formalisms of equations
and systems of partial differential equations that are more appropriate to the specifics of
evolutionary processes.

In the present paper, the abovementioned formalisms are in practice taken to be the
main ones in the mathematical description of evolutionary processes on networks, and
their analysis is the main goal of the study. Namely, we will obtain the sustainability
conditions for solutions for two classes of evolutionary differential systems—systems with
a continuously varying time variable and systems with a discretely varying time variable.

2.2. Main Definitions

We use the classical notation and concepts introduced by the authors to describe
differential systems with a spatial variable changing on a graph Γ (in applications on a
logistics network). At the same time, the internal structure of the graph can be arbitrary
(the graph can contain cycles) while remaining connected and bounded.

Due to the use of functions with a carrier on the graph (and, consequently, differential
equations with a variable changing on the graph), at each edge of γ ⊂ Γ a parametrization
is introduced by the segment [0, 1].

The case of parametrization by different segments is not excluded. In accordance with
the notation introduced in [3,4], ∂Γ, J(Γ) are the sets of boundary ζ and internal ξ nodes of
Γ, respectively.

By Γ0 ⊂ Γ we denote a graph that does not include boundary and end nodes:
Γ0 = Γ\(∂Γ ∪ J(Γ)), and Γt = Γ0 × (0, t) (γt = γ0 × (0, t)), ∂Γt = ∂Γ× (0, t) (t ∈ (0, T],
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T < ∞—constant). We use the concept of the Lebesgue integral on the graph Γ and on the
domain Γt:∫

Γ
f (x)dx = ∑

γ
f (x)γdx,

∫
Γt

f (x, t)dxdt = ∑
γt

f (x, t)γdxdt, respectively;

f (·)γ is the narrowing of the function f (·) to a fixed edge γ.
We use the classical space C(Γ) of continuous functions on a graph and the Lebesgue

space Lp(Γ) (p = 1, 2) of pth-degree measurable and summable functions with norm

‖ u ‖2,Γ= (
∫
Γ

u2(x)dx)1/2 and the space Lp(ΓT) with norm:

‖ u ‖2,ΓT= (
∫
ΓT

u2(x, t)dxdt)
1/2

as well as a space L2,1(ΓT) of functions from L1(ΓT) with norm:

‖ u ‖L2,1(ΓT)
=

T∫
0

(
∫
Γ

u2(x, t)dx)
1/2

dt

In the analysis of differential equations and systems of equations with a spatial
variable changing on the graph Γ, we use the main Sobolev function spaces: W1

2 (Γ) with
elements from L2(Γ), for which the derivative of the first order (the generalized derivative)
belongs to L2(Γ); the space of functions W1,0

2 (ΓT) with elements from L2(ΓT), for which
the derivative of the first order in the spatial variable x belongs to L2(ΓT), and the space
W1

2 (ΓT) is introduced similarly; and V2(ΓT) is composed by the set of time-continuous t
dependencies u(x, t) ∈W1,0

2 (ΓT), which satisfy the finite norm

‖ u ‖2,ΓT≡ max
0≤t≤T

‖u(·, t)‖L2(Γ) + ‖ux‖L2(Γ) (1)

We further introduce the state space with auxiliary spaces. This is necessary not only
for the decision-making process, but also for the development of the conditions for the
existence of these decisions. To do this, in W1

2 (Γ), consider the expression:

`(µ, ν) =
∫
Γ

(
a(x)

dµ(x)
dx

dν(x)
dx

+ b(x)µ(x)ν(x)
)

dx (2)

defining a bilinear form with fixed measurable and bounded on Γ0 coefficients a(x),b(x)
from the space L2(Γ):

0 < a∗ ≤ a(x) ≤ a∗, |b(x)|≤ β, x ∈ Γ0

2.3. Theoretical Fundamentals

The authors consider a statement that is proved in the work [5].

Lemma 1. Let the relation `(u, ν)−
∫
Γ

f (x)η(x)dx = 0 hold for the function u(x) ∈ W1
2 (Γ),

where η(x) ∈ W1
2 (Γ) is an arbitrary function and f (x) ∈ L2(Γ) is fixed. Then, the narrowing

of a(x)γ

du(x)γ

dx is continuous for the set of internal nodes of the graph under consideration for an
arbitrary edge γ ⊂ Γ.

We introduce a set of Ωa(Γ) functions u(x) that satisfy the statement of Lemma 1 and
the following relations, called balance conditions in applications:

∑
γ∈R(ξ)

a(1)γ
du(1)γ

dx
= ∑

γ∈r(ξ)
a(0)γ

du(0)γ

dx
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for any internal node ξ ∈ J(Γ) of the graph (in applications, the nodes of accumulation
and distribution of the transported medium of the logistics network); here, R(ξ) and r(ξ)
denote the sets of edges γ oriented “to node ξ“ and “from node ξ“, respectively.

The operation of closing Ωa(Γ) by the norm of the space W1
2 (Γ) leads to the definition

of the space W1(a, Γ). If we assume that for u(x) from the set Ωa(Γ) there is a boundary
condition u(x )|∂Γ = 0, then another space W1

0 (a, Γ) is defined.
We introduce a set of Ωa(ΓT) functions u(x, t) ∈ V2(ΓT), whose traces exist on the

sections of the domain ΓT with the plane t = t0 (t0 ∈ [0, T]) and belong to the space
W1

0 (a, Γ). The following relations are also valid for them:

∑
γ∈R(ξ)

a(1)γ

∂u(1, t)γ

∂x
= ∑

γ∈r(ξ)
a(0)γ

∂u(0, t)γ

∂x
(3)

(here, ξ ∈ J(Γ) is an arbitrary node of the logistics network). The operation of closing
Ωa(ΓT) by norm (1) leads to the definition of the space V1,0(a, ΓT); the following inclusion
of V1,0(a, ΓT) ⊂W1,0

2 (ΓT) is obvious.
We define another subspace for W1,0

2 (ΓT) by the closure in the norm W1,0
2 (ΓT) of the

set of functions that are differentiable and meet the conditions (3) in ξ ∈ J(Γ) and in
t ∈ [0, T].

We introduce the notation W1,0(a, ΓT) for it and also define it similarly W1(a, ΓT); in
this case, W1,0(a, ΓT) ⊂ W1,0

2 (ΓT) is performed (in applications using this simulation, this
corresponds to the absorption condition).

We have defined the V1,0(a, ΓT) domain of states of the differential system as well as
additionally W1,0(a, ΓT) and W1(a, ΓT). The main difference between V1,0(a, ΓT) and the
spaces W1,0(a, ΓT), W1(a, ΓT) is that the elements W1,0(a, ΓT), W1(a, ΓT) have no continuity
over the time variable t.

The proven statement is of great practical importance in the formation of economic
indicators for the evaluation of network logistics. Indeed, the integrated criterion that
reflects the cost of moving goods depends on both the distance traveled and the time. Such
dependencies have jumps caused by changes in tariffs for multimodal transportation, the
approach to the expiration date of a wide range of consumer goods in the fast-moving
consumer goods (FMCGs) segment, the terms of the transport lease, port infrastructure,
demurrage, detention, or contractual penalties for short delivery or late shipment, and
other factors related to logistics activities.

3. Results
3.1. Mathematical Model of Transfer with Continuously Changing Time

The use of the introduced formalisms for modeling the processes of moving commodi-
ties through the logistics network structure allows us to strictly mathematically describe
the following algorithm.

On the elements of the spaces W1,0(a, ΓT) and V1,0(a, ΓT), we consider the
differential equation

∂y(x, t)
∂t

− ∂

∂x

(
a(x)

∂y(x, t)
∂x

)
+ b(x)y(x, t) = f (x, t) (4)

It is a system of parabolic differential equations with distributed parameters a(x) and b(x),
which characterize the quantitative indicators of the flow state y(x, t) (the transfer rate,
transport efficiency, and other criteria) along the edges γ of the graph Γ as a portrait of the
logistics network f (x, t) ∈ L2,1(ΓT).
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The state function (x, t ∈ ΓT) (x, t ∈ ΓT) for system (4) in the network domain ΓT is
defined by a generalized solution y(x, t) of system (4) that satisfies the initial and boundary
conditions of the form:

y
∣∣t=0 = ϕ(x), x ∈ Γ, y

∣∣x∈∂ΓT = 0 (5)

the ϕ(x) ∈ L2(Γ) is here.
Above, we have already defined the summability with a square for the established

functions a(x) and b(x).
From the condition of belonging to y(x, t) ∈ V1,0(a, ΓT) and summability with the

square of the functions a(x), b(x), it follows that the state y(x, t), as a map of the economic
criterion on the graph, i.e., the map y : [0, T]→W1

0 (a, Γ) ⊂ L2(Γ) , is a continuous function
on the graph, so that the first relation in (5) makes sense and is understood for almost all
values of its variable.

For simplicity of further presentation, we use the Dirichlet boundary condition (the
second relation in (5)), which in the applications means the absence of a flow (inflow) of a
continuous medium in the boundary nodes of the network, i.e., we consider the first initial
boundary value problem (4), (5).

We present the main statements and fragments of the proof of the validity of the
obtained results in the part that is necessary for the study of the sustainability of solutions.
This is primarily applied in the analysis of the adoption of management strategies by
managers of logistics services and risk management of logistics business processes. To do
this, consider the solution first in the auxiliary space W1,0(a, ΓT), then in the main space
V1,0(a, ΓT).

Definition 1. A generalized solution of the initial boundary value problem (4), (5) is understood as
an element (function) y(x, t) ∈W1,0(a, ΓT) that satisfies the identity of the integral type:

−
∫
ΓT

y(x, t)
∂η(x, t)

∂t
dxdt + `T(y, η) =

∫
Γ

ϕ(x)η(x, 0)dx +
∫
ΓT

f (x, t)η(x, t)dxdt (6)

for an arbitrary element η(x, t) ∈W1(a, ΓT) equal to zero for t = T; `t(y, η) denotes the bilinear
form with respect to the elements u, η:

`t(y, η) =
∫
Γt

(
a(x)

∂y(x, t)
∂x

∂η(x, t)
∂x

+ b(x)y(x, t)η(x, t)
)

dxdt, t ∈ (0, T]

It should be noted that the solvability of problem (4), (5) in W1,0(a, ΓT) (and V1,0(a, ΓT))
is established by representing the solution of y(x, t) ∈ V1,0(a, ΓT) as a series using the
system of generalized eigenfunctions of the boundary value problem (the problem for an
elliptic equation):

− d
dx

(
a(x)

du(x)
dx

)
+ b(x)u(x) = λu(x), u(x )|∂Γ = 0 (7)

in the class of functions of the W1(a, Γ) space [6,7].
It follows that, under assumption (2), the spectral problem (7) has a set of eigenvalues

{λi}i≥1 forming a countable set. The following properties of the spectral characteristics of
problem (7) are valid:

1. The eigenvalues are real and have finite multiplicity, they are numbered in ascend-
ing order of modules (taking into account multiplicities): {λk}k≥1, each eigenvalue
corresponds to its own real generalized eigenfunction, and the set of generalized
eigenfunctions forms the sequence {φk(x)}k≥1;
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2. The numbers λk are positive except for a finite number of the first ones; for b(x) > 0,
all numbers λk are positive;

3. The set {φk(x)}k≥1 is an orthogonal basis in the spaces W1
0 (a, Γ) and L2(Γ) (below

‖ φk ‖L2(Γ)= 1);
4. For the boundary value problem Λφ = λφ + g, g ∈ L2(Γ) generated by the

differential expression:

Λu = − d
dx

(
a(x)

du(x)
dx

)
+ b(x)u(x),

is an alternative to Fredholm in the W1
0 (a, Γ) space.

Note 1. In applied problems of practical economics, the coefficient b(x) is a positive
function, which means that all eigenvalues of the boundary value problem described in the
expression (7) are positive. To find the sustainability conditions of evolutionary systems
with an elliptic part defined by the differential operator Λu = − d

dx

(
a(x) du(x)

dx

)
+ b(x)u(x),

the a priori inequality b(x) > 0 is the main one for establishing the stability conditions.

Theorem 1. Let the following conditions be satisfied: f (x, t) ∈ L2,1(ΓT), ϕ(x) ∈ L2(Γ), b(x) is a
non-negative function. The initial boundary value problem (4), (5) in the space W1

0 (a, Γ) (and the
space V1,0(a, ΓT)) has a unique generalized solution.

To prove unambiguous weak solvability in the space W1
0 (a, Γ) (and then in the space

V1,0(a, ΓT)), we use the Faedo–Galerkin method with a special basis—the set of generalized
eigenfunctions {φk(x)}k≥1 of the class W1

0 (a, Γ) of the one-dimensional elliptic operator
generated by the differential expression:

Λu = − d
dx

(
a(x)

du(x)
dx

)
+ b(x)u(x)

The representation of the solution as a series in the system {φk(x)}k≥1 and the sub-
sequent analysis of the convergence of this series together with its derivative in the time
variable complete the proof. The uniqueness of the solution is established by the classical
method using the linearity of the elliptic part of Equation (4).

3.2. Mathematical Model of Transport with Discretely Varying Time

Next, we consider a mathematical model of the transfer process in a discrete time
change. The mathematical description is based on the Rote method of semi-discretization,
which allows us to represent the mathematical model by formalisms of a differential-
difference system of ordinary differential equations on a graph, i.e., a system of equations
with a spatial variable changing on the graph. In this case, the theorem of the existence of
a solution in the space W1

0 (a, Γ) is established and the ways of analyzing the stability of
this solution are indicated. In the space W1,0

0 (a, ΓT) of the states u(x, t)) of system (4), we
consider the initial boundary value problem (4), (5).

We dissect the region ΓT with the planes t = kτ, k = 0, 1, 2, . . . , M, τ = T
M , while the

sections ΓT for any k are Γ. Equation (4) is replaced by the differential-difference equation:

1
τ
(u(k)− u(k− 1))− d

dx

(
a(x)

du(k)
dx

)
+ b(x)u(k) = fτ(k), (8)

where fτ(k) ≡ fτ(x, k) = 1
τ

kτ∫
(k−1)τ

f (x, t)dt and k = 1, 2, . . . , M.

It is clear that fτ(k) ∈ L2(Γ), k = 1, 2, . . . , M.



Sustainability 2021, 13, 9289 8 of 15

The functions u(k) k = 1, 2, . . . , M are defined as weak solutions of the elliptic equation
(8) satisfying the conditions

u(0) = ϕ(x), u(k)|x∈∂Γ = 0. (9)

Thus, for a fixed k relation (8), (9) is the boundary value problem for the elliptic
equation (8) with respect to u(k).

Note 2. The relations (8), (9) are analogous to the implicit first-order difference scheme of ap-
proximation with respect to the time variable t for the initial boundary value
problem (4), (5), given in the space W1,0

0 (a, ΓT), with the elliptic operator:

− d
dx

(
a(x)

dω

dx

)
+ b(x)ω, ω ∈W1

0 (a, Γ).

Definition 2. Elements (functions) u(k), (k = 1, 2, . . . , M) of the space W1
0 (a, Γ) are called weak

solutions of the differential-difference equation (8) with conditions (9) if they satisfy the integral
identity: ∫

Γ

u(k)tν(x)dx + `(u(k), ν(x) =
∫
Γ

fτ(k)ν(x)dx (10)

for any element (function) ν(x) ∈ W1
0 (a, Γ); the equality u(0) = ϕ(x), as equality in spaces e

L2(Γ), is understood almost everywhere, u(k)t ≡ u(x, k)t =
1
τ [u(k)− u(k− 1)].

Theorem 2. Under the conditions f (x, t) ∈ L2,1(ΓT) and ϕ(x) ∈ L2(Γ), the functions u(k)
(k = 1, 2, . . . , M) for sufficiently small τ (τ < τ0) are uniquely defined as elements of the space
W1

0 (a, Γ).

Proof. Note, first of all, that from the condition f (x, t) ∈ L2,1(ΓT) and the representation
fτ(k), fτ(k) ∈ L2(Γ) follows by virtue of the very definition of the space L2,1(Γ). Let k = 1.
Based on properties 3 and 4 of the boundary value problem Λφ = λφ, φ|∂Γ = 0 , and
the relation:

Λu(1) = − 1
τ

u(1) + fτ(1) +
1
τ

u(0), u(0) = ϕ(x) ∈ L2(Γ),

the statement for the function u(1) follows. The same statement, given the ratio

Λu(k) = − 1
τ

u(k) + fτ(k) +
1
τ

u(k− 1), u(0) = ϕ(x) ∈ L2(Γ),

remains true for k = 2, 3, . . . , M. Below, when obtaining an a priori estimate for the
functions u(k), the boundary τ0 for the change τ will be specified. The theorem is proved.

3.3. Sustainability of the Control Solutions of the Transfer Processes

The stability of mathematical models of the transfer process (controlling the decision
process) with continuously and discretely changing time is considered below. Note that the
term “process control solution” in applied problems of practical economics means fixing
(selecting) the initial data of the problem in accordance with the current economic need
and the capabilities of the economic entity.

3.3.1. Sustainability of Solutions with Continuously Changing Time

We will conduct a mathematically based study of the stability parameters of the found
solution of system (4), which describes the dynamics of the logistics process, formalized in
the form of mass transfer of goods and cargo through the network. The transport network,
in turn, is represented as a mathematical graph.
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Assume that 0 ≤ b(x) ≤ β for x ∈ Γ, which guarantees the positivity of the eigenval-
ues λi, i ≥ 1. In the cylinder Γ∞ = Γ0 × (0, ∞), consider the system (4) defined above.

Let us introduce the notation: Γt0,t = Γ0× (t0, t), ∂Γt0,t = ∂Γ× (t0, t), (0 < t0 < t < ∞),
Γt0,∞ = Γ0 × (t0, ∞), ∂Γt0,∞ = ∂Γ× (t0, ∞); obviously Γt0,t ⊂ Γt.

By the assumption given above, f (x, t) ∈ CL2,1(ΓT) (CL2,1(ΓT) is denoted by the
space of functions continuous over the variable t and the norm of the space L2,1(ΓT)), and:

t+1∫
t

‖ f (·, ς) ‖2
L2(Γ)

dς ≤ A

(A > 0 is a fixed constant) for an arbitrary t ≥ 0.
Let the weak solution for (4) be y (x, t) ∈ V1,0(a, Γt0,∞), which is a generalized solution

of system (4) in Γt0,∞. In this case, we formulate the initial and boundary conditions as
follows:

y
∣∣∣t=t0 = ϕ(x), x ∈ Γ, y

∣∣∣x∈∂Γt0,∞ = 0.

We introduce the relation y(x, t) ∈ V1,0(a, Γt0,∞) valid for the weak solution of
system (4) in the Γt0,∞ graph under consideration. At the same time, we also formulate the
initial and boundary conditions as follows:

y
∣∣∣t=t0 = ϕ(x), x ∈ Γ, y

∣∣∣x∈∂Γt0,∞ = 0

The weak solution y (x, t) for (4) is denoted by the term ‘unperturbed’. On the other
hand, for the solution y (x, t), we introduce the definition of ‘perturbed’. The previously
obtained relations for the generalized solution for the system (4), (5) determine the depen-
dencies y(x, t), y(x, t) in Γt0,∞ corresponding to the conditions. They also make it possible
to determine V1,0(a, Γt0,∞) at f (x, t) ∈ CL2,1(Γ∞).

We define the stability of its weak solution for (4), (5) in the same way as the Lyapunov
stability for the problem under consideration.

Definition 3. We assume that the unperturbed weak solution y (x, t) for equations (4)
is stable in the case when for any t0 > 0 and ε > 0 there exists δ(t0, ε) > 0 such that if
‖ ϕ− ϕ ‖L2(Γ)< δ(t0, ε), then done inequality ‖ y (·, t)− y (·, t) ‖W1(a,Γ)< ε t ≥ t0. In this case,
y (x, t) is a perturbed weak solution for (4).

It is also possible for the practical needs of management to introduce a definition
of the conditions of uniform sustainability. This is necessary for long-term planning of
logistics activities. In this case, the unperturbed state of system (4) in the domain Γt0,∞
under consideration will be determined completely by analogy with Definition 3.

Additionally, for practical applications in long-term planning, the asymptotic and
exponential stability can be determined in the framework of (4). Note that the reformulation
is permissible due to the linearity of the system (4).

We show that the unperturbed weak solution (state) of system (4) in ΓT is stable if the
inequality 0 < b(x) ≤ β, x ∈ Γ is satisfied.

This is a consequence of the linearity of system (4). Let θ(x, t) = y(x, t) − y(x, t),
which means θ(x, t) ∈ V1,0(a, Γt0,∞), and let θ(x, t) be a generalized solution of the problem
for a homogeneous system (4) satisfying the initial and boundary conditions

θ
∣∣∣t=t0 = φ(x), x ∈ Γ, θ

∣∣∣x∈∂Γt0,∞ = 0,

where φ(x) = ϕ(x)− ϕ(x).



Sustainability 2021, 13, 9289 10 of 15

It follows that problem (4) is uniquely generalized and solvable. Its weak solution

is representable as θ(x, t) =
∞
∑

i=1
φie−λitui(x), φi = (φ, ui) and is the limit of the weakly

converging sequence
{

θN}
N≥1 of its approximations:

θN(x, t) =
N

∑
i=1

φi e−λitui(x).

In this case, the following inequality is performed simultaneously for all N:

‖ θN ‖ 2,Γt≤
N

∑
i=1

φ2
i e−2λit, N = 1, 2, . . .

In this inequality, moving to the limit at N → ∞ , we obtain an upper bound, given
e−2λit < 1 (i = 1, 2, . . .):

‖ θ ‖ 2,Γt≤ C∗ ‖ φ ‖ L2(Γ)

for all t ∈ [t0, ∞); C∗ is a constant independent of t.
This means that:

‖ θ(·, t)‖W1(a,Γ) ≤ C∗ ‖ φ ‖ L2(Γ)

Fix ε > 0 and take δ = ε
C∗ , then by virtue of the inequality:

‖ φ ‖ L2(Γ)=‖ ϕ− ϕ ‖ L2(a,Γ)< δ

we obtain the inequality ‖ θ(·, t) ‖W1(a,Γ)=‖ y(·, t) − y(·, t) ‖ W1(a,Γ) < ε for arbitrary
t > t0 and, hence, the stability of the unperturbed weak solution (state) of system (4) in ΓT .

3.3.2. Sustainability of Solutions with Discretely Varying Time

First of all, we note that due to the representation (8) of the differential-difference
analog of the continuous system (4), the discrete time analogue for the continuously
changing time variable t ∈ (0, T] is the set {t = kτ, k = 0, 1, 2, . . . , M}, where τ = T/M. For
the differential-difference system (8), (9), stability is defined as the continuous dependence
of its solution on the initial data: the functions fτ(k) ∈ L2(Γ) (k = 1, 2, . . . , M) and
ϕ (x) ∈ L2(Γ).

Definition 4. A differential-difference system (4), (5) is called stable if the relation is valid
for small:

‖ u(k) ‖2,Γ≤ C(‖ ϕ ‖2,Γ + ‖ fτ(k) ‖2,1,Γ)

for any k = 1, 2, . . . , M; C is a positive constant independent of τ; ‖ u(k) ‖ 2,Γ is the norm in the
space L2(Γ); and the norm ‖ fτ(k) ‖2,1,Γ is defined by the formula

‖ fτ(k) ‖ 2,1,Γ= τ
k

∑
s=1
‖ fτ(s) ‖ 2,Γ .

Theorem 3. If the conditions f (x, t) ∈ L2,1(ΓT) and ϕ(x) ∈ L2(Γ) are met, the differential-
difference system (4), (5) is stable.

Proof. From the equality:

u(k− 1)2 = (u(k)− τu(k)t)
2 = u(k)2 + τ2u(k)2

t − 2τu(k)u(k)t

the relation follows:

2τu(k)u(k)t = u(k)2 + τ2(u(k)t)
2 − u(k− 1)2. (11)
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Taking the relation (8) ν(x) = 2τu(k), and taking into account (9) as well as the lower
bound a∗ for a(x), we obtain the inequality:∫

Γ
u(k)2dx−

∫
Γ

u(k− 1)2dx + τ2
∫
Γ
(u(k)t)

2dx + 2a∗τ
∫
Γ
( du(k)

dx )
2
dx ≤

≤ −2τ
∫
Γ

b(x)u(k)2dx + 2τ
∫
Γ

fτ(k)u(k)dx,

hence the inequality follows:

‖ u(k) ‖2
2,Γ − ‖ u(k− 1) ‖2

2,Γ +τ2 ‖ u(k)t ‖2
2,Γ +2a∗τ ‖ du(k)

dx ‖
2≤

≤ 2βτ ‖ u(k) ‖2
2,Γ +2τ ‖ fτ(k) ‖2,Γ‖ u(k) ‖2,Γ .

For k = 1, 2, . . . , M and ρ = 2β, we obtain:

‖ u(k) ‖2
2,Γ − ‖ u(k− 1) ‖2

2,Γ≤ ρτ ‖ u(k) ‖2
2,Γ +2τ ‖ fτ(k) ‖2,Γ‖ u(k) ‖2,Γ . (12)

For ‖ u(k) ‖2,Γ + ‖ u(k− 1) ‖2,Γ> 0, given the inequality ‖u(k)‖2,Γ
‖u(k)‖2,Γ+‖u(k−1)‖2,Γ

≤ 1, we

obtain at τ ≤ τ0 < 1
2ρ the estimate

‖ u(k) ‖2,Γ≤
1

1− ρτ
‖ u(k− 1) ‖2,Γ +

2τ

1− ρτ
‖ fτ(k) ‖2,Γ, (13)

For ‖ u(k) ‖2,Γ + ‖ u(k− 1) ‖2,Γ= 0, the relation (12) follows 0 ≤ ρτ ‖ u(k) ‖2,Γ +2τ ‖
fτ(k) ‖2,Γ, i.e., the relation ‖ u(k) ‖2,Γ≤ ρτ ‖ u(k) ‖2,Γ − ‖ u(k− 1) ‖2,Γ +2τ ‖ fτ(k) ‖2,Γ
and hence the inequality (13). From the recurrent property of the estimate (13), we obtain:

‖ u(k) ‖2,Γ≤ 1
1−ρτ ‖ u(k− 1) ‖2,Γ + 2τ

1−ρτ ‖ fτ(k) ‖2,Γ≤

≤ 1
(1−ρτ)k ‖ u(0) ‖2,Γ +2τ

k
∑

s=1

1
(1−ρτ)k−s+1 ‖ fτ(s) ‖2,Γ≤

≤ e2ρT(‖ u(0) ‖2,Γ +2 ‖ fτ(k) ‖2,1,Γ).

(14)

So, the score in definition 4 is where C = e2ρT , and the theorem is proved.

Note 3. One can significantly refine the estimate (14) presented in the proof of the statement
of Theorem 3.

For any m = 1, 2, . . . , M:

m

∑
k=1
‖ fτ(k) ‖2,1,Γ=

m

∑
k=1

(
τ

k

∑
s=1
‖ fτ(s) ‖2,Γ

)
≤ mτ

m

∑
s=1
‖ fτ(s) ‖2,Γ= m ‖ fτ(m) ‖2,1,Γ,

given the evaluation of Theorem 3, we obtain the inequality:

m

∑
k=1
‖ u(k) ‖2,Γ≤ me2ρT(‖ ϕ ‖2,Γ +2 ‖ fτ(m) ‖2,1,Γ).

Summing up the inequalities

‖ u(k) ‖2
2,Γ − ‖ u(k− 1) ‖2

2,Γ +τ2 ‖ u(k)t ‖2
2,Γ +2a∗τ ‖ du(k)

dx ‖
2≤

≤ 2βτ ‖ u(k) ‖2
2,Γ +2τ ‖ fτ(k) ‖2,Γ‖ u(k) ‖2,Γ
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for k from 1 to m ≤ M and using the estimates obtained above, we arrive at the inequality:

‖ u(m) ‖2
2,Γ +2a∗τ

m
∑

k=1
‖ du(k)

dx ‖
2 +τ2

m
∑

k=1
‖ u(k)t ‖2

2,Γ≤

≤
m
∑

k=1

(
βτ ‖ u(k) ‖2

2,Γ +2τ ‖ fτ(k) ‖2,Γ‖ u(k) ‖2,Γ

)
≤

≤
m
∑

k=1
‖ u(k) ‖2,Γ

m
∑

k=1
(βτ ‖ u(k) ‖2,Γ +2τ ‖ fτ(k) ‖2,Γ) ≤

≤ me2ρT
{
(3mβTe2ρT + 1) ‖ ϕ ‖2

2,Γ +(6mβTe2ρT + 5) ‖ fτ(m) ‖2
2,1,Γ

}
.

Hence, to the inequality:

‖ u(m) ‖2
2,Γ +2a∗τ

m

∑
k=1
‖ du(k)

dx
‖2≤ C(‖ ϕ ‖2

2,Γ + ‖ fτ(m) ‖2
2,1,Γ), (15)

where the constant C depends only on a∗, β, and T.

3.4. Connection of Transport Models with Continuously and Discretely Changing Time

Inequalities (14) and (15) make it possible to justify the applicability of the Rote method
and to establish a connection between the initial boundary value problem (4), (5) and the
differential-difference system (8), (9).

Let uM(x, t) = u(k), t ∈ ((k−)1τ, kτ] , k = 1, 2, . . . , M. Obviously, uM(x, t) belongs
to W0

1,0(a, ΓT) and the estimate (15) is valid for it, as well as the estimate

‖ uM ‖2,ΓT + ‖ ∂uM
∂x
‖2,ΓT≤ C∗, (16)

with a constant C∗, independent of τ, through ‖ . ‖2,ΓT
—the norm in L2(ΓT).

Let fM(x, t) = fτ(x, k), t ∈ ((k − 1)τ, kτ], k = 1, 2, . . . , M and M→ ∞ . By virtue
of (16) of {uM(x, t)}, you can select the sequence {ũM(x, t)}, which weakly converges in
the norm of the space W1,0

2 (ΓT) to u(x, t) ∈W0
1,0(a, ΓT).

We show that u(x, t) defines a weak solution to the initial boundary value pro-
blem (4), (5); in other words, the identity (6) is valid for u(x, t). We check the validity
of this identity for functions η(x, t) ∈ C1(ΓT+τ) that satisfy the matching conditions for
nodes ξ ∈ J(Γ) for any t ∈ (0, T) and the conditions η|∂ΓT

= 0, η|t∈[T,T+τ] = 0.
By η(x, t), we define the function η(k) = η(x, kτ), k = 1, 2, . . . , M, and

η(k)t′ =
1
τ [η(k + 1)− η(k)].

As for u(k), the piecewise continuous functions ηM(x, t), ∂ηM(x,t)
∂x , and ∂ηM(x,t)

∂t are
defined with respect to η(k).

Obviously, ηM(x, t), ∂ηM(x,t)
∂x , ∂ηM(x,t)

∂t converge uniformly on ΓT to respectively η(x, t),
∂η(x,t)

∂x , ∂η(x,t)
∂t , and ηM(x, t) = 0, t ∈ [T, T + τ].

Let ν(x) = τη(k) in (10) and summing up the obtained identities with respect k and
from 1 to M, we arrive at the relation

−
∫

ΓT

uM(x, t) ∂ηM(x,t)
∂t dxdt + `T(uM, ηM)−

∫
Γ

ϕ(x)η(1)dx =

=
∫

ΓT

f (x, t)ηM(x, t)dxdt.
(17)

From the obtained relation (17) at M→ ∞ , let us pass to the limit with respect to
the sequence {ũM(x, t)} and obtain identity (6), which means that u(x, t) (the function
u(x, t) ∈ W1,0

0 (a, ΓT)) is a weak solution (state) of system (4) and (5). By virtue of the
uniqueness of the solution u(x, t) to problem (4) and (5) on the basic fundamentals and
estimate (16), the sequence {uM(x, t)} converges weakly to u(x, t). The theorem is proved.
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Note 4. The results can be used to analyze evolutionary and differential-difference systems
with boundary conditions of the second and third types. For this, it is sufficient to set the
second or third boundary condition instead of the Dirichlet boundary condition for the
boundary value problem (7).

3.5. On Computational Aspects of Transport Models with Continuously and Discretely Varying Time

Mathematical models (4), (5) and (8), (9) allow for effective approximation by dif-
ference schemes on a two-dimensional grid Γh,τ

T = {(ih, jτ), ih ∈ γ, jτ ∈ [0, T]} and a
one-dimensional grid Γh = {ih} (the points of splitting the edges γ ∈ Γ and the time
interval [0, T] are numbered by indices i, j) with approximation errors equal to O(h, τ)
and O(h), respectively. In this case, the error in the approximation of systems (4) and (8)
on the edges is equal to O(h2 + τ) and O(h2) and at the nodes is equal to O(h) in both
cases; the approximation of boundary conditions (5) and (9) is exact. Numerical analysis
of test examples according to schemes for systems (4), (5) and (8), (9) showed almost the
same result in the accuracy of calculations, but preference should be given to calculation
schemes (8), (9); due to the one-dimensionality of Γh, the number of arithmetic operations
is several orders of magnitude fewer. The restrictions on the use of the presented results
are determined by the linearity property of the differential operators of systems (4), (5)
and (8), (9).

4. Discussion

Digital logistics is based on some platform-based business models, so the issues of the
implementation of digital business models for sustainable development could be a topic
for future research. Companies’ information about their socio-environmental actions is
important as well as both the rankings of corporate social responsibility [8] and the degree
of similarity in international brand valuation rankings that apply to the IT sector [9].

The digital transformation of logistics networks has been driven by different factors,
including the approaches of such giant companies as Apple, Alibaba, Facebook, and
Google [10] to developing the platform’s ecosystem [11] as well as new business models on
the basis of the digital twin concept, which was initially implemented in the manufacturing
industry [12]. Researchers take into account some different aspects of the digital logistics
networks [13–16] and the features of digital ecosystems [17,18] as well.

The competitiveness of all types of commercial activities using the services of logistics
operators, including the concepts of 3PL and 4PL outsourcing, depends on the quality of
algorithms for processing data arrays on the movement of goods (taking into account sus-
tainable human resource management [19]). The reader can consider a graph as a prototype
of a logistics network. The authors propose the use of the formalisms of initial boundary
value problems or differential-difference systems to construct a mathematical model of
transfer problems in the class of summable functions, since such systems and the class of
functions used help to more accurately take into account the key property of the transferred
continuous or discrete media–multiphase media, which involves a lack of continuity in
the functions describing the quantitative characteristics of the transferred media. Modern
mathematical methods and approaches developed by the authors provide the necessary
mathematical tools not only to describe the process on linear network fragments but to
obtain adequate mathematical relationships describing the process at the junction nodes
of linear network fragments. Additionally, the authors applied the integral functional
of the quality of the logistics network [20–24]. The article investigates the boundaries of
the stability of an evolutionary parabolic system and a differential-difference system with
distributed parameters on a selected graph [25–29]. A computational complexity analysis
to demonstrate the computational performance of the proposed solution methodologies
could be a topic for future research because of the limitation on the size of the article.
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5. Conclusions

The modern transnational business structure is based on a complex multi-level and
constantly evolving transport network. In the middle of the 20th century, simple models for
finding optimal routes were developed using linear programming methods. The need to
work under conditions of uncertainty and in a dynamic market environment requires us to
consider the fundamental difference between discrete and quasi-continuous transportation.

Currently, the theoretical fundamentals of logistics comprise a complex of different
methods and models for managing logistics networks. The activity of logistics operators
is based on predictive planning and operates with a stream of data on the condition of
the cargo and its location in real time. Projecting the movement of material flows onto
the logistics network and choosing the optimal supply chains require the creation of ef-
fective digital logistics platforms. The core of these systems is formed by an algorithm
implemented on mathematical models and the theory of making optimal decisions based
on the criteria of economic efficiency. Real logistic activity takes place under the influence
of numerous random disturbances. For practical business tasks, it is critically impor-
tant to analyze the sustainability of the proposed solutions, which not only provides an
assessment of investment risks but also allows us to switch to predictive indicators of
advanced planning.

In this study, the development of classical approaches to the study of the sustainability
of solutions obtained by using mathematical modeling based on systems of differential
equations is carried out. The complex topology of logistics networks within which supply
chains are built makes it necessary to apply deeper methods in the study of the dynamics
of logistics flows. Based on the real conditions of logistics activities, it was assumed that
this functionality is not always continuous in terms of movement and time parameters.
The complexity of solving the problems of forming effective supply chains has increased
under the influence of the trend of the consolidation of business into network structures.
The application of the results obtained in this work is not limited to the analysis of the
sustainability of solutions. Their use is relevant in assessing investment risks, the sus-
tainability of the business model of outsourcing logistics operators, as well as for gaining
competitive advantages.

Author Contributions: All authors contributed substantially to the entirety of the work reported.
I.V.K. and V.V.P. performed project administration, L.N.B. provided supervision, S.M.S. prepared a
conceptualization, L.S. performed data curation as well as formal analysis, E.D.L.P.P. contributed to
the literature review, and S.E.B. developed the methodology and edited the manuscript. The authors
would like to thank the four anonymous referees for their very useful suggestions. All authors have
read and agreed to the published version of the manuscript.

Funding: The reported study was funded by RFBR according to the research project № 20-014-00029.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors confirm that there are no conflict of interest to declare for
this publication.

References
1. Filser, M.; Kraus, S.; Roig-Tierno, N.; Kailer, N.; Fischer, U. Entrepreneurship as Catalyst for Sustainable Development: Opening

the Black Box. Sustainability 2019, 11, 4503. [CrossRef]
2. Gupta, R.; Mejia, C.; Kajikawa, Y. Business, innovation and digital ecosystems landscape survey and knowledge cross sharing.

Technol. Forecast. Soc. Chang. 2019, 147, 100–109. [CrossRef]
3. Kuckertz, A. Bioeconomy Transformation Strategies Worldwide Require Stronger Focus on Entrepreneurship. Sustainability

2020, 12, 2911. [CrossRef]

http://doi.org/10.3390/su11164503
http://doi.org/10.1016/j.techfore.2019.07.004
http://doi.org/10.3390/su12072911


Sustainability 2021, 13, 9289 15 of 15

4. Borisoglebskaya, L.N.; Provotorov, V.V.; Sergeev, S.M.; Kosinov, E.S. Mathematical aspects of optimal control of transference
processes in spatial networks. IOP Conf. Ser. Mater. Sci. Eng. 2019, 537, 042025. [CrossRef]

5. Borisoglebskaya, L.N.; Provotorova, E.N.; Sergeev, S.M. Commercial software engineering under the digital economy concept.
J. Phys. Conf. Ser. 2019, 1399, 033029. [CrossRef]

6. Zhabko, A.P.; Shindyapin, A.I.; Provotorov, V.V.E. Stability of weak solutions of parabolic systems with distributed parameters on
the graph. Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr. 2019, 15, 457–471. [CrossRef]

7. Krasnov, S.; Sergeev, S.; Zotova, E.; Grashchenko, N. Algorithm of optimal management for the efficient use of energy resources.
E3S Web Conf. 2019, 110, 110. [CrossRef]

8. Alcaide González, M.Á.; De La Poza Plaza, E.; Guadalajara Olmeda, N. The impact of corporate social responsibility transparency
on the financial performance, brand value, and sustainability level of IT companies. Corp. Soc. Responsib. Environ. Manag.
2020, 27, 642–654. [CrossRef]

9. Alcaide González, M.Á.; Guadalajara Olmeda, M.N.; De la Poza, E. Modelling It Brand Values Supplied By Consultancy Service
Companies: Empirical Evidence For Differences. Technol. Econ. Dev. Econ. 2020, 27, 120–148. [CrossRef]

10. Wilson, J.P.; Campbell, L. Financial functional analysis: A conceptual framework for understanding the changing financial system.
J. Econ. Methodol. 2016, 23, 413–431. [CrossRef]

11. Kenney, M.; Zysman, J. The platform economy: Restructuring the space of capitalist accumulation. Camb. J. Reg. Econ. Soc.
2020, 13, 55–76. [CrossRef]

12. Bécue, A.; Maia, E.; Feeken, L.; Borchers, P.; Praça, I. A New Concept of Digital Twin Supporting Optimization and Resilience of
Factories of the Future. Appl. Sci. 2020, 10, 4482. [CrossRef]

13. Barykin, S.Y.; Bochkarev, A.A.; Sergeev, S.M.; Baranova, T.A.; Mokhorov, D.A.; Kobicheva, A.M. A methodology of bringing
perspective innovation products to market. Acad. Strateg. Manag. J. 2021, 20, 19.

14. Barykin, S.Y.; Kapustina, I.V.; Sergeev, S.M.; Kalinina, O.V.; Vilken, V.V.; Putikhin, Y.Y.; Volkova, L.V. Developing the physical
distribution digital twin model within the trade network. Acad. Strateg. Manag. J. 2021, 20, 1–24.

15. Barykin, S.Y.; Smirnova, E.A.; Sharapaev, P.A.; Mottaeva, A.B. Development of the Kazakhstan digital retail chains within the
EAEU E-commerce. Acad. Strateg. Manag. J. 2021, 20, 1–18.

16. Barykin, S.Y.; Kapustina, I.V.; Valebnikova, O.A.; Valebnikova, N.V.; Kalinina, O.V.; Sergeev, S.M.; Camastral, M.; Putikhin,
Y.Y.; Volkova, L.V. Digital technologies for personnel management: Implications for open innovations. Acad. Strateg. Manag. J.
2021, 20, 1–14.

17. Shmatko, A.; Barykin, S.; Sergeev, S.; Thirakulwanich, A. Modeling a Logistics Hub Using the Digital Footprint Method—The
Implication for Open Innovation Engineering. J. Open Innov. Technol. Mark. Complex. 2021, 7, 59. [CrossRef]

18. Barykin, S.Y.; Kapustina, I.V.; Kirillova, T.V.; Yadykin, V.K.; Konnikov, Y.A. Economics of Digital Ecosystems. J. Open Innov.
Technol. Mark. Complex. 2020, 6, 124. [CrossRef]

19. Zhang, L.; Guo, X.; Lei, Z.; Lim, M.K. Social Network Analysis of Sustainable Human Resource Management from the Employee
Training’s Perspective. Sustainability 2019, 11, 380. [CrossRef]

20. Zaytseva, O.D.; Prudovskiy, B.D. The task of detection the optimal scheme of transport kinds’ coordination into logistic transport
system with taking into account input limits. J. Min. Inst. 2014, 209, 177.

21. Kopteva, A.; Koptev, V.; Malarev, V.; Ushkova, T. Development of a system for automated control of oil transportation in the
Arctic region to prevent the formation of paraffin deposits in pipelines. E3S Web Conf. 2019, 140, 07004. [CrossRef]

22. Avksentiev, S.Y.; Avksentieva, E.Y. Determining the Parameters of the Hydraulic Transport of Tailings for Processing Iron Ore.
IOP Conf. Ser. Earth Environ. Sci. 2018, 194, 032003. [CrossRef]

23. Samolenkov, S.V.; Kabanov, O.V. Study of the ways saving to energy at transport of the oils. J. Min. Inst. 2012, 195, 81.
24. Zhukovskiy, Y.L.; A Korolev, N.; Babanova, I.S.; Boikov, A.V. The prediction of the residual life of electromechanical equipment

based on the artificial neural network. IOP Conf. Ser. Earth Environ. Sci. 2017, 87, 032056. [CrossRef]
25. Lapiga, I.; Shchipachev, A.; Osadchiy, D. Using of artificial neural networks to assess the residual resource of trunk pipelines. E3S

Web Conf. 2021, 225, 02006. [CrossRef]
26. Nazarova, M.N.; Davydenko, M.I.; Yaroslavova, Y.E. Modernization of polyethylene pipelines for expanding application of them

in gas transportation systems. IOP Conf. Ser. Earth Environ. Sci. 2018, 194, 072009. [CrossRef]
27. Alexandrov, V.I.; Khrabrov, A.P. Parameters of high viscosity oils transportation in the form of emulsion research in order to its

optimization. J. Min. Inst. 2011, 189, 175.
28. Kovalchuk, M.; Poddubniy, D. Improving the efficiency of conveyor transport with the use of network technologies. E3S Web

Conf. 2019, 140, 04011. [CrossRef]
29. Vasiliev, B.U. Factors Of Environmental Safety and Environmentally Efficient Technologies Transportation Facilities Gas Trans-

portation Industry. IOP Conf. Ser. Earth Environ. Sci. 2017, 50, 12003. [CrossRef]

http://doi.org/10.1088/1757-899X/537/4/042025
http://doi.org/10.1088/1742-6596/1399/3/033029
http://doi.org/10.21638/11702/spbu10.2019.404
http://doi.org/10.1051/e3sconf/201911002052
http://doi.org/10.1002/csr.1829
http://doi.org/10.3846/tede.2020.13755
http://doi.org/10.1080/1350178X.2016.1157200
http://doi.org/10.1093/cjres/rsaa001
http://doi.org/10.3390/app10134482
http://doi.org/10.3390/joitmc7010059
http://doi.org/10.3390/joitmc6040124
http://doi.org/10.3390/su11020380
http://doi.org/10.1051/e3sconf/201914007004
http://doi.org/10.1088/1755-1315/194/3/032003
http://doi.org/10.1088/1755-1315/87/3/032056
http://doi.org/10.1051/e3sconf/202122502006
http://doi.org/10.1088/1755-1315/194/7/072009
http://doi.org/10.1051/e3sconf/201914004011
http://doi.org/10.1088/1755-1315/50/1/012003

	Introduction 
	Materials and Methods 
	The Purpose of the Research and Methods 
	Main Definitions 
	Theoretical Fundamentals 

	Results 
	Mathematical Model of Transfer with Continuously Changing Time 
	Mathematical Model of Transport with Discretely Varying Time 
	Sustainability of the Control Solutions of the Transfer Processes 
	Sustainability of Solutions with Continuously Changing Time 
	Sustainability of Solutions with Discretely Varying Time 

	Connection of Transport Models with Continuously and Discretely Changing Time 
	On Computational Aspects of Transport Models with Continuously and Discretely Varying Time 

	Discussion 
	Conclusions 
	References

