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A B S T R A C T   

Within the scheduling framework, the potential of digital twin (DT) technology, based on virtualisation and 
intelligent algorithms to simulate and optimise manufacturing, enables an interaction with processes and 
modifies their course of action in time synchrony in the event of disruptive events. This is a valuable capability 
for automating scheduling and confers it autonomy. Automatic and autonomous scheduling management can be 
encouraged by promoting the elimination of disruptions due to the appearance of defects, regardless of their 
origin. Hence the zero-defect manufacturing (ZDM) management model oriented towards zero-disturbance and 
zero-disruption objectives has barely been studied. Both strategies combine the optimisation of production 
processes by implementing DTs and promoting ZDM objectives to facilitate the modelling of automatic and 
autonomous scheduling systems. In this context, this particular vision of the scheduling process is called smart 
manufacturing scheduling (SMS). The aim of this paper is to review the existing scientific literature on the 
scheduling problem that considers the DT technology approach and the ZDM model to achieve self-management 
and reduce or eliminate the need for human intervention. Specifically, 68 research articles were identified and 
analysed. The main results of this paper are to: (i) find methodological trends to approach SMS models, where 
three trends were identified; i.e. using DT technology and the ZDM model, utilising other enabling digital 
technologies and incorporating inherent SMS capabilities into scheduling; (ii) present the main SMS alignment 
axes of each methodological trend; (iii) provide a map to classify the literature that comes the closest to the SMS 
concept; (iv) discuss the main findings and research gaps identified by this study. Finally, managerial implica-
tions and opportunities for further research are identified.   

1. Introduction 

The supply chain is a heterogeneous multi-objective environment in 
which various entities with different roles are hierarchically organised 
to form multitiered networks to develop processes of disparate natures 
in many stages and locations. With such complexity, the adequacy and 
suitability of planning processes are key to successfully face the supply 
chain management challenge [1]. Therefore, a supply chain’s digital 
transformation process must also be oriented towards the digitisation of 
production planning processes [2], among them scheduling. According 
to Pinedo [3], scheduling is regularly used in industrial and service 
companies to allocate resources to tasks during specific time periods to 
optimise one objective or more. Initially, it is worth highlighting the 
contributions made to the scheduling theory by Gantt, Knoeppel and 
Coes [4]. However, since the 1970s, publications have significantly 
increased [5], possibly due to the influence of works like those of Con-
way et al. [6] or Baker [7] and, more recently, by initiatives like Industry 

4.0 [8] or equivalent production models, such as smart manufacturing. 
The diversity of approaches to the scheduling theory in the scientific 
literature reflects the rapid evolution of its environment, mainly due to 
the continuous emergence and availability of new technologies, which 
provide opportunities to move towards new frameworks and models 
that can change the traditional paradigms of production planning and 
scheduling [9]. 

One of these new technologies is the digital twin (DT), which was 
originally conceived as a means to improve the performance of physical 
entities by leveraging computational techniques enabled through virtual 
replication [10]. However, its evolution has allowed production pro-
cesses or, more specifically in our case, scheduling, to be also subject to 
reproduction in virtual space (twinning) to obtain the same benefits 
[11]: reducing costs, time or risks; improving efficiency, reliability or 
flexibility; supporting the management of complexity [10]. It should 
also be noted that traditional enterprise resource planning (ERP) sys-
tems perform poorly at the operational level [12]. Compared to pure 
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simulations, the aim of implementing the DT is dynamic optimisation, 
which allows real-time reflections of physical entities, an interaction 
between physical and virtual spaces, and the system’s automatic evo-
lution [13]. 

The goal of enabling a scheduling system to self-manage automati-
cally and autonomously requires an action by the system itself. How-
ever, an automatic system’s performance also depends on the 
characteristics of the environment to be controlled [14]. Thus the sys-
tem’s correct operation is favoured when the process to be controlled is 
stationary or quasistatic, while control is hindered or at-risk when the 
process’ dynamism is marked and transient phenomena are numerous. 
This is the case in industrial production, where solutions can quickly 
become unfeasible because of their stochastic nature and the uncertainty 
generated by machine breakdowns, waste rates, delivery delays, among 
others [15], along with the arrival of new orders or cancellations. 
Therefore, scheduling automation will not be based only on an endog-
enous strategy, which guides action exclusively towards system trans-
formation for automation. Such a policy, like an integral one, must also 
be based on an exogenous strategy [14], i.e. also acting on the envi-
ronment and its variability, on the number of disturbances of the process 
being controlled, the size of these disturbances and their disruptive 
potential. More concretely, the possible disturbances in the real highly 
stochastic environment of the machine shop are numerous and range 
from the arrival of new orders or preventive maintenance operations, 
which are desirable or foreseeable events, respectively, to the cancel-
lation of orders, defective production, stockouts, machine breakdowns, 
among others [16], which are rather unpredictable events with gener-
ally negative implications. In this uncertain context, ZDM is a strategy 
followed to minimise, mitigate or eliminate failures and defects during 
the production process. It is based on evidence that they will always 
exist, and will eventually impact production and its output, but by 
admitting that: (i) faults and defects can be detected and minimised 
more quickly online; (ii) any production output that deviates from 
specification should not be allowed to move on to the next step in the 
value chain or, eventually, to an end customer [17]. For Halpin [18], the 
zero defect model is a management tool that aims to reduce defects 
through prevention. It intends to motivate people to prevent making 
mistakes by developing a constant conscious desire to do their job right 
the first time. With the evolution of production environment, this 
approach has also evolved and deploys functions other than prevention, 
such as detection, repair and prediction [19]. In fact other philosophies, 
such as lean manufacturing, six sigma, lean six sigma, total quality 
management and constraint theory, share a part of the objectives and 
benefits of ZDM by addressing three ZDM functions: detect, repair and 
prevent. However, prediction is an exclusive aspect of ZDM that is ab-
sent in ese other philosophies, which do not learn from defects, but 
rather eliminate them. Thus to improve the future, these other philos-
ophies analyse the past by losing valuable information from the present 
and generating an inertia between the occurrence of events and the 
identification of necessary improvements, while ZDM uses real-time 
data to prevent defects [20], a characteristic that distinguishes ZDM 
from other management models and guides operations management 
(OM) towards smart manufacturing scheduling (SMS). On the other 
hand, while some approaches to the ZDM strategy focus on product and 
process defects, e.g., mainly linking product defects with quality control, 
and process defects with maintenance and the health of production 
means [21], other approaches extend the scope of ZDM to also process 
parameter monitoring, collaborative production, data management, 
production reconfiguration and reorganisation, and production 
rescheduling [22].This is an approach that brings the ZDM model closer 
to the aforementioned complementary exogenous strategy to act on the 
production environment and its variability, and to control those dis-
turbances that directly or indirectly impact the scheduling process and 
hinder its automation. In addition, ZDM can be seen as a new standard 
from the sustainability perspective for those companies whose man-
agement is oriented towards more eco-friendly and efficient production 

[21],because addressing the elimination of defective products and pro-
cesses indirectly implies posing waste elimination. 

The term SMS has been scarcely addressed in the literature. In most 
cases [23–27], the expression arises from adding the attribute smart to 
manufacturing scheduling as a simple qualifier without denoting greater 
intentions. On the contrary in [28,29] this expression comes from the 
conjunction of smart manufacturing as an environment defined by the 
application of Industry 4.0 technologies with scheduling to point to-
wards a new conceptual space, but without providing a definition of 
SMS. Thus Zhou et al. [28] make use of SMS, in contrast to traditional 
job shop scheduling, by highlighting its bigger number of tasks and 
services, dynamic state and uncertainty in their research into dynamic 
scheduling based on deep reinforcement learning (DRL), while Rossit 
and Tohmé [29] introduce it descriptively as a paradigm by providing 
some of its features, such as the requirement for decentralization, 
collaboration and information exchange in real time. Yet as far as we 
know, there is no previous definition of SMS. Here SMS is defined as 
fostering ZDM objectives oriented towards zero-disturbance and 
zero-disruption to optimise production processes by implementing DTs 
in order to facilitate the modelling of automatic and autonomous 
scheduling systems. Moreover, we do not identify another state of the art 
by addressing scheduling, DT and ZDM. 

This article aims to present a systematic literature review of the 
scientific publications in which a partial or complete relation is estab-
lished among Industry 4.0, scheduling, the DT and ZDM concepts 
regardless of their focus, but by placing an emphasis on those oriented 
towards an automatic and autonomous shop floor scheduling model 
synchronised in real time with physical processes. The main contribu-
tions of this article are to: (i) classify the 68 reviewed papers according 
to the conceptual scheme from which the topic is tackled, i.e. Industry 
4.0, scheduling, the DT and/or ZDM; (ii) identify their main objectives, 
contributions and limitations; (iii) delve into the role played by concepts 
scheduling, the DT and ZDM in the selected literature from a techno-
logical perspective; (iv) address an automatic and autonomous shop 
floor scheduling model synchronised in real time with physical pro-
cesses from the main methodological trends, which are oriented to apply 
DT technology and the ZDM management model, using one of the main 
Industry 4.0 enabling technologies, and/or provide scheduling systems 
with capabilities inherent to SMS; (v) present the main SMS alignment 
axes provided by the reviewed literature for each methodological trend; 
(vi) propose a map, based on these methodological trends and their SMS 
alignment axes, with which to frame the reviewed literature that come 
the closest to the SMS concept; (vii) discuss the main findings and 
research gaps in this research work. 

The rest of the article is structured as follows. Section 2 introduces 
the literature review methodology. Section 3 presents the literature re-
view by describing the main findings based on thematic, content and 
taxonomic analyses. Section 4 discusses the main findings and research 
gaps of the literature that comes the closest to the SMS concept. Section 
5 concludes and identifies future research lines. 

2. Review methodology 

Here we explore the intersection in the state of the art among: (i) the 
scheduling process; (ii) the DT enabling technology; (iii) the ZDM 
management model; and (iv) the conceptual spaces resulting from the 
intersection of two of the three previous sets. Therefore, the present 
framework considers conceptual, descriptive, experimental or explor-
atory research approaches in which: (i) the association of the three 
concepts occurs (space 1 = scheduling ∩ DT ∩ ZDM); (ii) the scheduling 
process is assisted by DT technology (space 2 = scheduling ∩ DT); (iii) 
the scheduling process is associated with the ZDM model (space 3 =
scheduling ∩ ZDM) (Fig. 1). Of these sets of approaches, those oriented 
towards enabling the scheduling system to a greater or lesser extent for 
automatic and autonomous management acquire a special value. 

In the digital transformation space represented by the supply chain 

J.C. Serrano-Ruiz et al.                                                                                                                                                                                                                        



Journal of Manufacturing Systems 61 (2021) 265–287

267

4.0 metamodel [2], the intersection among the three main concepts 
addressed in this state of the art, i.e. scheduling, the DT and ZDM (space 
1), with approaches oriented towards automatic and autonomous 
scheduling management, would correspond mainly to a digital trans-
formation strategy represented by the issues highlighted in Table 1. 

A literature review is a systematic, explicit and reproducible method 
for identifying, evaluating and synthesising the existing body of 
completed and recorded works produced by researchers, scholars and 
practitioners [30] on a specific topic; or, in short, a scholarly synthesis of 
the contents of the scholarly studies on the aforementioned topic [31]. 
Here the methodology used for the literature review was a simplification 
and adaptation of the step-by-step approach of Thomé et al. [32] for the 
specific case of research in the OM field. This methodology comprises 
the following steps: (i) problem formulation; (ii) literature search; (iii) 
literature collection; (iv) quality assessment; (v) analysis and synthesis; 
(vi) interpretation; (vii) presenting the results. Fig. 2 graphically rep-
resents the sequence of actions performed during the literature search, 
collection and quality assessment part of the process, the analysis and 
synthesis. 

The study was conducted according to the following seven initial 
decisions: (i) semantic fields for the literature search; (ii) databases used; 
(iii) fields of each document on which to perform searches; (iv) 
consultation dates and time periods to explore; (v) document typologies; 
(vi) subject areas; (vii) language of documents (English and Spanish). 
The four semantic fields on which the literature search was based were: 
(i) field 1: "Industry 4.0"; (ii) field 2: "scheduling"; (iii) field 3: "digital 
twin"; (iv) field 4: "zero-defects". Each semantic field is made up of the 
keywords selected after checking their relevance through individual 
searches. The keywords making up the semantic fields present some 
differences depending on the database used and its query system. The 
following five used databases were considered: (i) Scopus; (ii) Web of 
Science; (iii) ScienceDirect; (iv) Pro Quest; (v) IEEE Xplore. They were 
used during a sequential process, in which the search results were 
initially obtained from Scopus and, subsequently, the other four data-
bases were used to complement, in the indicated sequence, the initial 
Scopus results using the automatic duplicate discard utility of the JabRef 

tool. By this procedure, Scopus was the source of 83.5 % of the search 
result documents, while 6.6 % came from Web of Science, 5.5 % from 
Science Direct, 3.3 % from Pro Quest and 1.1 % from IEEE Xplore. The 
Scopus, Web of Science and Pro Quest databases allowed the most 
flexible searches because, on the one hand, they do not limit the number 
of keywords in a search field and, on the other hand, they allow the use 
of wildcards to complement character strings. For these reasons, all the 
keywords in each semantic field coincided in these three databases. In 
contrast, ScienceDirect does not allow wildcards to be used and limits 
the number of Boolean connectors to 8, whereas IEEE Xplore does not 
allow to use more than 6 wildcards and 50 keywords in each query 
string, which leads to some variations in the components of each se-
mantic field. Appendix B details the keywords selected in each semantic 
field for each database used in the study. 

The search fields for each paper were the title, abstract and keywords 
specified by the author/s in papers, with variations depending on the 
database: (i) with Scopus, the tag combination was TITLE-ABS-KEY; (ii) 
in Web of Science, tags TI-AB-AK were used; (iii) with ScienceDirect, the 
advanced search field "Title, abstract or author-specified keywords" was 
applied; (iv) as there is no search field for author-specified keywords in 
Pro Quest, the query was limited to the advanced search options for our 
keywords in "Document Title - TI" and "Abstract - AB"; finally, (v) with 
IEEE Xplore, the advanced search options were "Document Title", "Ab-
stract" and "Author Keywords". 

The consultation dates were: (i) Scopus and Web of Science, 22 
February 2021; (ii) ScienceDirect and Pro Quest, 23 February 2021; (iii) 
IEEE Xplore, 24 February 2021. In relation to the exploration period, all 
the papers published after 2010 were considered, which roughly coin-
cided with the emergence of the Industry 4.0 initiative. In Scopus and 
Web of Science, a time window was considered between 1 January 2011 
and the consultation date. For queries in ScienceDirect and IEEE Xplore, 
the 2011–2021 period was set, with the only difference being due to the 
different query date. In contrast, Pro Quest the filtering option "Last 10 
years" was chosen, which is offered after the advanced search without 
setting a period, and therefore covered the period from 24 February 
2011 to 23 February 2021. 

The two document types considered in the literature collection were 
basically journal articles and conference proceedings, albeit with the 
variations of each database. With Scopus, the scope of the search was 
limited by tags "article", "review", "conference paper" and "conference 
review". In Web of Science, the results were refined by selecting types 
"article", "review" and "proceedings paper". With ScienceDirect, the re-
sults were refined using types "research articles" and "review articles". In 
the Pro Quest query, "article", "literature review" and "conference pro-
ceeding" were selected. Finally, in the IEEE Xplore advanced search, the 
refinement options of "conferences" and "journals" were selected. 

Regarding the refinement of searches for documents per subject area, 
in Scopus the search was limited to subject areas of "engineering", 
"computer science", "business, management and accounting", "decision 
sciences", and "multidisciplinary". In Web of Science, the search was 
refined by selecting papers from categories "management", "engineering 
manufacturing", "industrial engineering", "engineering multidisci-
plinary", "automation control systems", "computer science systems", 
"computer science theory methods", "computer science artificial intelli-
gence", "computer science interdisciplinary applications", "computer 
science cybernetics", and "operation research management science". In 

Fig. 1. Research framework.  

Table 1 
Conceptual space 1 (scheduling ∩ DT ∩ ZDM) in supply chain 4.0. Source: Based on Serrano et al [2].  

OM process Industry 4.0 design principle Technology category and enabling technology 

Job scheduling 

Technology Software-based technical assistance: Algorithms 
Intelligence Technical assistance in interface: DT 
Virtualisation Technical assistance in data management and decision making: Optimisation 
Decentralised decision making 

Associated with management models: ZDM 
Real-time action ability  
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ScienceDirect, "engineering", "decision sciences" and "computer science" 
were selected. For Pro Quest and IEEE Xplore, this type of filtering was 
not possible because the application did not support it. 

Given the complexity and magnitude of the queries to be done and to 
simplify them, a decision was made to divide them up and formulate 
them individually for all four studied semantic fields (Industry 4.0, 
scheduling, the DT, zero-defects) to subsequently combine their results. 
In this way, it was also possible to obtain information from not only the 
integral combination "field 1" AND "field 2" AND "field 3" AND "field 4", 
but also from the partial combinations of semantic fields, i.e. those that 
relate only two or three fields and that, despite representing partially 
coinciding approaches, are relevant to the research: (i) "field 2" AND 
"field 3" AND "field 4" ("scheduling" AND "digital twin" AND "zero de-
fects"), considering that employing an Industry 4.0 enabling technology 
like the DT is implicit in this. Therefore, it is a query that practically 
coincides with the integral combination: (ii) "field 1" AND "field 2" AND 
"field 3" ("Industry 4.0" AND "scheduling" AND "digital twin"); (iii) "field 
2" AND "field 3" ("scheduling" AND "digital twin"); (iv) "field 1" AND 
"field 2" AND "field 4" ("Industry 4.0" AND "scheduling" AND "zero de-
fects"); (v) "field 2" AND "field 4" ("scheduling" AND "zero defects"). The 
details of the search strings for each field are provided in Appendix C. In 
ScienceDirect, the inherent limitations of the search tool did not allow 
the combination of complete individual fields. So queries were made 
directly for each indicated combination, but by limiting the number of 
keywords to the eight Boolean connectors allowed by the application. 

Apart from automatically removal duplicates during the sequential 
export to JabRef of the search results in each database, the obtained 
documents as a whole were subjected to a first manual filtering con-
sisting of: (i) discarding duplicate documents not previously discarded 
by JabRef; (ii) discarding conference proceedings abstracts; (iii) dis-
carding articles in which the used keywords had a different meaning to 
that of the indicated framework, e.g., "DNA sequencing" or "hospital 
scheduling"; (iv) documents whose research topic differed from that of 
the present research, and are listed in Appendix D. This gave 91 docu-
ments. In addition, periodic alerts were set in the five databases for: (i) 
the combined queries of "field 2" AND "field 3"; and (ii) the combined 
queries of "field 2" AND "field 4". In this way, and by using the same 
criteria to filter the results, 38 additional documents were collected until 
the time of writing, which gave 129 collected documents (Fig. 3). Sub-
sequently, a filtering process was carried out by reading the content and 
performing a first analysis of the 129 preselected documents, which 
consisted of discarding: (i) those that represented academic contribu-
tions with no correspondence to the research framework; (ii) those 
documents that did not combine at least two of the semantic fields 
defined in the present research. After this filtering process, 68 docu-
ments were finally selected (Fig. 3), a list of which is provided in Table 2. 

The oldest selected document dates from 2014, and the second oldest 
from 2016. It is worth mentioning that: (i) the scientific publications on 
the Industry 4.0 paradigm date back to 2013 [8]; (ii) 95% of the pub-
lications on DT technology emerged during the 3-year period from 2018 

Fig. 2. Searches, collection, quality evaluation, analysis and synthesis methodology diagram.  
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to 2020, and 5% were produced since its inception to 2017 [5]; and (iii) 
publications on ZDM rarely exceeded 10 per year until 2014, from which 
time they have significantly increased year after year [21]. Thus the 
knowledge fields making up the established framework attracted aca-
demic interest after the first half of the explored decade (Fig. 4). The 
papers dated 2020 account for more than 50 % of all the papers in the 
reviewed literature. 

Of the collected 68 documents, 34 were scientific articles published 
in indexed journals and 34 were conference proceedings (Fig. 5). Of the 
articles published in indexed journals, the nine publications in the 
Journal of Manufacturing Systems stood out for accounting for more 
than 25 % of the selected articles, followed at a distance by IEEE Access, 
International Journal of Advanced Manufacturing Technology, Inter-
national Journal of Computer Integrated Manufacturing and Interna-
tional Journal of Production Research, which with two publications 
each account for almost another 25 % of the articles published in 
indexed journals. 

Regarding the number of authors and entities that have made a major 
contribution to the literature review, the following figures are worth 
mentioning: (i) 231 authors participated in the publication of the 68 
papers; (ii) these authors are affiliated to 98 institutions or companies; 
(iii) these institutions or companies have 27 different nationalities; (iv) 
of all these institutions and companies, those belonging to the People’s 
Republic of China (67 authors, 18 papers), the USA (35 authors, 10 
papers) and the Swiss Confederation (17 authors, 10 papers) hosted 52 
% of the authors and 47 % of the scientific output; (v) 85 institutions 
have participated in the publication of one single paper, 10 institutions 
in two papers, two institutions in three papers, and one institution, the 
École Polytechnique Fédérale de Lausanne, participated in up to eight 
papers; (vi) of the 231 authors, the vast majority participated in the 
publication of one or two papers, six participated in three each, and one 
first author from the École Polytechnique Fédérale de Lausanne, Foivos 
Psarommatis published up to seven papers. Figs. 6–8 and Table 3 detail 
this information. 

3. Literature review 

Here the selected articles are reviewed through a thematic, content 
and taxonomic analysis. 

3.1. Thematic analysis 

Based on the keywords of the reviewed research articles, a map of co- 
occurring topics was drawn up using the VOSviewer v.1.6.16 tool, where 
the concepts present in the literature review with more than five oc-
currences can be viewed, as well as their dimension and interrelations 
(Fig. 9). 

The most widely used topic in the literature review was the DT, 
which heads a cluster (in red in Fig. 9) that groups together Industry 4.0, 
smart manufacturing, and cyber-physical systems (CPS). A second 
cluster (green) relates optimisation and simulation, in which the au-
thors’ use of genetic algorithms, scheduling algorithms and real-time 
control as keywords stands out. The third cluster (yellow) focuses on 
production control, production scheduling and decision making, and is 
associated with concepts like intelligent manufacturing and machine 
learning (ML). The fourth and last cluster (blue) is generated from the 
scheduling concept which, in the literature review, is associated mainly 
with artificial intelligence (AI), real-time systems, job-shop scheduling 
and ZDM. 

The DT played a central role in the reviewed literature and presented 
a relatively large number of co-occurrences with practically all the other 
concepts (Fig. 10). This was not the case for ZDM, with a more limited 
number of co-occurrences, but with a connection to the other main 
framework concepts: Industry 4.0, scheduling and the DT. ZDM also 
presented several relations with the concepts AI, process control and 
real-time systems, which is interesting because of the value that this 
research gave to approaches oriented towards a real-time automatic and 
autonomous scheduling management. 

3.2. Content analysis 

The first step of the content and taxonomic analysis of the literature 
review, generally, consisted of:  

- Identifying the research methodology, i.e. (C) conceptual, (D) 
descriptive, (E) empirical, (ECS) exploratory cross-sectional and (EL) 
exploratory longitudinal.  

- Indicating the industrial sector in which research was conducted.  
- Classifying the documents based on the conceptual schemes used 

within the framework of this research, i.e. (DT-ZDM-S) the DT- 
enabling ZDM-based scheduling, (DT-S) DT-enabling scheduling, 
(ZDM-S) ZDM-based scheduling and (O) other relevant schemes.  

- Detailing the objective of the document.  
- Detailing experiments or case studies, if any.  
- Detailing the main contributions and limitations of the reviewed 

literature. 

Appendix E presents the results of this first content analysis and the 
following figures are worth noting: (i) The majority of the research 
methodology is experimental, with 53 of 68 (78 %), which indicates that 
most of the reviewed documents contained research results in an 
advanced stage and were, therefore, empirically validated; (ii) explor-
atory research methodologies were not a trend (only 1), which could be 
related to the fact that DT technology continues to be a topic that is 

Fig. 3. Results of the search sources.  
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Table 2 
Selected literature.   

Author/s Document title 

1 Barni et al., 2020 [33] Digital twin-based optimization of a 
manufacturing execution system to handle 
high degrees of customer specifications. 

2 Borangiu et al., 2020a [34] Smart manufacturing control with cloud- 
embedded digital twins. 

3 Borangiu et al., 2020b [35] Digital transformation of manufacturing. 
Industry of the future with cyber-physical 
production systems. 

4 De Modesti et al., 2020 [36] Production planning and scheduling using 
machine learning and data science 
processes. 

5 Debevec and Herakovic, 2019 
[37] 

Digital twin of unique type of production for 
innovative training of production specialists. 

6 Dobler et al., 2020 [38] Supporting SMEs in the Lake Constance 
region in the implementation of cyber- 
physical systems: Framework and 
demonstrator. 

7 Dreyfus and Kyritsis, 2018 
[39] 

A framework based on predictive 
maintenance, zero-defect manufacturing 
and scheduling under uncertainty tools, to 
optimize production capacities of high-end 
quality products. 

8 Fang et al., 2019 [40] Digital-twin-based job shop scheduling 
toward smart manufacturing. 

9 Feldt et al., 2020 [41] Digital twin: Revealing potentials of real- 
time autonomous decisions at a 
manufacturing company. 

10 Ferrario et al., 2019 [42] A multipurpose small-scale smart factory for 
educational and research activities. 

11 Gaikwad et al., 2020 [43] Toward the digital twin of additive 
manufacturing: Integrating thermal 
simulations, sensing, and analytics to detect 
process faults. 

12 Gorodetsky et al., 2019 [44] The framework for designing autonomous 
cyber-physical multi-agent systems for 
adaptive resource management. 

13 Graessler and Poehler, 2020 
[45] 

Integration of a digital twin as human 
representation in a scheduling procedure of 
a cyber-physical production system. 

14 Gramegna et al., 2020 [46] Smart factory competitiveness based on real 
time monitoring and quality predictive 
model applied to multi-stages production 
lines. 

15 Guo et al., 2020 [47] Graduation Intelligent Manufacturing 
System (GiMS): an Industry 4.0 paradigm for 
production and operations management. 

16 Hu et al., 2020a [48] Petri-net-based dynamic scheduling of 
flexible manufacturing system via deep 
reinforcement learning with graph 
convolutional network. 

17 Hu et al., 2020b [49] Study on the application of digital twin 
technology in complex electronic 
equipment. 

18 Jiang et al., 2020 [50] How to model and implement connections 
between physical and virtual models for 
digital twin application. 

19 Kang et al., 2019 [51] Design and implementation of runtime 
verification framework for cyber-physical 
production systems. 

20 Latif and Starly, 2020 [52] A simulation algorithm of a digital twin for 
manual assembly process. 

21 Li et al., 2020 [53] Framework for manufacturing-tasks 
semantic modelling and manufacturing- 
resource recommendation for digital twin 
shopfloor. 

22 Lin and Low, 2020 [54] Concept design of a system architecture for a 
manufacturing cyber-physical digital twin 
system. 

23 Lindström et al, 2020 [17] An initial model for zero defect 
manufacturing. 

24 Liu et al, 2020b [55] Intelligent scheduling of a feature-process- 
machine tool super network based on digital 
twin workshop. 

25 Ma et al., 2020 [56]  

Table 2 (continued )  

Author/s Document title 

A digital twin-driven production 
management system for production 
workshop. 

26 Maitreesorasuntee et al., 2020 
[57] 

A steel tube production planning and 
scheduling with product-dependent 
changeover time using digital twin. 

27 Majdzik et al., 2021 [58] (IMS2019) Integrated fault-tolerant control 
of assembly and automated guided vehicle- 
based transportation layers. 

28 Moyne et al., 2020 [59] A requirements-driven digital twin 
framework: Specification and opportunities. 

29 Negri et al., 2019 [60] A digital twin-based scheduling framework 
including equipment health index and 
genetic algorithms. 

30 Negri et al., 2020 [61] Field-synchronized digital twin framework 
for production scheduling with uncertainty. 

31 Papacharalampopoulos et al., 
2020 [62] 

Towards a digital twin for manufacturing 
processes: Applicability on laser welding. 

32 Paprocka et al., 2014 [63] A production scheduling model with 
maintenance. 

33 Park et al., 2019 [64] Design and implementation of a digital twin 
application for a connected micro smart 
factory. 

34 Pinon et al., 2018 [65] Enabling the digital factory through the 
integration of data-driven and simulation 
models. 

35 Preuveneers et al., 2018 [66] Robust digital twin compositions for 
Industry 4.0 smart manufacturing systems. 

36 Psarommatis and Kiritsis, 
2018 [19] 

A scheduling tool for achieving zero defect 
manufacturing (ZDM): A conceptual 
framework. 

37 Psarommatis and Kiritsis, 
2021 [67] 

A hybrid decision support system for 
automating decision making in the event of 
defects in the zero defect manufacturing era. 

38 Psarommatis et al., 2020a 
[68] 

Improved heuristics algorithms for re- 
scheduling flexible job shops in the era of 
zero-defect manufacturing. 

39 Psarommatis et al., 2020b 
[69] 

A two-layer criteria evaluation approach for 
re-scheduling efficiently semi-automated 
assembly lines with high number of rush 
orders. 

40 Psarommatis et al., 2020c 
[70] 

A computational method for identifying the 
optimum buffer size in the era of zero-defect 
manufacturing. 

41 Psarommatis et al., 2020d 
[71] 

Identification of the critical reaction times 
for re-scheduling flexible job shops for 
different types of unexpected events. 

42 Psarommatis, 2021 [72] A generic methodology and a digital twin for 
zero defect manufacturing (ZDM) 
performance mapping towards design for 
ZDM. 

43 Reichardt et al., 2021 [73] Procedure model for the development and 
launch of intelligent assistance systems. 

44 Saad et al., 2021 [74] Smart production planning and control: 
Technology readiness assessment. 

45 Santos et al., 2019 [75] Industrial IoT integrated with simulation - A 
digital twin approach to support real-time 
decision making. 

46 Schmidt et al., 2021 [76] Novel robotic cell architecture for zero 
defect intelligent deburring. 

47 Schuh and Blum, 2016 [77] Design of a data structure for the order 
processing as a basis for data analytics 
methods. 

48 Serrano et al., 2021a [5] Digital twin enabling intelligent scheduling 
in ZDM environments: an overview. 

49 Serrano et al., 2021b [16] Smart Digital Twin for ZDM-based job-shop 
scheduling. 

50 Serrano et al., 2021c [78] Digital twin for a zero-defect operations 
planning in supply chain 4.0. 

51 Shao and Kibira, 2018 [79] Digital manufacturing: Requirements and 
challenges for implementing digital 
surrogates. 

52 Smith and Nicksic, 2020 [80] Improving factory scheduling with statistical 
analysis of automatically calculated 
throughput. 

53 Tao and Zhang, 2017 [81] 

(continued on next page) 
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addressed by more academics than companies, and is still far from being 
widely used in business practice. This situation also occurs, albeit on a 
smaller scale, with the ZDM management model; (iii) 90 % of the doc-
uments (61 documents) were cross-sectoral nature. This lack of sectoral 
specialisation in the research indicates, once again, that it is a scarcely 
addressed framework in the business sphere; (iv) as regards the con-
ceptual frameworks with which the documents in the literature 
reviewed were aligned, six corresponded to the DT-ZDM-S framework, 
37 to the DT-S partial framework, eight to the ZDM-S partial framework 
and 17 derive from these frameworks (framework O), but maintain some 

relevance for the framework. It should be noted that five of the DT-S and 
ZDM-S papers provided additional schemes that could also be classified 
as O-schemes, which were identified as DT-S/O and ZDM-S/O. It can be 
deduced that the authors’ tendency to investigate solutions for sched-
uling issues based on DT technology was more pronounced than their 
study of scheduling in ZDM environments, but the latter tendency was 
not negligible as several authors opted for this research line. Contribu-
tions to the ZDM-DT-S framework were still only a few in terms of 
number of publications, but the five papers addressing involved three 
authors and were published in 2020 and 2021. These details indicate 
that this is a recent topic still to be explored. It is worth highlighting 
publication [96] which, despite not being included in the literature re-
view for being a doctoral thesis, addresses the ZDM-DT-S approach. It 
focused on quality control and the four ZDM strategies (i.e. detection, 
prediction, prevention, repair), and the DT, which replicates the 
scheduling process and is used to: firstly investigate the possible ZDM 
alternatives available among these three strategies; to secondly conclude 
which quality control configuration was the most suitable. 

Figs. 11–13 graphically represent the information related to this first 
step of the content analysis of the literature review. 

Starting with the six variants of conceptual approaches, i.e. ZDM-DT- 
S, DT-S, DT-S/O, ZDM-S, ZDM-S/O and O, detected in the reviewed 
literature (Fig. 13), a content analysis was carried out for each main 
concept involved: (i) scheduling for the ZDM-DT-S, DT-S, DT-S/O, ZDM- 
S and ZDM-S/O schemes (Appendix F); (ii) the DT for the ZDM-DT-S, DT- 
S, DT-S/O schemes, plus those O schemes in which DT technology was 
considered (Appendix G); (iii) ZDM in the ZDM-DT-S, ZDM-S and ZDM- 
S/O schemes, plus those O schemes in which the ZDM management 
model was considered (Appendix H). 

The analysis done of the scheduling process in each reviewed work, 
and set out in Appendix F, consisted of:  

- Detailing the role played by the scheduling issue.  
- Determining the product typology from the point of view of the 

number of catalogue items and component levels making up the final 
product; i.e. (SISL) single-item and single-level, (SIML) single-item 
and multilevel, (MISL), multi-item and multilevel, and (MIML) 
multi-item and multilevel.  

- Classifying the workshop typology; i.e. (SM) single-machine, (PM) 
parallel-machine, (FS) flow-shop, (FFS) flexible flow-shop, (JS) job 
shop, (FJS) flexible job shop, (OS) open shop; (CPA) complex product 
assembly.  

- Identifying the type of task delivery flow by distinguishing cases in 
which the sequence of tasks remained unchanged from t = 0 to the 
end, or with static flow (S), from cases in which new tasks could be 
introduced at any time and, thus, required rescheduling to be trig-
gered, or with dynamic flow (D). 

Table 2 (continued )  

Author/s Document title 

Digital twin shopfloor: A new shop-floor 
paradigm towards smart manufacturing. 

54 Vachálek et al., 2017 [82] The digital twin of an industrial production 
line within the industry 4.0 concept. 

55 Vijayan et al., 2020 [83] Simulation-based decision framework for 
hybrid layout production systems under 
disruptions. 

56 Villalonga et al., 2021 [84] A decision-making framework for dynamic 
scheduling of cyber-physical production 
systems based on digital twins. 

57 Wang and Wu, 2020 [85] Model construction of planning and 
scheduling system based on digital twin. 

58 Wang et al., 2020 [86] Digital twin design for real-time monitoring- 
a case study of die cutting machine. 

59 Xia et al., 2020 [13] A digital twin to train deep reinforcement 
learning agent for smart manufacturing 
plants: Environment, interfaces and 
intelligence. 

60 Xu and Xie, 2021 [87] Dynamic production scheduling of digital 
twin job-shop based on edge computing. 

61 Yan et al., 2021 [88] Research on flexible job shop scheduling 
under finite transportation conditions for 
digital twin workshop. 

62 Yu et al., 2021 [89] Job shop scheduling based on digital twin 
technology: A survey and an intelligent 
platform. 

63 Zhang et al., 2019 [90] Digital twin-driven cyber-physical 
production system towards smart shopfloor. 

64 Zhang et al., 2020a [91] Digital twin system design for dual- 
manipulator cooperation unit. 

65 Zhang et al., 2020b [92] Digital twin enhanced dynamic job-shop 
scheduling. 

66 Zhang et al., 2021 [93] Bi-level dynamic scheduling architecture 
based on service unit digital twin agents. 

67 Zhou et al., 2020 [94] Knowledge-driven digital twin 
manufacturing cell towards intelligent 
manufacturing. 

68 Zupan et al., 2018 [95] Local search with discrete event simulation 
for the job shop scheduling problem.  

Fig. 4. Annual distribution of publications.  
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- Indicating the approach given to the objective function depending on 
the considered optimisation variable; i.e. (T) time-based, (OP) 
operation-based, (C) cost-based, or (O) other to be specified. 

- Identifying the modelling approach; i.e. (C) conceptual, (A) analyt-
ical, (H) heuristic, (S) simulation, and AI.  

- Identifying the modelling software.  
- Identifying the solution approach.  
- Identifying the software solution. 

From the analysis of the scheduling process, it should be noted that: 
(i) 51 of the 68 documents making up the reviewed literature considered 
this process; (ii) the most widely used product typology was MIML (18), 
followed by SIML (8), MISL (4) and SISL (1), which placed those prob-
lems with multilevel products ahead in research interest terms; (iii) the 
most researched workshop typology corresponded to job shop in its two 
variants, JS (10) and FJS (9), followed by the flow-shop typology, with 
its variants FS (7) and FFS (6) and, finally, by the CPA typology (1); (iv) 
research focused on a dynamic flow of task delivery (37), which denoted 
more interest in researching problems with stochastic demand, with 

only a few cases in which flow was static (4); (v) the most frequently 
objective function was time (22), followed by cost (13), operations (6) 
and, finally, by other (5), with which it can be deduced that in sched-
uling, and in the sample represented by the reviewed literature, the two 
most valued resources were time and money, and in that order; (vi) the 
commonest modelling approaches were heuristic (10) and simulation 
(9), followed by AI (7), analytical (7) and, at a longer distance, the 
conceptual approach (2); (vii) three quarters of the papers did not 
specify the software tools employed in modelling (39) and the solution 
(38). Of those that did, clarity was limited. There was a high diversity in 
the stated software tools and none stood out in number from the others. 
Fig. 14 represents the salient information about this second step of the 
literature review about the treatment of the scheduling process. 

The analysis of the DT technology in the reviewed documents is set 
out in Appendix G and consists of the following:  

- Detailing the role played by the DT.  
- Specifying the physical and virtual entities in the DT. 

Fig. 5. Document types and articles per journal.  

Fig. 6. Institutions with the most active role in the literature review.  
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Fig. 7. Geographic distribution of affiliations.  

Fig. 8. Geographic distribution of published documents.  
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- Identifying the basic purpose of the virtual process; i.e. (OP) opti-
misation, (S) simulation, (P) prediction, (A) analysis, (MPI) multi-
physics integration, and (O) others.  

- Determining the level of integration of twins into virtualisation; i.e. 
(DM) digital model: with no data exchange between physical and 
virtual entities; (DS) digital shadow, with an automated one-way 
data flow from the physical entity to the virtual one; the DT, with 
the data flow between the entities fully integrated in both directions.  

- Identifying the main virtually replicated parameter sets; i.e. (S) state: 
usage, completeness, processes, etc., (L&F) location and shape: di-
mensions, size, tolerances, position, etc., (F) functionality: functional 
capability, machine parameters, control, energy, etc., (H) health: 

monitoring, analysis, management, etc., (T) time: timeliness, expo-
sure, idle and working time, etc., (P&P) process and performance: 
scheduling parameters, models, defective, etc, (H) health: moni-
toring, analysis, management, etc., (T) time: timeliness, exposure, 
idle and working time, etc., (P&P) process and performance: 
scheduling parameters, models, defective parts or products, etc., (E) 
environment, (M) miscellany.  

- Identifying the main enabling technologies that integrate DT design; 
i.e., (BD) big data, (DM) data mining, (S) sensing, (IoT) Internet of 
Things, (CC) cloud computing, (SM) simulation, ML, (AR) 
augmented reality, (AM) additive manufacturing, and (PHM) prog-
nostic and health management.  

- Identifying the implementation software. 

From the analysis of DT technology, it is worth noting that: (i) 61 of 
the 68 papers in the literature reviewed address DT technology; (ii) the 
basic purpose of the virtual process was mainly multiple and with a 
tendency to group most designated basic purposes, where the most 
repeated combination was that integrating optimisation, simulation, 
prediction and analysis, which was present, on its own or combined with 
multiphysics integration or other purposes, in 26 out of the 61 papers 
that addressed DT technology; (iii) the most frequently addressed basic 
purpose was S (52), followed by A (46) and OP (45); the least frequent 
was P (33), with MPI (13) and O (13) being rare; (iv) regarding the data 
flow integration level, the general interest in the literature lay in the DT 

Table 3 
The first authors with more publications in the literature review (P > 3).  

Author Author’s institution P 

Foivos 
Psarommatis 

École Polytechnique Fédérale de Lausanne (Switzerland) 7 

Elisa Negri Politecnico di Milano (Italy) 3 
Theodor Borangiu Centre of Research and Training in Robotics, Industrial 

Informatics and Material Engineering (CIMR), University 
Politehnica of Bucharest (Romania) 

3 

Julio C. Serrano- 
Ruiz 

Research Centre on Production Management and 
Engineering (CIGIP), Universitat Politècnica de València 
(Spain) 

3  

Fig. 9. Co-occurrence analysis map.  
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(46), i.e. the technology enabling data flow between the physical entity 
and its virtual counterpart in both directions; DS (7), which involved 
data flow only from the physical entity to the virtual counterpart; and 
DM (2), with no data exchange, which were scarcely studied; (v) as the 
scheduling process was mostly addressed, the most frequent parameters 
replicated in the DT were those of the P&P (40), T (36) and S (34) 
groups; (vi) of the explored enabling technologies, the most frequently 
present were SM (51), S (31), IoT (24), BD (21), ML (20) and CC (18). 
Finally, with significantly fewer occurrences we found other more 

specific technologies like DM (12), PHM (12), AR (9) and, finally, AM 
(2); (vii) almost half the documents (32) did not specify the software 
tools employed to implement the DT. Of those that did, diversity is very 
high with none standing out. For more detailed aspects of the analysis, 
readers are referred to Appendix G. Fig. 15 represents salient informa-
tion about this third step of the literature review analysis of treating DT 
technology. 

Finally, the analysis of the treatment of the ZDM management model 
in the documents making up the literature reviewed is set out in Ap-
pendix H, and consists of the following [21]:  

- Detailing the role of the ZDM management model.  
- Specifying in relation to the treatment given to the defects, which 

ZDM strategies were considered: (D) detect, (R) repair, (PD) predict, 
and (PV) prevent.  

- Determining the automation level of ZDM strategies: (M) manual, (S) 
semiautomatic and (A) automatic.  

- Evaluating the way to integrate ZDM into manufacturing systems: 
(IL) in-line, (OL) off-line, (LAB) in a laboratory.  

- Determining the stage of implementing ZDM strategies into the 
manufacturing cycle: (B) beginning of the manufacturing life, (M) 
middle of the manufacturing life or (E) end of the manufacturing life. 

About the ZDM model in the reviewed literature, it is worth 
mentioning that: (i) 21 papers of the 68 selected address this issue, (ii) 
there was a tendency to combine the use of ZDM strategies in relation to 
the treatment given to defects because, of the 21 papers, seven combined 

Fig. 10. Co-occurrence relations of the DT and the ZDM concepts in the literature review.  

Fig. 11. Research methodologies.  

Fig. 12. Industrial sectors.  
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all four strategies, and six others combined three which, together, 
accounted for 62 % of the total; (iii) strategies D (15) and PV (15) were 
the two most frequent ones, followed by PR (9) and R (8); (iv) the 
reviewed documents contained semi-automation approaches (8) or 
automation (7) to ZDM strategies; only one case identified a level of 
implementation comparable to M (1); (v) the integration of ZDM into 
manufacturing systems was IL (18) in practically all cases, but also with 
OL (1) and LAB (1); (vi) almost all the documents proposed imple-
menting ZDM strategies from the beginning of the manufacturing cycle 
for B (17), M (1) and E (0). For more detailed aspects of the analysis, 
readers can refer to Appendix H. Fig. 16 depicts the salient information 
about this fourth step of the literature review analysis on the treatment 
of DT technology. 

3.3. Taxonomic analysis 

Indeed there are three main technological trends revealed by the 
analysis of the literature review based on the approach adopted to align 
with SMS: (i) approaches whose alignment with SMS lies in applying DT 

technology and/or the ZDM management model; (ii) approaches whose 
alignment with SMS is highlighted by the application of one of the main 
enabling digital technologies; (iii) approaches whose alignment stems 
from providing scheduling systems with capabilities inherent to SMS. 
Additionally, these three methodological trends were divided into 13 
alignment axes with SMS, which show that the main implementations of 
the reviewed literature for scheduling assisted by DT technology and the 
ZDM management model are characterised by automatic and autono-
mous management, and synchronised in real time with the physical 
workshop processes. 

3.3.1. Trend 1: applying the DT technology and/or the ZDM management 
model 

The taxonomic analysis of the reviewed literature that aligns with 
SMS through the application of the DT and/or ZDM shows three 
different alignment axes with SMS: (i) fully coincident with the DT- 
ZDM-S scheme; (ii) with the support of scheduling systems based on 
DT technology; (iii) with the support of scheduling systems on the ZDM 
management model. 

Fig. 13. Conceptual schemes.  

Fig. 14. Scheduling process.  
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3.3.1.1. SMS alignment axis 1.1: application of the DT and ZDM (DT- 
ZDM-S). Here we find the overview presented by Serrano et al. [5], 
which moves in the same direction as SMS and lays the foundations for 
the combined use of DT technology and the ZDM management model for 
better scheduling process performance. Other studies, like that by 
Lindström et al. [17], Borangiu et al. [35], Psarommatis [72] (the only 
paper with a single author of the 68 reviewed ones), Serrano et al. [16] 
and Serrano et al. [78], take a perspective aligned with the same 
approach. Lindström et al. [17] focus on proposing a formal model for 
ZDM and admit the possibility of improvement based on the support of 
DT technology. The model is empirically validated with a qualitative 
study in five Swedish companies, in which the scheduling process is 
limited to the role of being one of the model’s seven strategy areas. The 
approach of Borangiu et al. [35] differs from the previous one. The 
importance of the roles played by DT technology and the ZDM man-
agement model are reversed here insofar as the zero-defect objective is 
also considered, but is merely taken as another element of the proposed 
model’s overall cost function. On the contrary, this model is structured 
around a complex and detailed virtualisation system based on a multi-
role DT that, on the one hand, enables easy scheduling and rescheduling 
in a flow-shop type workshop and, on the other hand, examines the 
management of the health of manufacturing resources and their pre-
dictive maintenance. In virtualisation, the physical production assets 
(resources, products, orders) and the physical system (control, 

monitoring, maintenance) are transformed into information about the 
past, present and future states, and on the behaviour of the workshop’s 
resources, processes and results, i.e. not only the scheduling process is 
virtually replicated, but also a considerable part of the workshop’s assets 
and organisational system. On the other hand, for Psarommatis [72] the 
weight of all three concepts making up the DT-ZDM-S scheme is more 
balanced, which approaches all three with similar depth and from a 
symbiotic perspective that configures a robust model that, in this case, 
completely focuses on the scheduling process. The studied shop typology 
is flow shop, and the fundamental research motivation is to optimise the 
rescheduling solutions in real time triggered by events like the arrival of 
urgent orders or the presence of defective products in the production 
flow. The model starts with an objective function that includes up to 17 
different production variables to optimise time, operations and costs. As 
a novelty, the objective function also includes the optimisation of ZDM 
spectrum strategies in relation to the treatment of defects that are, thus, 
incorporated into the mathematical model. The role of the DT does not 
support the scheduling process itself, but the management of the applied 
ZDM. The DT is configured to predict the so-called utility value of the 
used set of ZDM control parameters. The process is carried out by 
combining simulation and heuristic tools with a custom-designed dy-
namic method. The research work performed by Serrano et al. [16] is 
limited to a descriptive and preliminary study of a framework for the 
semi-automatic or automatic management of the scheduling process in a 
job shop governed by the ZDM management model, and based on an AI 
approach. In this framework, the DT plays a prescriptive role for 
semi-automatic management, or a decision-maker role for automatic 
management. Serrano et al. [78] present another study, which is also 
descriptive, and addresses a scheme that also considers the assistance of 
the DT technology and the ZDM management model for the planning 
tasks of the OM area in the whole supply chain space. 

3.3.1.2. SMS alignment axis 1.2: DT application. In the research by 
Dobler et al. [38], the DT mission is to assist decision making on the 
job-shop scheduling problem for its solution it in real time with local 
intelligence based on AI, in order to compare in a business demonstrator, 
as evaluator and validator, the solution obtained by this methodology to 
that obtained by other commoner procedures, all without a DT, and 
based on simulation and heuristics. The research of Fang et al. [40] 
presents a job-shop scheduling method based on the DT and validated 
with a typical instance of five machines and five jobs, which satisfies the 
shop floor’s production needs in real time, robustness, accuracy, etc. 

Fig. 15. DT technology.  

Fig. 16. ZDM management model.  
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Another similar approach, in which the subject of replication is not only 
scheduling, but also the production line and the resources integrated on 
it, is that of Lin and Low [54], in which the DT allows visibility of the 
scheduling process, easier monitoring, higher accuracy and decision 
support. Vijayan et al. [83] place a physical entity to replicate the 
scheduling process, in this case a flexible flow shop, to obtain real-time 
visual feedback of processes to perceive variations in the different fac-
tors that affect process performance. The dynamic DT job-shop sched-
uling model by Xu and Xie [87] also responds to this basic approach by 
basing the DT on edge computing, as does the study by Zupan et al. [95] 
based on the simulation of "what-if" scenarios. Debevec and Herakovic’s 
[37] perspective on the DT’s role differs from previous approaches: in 
the presented model, which is called "unique type of production", the DT 
is a tool that trains production specialists and indicates which is the 
production system response to changes in its parameter settings. The DT 
is a learning tool that moves away from viewing the DT as a mere 
scheduling assistant. With a different approach, the work of Hu et al. 
[49] takes the DT as a bridge between the real world and the information 
world that allows product quality tracing in all product life cycle phases, 
from the product design and process planning phases to assembly and 
distribution, including health management and, of course, scheduling. 

3.3.1.3. SMS alignment axis 1.3: ZDM application. Psarommatis et al. 
[19] adopt this approach in a particular way in their dynamic job-shop 
scheduling by means of a preventive approach, which mitigates distur-
bances to the scheduling process, based on an ad hoc designed ZDM 
algorithm. Psarommatis and Kiritsis [67] present a hybrid decision 
support system to automate the decision-making and planning processes 
in the event of detecting defects by analysing defect characteristics, 
suggesting feasible repair processes, creating several alternative sce-
narios to mitigate defects and evaluate optimal alternatives. In Psar-
ommatis et al. [69], a similar strategy based on a dynamic scheduling 
tool is adopted, which acts by triggering rescheduling in real time 
whenever urgent orders are received or defective products are detected 
on the shop floor. Psarommatis et al. [71] identify the critical reaction 
time for unexpected events, which can disrupt the normal operation of 
manufacturing systems, in order to keep productivity and costs within 
acceptable ranges. In line with these, the research by Dreyfus and Kyr-
itsis [39] also adopts the same vision of predictive, reactive and 
autonomous scheduling. Schmidt et al. [76] propose a different system 
that focuses efforts to achieve a zero-defect objective on an advanced 
quality control system that monitors and controls the machining of 
product parts online so that, if a defect is detected, it can generate a new 
schedule that also integrates repair operations. Although not strictly 
speaking with a ZDM strategy, it is worth mentioning the particular case 
of Barni et al. [33], who combine lean production as a management 
model with a production line DT to mitigate performance losses in 
scheduling due to the wide variability of cycle times in the job shop with 
a compensation method. 

3.3.2. Trend 2: applying enabling digital technologies 
It is worth mentioning here the relevant literature papers in which 

alignment with SMS arises from assistance provided by the most 
frequently used digital enabling technologies: (i) simulation; (ii) 
sensing; (iii) IoT; (iv) big data; (v) ML; (vi) cloud computing. 

3.3.2.1. SMS alignment axis 2.1: using simulation technology. Dobler 
et al. [38] use a DT-based framework consisting of the Anylogic simu-
lation software tool to generate a simulation model called "intelligent 
simulation" by providing it with intelligent capabilities through "as-is" 
simulations or ML-based simulations to allocate jobs in real time. The 
DT-based model by Ma et al. [56], called the DT-driven production 
management system and developed with the Dassault Delmia software 
tool, aims to manage the production life cycle and allows production 
processes to be simulated and optimised by achieving real-time 

synchronisation and high-fidelity virtualisation. In Negri et al. [60], a 
production system scheduling framework within a DT simulator stands 
out. It is based on genetic algorithms and field-synchronised simulation 
to provide scheduling alternatives with an innovative nuance from 
employing a equipment health index. The development framework 
centres on the Simulink tool in the MATLAB environment. Finally, the 
research of Shao and Kibira [79] is noteworthy as modelling and 
simulation are carried out with a "digital surrogate", which is advocated 
as an alternative to the DT, but is roughly similar to it. The digital sur-
rogate is proposed here to represent, connect part or all of the 
manufacturing systems or processes, such as production planning, basis 
on Standard ISO 15531, which compiles standards on industrial auto-
mation systems and integration. 

3.3.2.2. SMS alignment axis 2.2: using sensorisation technology. The 
research by Xia et al. [13] combines job scheduling with path planning 
in a flow-shop manufacturing cell composed of several robots where it is 
necessary to include proximity sensors that, in this case, are simulated. 
Something similar occurs with the research by Gaikwad et al. [43], but 
not due to the presence of robots, but because it is a hybrid production 
scheme with additive manufacturing that foresees multiple in situ sen-
sors for data collection to predict different types of flaws, such as 
cracking and deformation. Other examples of similar uses are those by 
Vachálek et al. [82] or Zhou et al. [94]. On the contrary, for Negri et al. 
[61] the main mission of sensors is to optimise scheduling process by 
replacing "traditional" statistical distributions to describe stochastic 
behaviour with statistical models based on data obtained from both 
historic and real-time sensor data. A different approach is that by Pre-
uveneers et al. [66], who assume that a DT is an imperfect system that 
can trigger cascading failures in the manufacturing flow, which must be 
avoided by including safeguards to ensure a fault-free manufacturing 
workflow. This model pursues DT-assisted predictive quality control 
with a very unique zero DT failures strategy to be considered, in which 
sensorisation plays a significant role. 

3.3.2.3. SMS alignment axis 2.3: using IoT technology. Borangiu et al. 
[34] base their research on a model studied as a holonic perspective of a 
factory of the future based on the IIoT and cyber-physical production 
systems in a cloud computing framework to facilitate intelligent decision 
making in real time. The study by Guo et al. [47] presents a gradient 
intelligent manufacturing system that operates with job, setup, opera-
tion and logistics tickets to organise and control production operations 
with the help of IIoT and DT technologies, with the mission to achieve 
real-time information exchange, visibility and traceability for global 
coordination between multilevel segments throughout the 
manufacturing process. An integrated system assisted by the IIoT and 
simulation to support decision making in the industrial sector is the 
proposal by Santos et al. [75] to connect the physical and virtual shop 
floor by automatically inserting real-time data into simulation models 
with an IoT platform, and in such a way that it avoids using human 
resources in that task. Another unique approach is provided by Wang 
et al. [86], which addresses the research of workshops composed of 
isolated conventional machines, where the IoT is null or limited. It is a 
DT framework for real-time machine monitoring that overcomes lack of 
the IoT limitation and pushes relatively old manufacturing environ-
ments towards smart manufacturing. It is based on a solution supported 
by the J-Mobile, Modbus Simulation and SQL4 Automation tools. 

3.3.2.4. SMS alignment axis 2.4: using big data technology. The study by 
De Modesti et al. [36] introduces the ProKnow-C methodology to 
identify and enable a deeper understanding of the gaps not covered by 
the state of the art and the production scheduling opportunities that are 
opening up using data science techniques, such as big data. Research like 
that of Borangiu et al. [34] is also noteworthy, which introduces the 
study of big data processing and analysis into the production 
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environment to acquire knowledge from plant processes and to make 
intelligent decisions through ML, or that of Yu et al. [89] which uses a 
platform based on DT technology combined with prediction and the 
diagnosis of multisource dynamic interferences by big data analysis 
technology, key for error prediction and diagnosis. 

3.3.2.5. SMS alignment axis 2.5: using ML technology. Xia et al. [13] 
base their robot manufacturing cell model on an intelligent scheduler 
with DRL to train the robots in the cell to adaptively and collaboratively 
perform stacking tasks. Dobler et al. [38] introduce a hybrid simulation 
method based on the DT and ML into their demonstrator to compare it to 
other traditional methods and improve the variability of the results in 
relation to other conventional methods. Hu et al. [48] propose a deep Q 
network algorithm with a Petri-net convolution network with which, 
compared to heuristic methods, to improve solutions of dynamic 
scheduling problems in terms of manufacturing throughput, computa-
tional efficiency and adaptivity. Reichardt et al. [73] propose a stand-
ardised procedural model for the practical application of ML-supported 
assistance systems for order sequencing and machine allocation in a 
flexible flow shop, which is assisted by a DT to generate a simulation and 
training environment in which scheduling programmes can be identi-
fied, tested and evaluated. Serrano et al. [16] propose a preliminary 
conceptual framework for scheduling semi-automatic production orders 
in a job shop with a ZDM strategy by implementing an intelligent DT 
with a prescriber role based on DRL. Hybrid methods combining simu-
lation and heuristics with ML also appear, such as that by Xu et al. [87] 
which, in a DT context, addresses the flexible job-shop scheduling 
problem by a multischeduling knowledge model algorithm based on a 
combination of a decision tree algorithm, a random forest algorithm and 
a neural network with a radial basis function and a multi-objective 
evaluation. 

3.3.2.6. SMS alignment axis 2.6: using cloud computing technology. Some 
examples are the research works by Borangiu et al. [34], Guo et al. [47], 
Park et al. [64], Serrano et al. [16] or Yu et al. [89]. Ma et al. [56] with 
their DT-driven production management system for production life cycle 
management and Zhang et al. [93] with their bilevel distributed dy-
namic scheduling architecture also consider including cloud computing 
as a future research line. 

3.3.3. Trend 3: providing scheduling with SMS capabilities 
Finally, the contributions of orient scheduling systems towards 

achieving certain capabilities inherent to SMS are particularly relevant, 
such as capacitating for: (i) real-time action; (ii) automation; (iii) au-
tonomy; and (iv) mitigation and/or avoidance of disturbances and 
disruptions. 

3.3.3.1. SMS alignment axis 3.1: using real-time scheduling. The 
approach reported by Feldt et al. [41] aims to solve the problem of the 
centralised rescheduling of orders and changes in production capacities 
to enable real-time reactions. The DT data-drive model presented by 
Gramegna et al. [46] examines the real-time reaction from process 
monitoring with advanced data mining and a cognitive approach to 
predict quality and efficiency. The DT-driven production management 
system for production life cycle management proposed by Ma et al. [56] 
is synchronised in real time with production processes. The dynamic 
production scheduling framework proposed by Negri et al. [61] syn-
chronises with the field in real time. The second above-mentioned 
approach, which is applied in the presented demonstrator by Dobler 
et al. [38], focuses real-time action capability on raising situational 
awareness of the process by monitoring it with a DT system. For Guo 
et al. [47], it is the information exchange that has to be achieved in real 
time in their graduation intelligent manufacturing system. In the ar-
chitecture for a manufacturing cyber-physical DT system proposed by 
Lin and Low [54], it is not the exchange, but the collection of, process 

and physical machine data that are achieved in real time. Santos et al. 
[75] deal with something similar, the insertion of real-time data into the 
system’s simulation models. Finally, as with the case of Vijayan et al. 
[83], the DT-based simulation of the multiproduct hybrid layout pro-
duction system provides decision-making data in real time. 

3.3.3.2. SMS alignment axis 3.2: using automatic scheduling. The mean-
ing given by Dreyfus and Kyritsis [39] to the automation concept is 
peculiar as the carried out research proposes the automation of the 
scheduling process so that mechanically, and based on an ad hoc 
designed algorithm, the system decides when to maintain, when to 
adjust the machine and when to produce an order to manage production 
in uncertain environments with a higher probability of success. Psar-
ommatis and Kiritsis [67] study the automation of the decision-making 
process related to online defect detection and repair to integrate it into 
planning processes. Psarommatis et al. [71] situate their dynamic 
scheduling tool on a semi-automated assembly line. The real-time re-
quirements of this environment make them consider the automation of 
rescheduling. In the research by Santos et al. [75], only data insertion 
into the simulation models of their decision support system is auto-
mated. For Schmidt et al. [76], adopting quality control tasks with a 
proactive approach into their zero-defect robotic deburring method 
confers the proposed architecture a flexible automation intelligent 
manufacturing approach. 

3.3.3.3. SMS alignment axis 3.3: using autonomous scheduling. The line 
between automation and autonomy in the production knowledge field is 
a fine one. An automatic system reacts mechanically according to fixed 
rules to changes in its environment, but a change in the environment 
which is not programmed can render it ineffective. Conversely, a sys-
tem’s ability to act autonomously orients it towards adaptive behaviour 
and decentralised decision-making management to, thus, restrict the 
size of problems and to facilitate their convenient solution to essentially 
eliminate the need for other systems to intervene, or even the human 
operator. One example of this is the work of Gorodetsky et al. [44], in 
which the goal is for the cyber-physical multi-agent system presented for 
adaptive resource management purposes can also autonomously oper-
ate. The DT-driven production management system for production’s life 
cycle management proposed by the research of Ma et al. [56] is able to 
make self-adjustments during the production process from product 
design to manufacturing, which denotes its capability as an autonomous 
entity. The framework for the DT technology presented in the study by 
Moyne et al. [59] addresses requirement aspects, such as reusability, 
interoperability, interchangeability, maintainability, extensibility and, 
also, autonomy. The research by Villalonga et al. [84] proposes aggre-
gating several DTs by representing different physical assets that are 
configured with autonomous decision making, together with a global DT 
with which the optimisation of production scheduling is performed 
whenever necessary. Feldt et al. [41] understand the scheduling process 
itself as a function to be optimised by transforming it into an autono-
mous reactive one. Serrano et al. [16] also adopt this approach by taking 
the perceptual and cognitive capabilities arising from the DRL agent 
proposed in their preliminary framework as a basis. 

3.3.3.4. SMS alignment axis 3.4: using disturbance- and disruption- 
resistant scheduling. The approach by Paprocka et al. [63] to this issue 
is to generate a predictive scheduling that can absorb disturbances and 
disruptions without affecting manufacturing as much as possible. On a 
predictive basis, Yu et al. [89] propose an intelligent scheduling plat-
form in which incoming dynamic disturbances are predicted and diag-
nosed in time to develop corresponding compensatory strategies, which 
distinguishes this method from the previous one. A different work from 
former ones is that of Pinon et al. [65], whose research goal is to analyse 
and assess the impact of disruptions on the production system, and to 
identify strategies that best recovery from these disruptions. In 
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Psarommatis et al. [69], disruptions come from real-time events like 
rush orders and faulty products. The research objective of Psarommatis 
et al. [71] is to identify the critical reaction time for unexpected events 
that may disrupt the normal operation of manufacturing systems to keep 
productivity and costs within acceptable ranges. Vijayan et al. [83] 
propose a decision framework for a multiproduct hybrid design pro-
duction system subject to random interruptions in real time using 
simulation models to generate schedules for parts, which also arrive 
randomly from certain predetermined schedules. 

These SMS methodological trends and alignment axes make up a 
classification map whose core is formed by research that takes a 
completely coincident approach with the DT-ZDM-S scheme. From it, 
each trend and axis presents several complementary approaches that can 
shed some light during the digital transformation process of scheduling 
systems based on the SMS concept. Fig. 17 summarises the revised 
literature about the SMS concept and its application. 

4. Discussion 

The digitisation of production planning processes, as a strategy to 
successfully address inherent supply chain complexity, is a young and 
evolving topic, but a crucially important one for the OM area. Planning 
processes drive and guide procurement, manufacturing, and logistics 
systems towards their objectives. Yet in the event of any unforeseen 
event, acting with little or no foresight on the one hand, and being slow 
on the other, leads involved systems to react with inertia which, in 
economic terms, translates into unwanted costs. A good level of flexi-
bility in supply chain structures can place it in a more favourable posi-
tion to assimilate variations when planning objectives are altered by 
potentially disruptive disturbances, and the areas on which the design 
and management of these structures depend shoulder responsibility to 
make them more flexible. The direct responsibility for optimally 
adjusting both momentum and direction to procurement, manufacturing 
and logistics systems lies in the OM area. Anticipating changes and the 
speed with which they are introduced are important factors because 
they steer systems in such a way that inertial reactions and their po-
tential negative impact are minimised. During the scheduling process, 

and given its short-term nature, the anticipation and speed of reaction 
are more important than ever. The digital transformation of scheduling 
must be oriented towards positions of improvement in both factors 
(anticipation and speed of reaction), and SMS stands out as a path with a 
very high potential to move towards these positions by being an 
approach that focuses on automating the scheduling process to provide 
it with the capacity to act in real time when faced with possible dis-
ruptions and to, thus, facilitate its autonomy. This potential is revealed 
by the growing interest shown by the scientific community in the last 
decade, that has been exponential since 2016 and accumulates more 
than half all the literature reviewed in 2020. The reasons behind this 
could be the maturity that DT technology is acquiring academically, its 
diverse application potential, and the renewed interest of both academia 
and industry in the ZDM management model. 

The reviewed literature provides a wide spectrum of possibilities of 
approaching SMS. Obviously, it is not only important to consider its 
benefits, but it is also relevant to be aware of the limitations that it poses. 
The main findings and research gaps of each SMS methodological trend 
and alignment axis in this regard are discussed below. 

4.1. Trend 1: applying the DT technology and/or the ZDM management 
model 

The discussion of the first SMS methodological trend, by applying DT 
technology and/or the ZDM management model, is firsly addressed. 
Thus about the first SMS alignment axis of this first trend, which in-
cludes the core of scientific articles formed by the research that has a 
completely coincident approach with the DT-ZDM-S scheme, we find the 
overview presented by Serrano et al. [5] that warns about the impor-
tance of real-time action capability and flexibility in smart 
manufacturing contexts, and the convenience of eliminating scheduling 
failures to avoid disrupting procurement, manufacturing, and logistics 
operations. Real-time action capability, flexibility and disruption 
avoidance are three pivots around which SMS rotates. Hence this 
approach is relevant as it lays the foundations for the combined use of 
DT technology and the ZDM management model for better scheduling 
process performance in the same direction as SMS. The limitation of this 

Fig. 17. SMS classification map.  
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overview arises from the restricted sample of scientific articles that it 
takes into account, which shows a partial scope in the literature that 
deals with the subject. One important aspect about rescheduling capa-
bility, which is critical for SMS, and its relation to flexibility, is 
contemplated in the initial ZDM model provided by Lindström et al. 
[17]. It considers that the ability to trigger scheduling optimally de-
pends, to a large extent, on the redundancy of resources, but also on the 
flexibility of a system among other possibilities, and this ability is 
improved with the support of DT technology, a statement that aligna 
with SMS. The fact that the authors relate the DT to flexibility, but do not 
go into detail with its implementation, implies a limitation; they merely 
mention the support that technologies like ML, big data, IoT or cloud 
computing can confer the model. Another integral approach, that of 
Borangiu et al. [35], presents a model capable of generating scheduling 
and triggering rescheduling whenever necessary. Besides it focuses on 
operations control in a smart manufacturing environment that is not 
restricted to scheduling systems. This circumstance provides useful in-
formation to be considered in those projects that need to integrate a 
system with a DT-ZDM-S scheme into a larger set; for example, a system 
that integrates the processes of tactical and strategical decision levels, e. 
g. aggregated production planning, the master production plan or ma-
terial resource planning. It is also a valuable example for the projects 
into which the DT-ZDM-S scheme is integrated with other supply chain 
management areas like quality control, maintenance, etc. One more 
sample of the variety of possible approaches is provided by Psarommatis 
[72] with a scheduling model that works with an objective function and 
includes up to 17 different production variables to optimise time, op-
erations and costs. As a novelty, the objective function also includes the 
optimisation of ZDM spectrum strategies in relation to the treatment of 
defects that are, thus, incorporated into the mathematical model. Here 
the role of the DT does not assist the scheduling process itself, but the 
management of the applied ZDM. The DT is configured to predict the 
so-called utility value of the used set of ZDM control parameters without 
having to run the scheduling tool so that a specific ZDM strategy can be 
evaluated in a given manufacturing stage without interacting with the 
physical scheduling process without, therefore, altering the production 
rate, which makes it a relevant proposal for SMS. It might appear to be a 
substitute approach for that provided by Lindström et al. [17] to apply 
the ZDM management model, but a deeper analysis shows its comple-
mentarity: (i) on the one hand, for Psarommatis [72], the management 
scope of the ZDM model is basically limited to product defects (from 
which the need for quality control derives) and production processes 
(from which the need for productive maintenance stems). The the 
approach of Lindström et al. [17], which is broader in this sense, extends 
the management scope to five other areas, i.e. process parameter 
monitoring, collaborative production, data management, production 
reconfiguration and reorganisation, and production rescheduling; (ii) on 
the other hand, the level of depth at which the definition of the DT and 
the dynamic scheduling tool is addressed in the research of Psarommatis 
[72] exceeds that offered by Lindström et al. [17]. Therefore, both ap-
proaches present benefits and limitations that complement one another. 
The research by Serrano et al. [16] pursues alignment with SMS in 
another way: the scheduling framework proposed by the authors places 
this responsibility on the smart attribute, which is based on a modelling 
approach based on AI, specifically on a DRL algorithm which, in addi-
tion to a particular perceptual and cognitive perspective, confers the DT 
the capacity to act in real time. Additionally, the characteristics of the 
environment are configured from the particular smart DT perspective, 
arranged as a series of interrelated layers at which each layer delimits a 
defined physical or virtual subenvironment so that the smart DT merges 
all these subsets by making them converge in the human agent’s inter-
face as a single cohesioned environment. This structure layered in two 
physical and virtual environments represents a possible DT configura-
tion for the SMS scheme. Finally, in the group of scientific articles that 
focus on coinciding with the DT-ZDM-S scheme, Serrano et al. [78] pose 
a planning framework that is not restricted to the scheduling process and 

the shop floor space, but addresses all the planning processes in the OM 
area in the whole supply chain space, which results in a very large 
problem that is difficult to address. It is really a matter of configuring a 
common superior framework to accommodate individual problems of a 
more limited dimension, like that addressed by Serrano et al. [16] for the 
job shop scheduling problem, but always characterised by their orien-
tation towards DT-ZDM schemes so that they form an integrated whole 
when the models of the other planning processes defining OM, and of all 
the actors involved in the supply chain, are incorporated into successive 
contributions in this common framework,. The approach is challenging, 
and its success will depend on whether or not individual models are 
incorporated into the common framework in the future, which is 
currently a limitation. In the described framework, the supply chain is 
subject to a digital transformation process based on the DT-ZDM 
scheme, which favours the attribution of the qualities “fast in 
response” and “flexible”, which are relevant attributes for SMS. On the 
second SMS alignment axis of the first trend, which collects the ap-
proaches to assist scheduling systems by applying DT, it is worth 
mentioning that, in its most basic and simple approach, DT technology 
can support the scheduling process by optimisation, simulation, pre-
diction and analysis. These techniques benefit the SMS goal. Indeed the 
research by Dobler et al. [38], which employsexperiments carried out in 
the demonstrator, verifies that although the numerical results obtained 
by the DT-based solution approach are comparable in makespan terms, 
this method improves the variability of the results. Therefore, by 
considering the additional advantages of implementing DTs in terms of 
optimisation, simulation, prediction and analysing, and all this without 
interacting with physical processes, the DT-based approach is presented 
as a relevant option. The same conclusion is reached by Fang et al. [40]. 
Vijayan et al. [83] place the scheduling process as a physical entity to 
replicate, in this case, a flexible flow-shop scheduling to obtain real-time 
visual feedback of processes and to perceive variations in the different 
factors affecting process performance, which is aligned with SMS. The 
Debevec and Herakovic’s [37] perspective might seem, a priori, not very 
useful in a workshop with an SMS approach, where the aim of 
semi-automation or automation is autonomy and, with it, human ac-
tivity is relegated to merely supervisory action. However, in-depth 
knowledge of the behaviour of the system being supervised is impor-
tant and can, therefore, be useful on a case-by-case basis and as a sup-
plementary functionality in certain projects. The approach of Hu et al. 
[49] is product-centred and data-intensive and can be justified in certain 
cases when the complexity of the technological content embedded in the 
product is high, for example in the semiconductors and electronics 
equipment industry. Regarding the third and last SMS alignment axis of 
the first trend on approaches to assist scheduling systems by applying 
the ZDM management model, a strategy that is useful to minimise, 
mitigate or eliminate faults and defects during the production process by 
detecting and minimising them online [17], and from the SMS 
perspective, a failure or defect is understood as a disturbance that may 
impact the scheduling process and, in this context, the mission of the 
ZDM management model is to act on the scheduling process environ-
ment and its variability, on the number of disturbances of the process 
under control, and on the size of these disturbances and their disruptive 
potential, to facilitate automatic process control. With this context set, 
Psarommatis et al. [19] state in their study that not only online product 
defects can disrupt the scheduling process, but events like new orders 
received, prediction errors, machine defects, etc. can also disrupt it. 
Their research places the responsibility of predicting when faults or 
defects may occur on an ad hoc designed algorithm, which makes it 
possible in first place to act before they occur and, thus, minimise the 
effect of disturbances on the process and, secondly, to reschedule pro-
duction whenever necessary. This preventive approach, which mitigates 
disturbances to the scheduling process, is considered valuable given its 
alignment with the SMS scheme, but it should be noted as limitation that 
the annotated document does not detail the algorithm’s characteristics. 
In Psarommatis et al. [69], a similar preventive strategy is adopted, 
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which acts by triggering rescheduling in real time whenever urgent or-
ders are received or defective products are detected, albeit the dynamic 
scheduling tool to which they refer is not detailed. Equally, Psaromattis 
et al. [71] consider a preventive strategy by modelling the manufac-
turer’s response time to unexpected events. Dreyfus and Kyritsis [39] 
also adopts the same vision of predictive, reactive and autonomous 
scheduling to absorb disturbances and disruptions which, consequently, 
orients it similarly towards the SMS scheme. The problem of automating 
decision making when defective parts or products appear online, a 
concern usually present in advanced ZDM environments, has led Psar-
ommatis and Kiritsis [67] to propose a support system, which allows 
moving towards scheduling process automation, clearly aligned with the 
SMS, and by increasing its efficiency and reducing waste production. 
However, this system requires production facilities to be sufficiently 
flexible and does not consider the possible consequences of a significant 
increase in rescheduling, all of which translate into limitations that need 
to be duly contemplated. The system proposed by Schmidt et al. [76] is 
different since it focuses efforts to achieve a zero-defect objective on an 
advanced quality control system that monitors and controls production 
and generate a new schedule that also integrates repair operations when 
defects are detected. As an approach, it seems to differ from that spec-
ified for SMS as it does not prevent a fault or defect from appearing, but 
it must be considered, inasmuch as it is aware of how utopian it is in any 
workshop to achieve the zero-defect goal. So it should be taken as a 
supplementary possibility to SMS depending on the case that may arise 
and its characteristics. Finally, and in a very personal and different way, 
Barni et al. [33] aim to act against the variability of the environment 
caused by perturbation and disruption and, thus, align themselves with 
the SMs scheme, but from a lean perspective. 

4.2. Trend 2: applying enabling digital technologies 

The advance of the discussion towards the second SMS methodo-
logical trend, that of assistance to scheduling systems by applying 
enabling digital technologies, finds simulation as its first SMS alignment 
axis. Simulation is a concept that is very much present in the reviewed 
literature. Simulation is the most frequent enabling technology for DT 
and the second modelling approach in scheduling, according to the 
analysed papers. In Dobler et al. [38], the "intelligent simulation" model 
provides the DT with intelligent capabilities through "as-is" simulations 
and ML-based simulations to allocate jobs in real time, a valuable 
capability in the SMS scheme. It is worth mentioning that this demon-
strator framework is limited by the absence of a heuristic approach 
specifically developed to fit small- and medium-sized enterprises’ 
(SMEs) particular needs, and the limited integration and interconnec-
tion of the DT with shop floor elements. The DT-based model by Ma et al. 
[56] allows to simulate and optimise production processes by achieving 
real-time synchronisation and high-fidelity virtualisation, which ex-
ceeds the field of interest of SMS, only focused on planning. However, it 
may be useful for the possible need to integrate several areas into a 
single DT. Against this integration possibility lies the fact that the model 
does not operate through a cloud platform, which is an important re-
striction, and in addition data security mechanisms are lacking. The 
innovative nuance in Negri et al. [60], resultant from employing an 
equipment health index, is of interest for manufacturing environments 
governed by the ZDM management model, but this model is limited by 
not incorporating stochastic data sources such as risk factors or operator 
behaviour. Additionally, its validation in a real industrial environment, 
outside the laboratory, is pending. Finally, with regard to the research of 
Shao and Kibira [79] is significant that this is the only article in the 
reviewed literature that refers to a standard for implementing a DT. This 
research work provides an illustrative example, but no experimental 
evidence. Furthermore, it also leaves research areas unexplored, such as 
modelling methodologies or implementation guidelines for digital sur-
rogates in specific manufacturing domains. The second SMS alignment 
axis of this second SMS methodological trend is sensorisation 

technology. It is also the second technology whose use is most frequently 
reported in the reviewed literature. The sensorisation of the shop floor 
allows increased situational awareness about its resources and envi-
ronment through monitoring, which provides visibility, favours the 
reduction of defects, and increases the robustness of decision-making 
processes, all valuable in SMS. In the reviewed literature the sensors 
presence is usually related to the planning needs; however, when the 
shop floor integrates production cells that include some type of robot, 
sensors are also used for other purposes, such as path planning. This is 
the case of the research by Xia et al. [13]. Something similar occurs with 
the research by Gaikwad et al. [43]. As we can see, both are approaches 
in which the basis of the presence of sensors is more related to the 
physics of processes than to favouring the scheduling function, although 
they indirectly achieve this. Other examples of similar uses are those by 
Vachálek et al. [82] or Zhou et al. [94]. On the contrary, for Negri et al. 
[61] the main mission of sensors is to optimise scheduling process. In the 
DT approach of Preuveneers et al. [66] to ensure a fault-free 
manufacturing workflow, the sensorisation plays a significant role. 
However, the performed experiments only provide information on its 
feasibility. From a quantitative point of view, more statistical evidence 
and longitudinal studies are needed, and the presented model only de-
tects errors and prevents their further propagation, but does not provide 
mechanisms to solve them, which represents a remarkable limitation. 
The use of IoT and its industrial version IIoT as the third SMS alignment 
axis of the second trend is widely reported in the relevant literature and, 
although authors’ development approaches sensibly differ, they have a 
common general purpose: enabling of environments in which inter-
connection and connectivity are enhanced. The holonic perspective of a 
factory of the future based on the IIoT and cyber-physical production 
systems of Borangiu et al. [34] tends to facilitate intelligent decision 
making in real time, but the model is limited to a descriptive approach 
that leaves further research on the topic pending. On the other hand, the 
ticket system supported by IoT of Guo et al. [47] is simple and resilient; 
for production management, it takes customer demand and real-time 
production constraints as stochastic inputs, which falls in line with the 
SMS scheme, but depends on the rest of the production system for 
real-time action capability, which is an important restriction. The inte-
grated system proposed by Santos et al. [75] to connect the physical and 
virtual shop floor can help to reduce human intervention in the task of 
inserting real-time data into simulation models by means of an IoT 
platform, noteworthy aspect. Finally, the solution of Wang et al. [86] to 
overcome the lack of the IoT in manufacturing environments composed 
of isolated conventional machines is limited by the fact that it proposes a 
framework for individual machines, and not for processes or systems. 
Big data technology, which is the fourth SMS alignment axis of the 
second trend, is gradually making inroads in industry, albeit at an un-
even pace, and depending on the awareness of the users (managers and 
technicians) and the availability of sufficient data to exceed its profit-
ability and efficiency threshold. Additionally, knowledge on data 
exploitation technologies in semantic interoperability conditions when 
real-time data are involved is critical for big data and other data-driven 
technologies, such as DTs, to ensure efficient and accurate data transfer 
communication among the various software applications and devices 
[97], an issue in which the use of ontologies has been proven as an 
effective tool for enriching existing information systems in the digital 
data modelling domain [98] and for facilitating data ETL (extract, 
transform and load) processes. The advances in big data and their impact 
on manufacturing are recognised in the study by De Modesti et al. [36]. 
Research works like those of Borangiu et al. [34] or Yu et al. [89] are 
also noteworthy for the role that they confer this technology. In fact the 
latter study highlights the use given to the big data technique in the 
model, which is key for error prediction and diagnosis, and helps the 
effective prediction and diagnosis of the dynamic disturbances that act 
on the production process to develop the corresponding compensatory 
strategies in advance. In contrast, their research does not address the 
construction and optimisation of the data analysis or the big data-driven 
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prediction model and algorithm. ML is the fifth SMS alignment axis of 
the second trend. All the research works in the reviewed literature that 
take ML into account in their frameworks were published in 2020 and 
2021. It is, therefore, a very recent trend, but one that is increasingly 
present, and is also significantly aligned with SMS as the purpose of ML 
methods is often to obtain the intelligent attribute and real-time action 
capability. With ML, scheduling can be adapted more quickly in the 
event of changes, and errors in planning can also be minimised [38]. The 
manufacturing cell model of Xia et al. [13] is based on an intelligent 
scheduler with DRL and point to SMS. However, validating the appli-
cability of this methodology requires more diverse manufacturing tasks 
and material flows, including collaborative assembly jobs, visual in-
spection, optimised rework or continuous motion tasks. The hybrid 
simulation method of Dobler et al. [38] is based on the DT and ML and, 
thus, improves the variability of the results in relation to other con-
ventional methods. The deep Q network algorithm with a Petri-net 
convolution network proposed by Hu et al. [48] improves solutions of 
dynamic scheduling problems.Nevertheless, the model does not 
consider stochastic machine failures and stochastic processing time. 
Reichardt et al. [73] also propose a model for ML-supported assistance 
systems for order sequencing and machine allocation in a flexible flow 
shop, although this procedure is pending empirical validation, and is 
acknowledged that without further developing AI applications, the 
process model cannot yet replace detailed planning. In any case, the 
developed method offers a high potential in the production planning and 
control field, and deserves further research. The conceptual framework 
based on DRL of Serrano et al. [16] aims, just like SMS, to reduce the risk 
caused by disturbances that can alter the production course to, thus, 
save costs and increase the efficiency of the production system, but does 
so at a descriptive level and is, therefore, limited. The last of the con-
tributions of this SMS alignment axis, the hybrid method combining 
simulation and heuristics with ML of Xu et al. [87], is highlighted for 
being a solid alignment with SMS. It is worth noting that, while the 
results of the model come close to the optimums achieved by other 
techniques, they do not exceed them in maximum production system 
capacity and total machine load terms, but approach the optimal 
scheduling scheme for multi-objective screening and outshine common 
heuristic scheduling rules. The research results provide a reference for 
the DT application in the job-shop scheduling field. In any case, all the 
research points to ML as a methodology in effervescent development 
with a significant potential within the framework of the present litera-
ture review which, to a large extent, depends on future research ad-
vances, the development of new and better software tools, and increased 
computational power. The sixth and last SMS alignment axis of the 
second trend, which often goes hand in hand with IoT or IIoT technol-
ogies, is cloud computing. The aim of this technology is to move towards 
greater modularity, interconnection, connectivity, decentralisation in 
decision making and energy efficiency. Therefore, several papers in the 
reviewed literature address it to a greater or lesser extent and all take a 
similar focus based on significantly simplifying the data transfer be-
tween remote systems or elements. Some examples are the research 
works by Borangiu et al. [34], Guo et al. [47], Park et al. [64], Serrano 
et al. [16] or Yu et al. [89]. Ma et al. [56] with their DT-driven pro-
duction management system for production life cycle management, and 
Zhang et al. [93] with their bilevel distributed dynamic scheduling ar-
chitecture, who also consider including cloud computing as a future 
research line. 

4.3. Trend 3: providing scheduling with SMS capabilities 

Advancing towards the four SMS alignment axes making up the third 
and last SMS methodological trend detected in the reviewed literature, 
that of providing the scheduling process with SMS capabilities, we find 
the system’s capacity of action in real time as the first axis, which en-
ables an interaction with its environment in temporal synchrony without 
introducing delays, other than the natural delays of the environment 

itself, or making late interventions. In turn, within a process automation 
and autonomisation framework, the capacity of action in real time en-
ables decisions to be made in synchrony with the environment’s time 
scale, which avoids periods existing during which the environment 
awaits a decision to be made to continue a process or to modify its course 
of action. This is, therefore, a crucial quality of a planning system ori-
ented towards SMS. The reviewed papers that address this capability do 
so from several perspectives, but there are two main ones: sometimes it 
is a capability that is expressly acquired by one part of the system, but is 
transmitted to the system as a whole; at other times capability is not 
transmitted and remains as a partial capability of that part of the system. 
In the first group we find the approaches of Feldt et al. [41], Gramegna 
et al. [46], Ma et al. [56] and Negri et al. [61]. In the approach reported 
by Feldt et al. [41] to solve the problem of the centralised rescheduling 
to enable real-time reactions, the fact that this capability is restricted to 
SMEs, as they are less complex, must be considered. The DT data-driven 
model posed by Gramegna et al. [46] is also restricted to SMEs. The 
DT-driven production management system proposed by Ma et al. [56] is 
synchronised in real time with production processes. The dynamic 
production scheduling framework proposed by Negri et al. [61] also 
synchronises with shop floor in real time, but is limited by communi-
cation protocols that provide limited sampling frequencies. This last 
aspect, that of sampling frequencies in communication with the CPS, is a 
limiting factor that must be considered in the design phases of produc-
tion systems. As for the papers belonging to the second group, that of 
approaching the partial real-time capability of systems, we find the 
research of Dobler et al. [38], Guo et al. [47], Lin and Low [54], Santos 
et al. [75] and Vijayan et al. [83]. The second approach of Dobler et al. 
[38] focuses on real-time action capability through the process moni-
toring by means of a digital avatar system specially designed for this, but 
it does so without endowing the scheduling system with this capability. 
For Guo et al. [47], the real-time capacity is limited to the information 
exchange. And in the architecture for a manufacturing cyber-physical 
DT system proposed by Lin and Low [54], it is not the data exchange, 
but the collection of process and physical machine data that are ach-
ieved in real time. In the research by Santos et al. [75] the real-time 
capability is also limited to a part of the system, in this case to the 
function of data insertion into the system’s simulation models. Finally, 
Vijayan et al. [83] limit this capacity to the function of providing 
real-time data for decision making. As second SMS alignment axis of this 
third trend is automation, that has as main exponents the research by 
Dreyfus and Kyritsis [39], Psarommatis and Kiritsys [67], Psarommatis 
et al. [71], Santos et al. [75], and Schmidt et al. [76]. Dreyfus and 
Kyritsis [39] centre the automation of the scheduling process in an al-
gorithm to decide when to maintain, when to adjust the machine and 
when to produce an order. By automating not the scheduling process 
itself, but the decision-making process related to online defect detection 
and repair, the decision support system proposed by Psarommatis and 
Kiritsis [67] indirectly advocates the goal of shopfloor scheduling 
automation, and constitutes an approach that deserves to be paid special 
attention for being a relevant path towards SMS. In Psarommatis et al. 
[71], the assembly line is the one that is semi-automated and implies the 
automation of rescheduling, but limit it to the reception of urgent orders 
and the detection of defective products. In the research by Santos et al. 
[75], only data insertion into the simulation models of their decision 
support system is automated. And for Schmidt et al. [76], the proposed 
architecture is the one that acquires a flexible automation intelligent 
manufacturing approach. The third SMS alignment axis of the third 
trend is autonomy. The reviewed literature offers several examples of 
providing systems with autonomy, one example of this is the 
cyber-physical multi-agent system presented by Gorodetsky et al. [44] 
that can autonomously operate, although, however, the authors admit 
that a cyber-physical system’s full autonomy to manage resources as 
well as, or better than human resources still requires researchers taking a 
long time and making many efforts. Another example is provided by 
capability of self-adjusting of the DT-driven production management 
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system of Ma et al. [56], which denotes it as an autonomous entity. 
Moyne et al. [59] addresses aspects such as autonomy in the presented 
framework for the DT technology. The research by Villalonga et al. [84] 
is relevant because their complex DT model, built at two levels, is 
configured with autonomous decision making, although only the first 
level DTs are provided with autonomy, and the model does not provide 
scheduling systems with autonomy. One of the approaches that is more 
aligned with SMS is that of Feldt et al. [41], which understands the 
scheduling process itself as a function whose optimisation implies 
gaining autonomy. The work by Serrano et al. [16] also adopts this 
approach by means of a DRL agent that provides the system with a 
prescriptive role or, in a more advanced stage, a decision-maker role. 
Lastly with the fourth SMS alignment axis of the third trend, which 
provides scheduling with disturbance and disruption resistance it is 
worth mentioning the approach of Paprocka et al. [63] to generate 
predictive scheduling that can absorb disturbances and disruptions 
without affecting manufacturing. Such an approach is aligned with SMS. 
At the core of this resilient behaviour lies a policy whose aim is zero 
machine failures, zero defective products and zero accidents at work, 
which is consistent with the formulated scope of purpose, but requires 
involving several areas of production, including maintenance, quality 
control and human resources. The intelligent scheduling platform of Yu 
et al. [89] predicts and diagnoses incoming dynamic disturbances. The 
problem here is that there is no real-time synchronisation between the 
shop floor and the DT, which can cause disruption per se. Conversely, 
Pinon et al. [65], analyse and assess the impact of disruptions and 
identify strategies that achieve the best recovery from these disruptions. 
Therefore, this research starts by accepting the inevitability of these 
disruptions and proposes how to recover from them. This approach is 
relevant and may be an appropriate strategy when the resources to 
invest to achieve a zero-disruption objective are simply prohibitive. 
Accordingly, Psarommatis et al. [69] and Psarommatis et al. [71] start 
by accepting the possibility of disruptions in the production environ-
ment by adopting a method to efficiently incorporate rush orders into an 
existing schedule, and a predefined reaction strategy to trigger 
rescheduling before a calculated time limit, respectively. Vijayan et al. 
[83] propose a scheduling generator based on simulating stochastic 
interruption scenarios based on the DT to generate schedules for parts, 
which also arrives randomly from certain predetermined schedules that 
can be useful in schemes based on simulation. 

Here the main discussed findings are summarised as follows: (i) the 
ability to trigger scheduling optimally is improved with the support of 
DT technology; (ii) an SMS approach of the ZDM model application 
requires extending its scope beyond product defects and production 
processes towards process parameter monitoring, collaborative pro-
duction, data management, production reconfiguration and reorgan-
isation, and production rescheduling; (iii) modelling the scheduling 
problem with a preventive approach by predicting faults or defects helps 
to mitigate disturbances and make it resilient; (iv) in any case, accepting 
the possibility of disruptions in the production environment is neces-
sary, which must lead to the design of optimal recovery strategies; (v) a 
DT-ZDM combined scheme favours SMS; (vi) big data, simulation 
techniques and AI guide scheduling to real-time action; (vii) the auto-
mation of scheduling systems implies considering preventive mainte-
nance processes in problem modelling; (viii) autonomy and optimisation 
are closely related concepts from the SMS perspective. 

The main research gaps identified in this literature review include: 
(i) SMS implementation has implications for the remaining OM area 
planning processes that need to be considered, which makes it a chal-
lenge to address, and on that is usually neglected in the literature; (ii) the 
same applies to a full SMS approach, which also needs to involve other 
production areas, such as maintenance, quality control and human re-
sources; (iii) the literature often tends to disregard SMEs’ specific needs 
and focuses on more complex contexts; (iii) some articles merely address 
SMS from a descriptive perspective and, with experimental approaches, 
many model validations are made under laboratory conditions, and not 

in real industrial environments by means of case studies or longitudinal 
research works; (iv) in general, the full autonomy of CPS to manage 
resources and/or better human resources will continue to demand long 
times and many efforts of researchers; (v) in particular, replacing 
detailed planning through AI applications is still a challenging issue; (vi) 
the approach to the real-time action capability in the literature is often 
based on considerations that ignore the importance of the physical 
limitations of the devices making up systems, e.g., sampling frequencies 
in CPS-to-CPS communications systems. 

5. Conclusion 

This research has provided a review of the scheduling problem 
literature from the symbiotic approach perspective offered by DT tech-
nology and the zero-defect model to provide scheduling systems with 
self-management capability, understood as a composition of real-time 
action capability, automation and autonomy, referred to herein as 
SMS, which is a barely explored and discussed topic made up of con-
ceptual elements like DT technology and the ZDM management model 
whose study has individually been the subject of much interest by re-
searchers in the last decade, especially in recent years. SMS can make a 
significant contribution to develop advanced production schedules that 
respond to the digital transformation patterns implied by current pro-
duction paradigms, such as Industry 4.0 or supply chain 4.0, shop floors 
for which improving scheduling process performance and its effect on 
production are key aspects in time, resources, performance, or energy 
efficiency terms. Here this research has presented a systematic literature 
review of the scientific publications in which a partial or complete 
relation is established among Industry 4.0, scheduling, the DT and ZDM 
concepts, regardless of their focus, but by placing an emphasis on those 
oriented towards an automatic and autonomous shop floor scheduling 
model synchronised in real time with physical processes. This main 
objective has been addressed by exploring the literature review, and by 
means of a content, thematic and taxonomic analysis of the selected 
literature, composed of 68 research articles. 

The main findings have revealed that the interest shown by the ac-
ademic community in this framework increased significantly halfway 
through the pandemic in 2020, when the number of publications tripled 
those of 2019. Knowledge on the topic centralised mainly in People’s 
Republic of China, the USA and the Swiss Confederation, which account 
for 52 % of the authors and 47 % of scientific output in the form of 
publications. Table 3 shows the first authors to address this topic and 
highlights the works by Foivos Psarommatis from École Polytechnique 
Fédérale de Lausanne. Research that combines both DT technology and 
the ZDM management model to favour the scheduling process in an 
integrated approach is not yet plentiful, but exists, while the most 
frequent partial scheme is that of the DT-assisted scheduling process, 
which accounts for more than half the publications in the reviewed 
literature. The most widely used objective function approach for 
modelling the scheduling problem is that which prioritises time mini-
misation, followed at a distance by cost minimisation. The most frequent 
modelling approach is the heuristic approach, followed closely by 
analytical and simulation. However in the last 2 years, the AI modelling 
approach has reached a comparable level to the three aforementioned 
approaches. The purpose that academics give DT technology within the 
SMS framework is very diverse with no marked trends, yet simulation, 
optimisation and analytics approaches are more numerous. As for the 
commonest ZDM strategies in the reviewed literature, defect detection 
and prevention stand out in relation to the lesser considered repair or 
prediction strategies. The most frequent way of implementing ZDM is 
through semi-automation or automation, integrated with online pro-
cesses, and preferably at the beginning of the manufacturing cycle. 
Three main trends of alignment with the SMS scheme come over in the 
documents making up the literature review: (i) research approaches 
whose alignment with SMS mainly lies in applying DT technology and/ 
or the ZDM management model; (ii) approaches whose alignment with 
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SMS is highlighted by applying one of the main enabling digital tech-
nologies; (iii) approaches whose alignment stems from providing 
scheduling systems with SMS capabilities. These three trends are, in 
turn, broken down into three, six and four alignment axes, respectively, 
which have been extensively addressed. The papers responding to the 
DT-ZDM-S scheme have presented the highest degree of affinity with the 
SMS approach, and constitute the core of knowledge on the topic by 
providing information on its basic foundations, the implementation of 
the ZDM model, integration with broader schemes into the supply chain 
organisation, the assessment of the ZDM model’s utility value, the 
assistance of AI, and the fit and role of DT technology and the ZDM 
model in 4.0 supply chain organisation. From this core, other documents 
identified in the other alignment trends and axes offer valuable contri-
butions to the SMS scheme. They are recorded by highlighting the in-
formation they provide in terms of validating DT tools; interfacing, edge 
computing solutions; simulations of "what-if" scenarios; training super-
visory personnel in the scheduling process; product quality tracing; 
defect prediction algorithms; predictive, reactive and autonomous 
scheduling; intelligent simulation models; equipment health indices; 
zero DT failures; connection between physical and virtual workshops; 
error prediction; AI schedulers; cloud computing solutions; real-time 
scheduling frameworks; real-time data insertion, sharing and collec-
tion; ZDM strategy automation, rescheduling automation; scheduling 
process autonomy, among others. This core and vectors of knowledge 
constitute the current state of the art of SMS, and their individual ben-
efits and limitations are also discussed in the research. 

Managerial implications are oriented to both the information 
collected, analysed and discussed, and the structure with which it is 
provided sets the precedents for a deeper understanding of the subject 
matter that will form the basis for future research on autonomous 
scheduling management frameworks oriented towards the SMS scheme 
or a similar one. Almost 78 % of the reviewed research articles have 
taken an experimental research approach and have, thus, undergone 
some type of empirical validation. Therefore, the step from the academic 
to the business sphere is a challenge, and some of the presented con-
ceptual frameworks and models are likely to be transferred, with the 
corresponding modifications or adaptations, to real workshops that face 
digital transformation processes, or plan to carry them out in a relatively 
near future. 

Finally, it should be noted that this research has some limitations. 
The consulted databases, i.e. Scopus, Web of Science, ScienceDirect, Pro 
Quest, IEEE XPlore and Google Scholar, are constantly being updated 
and the provided data correspond to those obtained at the time when the 
research was conducted. Furthermore, despite having followed a sys-
tematic search process, some valuable papers may have been overlooked 
for this review. In any case, some limitations that were revealed while 
conducting the study are an opportunity for further research that is 
worth noting. On the one hand, it was found that the DT-ZDM-S scheme 
forces the OM area to interact with other supply chain management 
areas, e.g. quality control or maintenance. A deeper understanding of its 
organisational implications would provide valuable academic and 
managerial information during the digital transformation processes of 
workshops governed by this scheme. Hence the multi-agent architecture 
presented by Zheng et al. [99], simultaneously based on the 
MPFQ-model (material, production process, production function/fu-
ture, product quality) and DT technology, could be adopted as the basis 
of new research. On the other hand, scheduling is only one of the 
planning problems in the OM area. A rational strategy in the area as a 
whole would imply following a certain uniformity of criteria for all the 
processes under its umbrella of responsibility. Therefore, further 
research that assesses the desirability of transferring DT-ZDM schemes 
jointly at the three decision-making levels, i.e. strategical, tactical and 
operational, and provide more knowledge on the methodology for doing 
so, would allow a more coherent approach to the digital transformation 
processes of the OM area on the whole. In addition, descriptive studies 
have addressed frameworks with AI-based DT-ZDM-S schemes, e.g. with 

the DRL method. Advancing this line of research with experimental 
studies that provide empirically validated models would help to accu-
rately assess the contribution of AI schemes to the problem at hand. 
Finally, with the Industry 5.0 paradigm already in the making, a global 
SMS model in which the human factor play a special role would 
contribute new knowledge in the digital planning context [100,101]. 
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