
Journal of Automated Reasoning (2021) 65:1191–1229
https://doi.org/10.1007/s10817-021-09603-1

Derivational Complexity and Context-Sensitive Rewriting

Salvador Lucas1

Received: 5 October 2020 / Accepted: 6 July 2021 / Published online: 12 August 2021
© The Author(s) 2021

Abstract
Context-sensitive rewriting is a restriction of rewriting where reduction steps are allowed
on specific arguments μ(f) ⊆ {1, . . . , k} of k-ary function symbols f only. Terms which
cannot be further rewritten in this way are calledμ-normal forms. For left-linear term rewrit-
ing systems (TRSs), the so-called normalization via μ-normalization procedure provides a
systematic way to obtain normal forms by the stepwise computation and combination of
intermediate μ-normal forms. In this paper, we show how to obtain bounds on the deriva-
tional complexity of computations using this procedure by using bounds on the derivational
complexity of context-sensitive rewriting. Two main applications are envisaged: Normaliza-
tion via μ-normalization can be used with non-terminating TRSs where the procedure still
terminates; on the other hand, it can be used to improve on bounds of derivational complexity
of terminating TRSs as it discards many rewritings.

Keywords Derivational complexity · Term rewriting · Termination.

1 Introduction

In term rewriting [5] and rewriting-based languages, including lazy functional languages
like Haskell [19], the normal form t of expressions s is often achieved by first obtaining
a head-normal form u, i.e., a term which does not rewrite to a redex (i.e., there is no rule
� → r such that u →∗ σ(�) for some substitution σ). Therefore, such a term u has a
stable root symbol f which cannot be changed by further rewritings. Thus, we can write
u = f (s1, . . . , sk) for some terms s1, . . . , sk and recursively continue the normalization
process starting from s1, . . . , sk to obtain normal forms t1, . . . , tk which are then used to
finally return t = f (t1, . . . , tk). This procedure, though, has an important drawback: It is
undecidable whether s has (or u is) a head-normal form [44, Section 8]. In context-sensitive
rewriting (CSR [40]), the normalization via μ-normalization procedure ([40, Section 9.3],
NμN in the following) plays a similar role and can be used in programming languages
like CafeOBJ [20], Maude [11] or OBJ [24], which permit the use of syntactic replacement

Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and PROMETEO/2019/098.

B Salvador Lucas
slucas@dsic.upv.es

1 DSIC & VRAIN, Universitat Politècnica de València, Valencia, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-021-09603-1&domain=pdf
http://orcid.org/0000-0001-9923-2108

1192 S. Lucas

s

↪→!
µ

u

MRCµ(u)

s1 sn

MRCμ(u1) MRCμ(un)

↪→!
μ

↪→!
μ

· · ·

Fig. 1 Normalization via μ-normalization

restrictions à la CSR as follows. Each k-ary symbol f of the signature is given replacement
restrictions by means of a replacement map μ which defines a subset μ(f) ⊆ {1, . . . , k} of
(active) arguments of f which can be rewritten; rewriting is forbidden on arguments i /∈ μ(f)

(often called frozen). Such a restriction is top-down propagated to the structure of terms s
so that we distinguish between active and frozen positions of subterms, with the topmost
position always active. In CSR only subterms at active positions can be rewritten (denoted
s ↪→ t).

Example 1 (Running example I) Consider the following variantR of a TRS in [40, Example
8.20]:

a → h(a) (1)

h(x) → b (2)

f(x) → g(a) (3)

f(x) → g(b) (4)

with μ(f) = μ(h) = ∅ and μ(g) = {1}. We have a ↪→ h(a) ↪→ b. However, h(a) �↪→
h(h(a)), as subterm a is not active in h(a).

Terms which cannot be further rewritten using CSR are called μ-normal forms. In general,
they can contain reducible terms, i.e., they are not normal forms.

Example 2 (Running example II) Consider R = {app(app(x, y), z) → app(x, app(y, z))}
[46, Example 1] together with μ(app) = {1}. We have

s = app(app(x1, app(x2, x3)), x4) ↪→ app(x1, app(app(x2, x3), x4)) = u (5)

where u is a μ-normal form which is not a normal form.

In NμN, μ-normal forms play the role of head-normal forms: In order to obtain the normal
form t of a term s, we first obtain a μ-normal form u of s and then jump into the maximal
(in size) frozen subterms of u, which are below the so-called maximal replacing context
MRCμ(u) of u, to continue the normalization. This is sketched in Fig. 1. The good point of
μ-normal forms is that they are decidable (see [40, Sect. 6]).

Remark 1 (Normalization via μ-normalization in Maude) Since replacement maps can be
used inMaude (see [40, Section 4.3]), an implementation ofNμN in FullMaude [11, Chapter
18] wyas developed in [16]. In [41, Sect. 10.2] an implementation using Maude’s strategy
language [17,54] is described, see

123

Derivational Complexity and Context-Sensitive Rewriting 1193

http://maude.ucm.es/strategies/examples/munorm.maude

The study of the length of rewriting computations (i.e., the number of rewriting steps) can be
understood as an efficiencymeasure regarding the ‘time’ they take.Given a terminatingTRSR
and a term s, the derivational height of s (writtendh(s,→)) is defined as themaximum length
of rewriting sequences s = s1 → s2 → · · · → sm starting from s. Then, the derivational
complexity, dcR(n), ofR is the maximum derivational height of terms s of size |s| at most n,
i.e., |s| ≤ n. After Hofbauer and Lautemann’s pioneering work [33], the use of termination
proofs to obtain bounds on dcR(n) has been investigated by several authors focusing on the
use of polynomials [7–9,51], matrices [18,46,48,58], recursive path orderings [10,32,59],
dependency pairs [29,45], etc. Also, a number of tools have been developed to automatically
(try to) obtain derivational complexity bounds for TRSs, see [23] and the references therein.

1.1 Contributions of the Paper

In this paper, we investigate derivational complexity of CSR and derivational complexity of
NμN, also in connection with derivational complexity of rewriting. It is obvious that CSR
can be used to avoid reductions. Furthermore, under some assumptions it is able to simulate
rewriting computations and compute normal forms (see [40, Section 5.2]). In this case, CSR
can be used to put bounds on the length of normalizing sequences when CSR can be taken
as a rewriting strategy.

Example 3 (Running Example III) Consider the following TRS R [4, Example 3.23]:

f(0, y) → 0 (6)

f(s(x), y) → f(f(x, y), y) (7)

As discussed in [4], R cannot be proved terminating by using a simplification ordering
[14], in particular polynomial interpretations over the naturals or (variants of) recursive
path orderings. Matrix interpretations also fail to prove R terminating. When using AProVE
[22] to obtain derivational complexity bounds for R, a linear lower bound is given, but
no upper bound is provided (reported as BOUNDS(n1,INF)). However, when considering
μ(f) = μ(s) = {1}, it is possible to prove that CSR suffices to compute any normal form of
terms s. Furthermore, we show that the length of context-sensitive computations is bounded
by O(n), see Example 19.

The ability of CSR to ‘reinforce’ termination can be used to guarantee that CSR or NμN
terminates even if R is non-terminating. Thus, we can investigate derivational complexity
for such non-terminating TRSs.

Example 4 Although R in Example 1 is not terminating (due to rule (1)), it is normalizing
(i.e., every term has a normal form) and for all ground terms t CSR is able to obtain the
normal form of t (see Example 10 and Corollary 1). Also, CSR terminates for all terms (see
Example 14), and we actually obtain a constant bound O(1) on the derivational complexity
of CSR.

In some cases, though, CSR is not able to directly obtain normal forms and often stops
yielding a μ-normal form (see Example 2). In this case, NμN can be used to approximate
derivational complexity of terminating TRSs by using derivational complexity of CSR, often
obtaining ‘improved’ complexity bounds.

123

http://maude.ucm.es/strategies/examples/munorm.maude

1194 S. Lucas

Example 5 (Running example IV) Consider the TRS R in [55, Example 8]:

x ∧ (y ∨ z) → (x ∧ y) ∨ (x ∧ z) (8)

¬x ∨ y → x ⊃ y (9)

(¬x) ⊃ (¬y) → y ⊃ (y ∧ x) (10)

Steinbach proved R polynomially terminating1 by using a polynomial interpretation with
quadratic polynomials (see Example 11). According to [33], a doubly exponential bound
22

O(n)
would be given on dcR(n). If the replacement map μ(∧) = {2} and μ(f) =

{1, . . . , ar(f)} for any other symbol f is used, we can improve it (for NμN) to 2O(n2)

(Example 39).

After some general preliminaries in Sect. 2 and a brief summary of context-sensitive rewrit-
ing in Sect. 3, Sect. 4 provides the technical definitions on derivational complexity. Section
5 summarizes the bounds obtained from several termination techniques. Section 6 intro-
duces derivational complexity of CSR and provides some results which permit the obtention
of bounds on derivational complexity of CSR. Section 7 defines normalization via μ-
normalization. Section 8 introduces an extension of CSR called layered CSR (LCSR). Then,
NμN is formulated as normalization using LCSR. A sufficient criterion for proving termi-
nation of NμN for non-terminating TRSs is also given. Section 9 defines computational
complexity of NμN as the derivational complexity of LCSR. Section 10 discusses how to
obtain bounds on derivational complexity of NμN. Section 11 shows how to obtain bounds
on derivational complexity of NμN from bounds on derivational complexity of CSR. Section
12 discusses some related work. Section 13 concludes.

2 Preliminaries

This section collects some definitions and notations about term rewriting. More details and
missing notions can be found in [5,50,57]. In the following, P(A) denotes the power set of
a set A. The cardinality of a finite set A is denoted as |A|.

Given a binary relation R ⊆ A × A on a set A, we often write a R b instead of (a, b) ∈ R.
Given two relations R, R′ ⊆ A × A, their composition is defined by R ◦ R′ = {(a, b) ∈
A × A | (∃c) a R c ∧ c R′ b}. Also, for all n ∈ N, the n-fold composition Rn of R is defined
by R0 = {(x, x) | x ∈ A} and Rn = R ◦ Rn−1 if n > 0. The transitive closure of R is denoted
by R+, and its reflexive and transitive closure by R∗. The relation R is finitely branching if
for all a ∈ A, the set {a R b | b ∈ A} of direct successors of a is finite. An element a ∈ A
is irreducible (or an R-normal form), if there exists no b such that a R b; we say that b is an
R-normal form of a (written a R! b) if a R∗b and b is an R-normal form. We also say that a is
R-normalizing, and that a has an R-normal form. Also, R is normalizing if every a ∈ A has
an R-normal form. Given a ∈ A, if there is no infinite sequence a = a1 R a2 R · · · R an R · · · ,
then a is R-terminating; R is terminating (or well-founded2); if a is R-terminating for all
a ∈ A. We say that R is confluent if, for every a, b, c ∈ A, whenever a R∗b and a R∗c, there
exists d ∈ A such that b R∗d and c R∗d .

Throughout the paper, X denotes a countable set of variables and F denotes a signature,
i.e., a set of function symbols f , g . . ., each having a fixed arity ar(f). The set of terms built

1 Rule (10) in [55] is (¬x) ⊃ (¬y) → y ⊃ (x ∧ y), but the proof still works (see Example 11).
2 See [50, Definition 2.1.1] and the paragraph below this definition for a clarifying discussion about the use
of ‘well-founded’ and ‘terminating’ in mathematics and computer science.

123

Derivational Complexity and Context-Sensitive Rewriting 1195

fromF andX is T (F,X). The set of variables in a term t is denoted Var(t). Let� /∈ F ∪X
be a special constant symbol. A context is a term in T (F ∪ {�},X). If C[, . . . ,] is a context
with n occurrences of �, then C[t1, . . . , tn] is the result of replacing the occurrences of
� with t1, . . . , tn from left to right. A context containing precisely one occurrence of � is
denoted by C[]. A term is said to be linear if no variable occurs more than once in t . Terms
are viewed as labeled trees in the usual way. Positions p, q, . . . are sequences of positive
natural numbers used to address subterms of t . We denote the empty sequence by �. Given
positions p, q , we denote their concatenation as p.q . Positions are ordered by the standard
prefix ordering ≤, i.e., p ≤ q if q = p.p′ for some position p′. Given a set of positions P ,
minimal≤(P) is the set of minimal positions of P w.r.t. ≤. If p is a position, and Q is a set
of positions, p.Q = {p.q | q ∈ Q}. We denote the empty chain by �. The set of positions
of a term t is Pos(t). Positions of non-variable symbols in t are denoted as PosF (t), and
PosX (t) are the positions of variables. The subterm of t at position p is denoted as t |p and
t[s]p is the term t with the subterm at position p replaced by s. The symbol labeling the root
of t is denoted as root(t). Given terms t and s, Poss(t) denotes the set of positions of the
subterm s in t , i.e.,Poss(t) = {p ∈ Pos(t) | t |p = s}. The depth δt of a term t is the number
of nodes on a branch of the term tree of t of maximal length: δt = 1 if t is a variable or a
constant; δt = 1 + max{δt1 , . . . , δtk } if t = f (t1, . . . , tk) [57, Definition 2.1.7]. The size of
t , i.e., the number of symbols occurring in t is denoted |t |.

A rewrite rule is an ordered pair (�, r), written � → r , with �, r ∈ T (F,X), � /∈ X and
Var(r) ⊆ Var(�). The left-hand side (lhs) of the rule is � and r is the right-hand side (rhs). A
term rewriting system (TRS) is a pairR = (F, R)where R is a set of rewrite rules. The set of
lhs’s ofR is denoted as L(R) . An instance σ(�) of � ∈ L(R) by a substitution σ is a redex.
The set of redex positions in t is PosR(t). A TRS R is left-linear if for all � ∈ L(R), � is a
linear term. A rule � → r is collapsing if r ∈ X ; it is duplicating if |Posx (�)| < |Posx (r)|
for some variable x . A TRS R is collapsing (resp. duplicating) if it contains a collapsing
(resp. duplicating) rule. GivenR = (F, R), we consider F as the disjoint union F = C �D
of symbols c ∈ C, called constructors and symbols f ∈ D, called defined functions, where
D = {root(�) | � → r ∈ R} and C = F − D. Then, T (C,X) (resp. T (C)) is the set of
(ground) constructor terms.

Given a TRS R, a term s ∈ T (F,X) rewrites to t at position p, written s
p→R t (or

just s → t), if s|p = σ(�) and t = s[σ(r)]p , for some rule � → r in R, p ∈ Pos(s) and
substitution σ . A TRSR is terminating if→R is terminating. A term s is a head-normal form
(or root-stable) if there is no redex t such that s →∗

R t . A term is said to be root-normalizing if
it has a root-stable reduct. The→R-normal forms ofR are simply called normal forms;NFR
is the set of normal forms ofR. A term is said to be normalizing if it is →R-normalizing. A
TRS is normalizing if all terms are.

3 Context-Sensitive Rewriting

In this section, we provide some background on CSR, following [40]. Given a signature F ,
a replacement map is a mapping μ : F → ℘(N) satisfying that, for all symbols f in F ,
μ(f) ⊆ {1, . . . , ar(f)}. The set of replacement maps for the signature F is MF (or MR
for a TRS R = (F, R)). Replacement maps are compared as follows: μ � μ′ if for all
f ∈ F, μ(f) ⊆ μ′(f); we often say that μ is more restrictive than μ′. Extreme cases
are μ⊥, which disallows replacements in all arguments: μ⊥(f) = ∅ for all f ∈ F , and
μ�, which restricts no replacement: μ�(f) = {1, . . . , k} for all k-ary symbols f ∈ F . We

123

1196 S. Lucas

Λ Λ

∧
1 2

∨
1 2

x ∨
2.1 2.2

∧
1.1 1.2

∧
2.1 2.2

y z x y x z

Fig. 2 Active and frozen (in gray) positions of �(8) and r(8)

say that a binary relation R on terms is μ-monotonic if for all k-ary symbols f , i ∈ μ(f),
and terms s1, . . . , sk, ti , if si R ti , then f (s1, . . . , si , . . . , sk) R f (s1, . . . , ti , . . . , sk). The set
Posμ(t) of μ-replacing (or active) positions of t is:

Posμ(t) =
{ {�} if t ∈ X

{�} ∪ ⋃
i∈μ(f) i .Posμ(ti) if t = f (t1, . . . , tk)

and Posμ(t) = Pos(t) − Posμ(t) is the set of non-μ-replacing (or frozen) positions.

Example 6 For R and μ as in Example 5, Fig. 2 depicts the active and frozen (in gray)
positions of �(8) and r(8).

The frozen positions of t have a frontier
set Frμ(t) = minimal≤(Posμ(t)) with the
active positions. The maximal replacing con-
text MRCμ(t) = t[�]Frμ(t) of t is themaximal
prefix of t whose symbols occur at active
positions only, i.e., t = C[t1, . . . , tn] for
C[, . . . ,] = MRCμ(t) and appropriate terms
t1, . . . , tn .

t

Posμ(t)
MRCμ(t)

Frμ(t)Pos
μ
(t)

Given a term t , Varμ(t) (resp. Var�μ(t)) is the set of variables occurring at active (resp.
frozen) positions in t : Varμ(t) = {x ∈ Var(t) | ∃p ∈ Posμ(t), x = t |p} and Var�μ(t) =
{x ∈ Var(t) | ∃p ∈ Posμ(t), x = t |p}. Note that variables in Var�μ(t) could also be in
Varμ(t) and vice versa. For instance, Varμ(r(10)) = {x, y} and Var�μ(t)(r(10)) = {y}. Also,
we write s �

�μ
t if t is a frozen subterm of s.

Context-sensitive rewriting (CSR) is the restriction of rewriting obtained when a replace-
ment map μ is used to specify the redex positions that can be contracted.

Definition 1 (Context-sensitive rewriting) Let R be a TRS, μ ∈ MR and s and t be terms.

Then, s μ-rewrites to t , written s
p

↪→R,μ t (or s ↪→R,μ t , s ↪→μ t , or even s ↪→ t), if

s
p→R t and p is active in s (i.e., p ∈ Posμ(s)). We often use →�μ to denote rewriting at

frozen positions: →�μ = → − ↪→μ.

If ↪→R,μ is confluent (resp. terminating), we say thatR isμ-confluent (resp.μ-terminating).
The ↪→R,μ-normal forms are calledμ-normal forms andNFμ

R is the set ofμ-normal forms of
R. The canonical replacement map μcan

R of a TRSR is the most restrictive replacement map
μ ensuring that the non-variable subterms of the left-hand sides � of the rules � → r of R are
active, i.e., PosF (�) ⊆ Posμ(�). Given a TRSR, we let CMR = {μ ∈ MR | μcan

R � μ} be
the set of replacement maps that are equal or less restrictive than the canonical replacement
map. If μ ∈ CMR, we also say that μ is a canonical replacement map for R; if μ is exactly
μcan
R , we will speak about the canonical replacement map of R.

123

Derivational Complexity and Context-Sensitive Rewriting 1197

Example 7 The canonical replacement map μcan
R for R in Example 1 is μ⊥. Thus, μ in

Example 1 is not the canonical replacement map (as μ(c) = {1}), but μ ∈ CMR, i.e., it is a
canonical replacement map.

For TRSsR and canonical replacement maps μ ∈ CMR, we often say that ↪→R,μ performs
canonical CSR [40, Sect. 5]. Canonical CSR is useful in (head) normalization and infinitary
normalization with left-linear TRSs [40, Sect. 9].

4 Derivational Complexity in Term Rewriting

The following definition formalizes the standard notion of derivational complexity. The def-
inition is given for abstract relations R rather than TRSs.

Definition 2 (Derivational complexity) Let R be a well-founded and finitely branching rela-
tion, and t be a term. Then, the derivational height of t is

dh(t, R) = max{n | (∃u) t Rn u}
and, for n ∈ N, the derivational complexity of R is

dcR(n) = max{dh(t, R) | |t | ≤ n}
Obviously, dh(t, R), hence dcR(n), is defined only if R is well founded. Requiring that R is
also finitely branching, though, is often necessary.

Example 8 Consider the terminating TRS R = {a → i | i ∈ N} ∪ {i + 1 → i | i ∈ N}.
Note that →R is not finitely branching. In particular, dh(a,→R) is not defined because for
all n ∈ N, a admits a rewrite sequence a → n →∗ 0 of length n + 1.

In this paper, we deal with TRSsR = (F, R) and (subsets of) the rewrite relation→R. Thus,
along the paper we assume →R to be finitely branching (thus, ↪→R,μ also is). A sufficient
condition making →R finitely branching is requiring R to be finite.3 This is often the case
in most practical uses.

Notation 1 In the following, when dealing with TRSs R and the rewrite relation →R, we
use dcR instead of dc→R .

4.1 Use of Ground Terms in Term Rewriting

For TRSsR = (F, R)whose signatureF contains a constant symbol a, we have T (F) �= ∅.
In this case, by closedness of term rewriting with respect to substitution application (see, e.g.,
[5,Definition 4.2.2]), every rewrite sequence s1 →R s2 →R · · · →R sn has a corresponding
(ground) rewrite sequence s′

1 →R s′
2 →R · · · →R s′

n of the same length which is obtained
by replacing, for all 1 ≤ i ≤ n, all variable occurrences in si by a to obtain s′

i . Thus, dhR
remains unchanged if only ground terms are considered, i.e., we have

dcR(n) = max{dh(t,→R) | t ∈ T (F), |t | ≤ n} (11)

If F contains no constant symbol, we can add a fresh constant • to obtain F• = F ∪{•}. It is
also well known that this does not affect termination of R [56]. Given a term t ∈ T (F,X),

3 There are infinite (and terminating) TRSs which are finitely branching. Consider, for instance, the TRS R
with set of rules R = {i + 1 → i | i ∈ N}.

123

1198 S. Lucas

a ground term t• ∈ T (F•) is obtained by replacing all variables in t by •. We have the
following.

Proposition 1 Let • be a constant symbol, R = (F, R) be a TRS where • /∈ F and R• =
(F•, R). Then, for all n ∈ N, dcR(n) = dcR•(n).

Proof Let s ∈ T (F,X) and s = s1 →R s2 →R · · · →R sm for some terms s1, . . . , sm .
Since rewriting is closed under substitutions, for all 1 ≤ i ≤ m, we can instantiate each
variable in si with • to obtain s• = s•

1 →R s•
2 →R · · · →•

R sm . Since the rules in R and
R• coincide, we have s•

1 →R• s•
2 →R• · · · →•

R• s•
m . Hence, dh(s,→R) ≤ dh(s•,→R•).

Since the signature of R•, i.e., F•, contains a constant symbol •, and for all terms t ∈
T (F,X), |t | = |t•|, by using (11), we conclude dcR(n) ≤ dcR•(n).

Now let s = s1 →R• s2 →R• · · · →R• sm , for some s ∈ T (F•,X). Since rules inR and
R• coincide,we have s1 →R s2 →R · · · →R sm . Now replace each occurrence of • in terms
si , 1 ≤ i ≤ m by avariable x ∈ X to obtain a term s′

i ∈ T (F,X). Since•does not occur in any
rule ofR, we have s′

1 →R s′
2 →R · · · →R s′

m . Thus, we have dh(s,→R•) ≤ dh(s′,→R).
Since for all terms t ∈ T (F•,X), |t | = |t ′|, we obtain dcR•(n) ≤ dcR(n). Therefore, we
obtain dcR(n) = dcR•(n), as desired.

Remark 2 (Non-empty set of ground terms) Proposition 1 means that, whether the signature
F of a TRS R = (F, R) contains constant symbols or not, we can add a fresh constant • to
F without changing the complexity bounds. In the following, it is often important to be able
to guarantee that T (F) �= ∅ holds, i.e., F contains a constant symbol. Thus, as a kind of
preprocessing, we can systematically use R• = (F•, R) instead of R.

4.2 Derivational Complexity and Strategies

A non-deterministic one-step rewriting strategy is a function S that assigns a non-empty
subset S(t) ⊆ PosR(t) of redexes to every reducible term t [6,44]. We write s →S t if

s
p→ t and p ∈ S(t). A strategy S is normalizing if for all normalizing terms t no infinite

→S-sequence starts from t . The notions and notations in Definition 2 apply to normalizing
strategies S for normalizing TRSsR to yield dh(t,→S) for normalizing terms t and dc→S (n)

(or just dcS(n)) as the derivational height and complexity of computations using a strategy
S. Obviously, for terminating TRSs R and arbitrary strategies S,

dcS(n) ≤ dcR(n) (12)

Remark 3 (Strategies in derivational complexity analysis) There are non-terminating, but
normalizing TRSs R (where dcR is not defined) for which a given strategy S is still nor-
malizing and dcS defined. This is a positive aspect of analyzing derivational complexity of
strategies. Another aspect is that in real-life programming languages a particular strategy
S (rather than full rewriting) is implemented and used. In this case, dcS is a more realistic
bound for practical uses than dcR.

Derivational complexity (bounds) for specific rewriting strategies like innermost rewriting
(where only redexes not containing other redexes are contracted) have been investigated
[29,49]. The obtained bounds often differ from full rewriting.

Example 9 If computationswithR in Example 3 are restricted to innermost rewriting,AProVE
yields BOUNDS(n1,n2), i.e., a linear lower bound (displayed as n1 in the first argument)
and a quadratic upper bound (n2 in the second argument), instead of BOUNDS(n1,INF),
where a linear lower bound was found but no finite upper bound could be obtained.

123

Derivational Complexity and Context-Sensitive Rewriting 1199

Although, in general, CSR is not a rewriting strategy (as it is unable to reduce terms in μ-
normal form which are not normal forms, see [40, Remark 1.2] for a discussion), in some
cases we can rely on the following result to faithfully use bounds on dcμ(n) as bounds for
(a subclass of) normalizing sequences for TRSs.

Theorem 1 [40, Theorem 5.8] Let R be a left-linear TRS and μ ∈ CMR. Let s, t be terms
such that Pos(t) = Posμ(t). Then, s →∗ t if and only if s ↪→∗

μ t .

Given a TRS R = (F, R) with F = C � D, a defined symbol f ∈ D is called completely
defined if no ground normal form contains such a symbol; R is completely defined if all
defined symbols are completely defined. We have the following.

Corollary 1 Let R be a completely defined left-linear TRS and μ ∈ CMR be such that, for
all constructor symbols c ∈ C, μ(c) = μ�(c). Let s and t be terms, with t ground. Then,
s →! t if and only if s ↪→!

μ t .

Proof Since R is completely defined, t is a constructor term and Posμ(t) = Pos(t). By
Theorem 1, the conclusion follows.

Example 10 Note thatR in Example 1, with defined symbols a, f, and h is completely defined
as there is a rule that applies to the root of any term a, f(t) and h(t) for all terms t . Also, it
is not difficult to prove, by induction on the structure of the ground normal form t , thatR in
Example 3 is completely defined.

As a consequence of Corollary 1, for left-linear, completely defined TRSsR and μ ∈ CMR
satisfying μ(c) = μ�(c) for all constructor symbols c, the set of ground normal forms ofR
and the set of groundμ-normal forms ofR coincide. Thus, dealing with ground terms t , CSR
can be seen as a (non-deterministic) one-step rewriting strategy given by SCSR(t) = Posμ

R(t).
It is often the case that dcSCSR can be used when dcR is undefined (Example 18), or improves
on dcR as suggested by (12), see Example 19.

Remark 4 (Reinforcing completely definedness?) In view of the previous discussion, one
could think of adding rules of the shape f (x1, . . . , xk) → ⊥ (where ⊥ is a fresh constant
symbol) to each defined symbol f ∈ D so that R becomes completely defined whilst the
maximal length of rewriting sequences in such a new TRSR⊥ barely changes, i.e., dcR and
dcR⊥ (asymptotically) coincide. However, the set NFR⊥ of normal forms of R⊥ would in
general lack some normal forms ofR due to the addition of rules as above. In this situation,
the use of Corollary 1 with R⊥ to obtain bounds on dcR using (12) with SCSR based on
R⊥ and μ would be misleading as manyR-normal forms would not be really approximated
using CSR.

5 Termination Proofs and Complexity Bounds

As remarked above, derivational complexity bounds are often obtained from the method to
obtain a termination proof. We summarize the ones we use in the paper, namely polynomial
and matrix interpretations which are particular cases of the semantic approach to prove
termination of rewriting often called termination by interpretation [60] and also [50, Sect.
5.2.1].

123

1200 S. Lucas

5.1 Termination by Interpretation

Given a signature F , an F-algebra A consists of a set (by abuse, also denoted A) together
with a mapping f A : Ak → A, for each k-ary symbol f ∈ F . Terms t are interpreted
by induction on their structure by using valuation mappings α : X → A to give meaning
to variables inside as follows: (i) [α]A(x) = α(x) if x ∈ X and (ii) [α]A(f (t1, . . . , tk)) =
f A([α]A(t1), . . . , [α]A(tk)). IfA is suppliedwith awell-founded relation�onA, then (A,�)

is called a well-founded F-algebra. Mappings f A are often required to be monotone, i.e.,
for all i ∈ {1, . . . , k} and x1, . . . , xk, yi ∈ A, if xi � yi , then f A(x1, . . . , xi , . . . , xk) �
f A(x1, . . . , yi , . . . , xk). In this case, (A,�) is a monotone well-founded F-algebra. A well-
founded monotone algebra (A,�) induces a reduction ordering �A on terms: s �A t iff
for all valuations α, [α]A(s) � [α]A(t). We say that (A,�) is compatible with a TRS R
if � �A r for all � → r ∈ R. A TRS is terminating if and only if it admits a compatible
non-empty well-founded monotone algebra [60, Proposition 1].

5.1.1 Polynomial Interpretations

Theuse of polynomials for proving termination of rewriting goes back toManna andNess [42]
and Lankford [35] (see also [12,39] and the references therein). In a polynomial interpretation
(PI) A, the domain A is an infinite interval of natural or positive real numbers, and the well-
founded relation � on A is the usual order over the naturals >N (in the first case) or the
ordering >δ over the reals in the second case, where δ is a positive number and x >δ y if and
only if x − y ≥ δ [39]. Mappings f A are obtained, for each x1, . . . , xk ∈ A by evaluating a
polynomial

∑
�α∈Nk f�αx �α , where, for each tuple �α of k natural numbers α1, . . . , αk ∈ N, the

coefficient f�α is a number multiplying the monomial x �α = xα1
1 · · · xαk

k of the polynomial.

Remark 5 (Terms as polynomials) Terms t interpreted by using a polynomial interpretation
A yield polynomials tA obtained by using variable names (ranging now on the domain of
the polynomial interpretation) instead of valuation mappings α.

Example 11 (Running example IV—polynomial termination) The TRS R in Example 5 is
proved terminating by using a reduction ordering �A obtained from a polynomial interpre-
tation A as follows [55, Example 11]4

ffA = 0 ttA = 0 ¬A(x) = x2 + 6x + 9
x ∧A y = xy + 4x + 3y + 12 x ∨A y = x + y + 8 x ⊃A y = x + y + 8

For instance, for rule (10), we have:5

�A(10) = ((¬x) ⊃ (¬y))A = (x2 + 6x + 9) + (y2 + 6y + 9) + 8
= x2 + y2 + 6x + 6y + 26

rA(10) = (y ⊃ (y ∧ x))A = y + (yx + 4y + 3x + 12) + 8
= xy + 3x + 5y + 20

4 Steinbach’s interpretation is [¬](x) = x2, x[∧]y = xy + x and x[∨]y = x[⊃]y = x + y + 2 with inter-
pretation domain N≥3. The interpretation in Example 11 is obtained from it by normalizing the intepretation
domain to N using the translation n �→ n + 3 [12, Sect. 3.4].
5 Rather than considering infinitely many valuations of the variables of the rules, we leave the variables as
such and then compare the obtained polynomials as usual (see Remark 5).

123

Derivational Complexity and Context-Sensitive Rewriting 1201

The subtraction �A(10) − rA(10) of both polynomials yields x2 + y2 − xy + 3x + y + 6 =
(x − y)2 + xy + 3x + y + 6, which is clearly positive for all x, y ≥ 0. This proves �A
compatible with rule (10), i.e., �(10) �A r(10) holds.

In this paper, we often restrict the attention to interpretationswith simply shaped polynomials,
like linear polynomials f A(x1, . . . , xk) = f1x1 + · · · + fk xk + f0, where fi ≥ 1 for all
1 ≤ i ≤ k (due to the monotonicity requirements), or even strongly linear polynomials
f A(x1, . . . , xk) = x1 + · · · + xk + f0. Also, for simplicity we restrict the attention to
polynomials over the naturals, i.e., the interpretation domain is N, and hence, the polynomial
coefficients fi are natural numbers as well.

5.1.2 Matrix Interpretations

In matrix interpretations (over the naturals) A [18], the interpretation domain is N
d , the set

of tuples (or vectors) x of d natural numbers. Mappings f A are expressions
∑k

i=1 Fi xi + f0,
where f0 is a vector of d natural numbers and F1, . . . , Fk are d-square matrices of natural
numbers. Monotonicity of f A is guaranteed if, for all 1 ≤ i ≤ k, the top leftmost entry
(Fi)11 is positive, i.e., (Fi)11 ≥ 1.

Remark 6 (Terms as affine mappings) As usual, terms t interpreted by using a matrix inter-
pretationA yield affine mappings tA which are obtained by just replacing the use of valuation
mappings α by the variable name (ranging now on the domain of the matrix interpretation),
i.e., xA = x and f (t1, . . . , tk)A = f A(tA1 , . . . , tAk).

The following order � is often used (see also[47]): for all x1, . . . , xd , y1, . . . , yd ∈ N,

(x1, . . . , xd) � (y1, . . . , yd) iff x1 >N y1 and xi ≥N yi for all 2 ≤ i ≤ d (13)

In a triangular matrix interpretation (TMI), all matrices Fi are upper triangular and for all
k-ary symbols f ∈ F , 1 ≤ i ≤ k and 1 ≤ j ≤ d , (Fi) j j ≤ 1 (but (Fi)11 = 1 due to the
monotonicity requirement); also, for all 1 ≤ j ≤ d , Ai j = 0 if j > i .

Remark 7 Matrix interpretations were generalized to admit real entries and interpretation
domains which are tuples of non-negative real natural numbers [1]. The ordering �δ is used
instead of >N for strict comparisons of tuple components in (13). See also [48], which
extended TMIs to matrix interpretations over the reals.

5.2 Derivational Complexity Bounds fromTermination Proofs

Table 1 summarizes the best (general) upper bounds reported for the different techniques
we use in the paper. Except for (arbitrary) matrix interpretations, all considered techniques
provide bounds given by elementary functions6.

The different categories of asymptotic bounds can be ordered as follows:

O(n) ⊆ O(nd) ⊆ 2O(n) ⊆ 22
O(n) ⊆ · · · ⊆ PR(n)

Bounds obtained from other methods, e.g., lexicographic or multiset orderings [10,32,59],
Knuth–Bendix orderings [34] or dependency pairs [3,21], have been analyzed too [33,45,46,
48]. In general, they exceed those in Table 1.

6 See [27, Sect. 2] and also [53]. Elementary functions are bounded by 2n or 22
n
or …

123

1202 S. Lucas

Table 1 Bounds on dcR(n) from termination techniques

Reduction ordering �A from Upper bound on dcR(n) References

Strongly linear PI O(n) [46, Theorem 6]

TMI of dimension d O(nd) [46, Theorem 6]

Linear PI 2O(n) [33, Proposition 2.2.1]

PI 22
O(n)

[33, Proposition 2.1.2]

Matrix interpretation Primitive recursive (PR) [18, Sect. 9]

Example 12 (Running example IV—complexity bound) ForR in Example 5, in view of Table
1 and according to the polynomial termination proof in Example 11, the best upper bound
we can obtain is doubly exponential, i.e., 22

O(n)
.

Example 13 (Running example II—termination and complexity bound) Consider the TRSR
in Example 2. A proof of termination is obtained by using the reduction ordering�A induced
by the following TMI A with domain N

2 [46, Example 4]:

appA(x) =
[
1 1
0 1

]
x +

[
1 0
0 1

]
y +

[
0
1

]

For the rule � → r in R, we have:

�A = app(app(x, y), z)A =
[
1 1
0 1

]([
1 1
0 1

]
x +

[
1 0
0 1

]
y +

[
0
1

])
+

[
1 0
0 1

]
z +

[
0
1

]

=
[
1 2
0 1

]
x +

[
1 1
0 1

]
y +

[
1 0
0 1

]
z +

[
1
2

]

=
[

x1 + 2x2
x2

]
+

[
y1 + y2

y2

]
+

[
z1
z2

]
+

[
1
2

]

=
[

x1 + 2x2 + y1 + y2 + z1 + 1
x2 + y2 + z2 + 2

]

rA = app(x, app(y, z))A =
[
1 1
0 1

]
x +

[
1 0
0 1

]([
1 1
0 1

]
y +

[
1 0
0 1

]
z +

[
0
1

])
+

[
0
1

]

=
[
1 1
0 1

]
x +

[
1 1
0 1

]
y +

[
1 0
0 1

]
z +

[
0
2

]

=
[

x1 + x2
x2

]
+

[
y1 + y2

y2

]
+

[
z1
z2

]
+

[
0
2

]

=
[

x1 + x2 + y1 + y2 + z1
x2 + y2 + z2 + 2

]

For all 1 ≤ i ≤ 2 and xi , yi , zi ∈ N, x1 + 2x2 + y1 + y2 + z1 + 1 > x1 + x2 + y1 + y2 + z1
for the first component of the obtained vectors, and x2 + y2 + z2 + 2 ≥ x2 + y2 + z2 + 2 for
the second one. Thus, �A �A rA, and dcR(n) ∈ O(n2) (see Table 1).

123

Derivational Complexity and Context-Sensitive Rewriting 1203

6 Derivational Complexity of Context-Sensitive Rewriting

According to Definition 2, given a finitely branching TRS R and μ ∈ MR such that R is
μ-terminating, the derivational height and derivational complexity of CSR are defined as:

dhR,μ(t) = dh(t, ↪→R,μ) and dcR,μ(n) = dc↪→R,μ
(n).

For signatures containing a constant symbol, as for ordinary term rewriting (see Sect. 4.1),
since CSR is also closed under substitutions [40, Sect. 4], we can consider ground terms only,
i.e., we have:

dcR,μ(n) = max{dh(t,→R) | t ∈ T (F), |t | ≤ n} (14)

Following the discussion in Sect. 4.1, we also have the following version of Proposition 1
for CSR (with an analogous proof using the fact that CSR is closed under substitutions).

Proposition 2 Let • be a constant symbol, R = (F, R) be a TRS where • /∈ F , μ ∈ MR,
and R• = (F•, R). Then, for all n ∈ N, dcR,μ(n) = dcR•,μ(n).

In the following, we often use dhμ and dcμ (rather than dhR,μ and dcR,μ). Since ↪→μ⊆→
for all μ ∈ MR, bounds on dcR(n) are also bounds on dcμ(n), i.e.,

Proposition 3 For all terms s and n ∈ N, dhμ(s) ≤ dh(s,→R) and dcμ(n) ≤ dcR(n).

For left-linear, non-collapsing, and μ⊥-terminating TRSs R, if μ⊥ is canonical, then the
derivational height of all terms is bounded by the size of R.

Proposition 4 Let R = (F, R) be a finite, left-linear, non-collapsing TRS such that μ⊥ ∈
CMR. If R is μ⊥-terminating, then for all terms s and n ∈ N, dhμ⊥(s) ≤ |R| and dcμ⊥(n) ∈
O(1).

Proof In the following, for R = (F, R), we let Rcons = {� → r ∈ R | root(r) ∈ CR} and
call them the constructor rules of R. First, note that, since μ⊥ permits no reduction on the

arguments of any function symbol, every μ-reduction sequence s1
p1
↪→ s2

p2
↪→ · · · pn

↪→ sn+1

satisfies p1 = · · · = pn = �. We proceed by induction on the number n of rules in
R. First, note that, since R is left-linear and μ⊥ ∈ CMR, all rules in R are of the form
f (x1, . . . , xk) → r where x1, . . . , xk are different variables and r is a non-variable term
(due to non-collapsingness of R). This means that every term f (t1, . . . , tk) is μ⊥-reducible
if f is a defined symbol. Therefore, there must be at least one constructor rule � → r
where root(r) ∈ CR. Otherwise, the application of a rule could always be followed by the
application of another rule (at the root position) and R would not be μ⊥-terminating. If
n = 1, then the only rule inRmust be a constructor rule. Thus, if s ↪→ s′, then root(s′) = c.
Since c is a constructor symbol and μ⊥(c) = ∅, no further reduction is possible. Thus,
dh(s) ≤ 1, as desired. If n > 1, then consider a μ-rewrite sequence s = s1 ↪→ · · · ↪→ sn+1.
If a constructor rule α : � → r ∈ Rcons is used in the sequence, then it can be used only at the
end of the sequence, and therefore, the sequence s1 ↪→ sn of length n − 1 can be obtained
using a TRSR′ = (F ′, R′)which is asR except the constructor rule, i.e., R′ = R−{α}. Note
that R′ is left-linear, non-collapsing and μ⊥-terminating as well. Note also that CR ⊆ CR′
but CR′ could include root(�), which is defined in R but may become constructor in R′ due
to the removal of α. By the induction hypothesis, n − 1 ≤ |R′| − 1, and hence, n ≤ |R| as
required. If no constructor rule is used in the sequence, then, again, we can obtain the same
sequence using a TRS R′ = (F ′, R′)where R′ = R − Rcons. By the induction hypothesis,
n ≤ |R′| < |R|.

123

1204 S. Lucas

Remark 8 (Application to recursive program schemes) A recursive program scheme (RPS
[13,43]) is a TRS consisting of (left-linear) rules f (x1, . . . , xk) → r , one per defined function
symbol f ∈ D [57, Definition 3.4.7]. Clearly, μ⊥ ∈ CMR for all RPSs R. Note that R in
Example 1 is an RPS.

6.1 Proving Termination of CSR

Several techniques for proving termination of rewriting have been generalized to CSR [40,
Sect. 7.1]. Tools like AProVE and mu- term [28] (which we use in the proofs below) can be
used to prove termination of CSR. Termination of CSR is characterized by the μ-reduction
orderings >, which are μ-monotonic, closed under substitutions, and well-founded relations
on terms [61]. A TRS is μ-terminating if it admits a compatible μ-reduction ordering >.
This implies

↪→R,μ ⊆ > (15)

as it is implicit in the proof of [61, Proposition 1]. Also,μ-reduction orderings can be obtained
from μ-monotone, well-founded F-algebras (A,�) where mappings f A are required to be
μ-monotone, i.e., for all f ∈ F , i ∈ μ(f), and x1, . . . , xk, yi ∈ A, if xi � yi , then
f A(x1, . . . , xi , . . . , xk) � f A(x1, . . . , yi , . . . , xk) [61, Sect. 3]. The different termination
techniques considered in Table 1 (among others) have been adapted to CSR: polynomial
orderings in [26,39]; matrix interpretations in [2].

Remark 9 (Guaranteeing μ-monotonicity) In linear polynomial interpretations A, μ-
monotonicity is guaranteed if, for all k-ary symbols f ∈ F and i ∈ μ(f), the i th coefficient fi

of the linear polynomial f A(x1, . . . , xk) satisfies fi ≥ 1. Similarly, dealingwithmatrix inter-
pretationsA,μ-monotonicity is guaranteed if, for all k-ary symbols f ∈ F and i ∈ μ(f), the
leftmost uppermost entry (Fi)11 of the i th matrix Fi of the affine expression f A(x1, . . . , xk)

satisfies (Fi)11 ≥ 1.

6.2 Polynomial Bounds on dc�(n) fromMatrix and Polynomial Interpretations

In the following result, Id is the identity d-square matrix.

Theorem 2 Let R be a TRS, μ ∈ MR and let A be a μ-monotone TMI with domain N
d for

some d ∈ N>0 such that �A is compatible with R.

1. If for all f ∈ F , f A(x1, . . . , xk) = Id xi for some 1 ≤ i ≤ k, or f A(x1, . . . , xk) = f
for some vector f , then dcμ(n) ∈ O(1);

2. otherwise, dcμ(n) ∈ O(nd).

Proof We rework the proof of [46, Theorem 6] to make explicit the points which are different
for CSR. According to (15), for all μ-rewrite sequences s ↪→k

R,μ t of length k we have

[α]A(s) �k [α]A(t), where� is the ordering on tuples in (13). By definition of�, this implies
([α]A(s))1 ≥N k + ([α]A(t))1 ≥N k, i.e., for all valuations α, the first entry ([α]A(s))1 of
the vector interpreting s is an upper bound of the length k of the sequence. In particular, this
holds for α0 defined by α0(x) = 0 for all x ∈ X . For all upper triangular matrices M ∈ N

d×d

with diagonal entries 0 or 1, and p ∈ N, [46, Lemma 5] proves that the entries of M p satisfy

(M p)i j ≤ (j − i)!(ap) j−i , where a = max{Mi j | 1 ≤ i, j ≤ d}.

123

Derivational Complexity and Context-Sensitive Rewriting 1205

This implies that, for all 1 ≤ i, j ≤ d , (M p)i j ∈ O(pd−1). As noticed in the proof of [46,
Theorem6],whenever terms s are interpreted byusingA, such products of (possibly different)
matrices occur in sA in number p at most the depth δs of s minus one, i.e., p ≤ δs − 1 (for
constant or variable terms (of depth 1), no product is required). Of course, δs ≤ |s|; hence,
p ≤ |s|. Furthermore, the authors observe that the number m of products to be considered
as additive components of [α]A(s) is exactly |s|. By considering M0 = Id as a ‘degenerate’
product accompanying the vector representing the interpretation of a constant or the valuation
of the variable, this is acceptable. Note also that (Id)i j ∈ O(pd−1) if p > 0. Thus, an addition∑m

i=1 Niai of m = |s| vectors Niai obtained from products Ni of at most p ≤ |s| matrices
each with entries (Ni)qr bounded by O(|s|d−1) is necessary to obtain the interpretation of s
in A with respect to a given valuation α. Since the addition of m = |s| values bounded by
O(|s|d−1) is bounded by O(|s|d), we obtain ([α]A(s))1 ∈ O(|s|d) and, since([α]A(s))1 is
an upper bound on the length of any μ-derivation starting from s, dcμ(n) ∈ O(nd), which
proves item 2.

As for the particular case considered in item 1, where for all f ∈ F , f A = Id xi for some
1 ≤ i ≤ k or f A = f , note that the interpretation [α0]A(t) of a term t using such kind of
interpretationA is of the form [α0]A(t) ≤ b for some vector b = max({ f A(0, . . . , 0) | f ∈
F} ∪ {0}). Since b depends on A only, we have dh(s, ↪→) ≤ b1 for all terms s, and hence,
dcμ(n) ∈ O(1).

Remark 10 (More bounds based on matrix interpretations) Important improvements on [46,
Theorem 6] regarding the use of matrix interpretations to obtain complexity bounds on
dcR(n) are discussed in [48]. We claim that (as Theorem 2(2) does for [46, Theorem 6]) they
can be used as they are to obtain bounds on dcμ(n). The reason is that monotonicity plays no
essential role in the proof of such results, which apply to matrix interpretationsA generating
an ordering �A which is compatible with the rewrite relation. For →R monotonicity would
be required onA (to guarantee termination, not compatibility!); for ↪→R,μ, μ-monotonicity
would be required instead (to guarantee μ-termination now). Bounds obtained from the
analysis of matrices in A would apply to dcR(n) or dcμ(n) without special changes.

For polynomial interpretations, we have the following result, where by a hyperlinear polyno-
mial interpretationA we mean a strongly linear interpretation where for all f ∈ F , f A = x
for some x ∈ X or f A ∈ N.

Theorem 3 Let R be a TRS and μ ∈ MR. Let A be a polynomial interpretation and �A be
the corresponding μ-reduction ordering that is compatible with R.

1. If A is hyperlinear, then dcμ(n) ∈ O(1).
2. If A is strongly linear, then dcμ(n) ∈ O(n).
3. If A is linear, then dcμ(n) ∈ 2O(n).

4. Otherwise, dcμ(n) ∈ 22
O(n)

.

Proof The first two items are particular cases of one-dimensional matrix interpretations. The
proof of the last two cases is an immediate adaptations of the proofs of [33, Proposition 2.2.1]
and [33, Proposition 2.1.2], respectively.

The bounds in Theorem 3 are tight, i.e., they cannot be improved.

Remark 11 Note that matrix interpretationsAM satisfying the condition in item 1 of Theorem
2 can always be treated as polynomial interpretations AP as in item 1 of Theorem 3 by just
letting f AP ((x1)1, . . . , (xk)1) = (f AM (x1, . . . , xk))1.

123

1206 S. Lucas

Example 14 Consider R and μ in Example 1. A proof of μ-termination for R is obtained
with the following hyperlinear interpretation

aA = 2 bA = 0 fA(x) = 3 gA(x) = x hA(x) = 1

By Theorem 3(1), dcμ(n) ∈ O(1).

Example 15 Consider R and μ in Example 2. A proof of μ-termination of R is obtained
with the strongly linear interpretation A where appA(x, y) = x + 1. By Theorem 3(2),
dcμ(n) ∈ O(n).

Example 16 Consider R and μ in Example 3. The strongly linear interpretation

0A = 1 sA(x) = x + 2 fA(x, y) = x + 1

proves R μ-terminating. By Theorem 3(2), dcμ(n) ∈ O(n).

Example 17 ConsiderR andμ in Example 5. A proof ofμ-termination ofR is obtained with
the linear interpretation

¬A(x) = 2x + 2 x ∧A y = 2y x ∨A y = x + 2y + 2 x ⊃A y = x + y

By Theorem 3(3), dcμ(n) ∈ 2O(n).

Remind that TRSsR in Examples 1 and 3 are left-linear and completely defined (see Example
10). Thus, they fulfill the conditions in Corollary 1. According to Remark 3, we notice the
following.

Example 18 (Running example I—bounds) For R and μ in Example 1, dcμ(n) ∈ O(1) in
Example 14 provides a suitable bound on the length of normalization sequences in R. Note
that dcR(n) is not defined as R is not terminating.

Example 19 (Running example III—improved bounds) ForR andμ in Example 3, dcμ(n) ∈
O(n) in Example 16 improves on AProVE’s bounds for rewriting and innermost rewriting
(Examples 3 and 9).

7 Normalization via �-Normalization

For left-linear TRSs R and μ ∈ CMR, normalization of terms can be decomposed in the
computation of a (possibly empty) initial subsequence of context-sensitive rewriting steps
followed of a possibly empty sequence of additional reductions issued on maximal frozen
subterms of μ-normal forms.

Theorem 4 [40, Theorem 6.8] LetR be a left-linear TRS and μ ∈ CMR. Let s, t ∈ T (F,X)

such that s →! t . There exists u ∈ T (F,X) such that s ↪→!
μ u →!�μ t and MRCμ(u) =

MRCμ(t).

This is the basis of the iterative normalization via μ-normalization (NμN) process normμ

in [37, Sect. 4], further discussed in [40, Sect. 9.3], see also Fig. 1:

normμ(s) = C[normμ(s1), . . . ,normμ(sn)] (16)

where

u is a μ − normal form of s (17)

u = C[s1, . . . , sn] for C[, . . . ,] = MRCμ(u) (18)

123

Derivational Complexity and Context-Sensitive Rewriting 1207

Remark 12 (Deterministic/non-deterministic presentations of normμ) In [37, Figure 1]
normμ(t) deterministically returns a (possibly empty) set of terms T , whereas the (sim-
pler) presentation in [40, Sect. 9.3] non-deterministically returns one of the terms in T . For
simplicity, the presentation of the above algorithm uses this style. In the sequel, we rather
follow the set-theoretic presentation in the technical results.

In order to prepare the analysis of derivational complexity ofNμN, we investigate the number
of maximal frozen subterms s1, . . . , sn in (18) of the μ-normal forms u obtained in NμN’s
μ-normalization steps (17). Note that NμN will recursively continue on such terms in (16).

Definition 3 Let μ be a replacement map and t be a term. The number of maximal frozen
subterms of t , which coincides with the number of holes of its maximal replacing context
MRCμ(t), is denoted as nmfμ(t) = |Frμ(t)| = |minimal≤(Posμ(t))|.
Example 20 For R and μ in Example 5, nmfμ(�(8)) = |Frμ(�(8))| = |{1}| = 1 and
nmfμ(r(8)) = |Frμ(r(8))| = |{1.1, 2.1}| = 2.

Section 7.1 investigates bounds on nmfμ(t) for a given term t . Then, Sect. 7.2 explores how
to approximate the number nmfμ(t) of maximal frozen subterms s′ of the μ-normal forms t
of a given term s.

7.1 The Number of Maximal Frozen Subterms of a Term

Definition 4 (p-adic and p-active signature) Let F be a signature and μ ∈ MF . Let p be the
least natural number such that ar(f) ≤ p for all f ∈ F . ThenF is called a p-adic signature.
Let p be the least natural number such that |μ(f)| ≤ p for all f ∈ F . Then, F is called
p-active (with respect to μ).

We often use monadic and dyadic instead of 1- and 2-adic. In the sequel, given a term t ,F(t)
is the set of symbols from F occurring in t . We have the following.

Proposition 5 Let F be a signature, μ ∈ MF , t ∈ T (F,X), and G = F(MRCμ(t)).

1. If G is p-adic and 0-active, then nmfμ(t) = ar(root(t)) ≤ p.
2. If for all f ∈ G, μ(f) = μ�(f), then nmfμ(t) = 0.
3. If G is p-adic for some p > 1, and 1-active, then nmfμ(t) ≤ p−1

p |MRCμ(t)|.
4. Otherwise, nmfμ(t) ≤ |MRCμ(t)|.
Proof The first two cases and the last one are trivial. As for the third case, if p > 1 and
G is 1-active, then since |μ(f)| ≤ 1 for all f ∈ G, each level of the tree associated with
t has (at most) a single active position and (at least) a single minimal frozen position. The
structure of t allowing for more frozen positions is t = f (x1, . . . , xi−1, u, xi+1, . . . , x p)

where f is a p-adic symbol with μ(f) = {i} for some 1 ≤ i ≤ p, x1, . . . , xi−1, xi+1, x p are
(non-necessarily distinct) variables, and u is either a variable or a term of the same structure.
In this case, each level of the tree below the root adds (at most) p − 1 new minimal frozen
positions to Frμ(t) = minimal(Posμ(t)), and therefore, there are

nmfμ(t) = (δt − 1)(p − 1) (19)

minimal frozen positions in t . We also have |MRCμ(t)| = 1 + (p − 1) + |MRCμ(u)|,
i.e., |MRCμ(t)| = (δt − 1)p + 1. Hence, δt − 1 = |MRCμ(t)|−1

p and using (19), we obtain

nmfμ(t) = |MRCμ(t)|−1
p (p − 1) ≤ p−1

p |MRCμ(t)|.

123

1208 S. Lucas

The following fact is used below.

Proposition 6 Let s, t ∈ T (F,X) be such that s = σ(t) for some substitution σ . Let μ ∈
MR. Then, nmfμ(s) = nmfμ(t) + ∑

x∈Var(t) |Posμ
x (t)|nmfμ(σ (x)).

Proof The set of positions in the frontier of s consists of the positions in the frontier of
t together with those frozen positions introduced by instances σ(x) of active positions of
variables in t .

7.2 The Number of Maximal Frozen Subterms of�-Normal Forms of Terms

In NμN, intermediate μ-normal forms t of terms s are obtained, and then, NμN resumes on
maximal frozen subterms of t . In this section, we investigate approximations to themaximum
value of nmfμ(t) whenever t is a μ-normal form of s.

Definition 5 LetR be a finitely branching TRS andμ ∈ MR be such thatR isμ-terminating.

For all terms s, we let NMF
↪→!
μ (s) = maxs↪→!

μt nmfμ(t).

In order to use Proposition 5 to obtain bounds on NMF
↪→!
μ (s), we need to consider the

function symbols occurring in the maximal replacing contexts of μ-normal forms of terms.
For this purpose, we introduce the following notation:

F !
μ = {F(MRCμ(t)) | (∃s ∈ T (F)) s ↪→!

μ t}
We can approximateF !

μ asF ; however, completely defined symbols can be discarded as they
cannot occur in the maximal replacing context of (ground) normal forms. This motivates the
restriction to ground terms s in the definition of F !

μ, thus guaranteeing groundness of t . As
discussed in Sect. 4.1, if T (F) = ∅, we just need to add a fresh constant symbol • to F and
deal with R• instead of R.

Example 21 [Running example V] Consider the following (non-terminating) TRS R

a → f(c(a),b) (20)

f(b, y) → y (21)

f(c(x), y) → y (22)

together with μ = μcan
R , i.e., μ(f) = {1} and μ(c) = ∅. Since a and f are completely defined

(use induction on the structure of ground normal forms) F !
μ = C = {b, c}.

The following result is immediate from Proposition 5.

Corollary 2 Let R = (F, R) be a TRS, μ ∈ MR be such that F !
μ is p-adic, and s be a ground

term. Then,

1. If F !
μ is 0-active, then NMF

↪→!
μ (s) ≤ p.

2. If for all f ∈ F !
μ, μ(f) = μ�(f), then NMF

↪→!
μ (s) = 0.

Proof Since s is ground, the μ-normalization of s leads to a term t in T (F !
μ). Now we apply

the first two items of Proposition 5 with G = F !
μ.

123

Derivational Complexity and Context-Sensitive Rewriting 1209

Example 22 For R and μ in Example 21, F !
μ = {b, c}. Since F !

μ is monadic and 0-active,

by Corollary 2(1), for all ground terms s, NMF
↪→!
μ (s) ≤ 1.

Note that, if the size of s decreases when computing a μ-normal form t of s, then NMF
↪→!
μ (s)

is clearly bounded by |s|. In the following, we investigate this issue.

7.2.1 Size-Decreasing Relations

In this section, we investigate conditions guaranteeing that some relations (in particular the
μ-normalization relation ↪→!

μ) are size-decreasing in the following sense:

Definition 6 (Size-decreasing relation) Consider a relation R on terms. We say that R is size-
decreasing if for all terms s, t ∈ T (F,X), s R t implies |s| ≥ |t |.

Clearly, size-decreasingness of R implies size-decreasingness of R+, R∗, R! and also size-
decreasingness of any subrelation R′ ⊆ R. The following result is immediate from the notion
of size-decreasingness and Proposition 5.

Proposition 7 Let R = (F, R) and μ ∈ MR be such that F is p-adic and ↪→!
μ is size-

decreasing. Let s be a ground term. If p > 1 andF !
μ is 1-active, then (i)NMF

↪→!
μ (s) ≤ p−1

p |s|.
Otherwise, (ii) NMF

↪→!
μ (s) ≤ |s|.

Proof By size-decreasingness of ↪→!
μ, |s| ≥ |t | for all μ-normal forms t of s. Since s is

ground, t is also ground and t ∈ T (F !
μ). By Proposition 5, with G = F !

μ, we have, for item
(i),

NMF
↪→!
μ (s) = maxs↪→!t nmfμ(t) ≤ maxs↪→!t

p−1
p |MRCμ(t)| = p−1

p maxs↪→!t |MRCμ(t)|
≤ p−1

p maxs↪→!t |t | ≤ p−1
p maxs↪→!t |s|

Item (ii) follows due to the fact that |s| ≥ |t | (size-decreasingness of ↪→!
μ).

In the following, we investigate criteria to guaranteee size-decreasingness of ↪→!.

7.2.2 Size-Decreasing TRSs

Definition 7 (Size-decreasing rules and TRSs) A rule � → r satisfying |�| ≥ |r | is called
size-decreasing. A TRS R is size-decreasing if all rules are size-decreasing.

Example 23 The TRS R in Example 2 is size-decreasing. The TRSs R in Examples 1, 3, 5
and 21 are not size-decreasing.

The following observation is used below: given a term t and a substitution σ , |σ(t)| =
|t | + ∑

x∈Var(t) |Posx (t)|(|σ(x)| − 1).

Proposition 8 Let s and t be terms and � → r be a non-duplicating rule. If s →�→r t , then
|s| − |t | ≥ |�| − |r |.

123

1210 S. Lucas

Proof Since s →�→r t , we have s|p = σ(�) for some p ∈ Pos(s) and substitution σ and
t = s[σ(r)]p . Therefore, since |t | = |s| − |σ(�)| + |σ(r)|, we have
|s| − |t | = |σ(�)| − |σ(r)|

= |�| + ∑
x∈Var(�) |Posx (�)|(|σ(x)| − 1) − |r | − ∑

x∈Var(r) |Posx (r)|(|σ(x)| − 1)
= |�| − |r | + ∑

x∈Var(�)(|Posx (�)| − |Posx (r)|)(|σ(x)| − 1)

Since |Posx (�)| ≥ |Posx (r)| and |σ(x)| − 1 ≥ 0, we have |s| − |t | ≥ |�| − |r |.
Proposition 9 Let R be a size-decreasing TRS. Then, →∗ is size-decreasing iff R is non-
duplicating.

Proof For the if part, we proceed by induction on the length of the sequence s →∗ t , to prove
|s| ≥ |t |. The base case is immediate. Let s → s′ →∗ t with s|p = σ(�) and s′ = s[σ(r)]p .
By Proposition 8, |σ(�)| ≥ |σ(r)|; hence, |s| ≥ |s′|. By the induction hypothesis, |s| ≥ |s′| ≥
|t |, i.e.,→∗ is size-decreasing. Now, for the only if part, we proceed by contradiction. Assume
that both R and →∗ are size-decreasing but R is duplicating. Then there is a rule � → r
with m = |�| − |r | ≥ 0 (by size-decreasingness of R) and |Posx (�)| < |Posx (r)| for some
variable x . Let n = |Posx (r)| − |Posx (�)| > 0. Let t be a term of size |t | = k ≥ m + 2 and
σ be such that σ(x) = t and σ(y) = y for all y �= x . Let s = σ(�) and s′ = σ(r). Note that
s → s′. Now, note that |s| = |�|+|Posx (�)|(k −1) and |s′| = |r |+|Posx (r)|(k −1). Hence,
|s|− |s′| = |�|− |r |+ (|Posx (�)|− |Posx (r)|)(k −1) = m −n(k −1) = m −n(m +1) < 0
(because n > 0), i.e., →∗ is not size-decreasing, a contradiction.

Example 24 The TRSR in Example 2 is size-decreasing and non-duplicating. By Proposition
9, →∗ (and hence ↪→!

μ, for μ in the example) is size-decreasing.

Remark 13 (Limitation) Left-linear and non-duplicating TRSs are linear. Since left-linearity
is necessary for NμN to be sound, this leads to a strong restriction on the TRSs amenable for
a complexity treatment that assumes non-duplicatingness.

7.2.3 Weakly Size-Decreasing TRSs

The following definition slightly relaxes size-decreasingness.

Definition 8 (Weak size-decreasingness) A TRS R is weakly size-decreasing if for all rules
� → r ∈ R with |�| < |r |, there are rules �1 → r1, . . . , �n → rn ∈ R and substitutions
σi such that (i) r = σ1(�1), (ii) for all 1 ≤ i < n, ri = σi+1(�i+1) and (iii) |r | − |�| ≤∑n

i=1 |�i | − |ri |.
Example 25 TheTRSR in Example 21 is weakly size-decreasing: both (21) and (22) are size-
decreasing, and (i) the right-hand side r(20) of rule (20)matches �(22) and (ii) |r(20)|−|�(20)| =
3 ≤ 3 = |�(22)| − |r(22)|, as required in Definition 8.

For size-decreasing and non-duplicating TRSs, →∗ is size-decreasing (Proposition 9), and
hence, ↪→∗ and ↪→! also are. However, in general size-decreasingness of ↪→! does not imply
that of ↪→∗. For weak size-decreasingness, we have the following.

Proposition 10 Let R be a weakly size-decreasing and non-duplicating TRS and μ ∈ MR
be such that R is μ-confluent and μ-terminating. Then, ↪→! is size-decreasing.

123

Derivational Complexity and Context-Sensitive Rewriting 1211

Proof SinceR is μ-terminating, there is a μ-reduction ordering � on terms such that when-
ever s ↪→+ t , we have s � t . We proceed by induction on s using �. As for the base case,
we consider terms s which are μ-normal forms. Thus, s = t . For the induction step, if s
is μ-reducible, assume s ↪→�→r s′ ↪→! t , hence s � s′ and either s′ � t or s′ = t . By
Proposition 8, |s| − |s′| ≥ |�| − |r | and by the induction hypothesis we have |s′| ≥ |t |. We
consider two cases. (A) If � → r is size-decreasing, then |�| ≥ |r | and |s| ≥ |s′| ≥ |t |. (B)
If � → r is not size-decreasing, then there are rules �1 → r1, . . . , �n → rn ∈ R for some
n > 0 and substitutions σi such that r = σ ′(�1), for all 1 ≤ i < n, ri = σi+1(�i+1), and
|r | − |�| ≤ ∑n

i=1 |�i | − |ri |. Note that σ(r) = σ(σ1(�1)), and therefore,

s′|p = σ(r) = σ(σ1(�1))
�
↪→ σ(σ1(r1)) = σ(σ1(σ2(�2)) ↪→∗ σ(σ1(· · · (σn(�n)) · · ·))

�
↪→ σ(σ1(· · · (σn(rn)) · · ·))

Let s′′ = s′[σ(σ1(· · · (σn(rn)) · · ·))]p . Note that s ↪→ s′ ↪→+ s′′. By Proposition 8, for all
1 ≤ i < n, |σ(σ1(· · · σi (�i) · · ·))| − |σ(σ1(· · · σi (σi+1(�i+1)) · · ·))| ≥ |�i | − |ri | and also
|σ(σ1(· · · σn(�n) · · ·))| − |σ(σ1(· · · σn(rn) · · ·))| ≥ |�n | − |rn |. Since

|s′| − |s′′| =
n−1∑
i=1

|σ(σ1(· · · σi (�i) · · ·))| − |σ(σ1(· · · σi (σi+1(�i+1)) · · ·))|

we obtain |s′| − |s′′| ≥ ∑n−1
i=1 |�i | − |ri |. Hence,

|s′| − |s| ≤ |r | − |�| ≤
n−1∑
i=1

|�i | − |ri | ≤ |s′| − |s′′|

and therefore |s| ≥ |s′′|. By μ-confluence, s′′ ↪→! t . If s′′ = t , then |s′′| ≥ |t |; hence,
|s| ≥ |t |. Otherwise, s � s′′ � t ; by the induction hypothesis |s| ≥ |t |.
Example 26 Consider R and μ in Example 21. The following strongly linear polynomial
interpretation

aA = 2 bA = 0 cA(x) = 0 fA(x, y) = x + y + 1

proves R μ-terminating. Also, R is μ-confluent as there is no critical pair and no active
variable in the left-hand side of a rule becomes frozen anywhere else in the rule (LHRV
property, see [40, Sect. 8]). By Proposition 10, ↪→! is size-decreasing.

7.2.4 Beyond Size-Decreasingness

Definition 9 Let R = (F, R) be a TRS and μ ∈ MR. Given a rule � → r ∈ R, we let
F(� → r) = nmfμ(r) − nmfμ(�). Then, F(R) = max{F(� → r) | � → r ∈ R}. When no
confusion arises, we drop R and rather use F instead of F(R).

Intuitively, F(R) shows how many maximal frozen subterms can be introduced by the appli-
cation of a rewrite stepwithR. In particular, if F(R) < 0we can think of rules as ‘destroying’
frozen positions.

Example 27 For R and μ in Example 5,

Frμ(�(8)) = {1} Frμ(r) = {1.1, 2.1} hence F((8)) = 2 − 1 = 1
Frμ(�(9)) = ∅ Frμ(r(9)) = ∅ hence F((9)) = 0 − 0 = 0
Frμ(�(10)) = ∅ Frμ(r(10)) = {2.1} hence F((10)) = 1 − 0 = 1

123

1212 S. Lucas

Therefore, F(R) = 1. For R and μ in Example 2, F(R) = −1.

We have the following:

Proposition 11 Let R be a TRS and μ ∈ MR. For all � → r ∈ R, nmfμ(r) ≤ F(R) +
nmfμ(�).

Proof By Definition 9, for all � → r ∈ R, we have F(R) ≥ F(� → r) and F(� →
r) + nmfμ(�) = nmfμ(r). Hence, nmfμ(r) ≤ F(R) + nmfμ(�).

Definition 10 [25, Definition 1] Let R be a TRS and μ ∈ MR. A rule � → r is non-
μ-duplicating iff for all x ∈ Var(�), |Posμ

x (�)| ≥ |Posμ
x (r)|. A TRS is called non-μ-

duplicating if all rules are; otherwise, it is called μ-duplicating.

Example 28 The TRS R with μ in Example 5 is non-μ-duplicating:

Posμ
x (�(8)) = ∅ and Posμ

x (r(8)) = ∅

Posμ
y (�(8)) = {2.1} and Posμ

y (r(8)) = {1.2}
Posμ

z (�(8)) = {2.2} and Posμ
z (r(8)) = {2.2}

Posμ
x (�(9)) = {1.1} and Posμ

x (r(9)) = {1}
Posμ

y (�(9)) = {2} and Posμ
y (r(9)) = {2}

Posμ
x (�(10)) = {1.1} and Posμ

x (r(10)) = {2.2}
Posμ

y (�(10)) = {2.1} and Posμ
y (r(10)) = {1}

The following results put bounds on nmfμ(t)whenever t is obtained byμ-rewriting a term s.
Size-decreasingness is not required, but bounds now depend on (bounds on) the derivational
height of CSR.

Proposition 12 Let R be a TRS and μ ∈ MR be such that R is non-μ-duplicating. Let
F = F(R) and s, t be terms such that s ↪→∗ t . Then,

1. If F > 0, then nmfμ(t) ≤ nmfμ(s) + Fdhμ(s) and NMF
↪→!
μ (s) ≤ nmfμ(s) + Fdhμ(s).

2. If F ≤ 0, then nmfμ(t) ≤ nmfμ(s) and NMF
↪→!
μ (s) ≤ nmfμ(s).

3. If F < 0, then dhμ(s) ≤ nmfμ(s)
|F | .

Proof We prove, by induction on the length n of s ↪→∗ t , that nmfμ(t) ≤ nmfμ(s) + Fn.
Note that n ≤ dhμ(s). If n = 0, then s = t and it is immediate. If n > 0, let s ↪→ s′ ↪→∗ t ,
i.e., there are � → r ∈ R, p ∈ Posμ(s) and a substitution σ such that s|p = σ(�) and
s′ = s[σ(r)]p . By Proposition 6,

nmfμ(s|p) = nmfμ(�) + ∑
x∈Var(�) |Posμ

x (�)|nmfμ(σ (x))

nmfμ(s′|p) = nmfμ(r) + ∑
x∈Var(r) |Posμ

x (r)|nmfμ(σ (x)).

Therefore,

nmfμ(s) = nmfμ(s[]p) + nmfμ(s|p)

= nmfμ(s[]p) + nmfμ(�) + ∑
x∈Var(�) |Posμ

x (�)|nmfμ(σ (x))

nmfμ(s′) = (s′[]p) + nmfμ(s′|p) = nmfμ(s[]p) + nmfμ(s′|p)

= nmfμ(s[]p) + nmfμ(r) + ∑
x∈Var(r) |Posμ

x (r)|nmfμ(σ (x))

Hence,

nmfμ(s) − nmfμ(s′) = nmfμ(s|p) − nmfμ(s′|p)

= nmfμ(�) − nmfμ(r) + ∑
x∈Var(�)(|Posμ

x (�)| − |Posμ
x (r)|)nmfμ(σ (x)).

123

Derivational Complexity and Context-Sensitive Rewriting 1213

Since for all � → r ∈ R and x ∈ Var(�), |Posμ
x (�)| ≥ |Posμ

x (r)| holds, we have nmfμ(s)−
nmfμ(s′) ≥ nmfμ(�) − nmfμ(r). By Proposition 11, nmfμ(�) − nmfμ(r) ≥ −F . By the
induction hypothesis, nmfμ(t) ≤ nmfμ(s′) + F(n − 1). Thus,

nmfμ(t) ≤ nmfμ(s′) + Fn − F ≤ nmfμ(s′)+Fn+nmfμ(�)−nmfμ(r) ≤ nmfμ(s)+Fn.

Now, since n ≤ dhμ(s), we have (1) if F ≥ 0, then nmfμ(t) ≤ nmfμ(s) + Fdhμ(s) and

NMF
↪→!
μ (t) ≤ nmfμ(s) + Fdhμ(s), as desired. In particular, (2) if F ≤ 0, then nmfμ(t) ≤

nmfμ(s) and NMF
↪→!
μ (s) ≤ nmfμ(s). Finally, (3) if F < 0, since nmfμ(t) ≥ 0, it must be

n|F | ≤ nmfμ(s) for all n representing the length of a μ-rewrite sequence starting from s.

Thus, dhμ(s) ≤ nmfμ(s)
|F | .

In the remainder of the paper, we investigate computational complexity of NμN:

1. Section 8 recalls and further develops a generalization of CSR called layered CSR (LCSR
[38]) and provides a characterization of NμN using LCSR.

2. Section 9 defines computational complexity of NμN as the derivational complexity of
LCSR and investigates derivational height of LCSR.

3. Section 10 connects derivational complexity of LCSR and derivational complexity of
CSR.

4. Finally, Sect. 11 shows how to obtain bounds on derivational complexity of LCSR from
bounds on dcμ(n).

8 Layered Context-Sensitive Rewriting

In [38], layered normalization of terms was formalized as a reduction relation called layered
context-sensitive rewriting.

Definition 11 (Layered Context-Sensitive Rewriting)[38, Definition 1] Let R be a TRS,

μ ∈ MR and s, t ∈ T (F,X). We write s
p

↪→→μ t (or just s ↪→→μ t , or s ↪→→ t) if either

1. s
p

↪→μ t , or
2. s is a μ-normal form, s = C[s1, . . . , si , . . . , sn], where C[, . . . ,] = MRCμ(t), t =

C[s1, . . . , ti , . . . , sn], si = s|q for some i ∈ {1, . . . , n} and q ∈ Pos(s), p = q.p′ for

some position p′, and si
p′

↪→→μ ti .

Example 29 Consider R, μ, and the μ-normal form u in Example 2. Note that MRCμ(u) =
app(x1,�). The normalization sequence with ↪→→ finishes (5):

u = app(x1, app(app(x2, x3), x4))
2

↪→→R,μ app(x1, app(x2, app(x3, x4))

In contrast to CSR, where NFR ⊆ NFμ
R but, in general, NFμ

R � NFR (see Example 2),
↪→→R,μ-normal forms are normal forms.

Proposition 13 Let R be a TRS and μ ∈ MR. Then, NF↪→→R,μ
=NFR.

Proof Since normal forms are irreducible, NFR ⊆ NF↪→→R,μ
trivially holds. Now let t ∈

NF↪→→R,μ
. BydefinitionofLCSR, t ∈ NFμ

R and if t = C[t1, . . . , tn] forC[, . . . ,] = MRCμ(t),
then t1, . . . , tn ∈ NF↪→→R,μ

. We prove by structural induction that t ∈ NFR. If t is a constant

123

1214 S. Lucas

or a variable, it is obvious. Otherwise, since t1, . . . , tn ∈ NF↪→→R,μ
and C[, . . . ,] �= �, by

the induction hypothesis t1, . . . , tn ∈ NFR. Thus, if t is not a normal form, there must be a
position p ∈ PosF (C[, . . . ,]), i.e., p ∈ Posμ(t) such that t |p is a redex. Hence, t /∈ NFμ

R,
a contradiction.

For left-linear TRSsR and canonical replacement maps μ ∈ CMR, layered CSR sequences
can be decomposed into an initial sequence of μ-rewriting steps which eventually obtains a
μ-normal form. After that, the terms in the sequence remain μ-normal forms.

Proposition 14 Let R be a left-linear TRS and μ ∈ CMR. Consider a (finite or infinite)
↪→→μ-sequence t1 ↪→→μ t2 ↪→→μ · · · . If ti is a μ-normal form for some i ≥ 1, then there is
m ≥ 1 such that for all 1 ≤ j < m, s j is μ-reducible and for all j ≥ m, t j is a μ-normal
form.

Proof Let m be such that tm is the first μ-normal form in the sequence (note that m ≤ i).
By definition of LCSR, for all j , 1 ≤ j < m, t j is μ-reducible. And for all t j with j ≥ m,
tm →∗ t j . By [40, Theorem 6.2], t j is a μ-normal form.

Proposition 14 may fail to hold if left-linearity or μ ∈ CMR is not required.

Example 30 Consider the following TRSs [40, Example 5.5]:

R : a → c

f(c) → b

R′ : a → c

g(x, x) → b

Letμ(f) = ∅. Note thatμ /∈ CMR. Although f(a) is aμ-normal form,we have f(a) ↪→→μ f(c)
and f(c) is not a μ-normal form. Now, consider the non-left-linear TRS R′ and μ′(g) = ∅.
Note thatμ′ = μcan

R′ . Although g(c, a) is aμ′-normal form, we have g(c, a) ↪→→R′,μ′ g(c, c)
and g(c, c) is not aμ′-normal form. Thus, in both cases, the statement claimed in Proposition
14 does not hold.

In the following auxiliary result, which we use later, sprefixt (p) is the strict prefix of position
p in a term t , i.e., the (possibly empty) list of symbols traversed when going from the root of t
to position p (excluding p) [40, Sect. 3]. The result establishes that, for left-linear TRSs and
μ ∈ CMR such that R is μ-terminating, in infinite LCSR sequences there are strict prefixes
of arbitrary length which remain unchanged after some point in the sequence.

Proposition 15 Let R be a left-linear TRS and μ ∈ CMR be such that R is μ-terminating.
For all t ∈ T (F,X) starting an infinite ↪→→μ-sequence t = t1 ↪→→μ t2 ↪→→μ · · · and for all
N ≥ 0, there are i ≥ 0 and p ∈ Pos(ti) such that |p| ≥ N and for all u such that ti →∗ u,
p ∈ Pos(u) and sprefixti (p) = sprefixu(p).

Proof By induction on N . If N = 0, it is trivial. If N > 0, then by Proposition 14, and sinceR
is μ-terminating, we can assume that there is m ≥ 1 such that ti ↪→ ti+1 for all i , 1 ≤ i < m
and tm ∈ NFμ

R. By [40, Theorems 6.2 & 6.3], if C[] = MRCμ(tm), then, for all i ≥ m,
ti = C[ti1, . . . , tik] ∈ NFμ

R for terms ti j ∈ T (F,X). Furthermore, no reduct of ti (with this or
other rewrite sequence) contains a μ-replacing redex. Note that C[] is not empty. Therefore,
for all i ≥ m, |ti | ≥ N1 where N1 = min({|p j | | p j ∈ Pos�(C)}) > 0 is the minimum
depth of a hole symbol � in C[]. Let tm = C[tm1, . . . , tmk]. There is j , 1 ≤ j ≤ k such
that tmj starts an infinite sequence. Assume that tm |p′ = tmj for some p′ ∈ Pos�(C). By the
inductionhypothesis, there isn ≥ m andq ∈ Pos(tn) such that |q| ≥ N−N1 and for allv such

123

Derivational Complexity and Context-Sensitive Rewriting 1215

that tn |p′ →∗ v, q ∈ Pos(v) and sprefixtn |p′ (q) = sprefixv(q). Now, we let p = p′.q . Note
that, since tm ∈ NFμ

R, by [40, Theorem 6.2], tn = C[tm1, . . . , tmj−1, tn |p′ , . . . , tmk] ∈ NFμ
R

and for all u such that tn →∗ u, we will have p ∈ Pos(u) and sprefixtn (p) = sprefixu(p) as
desired.

As a consequence of Proposition 15, terms in infinite ↪→→μ-sequences steadily increase their
depth (and size).

Corollary 3 Let R be a left-linear TRS and μ ∈ CMR be such that R is μ-terminating. For
all t ∈ T (F,X) starting an infinite ↪→→μ-sequence t = t1 ↪→→μ t2 ↪→→μ · · · and for all
M, N ≥ 0, there is i ≥ 0 such that for all u with ti →∗ u, δu ≥ M and |u| ≥ N.

8.1 Normalization via�-Normalization and Layered CSR

Weuse the following theorem in the proof of themain result in this sectionwhich characterizes
NμN as ↪→→μ-normalization (Theorem 6).

Theorem 5 [38, Theorem 5] Let R = (F, R) be a left-linear TRS, μ ∈ CMR, and s, t ∈
T (F,X). Then, s →! t if and only if s ↪→→!

μ t .

Theorem 5 does not hold for arbitrary reducts (i.e., we cannot change →! by →∗ and ↪→→!
by ↪→→∗) [38, Example 4].

Theorem 6 Let R be a left-linear TRS and μ ∈ CMR. For all terms s, t ,

t ∈ normμ(s) ⇔ s ↪→→!
μ t .

Proof (⇒) If t ∈ normμ(s), then s →! t . By Theorem 5, t ↪→→!
μ u. (⇐) If s ↪→→!

μ t ,
then, since t is a normal form (hence a μ-normal form), by Proposition 14, there is m > 0
such that s = s1 ↪→μ s2 ↪→μ · · · ↪→ sm ↪→→!

μ t with sm a normal form and si μ-reducible
for all 1 ≤ i < m. We proceed by induction on the lexicographic combination of >N and
� on pairs of positive natural numbers and terms. For the base case, if m = 1, then s is a
μ-normal form which is either a constant or a variable. By [40, Theorem 5.8], s ↪→!

μ t and

Posμ(t) = ∅ (hence MRCμ(t) = t). Therefore, according to (17) and (18), normμ(s) = t .
For the induction case, assume that m > 1. We consider two cases:

1. If s2 is a μ-normal form, by [40, Theorem 6.3] we have C[, . . . ,] = MRCμ(s2) =
MRCμ(t), and therefore, s2 = C[s′

1, . . . , s′
n] and t = C[t1, . . . , tn] for some terms

s′
1, . . . , s′

n, t1, . . . , tn , and for all 1 ≤ i ≤ n, s′
i ↪→→!

μ ti . Since C[, . . . ,] �= �, by
the induction hypothesis, for all 1 ≤ i ≤ n, ti ∈ normμ(s′

i) and according to (17),
t ∈ normμ(s2); hence, t ∈ normμ(s).

2. If s2 is not a μ-normal form, then by the induction hypothesis, t ∈ normμ(s2); hence,
t ∈ normμ(s).

Left-linearity of R and μ ∈ CMR are necessary for Theorem 6 to hold.

Example 31 Consider R and μ in Example 30. We have f(c) ∈ normμ(f(a)), but, since
f(c) is not a normal form, it can be reduced with LCSR. Furthermore, f(a) ↪→→!

R,μ b, but
b /∈ normμ(f(a)). With R′ and μ′ we have g(c, c) ∈ normμ(g(c, a)), but g(c, c) can be
reduced with LCSR. Also, g(c, a) ↪→→!

R,μ b, but b /∈ normμ(g(c, a)).

123

1216 S. Lucas

Theorem 6 enables the use of LCSR in a reduction-based description of NμN which can be
used to define computational complexity ofNμN as derivational complexity of ↪→→μ. In order
to do this, we need to guarantee that LCSR terminates when used with a CS-TRS (R, μ). In
the following section, we investigate this problem.

8.2 Termination of Layered CSR

We introduce a short notation for termination of ↪→→R,μ.

Definition 12 Let R be a TRS and μ ∈ MR. We say that R is μ̂-terminating if ↪→→R,μ is
terminating.

Termination of LCSR provides a sufficient condition for normalization of TRSs:

Proposition 16 Let R be a TRS and μ ∈ MR. If R is μ̂-terminating, then R is normalizing.

Proof SinceR is μ̂-terminating, for every term s there is t such that s ↪→→!
μ t . By Proposition

13, t is a normal form, i.e., R is normalizing.

Terminating TRSs are μ̂-terminating for all μ ∈ MR. And μ̂-terminating TRSs are μ-
terminating. We also have the following sufficient condition for μ̂-termination.

Theorem 7 Let R be a left-linear TRS and μ ∈ CMR. If R is confluent, normalizing and
μ-terminating, then R is μ̂-terminating.

Proof If R is not μ̂-terminating, there is an infinite ↪→→μ-sequence t = t1 ↪→→ t2↪→→· · · .
Since R is normalizing and confluent, t has a single normal form t of size N = |t |. By
Corollary 3, there is i ≥ 1 such that |ti | ≥ N + 1. By confluence, ti →∗ t and by Corollary
3, |t | ≥ N + 1, leading to a contradiction.

The following example shows that confluence cannot be dropped from Theorem 7.

Example 32 Consider the non-confluent TRS R = {a → b, a → c(a)} [36, Example 39]
together with μ = μ⊥ ∈ CMR. AlthoughR is μ-terminating and normalizing, we have the
following infinite sequence of LCSR: a ↪→→μ c(a) ↪→→μ c(c(a)) ↪→→μ · · · .
Confluence and normalization of TRSs can often be automatically proved by using available
tools, see CoCoWeb [31], for a unified platform of confluence tools, and FORT [52] for
normalization (of right-ground TRSs).

Example 33 ForR and μ in Example 21, the μ-termination proof in Example 26 is obtained
by mu- term7. Confluence is proved by all CoCoWeb tools. Finally,R can easily be proved
normalizing. Thus, R is μ̂-terminating

8.3 Layered CSR as a Rewriting Strategy

In contrast to CSR, ↪→→R,μ-normal forms are normal forms (Proposition 13), and therefore,
LCSR always reduces terms which are not normal forms. Thus, LCSR can be seen as a
(non-deterministic) one-step rewriting strategy

SLCSR(t) = {p ∈ PosR(t) | (∃u) t
p

↪→→μ u}
7 Actually, mu- term automatically computes a strongly linear interpretation over the rationals as follows:
aA = 1, bA = 0, cA(x) = 0, and fA(x, y) = x + y + 1

2 , from which we easily obtain the interpretation
over the naturals in Example 26.

123

Derivational Complexity and Context-Sensitive Rewriting 1217

Now, the following generalization of Theorem 7 is immediate (the proof is analogous to that
of Theorem 7).

Theorem 8 Let R be a left-linear and confluent TRS, and μ ∈ CMR. If R is μ-terminating,
then SLCSR is normalizing.

Theorem 8 formalizes the observation in [40, Sect. 9.3], claiming that normμ is a mapping
from terms to terms whenever R is left-linear and confluent, and μ ∈ CMR makes R
μ-terminating.

9 Derivational Height of Layered Context-Sensitive Rewriting

Theorem 6 describes NμN as normalization using LCSR. Thus, we investigate computational
complexity of NμN as the derivational complexity of LCSR:

Definition 13 Let R be a TRS and μ ∈ MR be such that R is μ̂-terminating. Let

dhμ̂(t) = dh(t, ↪→→R,μ) and dcμ̂(n) = max{dhμ̂(t) | |t | ≤ n}
denote the derivational height and derivational complexity of LCSR, respectively.

In the remainder of the paper,we obtain bounds ondcμ̂(n) frombounds ondcμ(n). According
to Proposition 14, for left-linear TRSs R and μ ∈ CMR, rewrite sequences in LCSR can be
decomposed in a (possibly empty) initial subsequence of context-sensitive rewriting steps
followed of a possibly empty sequence of additional reductions issued on μ-normal forms.
If R is μ-terminating, then the initial context-sensitive sequence must be finite.

Proposition 17 Let R be a terminating, left-linear TRS and μ ∈ CMR. For all terms t and
n ∈ N, dhμ̂(t) ≤ dh(t,→R) and dcμ̂(n) ≤ dcR(n).

Remark 14 In the following, we use sums (
∑

) and products (
∏
) of numbers indexed by finite

but potentially empty collections of indices. As usual, we give values 0 and 1, respectively,
to sums and products of empty collections of numbers.

The following result connects dhμ and dhμ̂ on the basis of the definition of LCSR.

Proposition 18 Let R be a left-linear TRS and μ ∈ CMR be such that R is μ̂-terminating.
Then,

dhμ̂(s) ≤ dhμ(s) + max
s ↪→!

μ u = C[s1, . . . , snmfμ(u)]
C[, . . . ,] = MRCμ(u)

nmfμ(u)∑
i=1

dhμ̂(si). (23)

Proof SinceR is μ̂-terminating, it is also μ-terminating. By Proposition 14, every maximal
normalization sequence s = s1 ↪→→μ s2 ↪→→μ · · · ↪→→μ sn = t , where t is a normal form,
can be written as follows:

s = s1 ↪→μ s2 ↪→μ · · · ↪→μ sm ↪→→μ · · · ↪→→μ sn = t

for some m ≥ 1 such that sm, . . . , sn are μ-normal forms. Let C[, . . . ,] = MRCμ(sm) a
context with p holes. By [40, Theorem 6.3], for all m ≤ i ≤ n we have si = C[si1, . . . , sip]
for some terms si1, . . . , sip . In particular, t = C[t1, . . . , tp]where t j = snj for all 1 ≤ j ≤ p.

123

1218 S. Lucas

Moreover, for all 1 ≤ j ≤ p, smj ↪→→!
μ t j . Therefore, dhμ̂(s) = n ≤ m + ∑p

j=1 dhμ̂(smj).
Since m ≤ dhμ(s), we obtain

dhμ̂(s) ≤ dhμ(s) +
p∑

j=1

dhμ̂(smj). (24)

Since there can be severalμ-normal forms u of s, with differentmaximalμ-replacing contexts
MRCμ(u) with nmfμ(u) holes, from (24) we finally obtain (23).

Note that, in (23), we can replace the different values nmfμ(u) for μ-normal forms u of s by

NMF
↪→!
μ (s) in Definition 5 to remove the big sum in (23):

dhμ̂(s) ≤ dhμ(s) + NMF
↪→!
μ (s) max

s ↪→!
μ u = C[s1, . . . , snmfμ(u)]

C[, . . . ,] = MRCμ(u)

dhμ̂(si). (25)

The advantage is that we can use the bounds on NMF
↪→!
μ (s) developed in Sect. 7.2 (Corollary

2 and Proposition 12) to obtain a translation of (25) into a bound on dcμ̂(n). However, we
first have to deal with the maximal frozen subterms occurring in (25). The set of maximal
frozen subterms s′ which can be obtained from μ-normal forms u of s is:

MFRZμ(s) = {u|p | s ↪→!
μ u, p ∈ Frμ(u)}

Example 34 Consider the following TRS R from [15, Example 5]

f(f(x)) → f(g(f(x)))

with μ(f) = {1} and μ(g) = ∅. We have the innermost μ-normalization sequence:

s = f(f(f(f(x)))) ↪→ f(f(f(g(f(x))))) ↪→ f(f(g(f(g(f(x))))))

↪→ f(g(f(g(f(g(f(x))))))) = u1

We have Frμ(u1) = {1.1} and s1 = f(g(f(g(f(x))))) is the maximal frozen subterm in u1.
The outermost μ-normalization of s is:

s = f(f(f(f(x)))) ↪→ f(g(f(f(f(x)))))) = u2

where the maximal frozen subterm of u2 is s2 = f(f(f(x))). There also are ‘intermediate’
μ-normalization sequences for s:

s = f(f(f(f(x)))) ↪→ f(f(g(f(f(x))))) ↪→ f(g(f(g(f(f(x)))))) = u3

s = f(f(f(f(x)))) ↪→ f(f(f(g(f(x))))) ↪→ f(g(f(f(g(f(x)))))) = u4

where the maximal frozen subterms of u3 and u4 are s3 = f(g(f(f(x)))), and s4 =
f(f(g(f(x)))), respectively. Thus, MFRZμ(s) = {s1, s2, s3, s4}.
By using the previous notations, Proposition 18 leads to the following:

Theorem 9 Let R be a left-linear TRS and μ ∈ CMR be such that R is μ̂-terminating. Let
s be a term. Then,

dhμ̂(s) ≤ dhμ(s) + NMF
↪→!
μ (s) max

s′∈MFRZμ(s)
dhμ̂(s′). (26)

For non-μ-duplicating TRSs, according to Proposition 12, we have

123

Derivational Complexity and Context-Sensitive Rewriting 1219

Corollary 4 Let R be a left-linear TRS and μ ∈ CMR be such that R is non-μ-duplicating
and μ̂-terminating, and F = F(R). Let s be a term. Then,

1. If F > 0, then dhμ̂(s) ≤ dhμ(s) + (nmfμ(s) + Fdhμ(s))maxs′∈MFRZμ(s) dhμ̂(s′).
2. If F = 0, then dhμ̂(s) ≤ dhμ(s) + nmfμ(s)maxs′∈MFRZμ(s) dhμ̂(s′).
3. If F < 0, then, dhμ̂(s) ≤ nmfμ(s)(1

|F | + maxs′∈MFRZμ(s) dhμ̂(s′)).

9.1 Use of Ground Terms in Layered Term Rewriting

In sharp contrast to the unrestricted case (see Sect. 4.1), derivational complexity of LCSR
differs for ground and non-ground terms.

Example 35 Consider the following left-linear TRS R where a is a constant symbol:

f (a, y) → a (27)

with μ(f) = {1}. Note that μ ∈ CMR. For t = f (x, f (f (a, a), a)) (which is a μ-normal
form), we have

t = f (x, f (f (a, a), a)) ↪→→μ f (x, f (a, a))

↪→→μ f (x, a)

of length 2. This is the only possible ↪→→μ-sequence on t . However, if we make t ground by
replacing the variable occurrence of x by a to obtain a term t ′ of the same size, we are only
able to obtain a shorter sequence

t ′ = f (a, f (f (a, a), a)) ↪→→μ a

consisting of a single context-sensitive rewriting step due to the fact that t ′ is not a μ-normal
form now.

Thus, it is unclear whether an equality like (11) holds for LCSR.
In particular, Example 35 shows that LCSR is not closed under substitutions, even for left-

linear TRSs R and μ ∈ CMR: We have t = f (x, f (f (a, a), a)) ↪→→μ f (x, f (a, a)) = u,
but the instance t ′ of t does not ↪→→μ-reduce to the corresponding instance u′ = f (a, f (a, a))

of u.
For this reason, in the following we also consider ground terms in the analysis of deriva-

tional complexity of LCSR. Accordingly, we introduce the following

gdcμ̂(n) = max{dhμ̂(t) | t ∈ T (F), |t | ≤ n} (28)

Clearly, for all n ∈ N, gdcμ̂(n) ≤ dcμ̂(n).

10 Derivational Complexity of Normalization via �-Normalization

We can use (26) to obtain bounds on dcμ̂(n) by replacing (i) dhμ̂(s) by dcμ̂(n) for terms s

whose size is bounded by n, (ii) dhμ(s) by dcμ(n), (iii) NMF
↪→!
μ (s) by

BNMF
↪→!
μ (n) = max{NMF

↪→!
μ (s) | |s| ≤ n}

to obtain an upper bound on the (maximum) number NMF
↪→!
μ (s) of holes in MRCμ(u) to be

considered in each intermediate μ-normalization phase of NμN when applied to terms s of

123

1220 S. Lucas

size |s| ≤ n to yield a μ-normal form u, and (iv) dhμ̂(s′) by dcμ̂(n − 1), thus assuming a
decrease of |s′| with respect to |s| for all s′ ∈ MFRZμ(s) to obtain

dcμ̂(n) ≤ dcμ(n) + BNMF
↪→!
μ (n)dcμ̂(n − 1)

from which an explicit description of dcμ̂(n) in terms of dcμ(n) can be obtained. However,
Example 34 shows that terms s′ in MFRZμ(s) can be bigger than s; for instance, |s1| = 6 >

5 = |s|. Thus, in general, terms inMFRZμ(s) do not decrease in size. Hence, item (iv) in the
previous list may fail to be sound.

Definition 14 We say that MFRZμ is (strictly) size-decreasing if for all terms s and s′ ∈
MFRZμ(s), |s| > |s′|.
Proposition 19 Let R be a TRS and μ ∈ MR. If ↪→! is size-decreasing, then MFRZμ is
size-decreasing.

Proof If t ′ ∈ MFRZμ(s), then there is a term t such that s ↪→! t and t ′ is a frozen (i.e., strict)
subterm of t . By size-decreasingness of ↪→!, |s| ≥ |t |. Since t � t ′, |s| > |t ′|.
Example 36 ConsiderR in Example 2 andμ in Example 15. As shown in Example 24, ↪→!

R,μ

is size-decreasing. By Proposition 19, MFRZμ is size-decreasing.

The following alternative result establishes conditions guaranteeing a decrease in the size of
frozen subterms obtained at the end of any μ-rewrite sequence.

Proposition 20 Let R be a TRS and μ ∈ MR be such that, for all � → r ∈ R, Posμ
F (r) = ∅

and Var�μ(r) − Varμ(r) ⊆ Var�μ(�). Then, for all terms s such that s ↪→∗
μ t and frozen

subterms t ′ of t , s �
�μ

t ′ and |s| > |t ′|. Hence, MFRZμ is size-decreasing.

Proof If t contains no frozen subterm, then the conclusion vacuously follows. Thus, assume
that t contains a frozen subterm t ′, i.e., t �

�μ
t ′. We proceed by induction on the length n of

the sequence s ↪→∗
μ t . If n = 0, then s = t , and therefore, s �

�μ
t ′. If n > 0, then consider

s ↪→μ s′ ↪→∗
μ t . We have s|p = σ(�) for some p ∈ Posμ(s), � → r ∈ R, and substitution

σ . We also have s′ = s[σ(r)]p . By the induction hypothesis, s′ �
�μ

t ′, i.e., there is a position
q ∈ Posμ(s′) such that s′|q = t ′. If q ‖ p, then q ∈ Posμ(s) and s �

�μ
t ′. Otherwise, p < q

and, since Posμ
F (r) = ∅, there is a variable x ∈ Var(r) such that either (i) x ∈ Varμ(r)

and σ(x) �
�μ

t ′, or (ii) x ∈ Var�μ(r) − Varμ(r) and σ(x) � t ′. In the first case (i), we have

σ(�)�
�μ

t ′, and hence, s �
�μ

t ′. In the second case (ii), since Var�μ(r)−Varμ(r) ⊆ Var�μ(�),
we also have s �

�μ
t ′. Since frozen positions always are below the root of terms, s can be

written s = f (s1, . . . , sk) and we have si � t ′ for some 1 ≤ i ≤ n, i.e., |s| > |si | ≥ |t ′|.
Example 37 For R and μ in Example 5, ↪→! is not size-decreasing. For instance, s =
x ∧ (y ∨ z) ↪→(8),μ (x ∧ y) ∨ (x ∧ z) = t and t is a μ-normal form, but |s| = 5 < 7 = |t |.
However, the conditions in Proposition 20 are fulfilled, thus provingMFRZμ size-decreasing:
subterms at frozen positions in right-hand sides of rules are variables; as for frozen variables
in left- and right-hand sides,

Var�μ(r(8)) − Varμ(r(8)) = {x} − {y, z} = {x} = {x} = Var�μ(�(8))

Var�μ(r(9)) − Varμ(r(9)) = ∅ − {x, y} = ∅ ⊆ ∅ = Var�μ(�(9))

Var�μ(r(10)) − Varμ(r(10)) = {y} − {x, y} = ∅ ⊆ ∅ = Var�μ(�(10))

123

Derivational Complexity and Context-Sensitive Rewriting 1221

11 Bounds on dc
̂�(n)

In this section, we use the previous results to obtain bounds on dcμ̂(n).

Theorem 10 Let R be a left-linear TRS and μ ∈ CMR be such that R is μ̂-terminating and
MFRZμ is size-decreasing. Then,

dcμ̂(n) ≤
n∑

i=1

⎛
⎝ n∏

j=i+1

BNMF
↪→!
μ (j)

⎞
⎠ dcμ(i) (29)

Proof By induction on n. If n = 0, then dcμ̂(n) = 0 and (29) trivially follows. If n > 0,
then, by Theorem 9,

dhμ̂(s) ≤ dhμ(s) + NMF
↪→!
μ (s) max

s′∈MFRZμ(s)
dhμ̂(s′)

By size-decreasingness of MFRZμ, for all terms s and s′ ∈ MFRZμ(s), |s| > |s′|, and

dcμ̂(n) ≤ dcμ(n) + max{NMF
↪→!
μ (s) max

s′∈MFRZμ(s)
dhμ̂(s′)} | |s| ≤ n}

≤ dcμ(n) + BNMF
↪→!
μ (n)max{dhμ̂(t) | |t | ≤ n − 1}

= dcμ(n) + BNMF
↪→!
μ (n)dcμ̂(n − 1)

By the induction hypothesis, dcμ̂(n − 1) ≤ ∑n−1
i=1

(∏n−1
j=i+1 BNMF

↪→!
μ (j)

)
dcμ(i). There-

fore,

dcμ̂(n) ≤ dcμ(n) + BNMF
↪→!
μ (n)

∑n−1
i=1

(∏n−1
j=i+1 BNMF

↪→!
μ (j)

)
dcμ(i)

= ∑n
i=1

(∏n
j=i+1 BNMF

↪→!
μ (j)

)
dcμ(i)

In the following, given a replacement map μ ∈ MF and n ∈ N, we let

bnmfμ(n) = max
t∈T (F,X),|t |≤n

nmfμ(t).

The following corollary of Proposition 5 provides some bounds for bnmfμ(n).

Corollary 5 Let F be a p-adic signature and μ ∈ MF . Then, for all n ∈ N,

1. If μ = μ⊥, then bnmfμ(n) ≤ p.
2. If μ = μ�, then bnmfμ(n) = 0.
3. If p > 1, and F is 1-active, then bnmfμ(n) ≤ p−1

p n.
4. Otherwise, bnmfμ(n) ≤ n.

The following result characterizes some bounds on bnmfμ(n).

Proposition 21 Let F be a p-adic signature and μ ∈ MF . Then, for all n ∈ N,

1. bnmfμ(n) = 0 if and only if μ = μ�.
2. bnmfμ(n) ≤ p if and only if μ = μ� or μ(f) = ∅ for all f ∈ F with ar(f) ≥ 2.

123

1222 S. Lucas

Proof 1. The if part follows by Corollary 5(2). As for the only if part, we proceed by
contradiction. Assume that, for all n ∈ N, bnmfμ(n) = 0 but μ �= μ�. Then there is a k-
ary symbol f with k ≥ 1 such that μ(f) ⊂ {1, . . . , k}. Hence, the term f (x1, . . . , xk) of
size k + 1 contains at least a frozen subterm. Hence, bnmfμ(k + 1) �= 0, a contradiction.

2. Regarding the if part, if μ = μ�, then, by Corollary 5(2), we have bnmfμ(n) = 0 ≤ p.
Otherwise, we prove by structural induction on terms t thatnmfμ(t) ≤ p. If t is a constant
or a variable, then nmfμ(t) = 0 ≤ p. If t = f (t1, . . . , tk) for some symbol f ∈ F and
t1, . . . , tk , we consider two cases: (a) If f is a monadic symbol, then t = f (t ′) and by the
induction hypothesis, nmfμ(t ′) ≤ p. If μ(f) = {1}, then, by the induction hypothesis,
nmfμ(t) = nmfμ(t ′) ≤ p; if μ(f) = ∅, then nmfμ(t) = 1 ≤ p (b) If ar(f) > 1,
then μ(f) = ∅ and nmfμ(t) = ar(f) ≤ p. Thus, for all terms t , nmfμ(t) ≤ p, i.e.,
bnmfμ(n) ≤ p.
Regarding theonly if part, assume thatbnmfμ(n) ≤ p, but (c)μ �= μ� and (d)μ(f) �= ∅

for some f ∈ F withar(f) ≥ 2.Then, by (d) there is g ∈ F withar(g) ≥ 2 and |μ(g)| �=
∅, i.e., i1 ∈ μ(g) for some 1 ≤ i1 ≤ ar(g). Let i2 ∈ {1, . . . , ar(g)} − {i1} be another
argument index of g.Without loss of generality, we assume i1 < i2. By (c), there is f ∈ F
with j /∈ μ(f) for some 1 ≤ j ≤ ar(f). Let s = f (y1, . . . , yi−1, y, yi+1, . . . , yq) and

t = g(x1, . . . , xi1−1, x, xi1+1, . . . , xi2−1, x, xi2+1, . . . x p)

Note that y is frozen in s and x is active in position i1 of t . Define t0 = s and for all
m > 0 tm = σm(t), where σm(x) = tm−1. We consider two cases: (A) If i2 ∈ μ(g),
then t contains at least two active positions (i1 and i2) and for all m ≥ 0, tm contains at
least 2m maximal frozen subterms (introduced by the occurrences of variable y in s when
distributed in tm). (B) If i2 /∈ μ(g), then for all m ≥ 0, tm contains at least m +1 maximal
frozen subterms. Therefore, for a sufficiently big value of m, we have nmfμ(tm) > p,
thus contradicting the bound for bnmfμ(n).

For non-μ-duplicating TRSs, we have the following.

Theorem 11 Let R be a left-linear TRS and μ ∈ CMR be such that R is μ̂-terminating and
non-μ-duplicating, and MFRZμ is size-decreasing. Let F = F(R).

1. If F > 0, then dcμ̂(n) ≤ ∑n
i=1

(∏n
j=i+1(bnmfμ(j) + Fdcμ(j))

)
dcμ(i).

2. If F = 0, then dcμ̂(n) ≤ ∑n
i=1

(∏n
j=i+1 bnmfμ(j)

)
dcμ(i).

3. If F < 0, then dcμ̂(n) ≤ ∑n
i=1

∏n
j=i+1 bnmfμ(j).

Proof Proceed like in Theorem 10, using Corollary 4 instead of Theorem 9 for the three
considered cases.

The following result shows how asymptotic bounds on dcμ̂(n) and gdcμ̂(n) are obtained
from asymptotic bounds on dcμ(n). Remind that we assume TRSs R = (F, R) where F
contains a constant symbol (see (14) for CSR); use R• = (F•, R) otherwise, as explained
in the previous sections, see Proposition 2. This is important when bounds depend on F !

μ,
which is defined assuming the existence of ground terms.

Corollary 6 Let R = (F, R) be a left-linear TRS such that T (F) �= ∅ and μ ∈ CMR be
such that R is μ̂-terminating and MFRZμ is size-decreasing. Let dcμ(n) ∈ O(f(n)).

1. If F !
μ is 0-adic, then gdcμ̂(n) ∈ O(f(n)).

2. If for all f ∈ F !
μ, μ(f) = μ�(f), then gdcμ̂(n) ∈ O(f(n)).

123

Derivational Complexity and Context-Sensitive Rewriting 1223

3. If F !
μ is monadic and 0-active, then gdcμ̂(n) ∈ O(nf(n)).

4. If F !
μ is p-adic with p > 1, then

(a) If F !
μ is 0-active, then gdcμ̂(n) ∈ O(pnf(n))

(b) If ↪→! is size-decreasing, then gdcμ̂(n) ∈ O(nnf(n))

5. If R is non-μ-duplicating, then let ηF ∈ {−1, 0, 1} denote the sign of F(R).

(a) If F(R) > 0, then
i. if bnmfμ(n) ≤ b for some b ∈ N, then dcμ̂(n) ∈ n(f(n))n2O(n),
ii. otherwise, dcμ̂(n) ∈ O((nf(n))n).

(b) If F(R) ≤ 0, then
i. if bnmfμ(n) = 0 for all n ∈ N, then dcμ̂(n) ∈ O((f(n))1+ηF),
ii. if there is b ≥ 1 such that bnmfμ(n) ≤ b for all n ∈ N, then dcμ̂(n) ∈

O(nbnf(n)),
iii. otherwise, dcμ̂(n) ∈ O(nn(f(n))1+ηF).

Proof First note that, since T (F) �= ∅, we have F !
μ �= ∅.

1. For 0-adic signatures CSRand LCSRcoincide, i.e., gdcμ̂(n) = dcμ(n).
2. By Theorem 10 and Corollary 2(2), which applies to ground terms, and taking into

account (14), gdcμ̂(n) ≤ dcμ(n), i.e., gdcμ̂(n) ∈ O(f(n)).
3. By Theorem 10 and Corollary 2(1), gdcμ̂(n) ≤ ndcμ(n), i.e., gdcμ̂(n) ∈ O(nf(n)).
4. (a) By Theorem 10 and Corollary 2(1), gdcμ̂(n) ≤ ∑n

i=1(
∏n

j=i+1 p)dcμ(i) =∑n
i=1 pn−idcμ(i) = ∑n−1

i=0 pidcμ(i + 1) ≤ 1−pn

1−p dcμ(n) ≤ pndcμ(n), i.e.,
gdcμ̂(n) ∈ O(pnf(n)).

(b) By Theorem 10 and Proposition 7, gdcμ̂(n) ≤ ∑n
i=1(

∏n
j=i+1 n)dcμ(i) =∑n

i=1 nn−idcμ(i) ≤ nndcμ(n), i.e., gdcμ̂(n) ∈ O(nnf(n)).
5. (a) If F(R) > 0, by Theorem 11,

dcμ̂(n) ≤ dcμ(n) +
n∑

i=1

⎛
⎝ n∏

j=i+1

(bnmfμ(j) + Fdcμ(j))

⎞
⎠dcμ(i)

Thus, dcμ̂(n) ≤ dcμ(n) + n(bnmfμ(n) + Fdcμ(n))n−1dcμ(n). If bnmfμ(n) ≤ b,
then

dcμ̂(n) ≤ dcμ(n) + n(bnmfμ(n) + Fdcμ(n))n−1dcμ(n)

≤ dcμ(n) + n(b + Fdcμ(n))n−1dcμ(n)

≤ n(1 + b + F)n−1(dcμ(n))n

∈ n(f(n))n2O(n)

Otherwise, we similarly obtain dcμ̂(n) ∈ O((nf(n))n).

(b) By Theorem 11, if F = 0, then dcμ̂(n) ≤ ∑n
i=1

(∏n
j=i+1 bnmfμ(j)

)
dcμ(i); if

F < 0, dcμ̂(n) ≤ ∑n
i=1

∏n
j=i+1 bnmfμ(j).

As for the first case, (i) bnmfμ(n) = 0, if F = 0, we obtain dcμ̂(n) ≤ dcμ(n) ∈
O(f(n)); if F < 0, then dcμ̂(n) ≤ ∑n

i=1
∏n

j=i+1 0 = 1 ∈ O(1). Both can be written

at once as dcμ̂(n) ∈ O((f(n))1+ηF). The other cases are similar.

Example 38 (Running example II—bounds) For R and μ in Example 2, F is 1-active and
by Proposition 5, bnmfμ(n) ≤ n

2 ; R is non-μ-duplicating (Example 24); and F(R) = −1

123

1224 S. Lucas

(Example 27). The strongly linear interpretation in Example 15 proves dcμ(n) ∈ O(n). By
Corollary 6(5(b)iii), dcμ̂(n) ∈ O(nn). This bound is worse than the quadratic bound for
dcR(n) obtained in Example 13 (also by AProVE).

Example 39 (Running example IV—improved bounds) For R and μ in Example 5, R is
non-μ-duplicating (Example 28); F(R) = 1 (Example 27); and the linear interpretation
in Example 17 proves dcμ(n) ∈ 2O(n). By Corollary 6(5(a)ii), there is c > 0 such that
dcμ̂(n) ∈ O((n2cn)n). Since

log2((n2
cn)n) = n(log2 n + cn) ≤ 2cn2 ∈ O(n2)

we get dcμ̂(n) ∈ 2O(n2), improving on the doubly exponential bound for dcR(n) obtained
from the polynomial interpretation in Example 11 (see Example 12).

Example 40 (Running example V—bounds) For R and μ in Example 21, R is proved μ-
terminating by using a strongly linear polynomial interpretation (Example 26). By Theorem
3(2), dcμ(n) ∈ O(n). Furthermore, R is μ̂-terminating (Example 33). Since F !

μ = {b, c} is
monadic and 0-active (Example 22), by Corollary 6 (3), gdcμ̂(n) ∈ O(n2). Note that R is
not terminating, and dcR(n) is undefined.

12 RelatedWork

As far as we know, this is the first paper explicitly defining and investigating derivational
complexity of CSR and NμN. However, Hirokawa andMoser [30] pioneering the use of CSR
in complexity analysis by applying CSR to investigate runtime complexity analysis of TRSs
[29]. In runtime complexity analysis, all considered initial expressions s are basic terms
s ∈ Tb(F,X), i.e., terms s = f (t1, . . . , tk) where t1, . . . , tk are constructor terms. Given a
terminating TRS, the runtime complexity of basic terms of size at most n is denoted rcR(n)

and bounds on rcR(n) are obtained from matrix interpretations, among other techniques.
Bounds on runtime complexity can be very different from bounds on derivational complexity.
For instance, [29, Example 1] shows a TRS whose derivational complexity is exponentially
bounded whereas its runtime complexity is proved linear in [30, Example 18]. Hirokawa
and Moser show how to define replacement maps μ so that the compatibility of the ordering
�A induced by specific μ-monotone matrix interpretations A (restricted versions of TMIs,
actually) can be used to correctly induce bounds on rcR(n). As a matter of fact, they were
providing the first analysis of runtime complexity of CSR based on matrix interpretations:
a μ-monotone matrix interpretation A whose associated ordering �A is compatible with a
TRS R actually proves μ-termination of R. As discussed in the proofs of our Theorem 2,
the validity of the polynomial bounds obtained from matrix interpretationsA in [30, Sect. 2]
does not depend on any monotonicity assumption. Thus, given a replacement map μ, they
actually provide bounds on rcR,μ(n) = max{dh(s, ↪→μ) | s ∈ Tb(F,X), |s| ≤ n}, the
runtime complexity bound for CSR. Therefore, the results in [30, Sect. 2] can be used to
obtain bounds on rcR,μ(n) for arbitrary replacement maps μ.8

8 Although Hirokawa and Moser were not aware of this, in personal e-mail communication on early July
2020, they agreed with this analysis of their results.

123

Derivational Complexity and Context-Sensitive Rewriting 1225

13 Conclusions

We have investigated derivational complexity of CSR, with special emphasis in the analysis
of derivational complexity (bounds) for normalization via μ-normalization, a normalization
procedure based on CSR which has been recently implemented for use inMaude by using its
strategy language (see Remark 1). An appropriate definition of derivational complexity for
CSR, dcμ(n), is given in Sect. 6. Some results showing how to obtain bounds on derivational
complexity ofCSR are given inProposition 4 (on apurely syntactic basis), andTheorems2 and
3, for proofs of μ-termination based on matrix and polynomial interpretations, respectively.
Normalization via μ-normalization can be used not only with terminating TRSs but also
withμ-terminating TRSs for which the procedure is guaranteed to terminate. Section 7 gives
a characterization of normalization via μ-normalization using layered CSR, which permits
to reuse the standard definition of derivational complexity for abstract reduction relations.
Theorem 7 provides a criterion for termination of layered CSR which can be used to prove
termination of NμN to make sense of derivational complexity analysis of non-terminating
TRSs. We provide full descriptions of the length dhμ̂(s) of NμN computations starting from
a term s from the length of the intermediate context-sensitive rewrite sequences (Proposition
18 and Theorem 9). Such a description is used to characterize the derivational complexity
dcμ̂(n) of NμN when used to evaluate terms of size at most n (Theorems 10 and 11). These
results finally yield asymptotic bounds on dcμ̂(n) and gdcμ̂(n). In Corollary 6, we show how
to obtain them from bounds on dcμ(n).

Overall, we can benefit from CSR to improve bounds on computational complexity of
normalization in different ways. First, dealing with non-terminating but μ-terminating and
normalizing TRSs,

1. If CSR can be seen as a rewriting strategy (because μ-normal forms and normal forms
coincide), thendcμ(n) can be used instead of the undefineddcR(n). The running example
I (Example 1) illustrates this use.

2. If μ-normal forms are not normal forms, then NμN can be used to obtain them, provided
that R is μ̂-terminating, as in running example V (Example 21).

Dealing with terminating TRSs, we can also obtain some advantages:

1. Ifμ-normal forms and normal forms coincide, thendcμ(n) can be used instead ofdcR(n).
The running example III (Example 3) illustrates this.

2. Otherwise, we can use NμN to obtain normal forms. Sometimes dcμ̂(n) yields better
estimations than dcR(n) (e.g., the running example IV (Example 5). In other cases, no
improvement is obtained (e.g., running example II, Example 2).

Future work

Extending this research to also consider lower bounds on derivational complexity ofCSR and
NμN would be interesting. Also considering runtime complexity of NμN is interesting. More
research would be necessary to remove the size-decreasingness requirement in some of our
results as it imposes quite hard requirements on TRSs to obtain explicit asymptotic bounds.
The point is evident by comparing, e.g., Theorem 10 with Theorem 9, establishing the (recur-
sive) relationship between derivational length of CSR and NμN, where size-decreasingness
is not necessary. This suggests that size-decreasingness is not an intrinsic feature of the
description of derivational complexity of NμN. Unfortunately, the attempts to get rid from
this restriction failed to date.

123

1226 S. Lucas

Acknowledgements I thank the referees for their comments and suggestions leading to many improvements
in the presentation of the paper. Examples 8 and 35 were suggested by the referees. Also the discussion in
Remark 4 was motivated by the questions posed by a referee.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alarcón, B., Lucas, S., Navarro-Marset, R.: Proving termination with matrix interpretations over the reals.
In: Geser, A., Waldmann, J. (eds.). Proceedings of the 10th International Workshop on Termination, WST
2009), HTWK Leipzig, pp. 12–15 (2009a)

2. Alarcón, B., Lucas, S., Navarro-Marset, R.: Using matrix interpretations over the reals in proofs of
termination. In: Lucio, P., Moreno, G., Peña, R. (eds.). Actas de las IX Jornadas de Programación y
Lenguajes (PROLE 2009), SISTEDES, pp. 268–2–77 (2009b)

3. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2),
133–178 (2000). https://doi.org/10.1016/S0304-3975(99)00207-8

4. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs.
Tech. Rep. AIB-2001-09, RWTH Aachen, Germany (2001)

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)
6. Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, R., Plasmeijer, M.J., Sleep, M.R.:

Term graph rewriting. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.). PARLE (2), Springer,
Lecture Notes in Computer Science, vol. 259, pp. 141–158 (1987)

7. Bonfante, G., Cichon, A.,Marion, J., Touzet, H.: Complexity classes and rewrite systemswith polynomial
interpretation. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.). Computer Science Logic, 12th International
Workshop, CSL ’98, Annual Conference of the EACSL, Brno, Czech Republic, August 24–28, 1998,
Proceedings, Springer, Lecture Notes in Computer Science, vol. 1584, pp. 372–384, (1998) https://doi.
org/10.1007/10703163_25

8. Bonfante, G., Cichon, A., Marion, J., Touzet, H.: Algorithms with polynomial interpretation termination
proof. J. Funct. Prog. 11(1), 33–53 (2001)

9. Cichon, A., Lescanne, P.: Polynomial interpretations and the complexity of algorithms. In: Kapur, D. (ed.).
Automated Deduction: CADE-11, 11th International Conference on Automated Deduction, Saratoga
Springs, NY, USA, June 15–18, 1992, Proceedings, Springer, Lecture Notes in Computer Science, vol.
607, pp. 139–147, (1992) https://doi.org/10.1007/3-540-55602-8_161

10. Cichon, E.: Termination orderings and complexity characterizations. In: Aczell, S., Wainer (eds.). Proof
Theory: a selection of papers from the Leeds Proof Theory Programme, 1990, Cambridge University
Press, Lecture Notes in Computer Science, vol. 607, pp. 171–194 (1992)

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: All About Maude:
A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, Lecture Notes in Computer Science, vol. 4350. Springer (2007). https://doi.org/10.1007/978-3-
540-71999-1

12. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termination using polynomial
interpretations. J. Autom. Reason. 34(4), 325–363 (2005). https://doi.org/10.1007/s10817-005-9022-x

13. Courcelle, B.: Recursive applicative program schemes. In: van Leeuwen, J. (ed.). Handbook of Theoretical
Computer Science,VolumeB: FormalModels andSemantics, Elsevier andMITPress, pp. 459–492 (1990)
https://doi.org/10.1016/b978-0-444-88074-1.50014-7

14. Dershowitz, N.: A note on simplification orderings. Inf. Process. Lett. 9(5), 212–215 (1979). https://doi.
org/10.1016/0020-0190(79)90071-1

15. Dershowitz, N.: 33 examples of termination. In: Comon, H., Jouannaud, J. (eds.). Term Rewriting, French
Spring School of Theoretical Computer Science, Font Romeux, France, May 17–21, 1993, Advanced
Course, Springer, Lecture Notes in Computer Science, vol. 909, pp. 16–26, (1993) https://doi.org/10.
1007/3-540-59340-3_2

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1007/10703163_25
https://doi.org/10.1007/10703163_25
https://doi.org/10.1007/3-540-55602-8_161
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/s10817-005-9022-x
https://doi.org/10.1016/b978-0-444-88074-1.50014-7
https://doi.org/10.1016/0020-0190(79)90071-1
https://doi.org/10.1016/0020-0190(79)90071-1
https://doi.org/10.1007/3-540-59340-3_2
https://doi.org/10.1007/3-540-59340-3_2

Derivational Complexity and Context-Sensitive Rewriting 1227

16. Durán, F., Escobar, S., Lucas, S.: New Evaluation Commands for Maude Within Full Maude. In: Martí-
Oliet, N. (ed.). Proceedings of the Fifth International Workshop on Rewriting Logic and Its Applications,
WRLA 2004, Barcelona, Spain, March 27–28, 2004, Elsevier, Electronic Notes in Theoretical Computer
Science, vol. 117, pp. 263–284, (2004) https://doi.org/10.1016/j.entcs.2004.06.014

17. Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer, J., Rubio, R., Talcott, C.L.: Programming and
symbolic computation in Maude. J. Log. Algebra Method Prog. (2020). https://doi.org/10.1016/j.jlamp.
2019.100497

18. Endrullis, J.,Waldmann, J., Zantema, H.:Matrix interpretations for proving termination of term rewriting.
J. Autom. Reason. 40(2–3), 195–220 (2008)

19. Fasel, J.H., Hudak, P., Jones, S.L.P., Wadler, P.: SIGPLAN notices special issue on the functional pro-
gramming language haskell. ACM SIGPLAN Not. 27(5), 1 (1992)

20. Futatsugi, K., Nakagawa, A.T.: An overview of CAFE specification environment: an algebraic approach
for creating, verifying, and maintaining formal specifications over networks. In: First IEEE International
Conference on Formal Engineering Methods, ICFEM 1997, Hiroshima, Japan, November 12–14, 1997,
Proceedings, IEEEComputer Society, pp. 170–182, (1997) https://doi.org/10.1109/ICFEM.1997.630424

21. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J.
Autom. Reason. 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7

22. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Hensel, J., Otto, C., Plücker,
M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Analyzing Program Termination and
Complexity Automatically with AProVE. J. Autom. Reason. 58(1), 3–31 (2017). https://doi.org/10.1007/
s10817-016-9388-y

23. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination and complexity competi-
tion. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.). Tools and Algorithms for the Construction
and Analysis of Systems: 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague, Czech
Republic, April 6–11, 2019, Proceedings, Part III, Springer, Lecture Notes in Computer Science, vol.
11429, pp. 156–166, (2019) https://doi.org/10.1007/978-3-030-17502-3_10

24. Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Introducing obj Software Engi-
neering with OBJ: algebraic specification in action:169–236 (2000)

25. Gramlich, B., Lucas, S.: Modular termination of context-sensitive rewriting. In: Proceedings of the 4th
International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, Octo-
ber 6-8, 2002, Pittsburgh, PA, USA (Affiliated with PLI 2002), ACM, pp. 50–61, (2002a) https://doi.org/
10.1145/571157.571163

26. Gramlich, B., Lucas, S.: Simple termination of context-sensitive rewriting. In: Fischer, B., Visser, E.
(eds.). Proceedings of the 2002 ACM SIGPLAN Workshop on Rule-Based Programming, Pittsburgh,
Pennsylvania, USA, 2002, ACM, pp. 29–42, (2002b) https://doi.org/10.1145/570186.570189

27. Grzegorczyk, A.: Some classes of recursive functions. J. Symbol. Logic 20(1), 71–72 (1955). https://doi.
org/10.2307/2268082

28. Gutiérrez, R., Lucas, S.: mu- term: Verify termination properties automatically (system description). In:
Peltier, N., Sofronie-Stokkermans, V. (eds.). Automated Reasoning: 10th International Joint Conference,
IJCAR 2020, Paris, France, July 1–4, 2020, Proceedings, Part II, Springer, Lecture Notes in Computer
Science, vol. 12167, pp. 436–447, (2020) https://doi.org/10.1007/978-3-030-51054-1_28

29. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency pair method. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.). Automated Reasoning, 4th International Joint Con-
ference, IJCAR 2008, Sydney, Australia, August 12–15, 2008, Proceedings, Springer, Lecture Notes in
Computer Science, vol. 5195, pp. 364–379, (2008) https://doi.org/10.1007/978-3-540-71070-7_32

30. Hirokawa,N.,Moser,G.:Automated complexity analysis based on context-sensitive rewriting. In:Dowek,
G. (ed.). Rewriting and Typed Lambda Calculi: Joint International Conference, RTA-TLCA 2014, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14–17, 2014. Proceedings,
Springer, Lecture Notes in Computer Science, vol. 8560, pp. 257–271, (2014) https://doi.org/10.1007/
978-3-319-08918-8_18

31. Hirokawa, N., Nagele, J., Middeldorp, A.: Cops and CoCoWeb: Infrastructure for Confluence Tools. In:
Galmiche, D., Schulz, S., Sebastiani, R. (eds.). Automated Reasoning: 9th International Joint Conference,
IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14–17, 2018,
Proceedings, Springer, Lecture Notes in Computer Science, vol. 10900, pp. 346–353, (2018) https://doi.
org/10.1007/978-3-319-94205-6_23

32. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive recursive derivation lengths.
Theor. Comput. Sci. 105(1), 129–140 (1992). https://doi.org/10.1016/0304-3975(92)90289-R

33. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations (preliminary version).
In: Dershowitz, N. (ed.). Rewriting Techniques and Applications, 3rd International Conference, RTA-89,

123

https://doi.org/10.1016/j.entcs.2004.06.014
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1109/ICFEM.1997.630424
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1145/571157.571163
https://doi.org/10.1145/571157.571163
https://doi.org/10.1145/570186.570189
https://doi.org/10.2307/2268082
https://doi.org/10.2307/2268082
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/978-3-319-08918-8_18
https://doi.org/10.1007/978-3-319-08918-8_18
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1016/0304-3975(92)90289-R

1228 S. Lucas

Chapel Hill, North Carolina, USA, April 3–5, 1989, Proceedings, Springer, Lecture Notes in Computer
Science, vol. 355, pp. 167–177, (1989) https://doi.org/10.1007/3-540-51081-8_107

34. Knuth, D.E., Bendix, P.E.: Simple word problems in universal algebra. In: Leech, J. (ed.). Computational
Problems in Abstract Algebra, Pergamon Press, pp. 263–297 (1970)

35. Lankford, D.S.: On proving term rewriting systems are noetherian. Louisiana Technological University,
Ruston, LA, Tech. rep (1979)

36. Lucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002a). https://doi.org/
10.1006/inco.2002.3176

37. Lucas, S.: Termination of (canonical) context-sensitive rewriting. In: Tison, S. (ed.). RTA, Springer,
Lecture Notes in Computer Science, vol. 2378, pp. 296–310 (2002b)

38. Lucas, S.: A note on completeness of conditional context-sensitive rewriting. In: 5th International Work-
shop on Reduction Strategies in Rewriting and Programming, pp. 3–15. University of Kyoto, WRS
(2005a)

39. Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. ITA 39(3), 547–586
(2005b). https://doi.org/10.1051/ita:2005029

40. Lucas, S.: Context-sensitive rewriting. ACMComput. Surv. 53(4), 78:1–78:36 (2020). https://doi.org/10.
1145/3397677

41. Lucas, S.: Applications and extensions of context-sensitive rewriting. J. Logical Algebraic Methods Prog.
121, 100680 (2021). https://doi.org/10.1016/j.jlamp.2021.100680

42. Manna, Z., Ness, S.: On the termination of Markov algorithms. In: Proceedings of the Third Hawaii
International Conference on System Science, pp. 789–792 (1970)

43. McCarthy, J.: Towards a mathematical science of computation. In: Information Processing, Proceedings
of the 2nd IFIP Congress 1962, Munich, Germany, August 27–September 1, 1962, North-Holland, pp.
21–28 (1962)

44. Middeldorp, A.: Call by need computations to root-stable form. In: Lee, P., Henglein, F., Jones, N.D.
(eds.). Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Papers Presented at the Symposium, Paris, France, 15–17 January 1997, ACM
Press, pp. 94–105 (1997) https://doi.org/10.1145/263699.263711

45. Moser, G., Schnabl, A.: The derivational complexity induced by the dependency pair method. Logical
Methods Comput. Sci. (2011). https://doi.org/10.2168/LMCS-7(3:1)2011

46. Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term rewriting based on matrix and context
dependent interpretations. In: Hariharan, R., Mukund, M., Vinay, V. (eds.). IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2008, December
9–11, 2008, Bangalore, India, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, LIPIcs, vol. 2, pp.
304–315 (2008). https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762

47. Neurauter, F., Middeldorp, A.: Revisiting matrix interpretations for proving termination of term rewriting.
In: Schmidt-Schauß,M. (ed.). Proceedings of the 22nd International Conference on Rewriting Techniques
andApplications,RTA2011,May30–June 1, 2011,Novi Sad, Serbia, SchlossDagstuhl - Leibniz-Zentrum
für Informatik, LIPIcs, vol. 10, pp. 251–266 (2011), https://doi.org/10.4230/LIPIcs.RTA.2011.251

48. Neurauter, F., Zankl, H., Middeldorp, A.: Revisiting matrix interpretations for polynomial derivational
complexity of term rewriting. In: Fermüller, C.G., Voronkov, A. (eds.). Logic for Programming, Artificial
Intelligence, and Reasoning - 17th International Conference, LPAR-17, Yogyakarta, Indonesia, October
10–15, 2010. Proceedings, Springer, Lecture Notes in Computer Science, vol. 6397, pp. 550–564 (2010),
https://doi.org/10.1007/978-3-642-16242-8_39

49. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of term rewriting by
dependency pairs. J. Autom. Reason. 51(1), 27–56 (2013). https://doi.org/10.1007/s10817-013-9277-6

50. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (2002)
51. Péchoux, R.: Synthesis of sup-interpretations: a survey. Theor. Comput. Sci. 467, 30–52 (2013). https://

doi.org/10.1016/j.tcs.2012.11.003
52. Rapp, F., Middeldorp, A.: FORT 2.0. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.). Automated Rea-

soning: 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14–17, 2018, Proceedings, Springer, Lecture Notes in Computer Science,
vol. 10900, pp. 81–88 (2018), https://doi.org/10.1007/978-3-319-94205-6_6

53. Ritchie, R.W.: Classes of predictably computable functions. Trans. Am. Math. Soc. 106, 139–173 (1963)
54. Rubio, R., Martí-Oliet, N., Pita, I., Verdejo, A.: Parameterized Strategies Specification in Maude. In:

Fiadeiro, J.L., Tutu, I. (eds.). Recent Trends in Algebraic Development Techniques: 24th IFIP WG 1.3
International Workshop, WADT 2018, Egham, UK, July 2-5, 2018, Revised Selected Papers, Springer,
Lecture Notes in Computer Science, vol. 11563, pp. 27–44 (2018), https://doi.org/10.1007/978-3-030-
23220-7_2

123

https://doi.org/10.1007/3-540-51081-8_107
https://doi.org/10.1006/inco.2002.3176
https://doi.org/10.1006/inco.2002.3176
https://doi.org/10.1051/ita:2005029
https://doi.org/10.1145/3397677
https://doi.org/10.1145/3397677
https://doi.org/10.1016/j.jlamp.2021.100680
https://doi.org/10.1145/263699.263711
https://doi.org/10.2168/LMCS-7(3:1)2011
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.4230/LIPIcs.RTA.2011.251
https://doi.org/10.1007/978-3-642-16242-8_39
https://doi.org/10.1007/s10817-013-9277-6
https://doi.org/10.1016/j.tcs.2012.11.003
https://doi.org/10.1016/j.tcs.2012.11.003
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-030-23220-7_2
https://doi.org/10.1007/978-3-030-23220-7_2

Derivational Complexity and Context-Sensitive Rewriting 1229

55. Steinbach, J.: Proving polynomials positive. In: Shyamasundar, R.K. (ed.). Foundations of Software
Technology and Theoretical Computer Science, 12th Conference, New Delhi, India, December 18–20,
1992, Proceedings, Springer, Lecture Notes in Computer Science, vol. 652, pp. 191–202 (1992), https://
doi.org/10.1007/3-540-56287-7_105

56. Sternagel, C., Thiemann, R.: Signature extensions preserve termination: an alternative proof via depen-
dency pairs. In: Dawar, A., Veith, H. (eds.). Computer Science Logic, 24th International Workshop, CSL
2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23–27, 2010. Proceedings,
Springer, Lecture Notes in Computer Science, vol. 6247, pp. 514–528 (2010), https://doi.org/10.1007/
978-3-642-15205-4_39

57. Terese.: Term Rewriting Systems, Cambridge tracts in theoretical computer science, vol. 55. Cambridge
University Press (2003)

58. Waldmann, J.: Polynomially bounded matrix interpretations. In: Lynch, C. (ed.). Proceedings of the
21st International Conference on Rewriting Techniques and Applications, RTA 2010, July 11–13, 2010,
Edinburgh, Scottland, UK, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, LIPIcs, vol. 6, pp. 357–
372 (2010), https://doi.org/10.4230/LIPIcs.RTA.2010.357

59. Weiermann, A.: Termination proofs for term rewriting systems by lexicographic path orderings imply
multiply recursive derivation lengths. Theor. Comput.Sci. 139(1 & 2), 355–362 (1995). https://doi.org/
10.1016/0304-3975(94)00135-6

60. Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17(1),
23–50 (1994). https://doi.org/10.1006/jsco.1994.1003

61. Zantema, H.: Termination of context-sensitive rewriting. In: Comon, H. (ed.). Rewriting Techniques
and Applications, 8th International Conference, RTA-97, Sitges, Spain, June 2–5, 1997, Proceedings,
Springer, Lecture Notes in Computer Science, vol. 1232, pp. 172–186 (1997), https://doi.org/10.1007/3-
540-62950-5_69

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/3-540-56287-7_105
https://doi.org/10.1007/3-540-56287-7_105
https://doi.org/10.1007/978-3-642-15205-4_39
https://doi.org/10.1007/978-3-642-15205-4_39
https://doi.org/10.4230/LIPIcs.RTA.2010.357
https://doi.org/10.1016/0304-3975(94)00135-6
https://doi.org/10.1016/0304-3975(94)00135-6
https://doi.org/10.1006/jsco.1994.1003
https://doi.org/10.1007/3-540-62950-5_69
https://doi.org/10.1007/3-540-62950-5_69

	Derivational Complexity and Context-Sensitive Rewriting
	Abstract
	1 Introduction
	1.1 Contributions of the Paper

	2 Preliminaries
	3 Context-Sensitive Rewriting
	4 Derivational Complexity in Term Rewriting
	4.1 Use of Ground Terms in Term Rewriting
	4.2 Derivational Complexity and Strategies

	5 Termination Proofs and Complexity Bounds
	5.1 Termination by Interpretation
	5.1.1 Polynomial Interpretations
	5.1.2 Matrix Interpretations

	5.2 Derivational Complexity Bounds from Termination Proofs

	6 Derivational Complexity of Context-Sensitive Rewriting
	6.1 Proving Termination of CSR
	6.2 Polynomial Bounds on dcµ(n) from Matrix and Polynomial Interpretations

	7 Normalization via µ-Normalization
	7.1 The Number of Maximal Frozen Subterms of a Term
	7.2 The Number of Maximal Frozen Subterms of µ-Normal Forms of Terms
	7.2.1 Size-Decreasing Relations
	7.2.2 Size-Decreasing TRSs
	7.2.3 Weakly Size-Decreasing TRSs
	7.2.4 Beyond Size-Decreasingness

	8 Layered Context-Sensitive Rewriting
	8.1 Normalization via µ-Normalization and Layered CSR
	8.2 Termination of Layered CSR
	8.3 Layered CSR as a Rewriting Strategy

	9 Derivational Height of Layered Context-Sensitive Rewriting
	9.1 Use of Ground Terms in Layered Term Rewriting

	10 Derivational Complexity of Normalization via µ-Normalization
	11 Bounds on dcµ"0362µ(n)
	12 Related Work
	13 Conclusions
	Future work
	Acknowledgements
	References

