
Received April 6, 2021, accepted April 10, 2021, date of publication April 20, 2021, date of current version April 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3074145

DRALBA: Dynamic and Resource Aware
Load Balanced Scheduling Approach
for Cloud Computing
SAID NABI1, MUHAMMAD IBRAHIM 2,3, AND JOSE M. JIMENEZ 4
1Department of Computer Science, Virtual University of Pakistan–Rawalpindi, Rawalpindi 46300, Pakistan
2Department of Information Technology, The University of Haripur, Haripur 22620, Pakistan
3Department of Computer Engineering, Jeju National University, Jeju City 63243, South Korea
4 Integrated Management Coastal Research Institute, Universitat Politècnica de València, 46022 València, Spain

Corresponding author: Muhammad Ibrahim (ibrahimmayar@uoh.edu.pk)

This work was supported in part by the Universitat Politecnica de Valencia through the Post-Doctoral PAID-10-20 Program.

ABSTRACT For the last few years, Cloud computing has been considered an attractive high-performance
computing platform for individuals as well as organizations. The Cloud service providers (CSPs) are setting
up data centers with high performance computing resources to accommodate the needs of Cloud users. The
users are mainly interested in the response time, whereas the Cloud service providers are more concerned
about the revenue generation. Concerning these requirements, the task scheduling for the users’ applications
in Cloud computing attained focus from the research community. Various task scheduling heuristics have
been proposed that are available in the literature. However, the task scheduling problem is NP-hard in nature
and thus finding optimal scheduling is always challenging. In this research, a resource-aware dynamic task
scheduling approach is proposed and implemented. The simulation experiments have been performed on
the Cloudsim simulation tool considering three renowned datasets, namely HCSP, GoCJ, and Synthetic
workload. The obtained results of the proposed approach are then compared against RALBA, Dynamic
MaxMin, DLBA, and PSSELB scheduling approaches concerning average resource utilization (ARUR),
Makespan, Throughput, and average response time (ART). The DRALBA approach has revealed significant
improvements in terms of attained ARUR, Throughput, and Makespan.This fact is endorsed by the average
resource utilization results (i.e., 98 % for HCSP dataset, 75 % for Synthetic workload (improve ARUR by
72.00 %, 77.33 %, 78.67 %, and 13.33 % as compared to RALBA, Dynamic MaxMin, DLBA and PSSELB
respectively), and 77 % for GoCJ (i.e., the second best attained ARUR)).

INDEX TERMS Cloud computing, task scheduling, dynamic task scheduling, scheduling heuristics, tasks
to VM mapping, load imbalance.

I. INTRODUCTION
Cloud computing [1]–[4] has become an attractive and pop-
ular platform for individuals and organizations that provides
the solution for execution and storage of large applications.
Cloud computing work on a pay-as-you-use basis which
satisfying the users’ task scheduling requests in a scalable
way [15] with the lowest cost than maintaining their com-
puting infrastructure for their ad-hoc computing needs [5].
Cloud computing can be deployed as a public, private, hybrid
Cloud [6], [7]. Cloud computing provides an opportunity
to the organizations who maintain their own private Cloud,
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to use external Cloud resources in hours when users’ demands
are at their peak, instead of over-provisioning of their pri-
vate infrastructure. The Cloud service providers need to
efficiently manage the Cloud resources to improve the per-
formance of users applications and enhance the utilization of
the resources and with an optimal cost [8]. To reserve more
resources can enhance the performance of the user appli-
cation requirements; however, it will increase the resource
usage cost. There is a need to have intelligent resource man-
agement schemes to satisfy the applications’ performance
requirements and efficiently utilize the available computing
resources. The amount of work that a computing node needs
to process the data is generally referred to as load or workload
[9], [10]. In a real Cloud datacenter, the number of workloads
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FIGURE 1. Task Scheduling Framework.

submitted to the Cloud for processing is much more than the
number of computing nodes on the datacenter [8]. In such a
scenario, the problem of resource assignments becomes more
critical and challenging because it directly affects the perfor-
mance of the Cloud system. Designing an efficient scheme for
assigning resources to the workloads is known as scheduling
strategy [11], face a lot of challenges. Scheduling is the
process of decision making for mapping workloads (tasks)
to Cloud computing resources to optimize some performance
metrics like makespan, response time, resource utilization,
and throughput [12]–[14]. Efficient task scheduling should
guarantee the load balancing on the computing nodes. Load
balancing algorithms play a vital role in improving the per-
formance Cloud computing environment, especially in a het-
erogeneous environment [15]. Figure 1 shows the basic task
scheduling framework of the Cloud environment. Cloud users
are the customers that rent the Cloud services offered by the
Cloud Service Providers (CSP) [16]. Cloud Tasks List is the
workload that represents the actual requirements of the Cloud
users. Task Manager or Cloud Broker accepts the customers’
workload (i.e., Tasks list) and map these tasks on a suitable
machine. The task mapping heuristic represents the proposed
scheduling heuristics, which selects a task provided by the
task manager and allocates them to a suitable VM which is
provided by the resource manager [17]. The resource man-
ager monitors the resource usage that includes both physical
and virtual resources. When execution of customer work-
load is completed, then their results are obtained in terms
of makespan, ARUR, Throughput, energy consumption, and
task response time. Task scheduling schemes are categorized
as static, batch dynamic and dynamic [10]. In static task

scheduling approaches, the number of tasks with their com-
putation requirements, number of Virtual Machines (VMs)
and each VMs computation capacity should be known in
advance [17]. Moreover, these task scheduling heuristics map
all the tasks on the VMs before task execution starts. In static
scheduling, once user tasks are assigned to the respective
VMs, then the sequence of execution cannot be changed until
the completion of execution of all tasks. The static scheduling
heuristics are unable to handle any run-time changes during
the execution of already mapped tasks. The static classical
scheduling heuristics like Min-Min, Max-Min, and FIFO
fails to utilize the resources efficiently and thus result in
load imbalance [16] issues. Similarly, these approaches are
unable to cope with scheduling based on the user priority.
Batch dynamic task scheduling heuristics provide dynamism
at the batch level. These techniques map a batch of tasks
on a pre-defined number of VMs. Batch dynamic schedul-
ing heuristics first statically maps all the tasks in a single
batch before starting their execution and then assigns to VMs
for execution [17]. In these scheduling techniques, the task
scheduling strategywill remain the same for a particular batch
of tasks and cannot be changed for the newly arrived batch
of tasks. Batch dynamic scheduling heuristics suffer from
issues such as 1) new batch formation based tasks processing
delay, i.e., due to the arrival time differences of tasks in a
single batch, the tasks which arrive early will have to wait till
the completion of the new batch. This issue can also result
in under-utilization of the resources when the tasks arrive
in a non-uniform manner. 2) These algorithms can map the
new batch without considering the load of the previous batch
and can add new VMs for the newly arrived batch of tasks.
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This issue can result in load imbalance, under-utilization of
Cloud resources, and overload some VMs that can lead to
performance degradation [18]. Moreover, these approaches
fail to handle any run time problems during the execution
of the task. They cannot support newly arrived high priority
tasks in the later batches while VMs are already busy exe-
cuting already assigned tasks. Batch dynamic heuristics are
unable to re-estimate and recalculate the VMs’ load during
task execution. The tasks of later batches will wait for a long
time to get their turn and increase overall execution time.
An efficient and fair allocation of resources can achieve high
user satisfaction and enhance the utilization of resources.
Fair and efficient resource allocation can only be achieved
through dynamic load balancing of local workload [19]. It can
also help in avoiding bottlenecks and minimize resource
utilization.

Dynamic [20], [21] task scheduling algorithms provide
more flexibility as compared to the static and batch dynamic
approaches. These heuristics can work with minimum infor-
mation regarding resources and tasks. In the real Cloud
environment, the workload is not fully known in advance,
resources are heterogeneous [22], and the rate of tasks arrival
fluctuates. Dynamic scheduling algorithms can schedule the
tasks as it arrives, i.e., just in time basis without waiting
for the formation of complete batch or execution of the
already mapped tasks. These algorithms also can update the
task status, VM load [19], [23]. Furthermore, dynamic task
scheduling techniques can change the sequence of already
mapped tasks, create new VMs, and migrate tasks during the
execution of tasks. Therefore, it becomes imperative to use
dynamic task scheduling and load balancing algorithms for
the real Cloud environment [22].

In this research, a Resource Aware Dynamic Load Bal-
ancing Algorithm (DRALBA) has been proposed. DRALBA
maps a set of independent, non-preemptive, and compu-
tationally expensive tasks on the available resources in a
load-balanced way. It also updates the VMs’ load and compu-
tation share at run time. The prime objective of the DRALBA
approach is to improve resource utilization and task response
time. The proposed approach calculates the computation
share for each VM based on a set of tasks and then select-
ing a VM (with maximum computation share for assigning
larger size task) whose length is less than or equal to the
computation share of the selected VM. At each scheduling
decision, the proposed scheduler updates each VMs load.
The proposed approach update VMs load and computation
share after several pre-defined iterations. In summary, our
contributions in this research are as follows:
• An extensive literature analysis has been performed
and identified limitations and strengths of state-of-the-art
approaches.
• A thorough analysis of the static, batch dynamic, and
dynamic state-of-the-art task scheduling has been carried out.
• We highlighted the optimization criteria and performance
evaluation metrics for existing static, batch dynamic, and
dynamic approaches.

• We have proposed a Dynamic Resource Aware Load
Balancing Algorithm ( DRALBA).
The rest of the paper is organized as: The discussion about the
available contemporary scheduling approaches is presented
in Section II. In Section III, the proposed task schedul-
ing algorithm has been discussed. The discussion about the
experimental setup and comparative analysis is delineated in
Section IV. Section V contemplates the results and discus-
sion, and finally, the conclusions and future work is presented
in Section V.

II. RELATED WORK
This section of the article discusses and critically analyze
some of the prominent state-of-art task scheduling heuristics.
Fist-In-First-Out (FIFO) assign tasks to the VMs in the order
in which tasks are received. FIFO [16] has simple implemen-
tation and less scheduling overhead. However, if a task with
high computation requirements is submitted to the Virtual
Machine (VM) before smaller tasks, then the smaller tasks
have to wait for a long time. This issue negatively affects the
user experience and increase response time for smaller tasks
in the waiting queue.

Min-Min [24] scheduling heuristic selects the smallest task
from the task list and assigns it to the VM that executes
them in the minimum time as compared to other heuristics.
Min-Min based scheduling algorithms have complex imple-
mentation and high overhead as compared to FIFO. Min-Min
heuristic penalizes the larger tasks in terms of waiting time
and favours smaller tasks. The min-Min approach fails to
utilize Cloud resources efficiently [16]. Moreover, Min-Min
heuristic cannot update VM load at run time.

Load Balanced Improved Min-Min (LBIMM) has been
proposed in [25]. The LBIMM scheduling heuristic is an
extended version of Min-Min scheduling heuristic. LIBMM
can map task based on their priority (i.e., task execution
time and cost.). Moreover, this approach allows Cloud users
to select their required services. Authors have evaluated the
proposed approach employing metrics like resource utiliza-
tion, makespan, and average completion time of high priority
tasks. However, this approach cannot update VM status at run
time.

Max-Min [26] based task scheduling heuristics choose the
largest task and assign it to the VM that execute that task in
minimum time. This approach receives a list of tasks with
their computation requirements, select the task with highest
computation requirements, and compute its expected comple-
tion time on every VM.Max-Minmap task on VMswith least
expected completion time. Max-Min favours larger tasks and
penalizes small size tasks in terms of response time. However,
Max-Min fails to utilize the resources efficiently [16], [17].
Moreover, Max-Min approach also cannot update VM load at
run time.

Authors in [19] have proposed Max-Min based dynamic
task scheduling algorithm named as Dynamic Max-Min.
This approach receives a list of tasks with their computation
requirements and select the largest task from the received task

VOLUME 9, 2021 61285



S. Nabi et al.: DRALBA: Dynamic and Resource Aware Load Balanced Scheduling Approach for Cloud Computing

list and assign it to the VM with minimum completion time.
This approach maintains the VM status and task status table.
The proposed approach can update the VM status table and
task status table at run time on an interval basis. This approach
map tasks to VMs in more realistic expected completion time
and reduce task response time. However, it suffers from the
under-utilization of Cloud resources and load imbalance.

RePro-Active is reactive, proactive simulation-based
dynamic task scheduling scheme proposed in [23]. This tech-
nique includes both reactive and proactive task scheduling
algorithms. The reactive part of RePro-Active scheduling
scheme uses a Round-Robin mechanism for the task to
VM mapping. Proactive Simulation-based Scheduling and
Load Balancing (PSSLB) is a simulation-based proactive
algorithm. In RePro-Active scheduling technique, the incom-
ing batch of tasks is divided into two halves. The first half of
the tasks are scheduled using a polling method while another
half of the tasks are mapped proactively. The PSSLB uses
Simulate algorithm for prediction purpose and employs the
principle of Max-Min scheduling heuristic. This algorithm
selects the largest tasks and assigns to the VM that execute
the task in minimum time. PSSLB performs better in term
of Makespan and ARUR for some datasets. However, this
approach cannot update VM status at run time.

Authors in [17] has proposed a Resource Aware
Load-Balancing Algorithm (RALBA) in Cloud computing.
RALBA is based on Max-Min task scheduling heuristic. This
technique assigns tasks to VMs based on computation share
of VMs. RALBA has two sub-schedulers including 1)Spill
scheduler 2) Fill scheduler. Spill Scheduler select task with
highest computation requirements that is less than or equal
to the computation share of VM with highest share VM.
Spill scheduler repeats until there is no task available whose
computation requirement is less than the computation share
of VM with highest computation share. Fill sub-scheduler
assign the remaining un-mapped tasks the mechanism of
Earliest Finish Time (EFT). RALBA has achieved better load
balance and resource utilization. However, RALBA is unable
to update VM Status at run time and also suffer from higher
makespan and lower throughput.

Authors in [18] have proposed a threshold-based dynamic
task scheduling and load-balancing technique. The threshold
is the scaling limit (upper and lower) for machines used to
identify overloaded and under-loaded VMs. The threshold
is used to allow or disallow mapping of the newly arrived
task to the VM. Moreover, the proposed approach migrate
task from VM queue to the un-scheduled tasks list when a
new high priority task arrives. For this purpose, a Dynamic
Load Balancing Algorithm (DLBA) has been proposed. This
approach prevents VMs from over-provisioning that may
degrade their performance. However, DLBA does not con-
sider under-utilized machines which can increase load imbal-
ance and reduce utilization of Cloud resources.Moreover, this
scheduling technique cannot update VM status at run time.

An Overall Gain based Resource Aware Dynamic
Load-balancing scheduler (OG-RADL) has been proposed

in [10]. The proposed scheduling technique computes the
overall performance gain of Cloud by combining different
evaluation parameters. These parameters include Average
Resource Utilization Ratio (ARUR), Percentage of task rejec-
tion, tasks execution time, task response time. To combine
the values of different evaluation parameters, there is a need
to normalize these values. In OG-RADL, authors have also
proposed a novel normalization technique that overcome the
limitations of the state-of-the-art normalization techniques.
However, the proposed approach not considered throughput
as scheduling objective.

Authors have performed an experimental evaluation of
eminent state-of-the-art static tasks scheduling heuristic
in [27]. These algorithms have been critically investi-
gated in terms of resource utilization, task execution time,
throughput, and energy consumption. Moreover, individual
load-imbalance is computed and compared. A well-known
HCSP instances based benchmark dataset has been used for
evaluation. However, dynamic task scheduling algorithms
have not been considered.

Authors in [9] have proposed an adaptive threshold based
task scheduling and load balancing approach in Cloud com-
puting. This threshold is also termed as starvation thresh-
old and named as starvation threshold-based load-balancing
(STLB). The threshold is regularly updated based on the
number of served requests and VM idle time. Moreover,
to improve the Quality of Service (QoS) of Cloud systems,
the proposed technique also consider the priority level of
tasks. The objective of the STLB is to reduce task execution
time, minimize VM idle time, and increase system stability
in terms of minimizing the number of migrations. However,
ARUR, task response time, and throughput not considered as
evaluation parameter.

A Constraint Measure based Load Balancing (CMLB)
technique has been proposed in [28]. At step 1, tasks are allo-
cated to the virtual machines using round-robin scheduling
technique capacity and a load of VMs is computed. In case,
the load of the VM is greater than balanced threshold values
then the load balancing technique is used for the task to
VM mapping. This algorithm computes the deciding factor
for every VMs and fill up the decision list and selection
factor for every task and fill the selection list. After mapping
the task to VM and the allocated task is removed from the
form. The performance of the CMLB is evaluated using
VM load and Capacity. However, the proposed approach does
not consider ARUR, tasks response time, and throughput are
not considered.

The authors in [29] have presented different Cloud
scheduling algorithms. The objective of the proposed scheme
is to improve data center processing time, task response time,
and execution cost. The proposed approach considers two
different aspects of Cloud scheduling. The first aspect focuses
on improving individual scheduling objectives and comprises
three different algorithms. These algorithms include:1) Cost
Aware (CA) algorithm that reduces task execution cost, how-
ever, data center processing time and task response time
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TABLE 1. Summary of the related work.

are increased, 2) Load Aware (LA) scheduler improve task
response time and datacenter processing time with increased
in task execution cost, 3) Load Aware Over Cost (LAOC)
algorithm provide a midway solution i.e., incurred lower
execution cost than CA and higher execution cost than LA.
Similarly, LAOC incurred reduced task response time and
datacenter processing time than CA and higher data center
processing time and task response time than LA. The sec-
ond aspect of the proposed scheduling scheme provides a
tradeoff solution to the Cloud task scheduling problem. For
this purpose, the authors have presented a State-Based Load
Balancing (SBLB) algorithm that reduces task response time
and datacenter processing time without any increase in the
task execution cost. However, the proposed approach does not
consider resource utilization and datacenter throughput.

Multi-Objective optimization-basedDynamic task schedul-
ing technique with Elastic resources (MODE) has been pro-
posed in [30]. MODE is a scalable approach that allows
the adding and removal VMs at run-time. A pre-defined
criterion (threshold) is used to lease a new virtual machine
or release the existing one. The performance of the proposed
scheduling scheme is evaluated using the mean utilization of
VMs, tasks execution time, total cost, and deadline violation.
The proposed technique reduces the total cost and dead-
line violation. However, due to high scheduling overhead,
MODE suffers from high makespan and under-utilization
of Cloud resources. Moreover, the system throughput is not
considered.

Authors in [31] have discussed the role of Cloud broker
for Cloud data center selection and meeting the Cloud user’s
demands and quality of service requirements. Moreover,
the authors have experimentally investigated state-of-the-art
research articles related to Cloud brokering using response
time and processing time. Experiments are performed in

a simulation Cloud environment using seven (7) scenarios.
Based on their analysis and findings, authors have suggested
that to meet SLA-based user requirements, there is a need for
efficient resource allocation techniques and complete archi-
tecture for the Cloud brokering mechanism. The authors have
also recommended some research areas of Cloud brokering.
However, the authors have not considered Cloud resource uti-
lization and throughput for the evaluation of Cloud brokering
algorithms. Moreover, the authors have not considered the
dynamic behavior of Cloud user requests.

Authors in [34] has proposed a distributed Resource Aware
Learning-as-a-Service (RALaaS) framework for learning
based tasks. RALaaS comprise of Edge and Cloud based
integrated resources. The proposed framework models the
problem of resource allocation for learning demands. The
aims is to increase accuracy and reduce resource requirement
for learning based tasks.

In [35] authors has proposed an integrated context aware
learning based channel selection framework that combine
matching theory, lyapunov optimization, and machine learn-
ing technique. The proposed framework is highly important
for reliable and efficient task delivery. The objective of the
proposed approach is to maximize long term throughput,
service reliability, and reduce energy consumption. To prove
the guaranteed performance of the proposed framework, a rig-
orous analysis is provided. The performance of the proposed
framework is verified in terms of service reliability and effec-
tiveness using single Machine Typed Devices (MTDs) and
multi machine typed devices scenarios.

Authors in [36] has presented a Multi-tier architecture
in 5G environment named as H-CRAN. H-CRAN is an
enhanced form of Cloud Radio Access Network (C-RAN).
H-CRAN combines and enables various networks to work
under a single controller. The proposed technique predicts
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user expectations and choose the appropriate network based
on users profile information. The Machine Learning (ML)
module of the proposed technique is used to learn network
constraints and user expectations under various payloads.
ML paradigm provide intelligence in the network selection.
The performance of the proposed framework is evaluated
with real time traffic using simulation environment.

III. PROPOSED APPROACH
This Section presents a detailed discussion of the pro-
posed Dynamic and Resource Aware Loading Balancing
Algorithm (Dynamic-RALBA).

A. NOTATIONS, DEFINITIONS AND PROBLEM
FORMULATION
This Section presents preliminary variables and nota-
tions, definitions, and problem formulation of the proposed
dynamic RALBA.

1. Makespan: Makespan is the time required to complete
the execution of the tasks on the mapped VMs in the Cloud
datacenter, calculated in Eq. 1.

Makespan = Max{CTj} = Max{CT1,CT2, . . . ,CTm} (1)

where m represent number of VMs and CTj shows comple-
tion time of VMj.

2. ARUR: The ARUR corresponds to average resource uti-
lization by each of the heuristic during the complete execution
of all the tasks on the available VMs.

ARUR =
avgMakespan
Makespan

(2)

where avgMakespan is calculated in Eq. 3

avgMakespan =

∑m
j=1Makespanj

m
(3)

3. Throughput: The value of the throughput metric can be
defined as the number of tasks executed per unit time as given
in Eq. 4

Throughput =
Totaltasks
Makespan

(4)

B. PROPOSED ARCHITECTURE
The proposed architecture of the Dynamic-RALBA is pre-
sented in Figure 2, which is based on the RALBA [17]
approach. The proposed approach is dynamic because it can
update the VM status (i.e., VM share) at run time. This
updated status of VMs enables the proposed approach to
assign the un-mapped tasks to the VMs in a more bal-
anced manner. The proposed scheduling approach comprises
of Dynamic-RALBA scheduler and a Dynamic-Updater
sub-scheduler. Based on the task to VM mapping cri-
teria, the Dynamic-RALBA scheduler is further divided
into two parts. The first part of Dynamic-RALBA select
VM with largest vmShare, identify the largest possible task
for VMwith largest vmShare, and assign that task to this VM.

FIGURE 2. DRALBA System Architecture.

Dynamic-RALBA also updates vmShare of that VM accord-
ingly. The second part of Dynamic-RALBA select the largest
task and assigns it to the VM that finishes their execution ear-
liest than other VMs. The Dynamic-Updater sub-scheduler
update vmShare of every VM based on the tasks whose exe-
cution is completed. Table 2 presents preliminary variables
and notations used in the proposed model and algorithm.

C. DYNAMIC-RALBA SCHEDULING ALGORITHM
This section describes the proposed task scheduling algo-
rithm called Dynamic-RALBA or DRALBA. Dynamic-
RALBA receives a set of VMs with their computation
capabilities (in Millions of Instructions Per Second,
i.e., MIPS) as vmMap and a set of independent and
compute-intensive tasks (Cloudlets) with their computation
requirements in Million Instructions(MI) as CloudletMap as
input. vmMap and CloudletMap are converted into vmList
and CloudletList (Line 1-2, Algorithm 1). Lines 3-6 of
Algorithm 1 presents the necessary initialization. The total
length of the tasks, i.e., task computation requirements
in MI is computed VM (Line 7, Algorithm 1). Compu-
tation ratio (i.e.,vmComputeRatio) is computed dividing
VM MIPS by total MIPS of the entire datacenter (Line 9,
algorithm 1). Similarly, VM share (i.e.,vmShare) is iden-
tified for every VM by multiplying vmComputRatio with
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TABLE 2. Preliminary variables and Notations used in DRALBA.

total computation requirements of received tasks and store
them in vmShareMap(Line 10-11 Algorithm 1). The for
loop (Line 8-12, Algorithm 1) is executed for each VM in
the vmList. The while loop (Line 13-31, Algorithm 1) will
continue to execute until the maximum vmShare is greater
than the smallest task in the un-mapped tasks list. Line 14
(algorithm 1) identifies the VM with maximum vmShare.
The largest task whose size (in MI) less than the vmShare
of the selected VM is identified (Line 15, Algorithm 1) and
if such task is found then if part of the statement is executed
(Line 16-24, Algorithm 1). Counter variable numIterations is
incremented by 1 (Line 17, Algorithm 1). The numIterations
is incremented only when a task is mapped to the VM i.e.,
it counts the number of tasks mapped to the VM. In the if
block of Algorithm 1, the task is mapped to the selected
VM and vmShare of VM is updated by subtracting task MIs
from their vmShare (Line 18-19, Algorithm 1). The updated
vmShare is stored in the VM vmShareMap (Line 20, Algo-
rithm 1). In Line 21 (Algorithm 1), vmTaskList is obtained,
i.e., a list that stores those tasks that are assigned to a particu-
lar VM. The newly mapped task is added to vmTaskList, and
the updated task list is added to vmTListMap (Line 22-23,
Algorithm 1). The mapped task is removed from CloudletList
(Line 24, Algorithm 1). In case, the largest possible task
is not found for the selected VM, then break statement is
executed, and control moves out of while loop (Line 26,
Algorithm 1). If condition (Line 28, Algorithm 1) becomes
true, then Dynamic-Updater scheduler is called (Line 29,
Algorithm 1) to update VMs status. vmList.size()(Line 28,
Algorithm 1) shows the total number of VMs on the datacen-
ter. This work as a threshold for calling Dynamic-Updater
sub-scheduler, which means that Dynamic-Updater sub-
scheduler is called each time when the count of newly
mapped tasks become equal to the total number of VMs.
This threshold is made fixed after thorough fine-tuning by
executing the proposed scheduler many times for different

threshold values. When the first part of theDynamic-RALBA
scheduler ends then its second part (Line 32-39, Algorithm 1)
start mapping of remaining tasks to VMs. This uses the
Earliest Finish Time (EFT) based criteria for task mapping.
Maximum task (Cloudlet) and VM with EFT is identified
(Line 33-34, Algorithm 1) and the selected task is mapped
to the VM that executes them in earliest than other (Line 35,
Algorithm 1). vmShare of VM is computed, and the updated
vmShare (newVmShare) is added to the vmShareMap (Line
36-37, Algorithm 1) and the mapped task is removed from
CloudletList (Line 38, Algorithm 1). The while loop (Line
32-39, Algorithm 1) is executed until all the tasks are mapped
to VMs, i.e., CloudletList becomes empty.

D. DYNAMIC-UPDATER SCHEDULER
This section delineates the Dynamic-Updater sub-scheduler
(Algorithm 2) of the proposed scheduling approach. The
inputs of the Dynamic-Updater sub-scheduler comprises of
a set of VMs, list of tasks, vmShareMap, and vmTListMap
whereas the output is task to VMmap. Line 1-3 (Algorithm 2)
presents the necessary initialization of the Dynamic-Updater
sub-scheduler. For loop (Line 4-14, Algorithm 2) is executed
for every VM in the vmList. The tempCltList temporarily
stores the tasks that are assigned to VMj (Line 5, Algo-
rithm 2). The nested for loop (Line 6-11, Algorithm 2)
repeats for each task in tempCltList, and every task is checked
for their finishing (execution completion) using if statement
(Line 7, Algorithm 2). In case the condition is true, i.e., exe-
cution of the task is completed (Line 7, Algorithm 2) then
the completed task length (size in MI) is stored in cltTo-
talLength, and the completed task is removed from tem-
pCltList (Line 8-9, Algorithm 2). This process is contin-
ued for each task in tempCltList (Line 6-11, Algorithm 2).
After completion of the nested for loop, updated tempCltList
is added to the vmTlistMap (Line 12, Algorithm 2) and
vmShare of VMj is updated and stored in the vmShareMap
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Algorithm 1: Dynamic-RALBA Scheduler
Input : vmMap: set of VMs with their computation

power,
CloudletMap: Tasks list with their

computation requirements.
Output: Map (Ti, VMj) i.e Mapping of Task Ti to

VMj
1 vmList = getVmList(vmMap)
2 CloudletList = getCloudletList(CloudletMap)
3 totalLength = 0, vmComputRatio = 0.0, vmShare =
0.0

4 newVmShare=0.0, numIterations = 0, vmTaskList =
Null

5 vmShareMap<vm, vmShare> = Null
6 vmTListMap<vm, vmTaskList> = Null
7 totalLength = calcTotalLength(CloudletList)
8 for (Vm vm:vmList) do
9 vmComputRatio =

vm.getMips/getTotalMips(vmList)
10 vmShare = totalCLength * vmComputRatio
11 vmShareMap.put(vm, vmShare)
12 end
13 while getMinCloudlet(CloudletList) ≤
getMaxShare(vmShareMap) do

14 vm = getMaxShareVm(vmShareMap);
15 Cloudlet= getMaxCloudlet4Vm (CloudletList,

vm)
16 if Cloudlet != null then
17 numIterations++
18 bindCloudletToVm(Cloudlet.getCloudletId(),

vm.getId())
19 newVmShare = vmShareMap.get(vm)-

Cloudlet.getCloudletLength()
20 vmShareMap.put(vm, newVmShare)
21 vmTaskList = vmTListMap.get(vm)
22 vmTaskList.add(Cloudlet.getCloudletId())
23 vmTListMap.put(vm, vmTaskList)
24 CloudletList.remove(Cloudlet)
25 else
26 break;
27 end
28 if numIterations%vmList.size()== 0 then
29 updateCltVMTables(vmList, CloudletList,

vmShareMap, vmTListMap)
30 end
31 end
32 while CloudletList.isEmpty() != true do
33 Cloudlet = getMaxCloudlet(CloudletList)
34 vm = getVmWithEFT(vmShareMap, Cloudlet)
35 bindCloudletToVm(Cloudlet.getCloudletId(),

vm.getId())
36 newVmShare = vmShareMap.get(vm)-

Cloudlet.getCloudletLength()
37 vmShareMap.put(v, newVmShare)
38 CloudletList.remove(Cloudlet)
39 end

Algorithm 2: Dynamic-Updater Scheduler
Input : vmList: set of VMs with their computation

power,
CloudletList: Tasks list with their

computation requirements.
vmShareMap, vmTListMap.

Output: Map (Ti, VMj) i.e Mapping of Task Ti to
VMj

1 newVmShare = 0.0
2 tempCltList = Null
3 cltTotalLength = 0.0
4 for (int j = 0, j<vmList.size()) do
5 tempCltList = vmTListMap.get(j)
6 for (int k = 0, k<tempCltList.size()) do
7 if CloudletList.getById(CloudletList,

tempCltList.indexOf(k)).isFinished()== true
then

8 cltTotalLength = cltTotalLength +
CloudletList.getById(CloudletList, temp-
CltList.indexOf(k)).getCloudletLength()

9 tempCltList.remove(k)
10 end
11 end
12 vmTListMap.put(vmList.get(j), tempCltList)
13 vmShareMap.put(vmList.get(j),

vmShareMap.get(j) + cltTotalLength)
14 end

(Line 13, Algorithm 2). When tempCltList get empty, a new
VM is selected. All the tasks that are assigned to newly
selected VM are assigned to tempCltList (Line 5, Algo-
rithm 2) and nested for loop (Line 6-11, Algorithm 2) is
executed again.

E. COMPLEXITY AND OVERHEAD ANALYSIS
This Section discusses the complexity analysis of the pro-
posed approach DRALBA against the state-of-the-art task
scheduling approaches. For this purpose, we considered that
N represents the total number of cloudlets and M shows the
total number of VirtualMachines (VM) on the Cloud datacen-
ter. In the real Cloud environment, the number of cloudlets
is greater than that of VM (i.e., N�M). DRALBA perform
M number of comparison to compute the computation share
of VMs. In the worst case, DRALBA performs N number of
comparison to minimum cloudlet in the cloudletlist. To iden-
tify VMwithmaximum share, DRALBAperformsMnumber
of comparisons i.e., M+MN. The dynamic updater scheduler
performs MN number of comparisons to update the status of
every VM. Therefore, the complexity of the DRALBA sched-
uler will becomeM+MN(MN). The overall complexity of the
DRALBA becomes O(M2N2) The complexity of scheduling
algorithms is one of the important factors. However, reducing
complexity is not the scheduling objective of this article. It is
because the dynamic approach somehow increase scheduling
complexity compared to static counterparts and this little
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TABLE 3. Computational complexity of scheduling algorithms.

increase in the complexity is considered as a cost for achiev-
ing higher resource utilization and load balancing.

IV. EXPERIMENTAL SETUP
Various approaches, including analytical, experimental, and
simulation are considered for the performance evaluation of
any Cloud scheduling heuristics. The problem concerning
the experimental approaches on the real Cloud is that they
are costly and sometimes requires an expert to configure the
environment. Secondly, performing simulations on the Cloud
platform involves high monitory cost. The problem with
the analytical approaches is that they lack in evaluating the
proposed scheduling heuristics thoroughly. The simulation
techniques are widely used for performance investigation
of the contemporary approaches. In this research, we have
considered Cloudsim [7] for an in-depth investigation of
the proposed approach against the available four contempo-
rary approaches (RALBA, Dynamic MaxMin, DLBA, and
PSSELB). The simulations were executed on a machine
equipped with Intel Core i5-8500 (TM) CPU (clock speed
of 3.00 GHz) and 20 GBs of RAM.

To investigate the performance of the available schedul-
ing approaches, three different benchmark datasets namely
the HCSP (Heterogeneous Computing Scheduling Problems)
dataset [12], [13], Google like dataset called GoCJ [33], and
Synthetic workload [17] have been considered.

The HCSP instances-based benchmark dataset is based
on the Expected Time to Compute (ETC) model and is
generated in such a way that can approximate the real
behavior of a heterogeneous computing environment. HCSP
instances are divided into three levels based on their sizes and
complexities. These categories include small size instances
(512-1024 heterogeneous tasks and 16 to 64 heterogeneous
VMs), medium-size HCSP instances comprised of 4096 to
8192 heterogeneous tasks, and 128 to 256 heterogeneous
VMs. Similarly, large size instance include 16384 to
32768 tasks and 512 to 1024 VMs. In this paper, HCSP
instances with a small size dataset which have 1024 hetero-
geneous tasks and 32 heterogeneous VMs are used. HCSP
instances use the C-THMH pattern, where C shows consis-
tency level which includes inconsistent (i), consistent (c),
and semi-consistent (s). Moreover, TH represents task het-
erogeneity and MH stands for machine heterogeneity. In this
paper, four different instances that are c-hilo, i-hilo, c-lohi,
and i-lohi are used. Each of the instance having 1024 tasks
and 32 VMs.

Synthetic workload based benchmark dataset published
in [17], comprise of tasks with heterogeneous sizes
ranges from 1 MI to 45000 MI. These tasks include

tiny size (1-250 MI), small (800-1200 MI), medium
(1800-2500 MI), large (7000, 10,000 MI), and extra-large
(30,000 to 45,000 MI). The number of tasks consist of 500,
600, 700, 800, 900, 1000 and are randomly generated using a
well-known Monte-Carlo simulation method [32].

GoCJ benchmark dataset published in [33] is a google
like realistic workload generated from realistic google
cluster traces using a well-known Monte-Carlo simulation
method [32]. The sizes of tasks in the GoCJ dataset range
from 15000 (15k) to 900k and include small size tasks
(15k-55k MI), medium size tasks (59k-99k MI), large size
tasks (101k-135k MI), extra-large size (150k-337.5k MI),
huge size tasks (525k-900k MI). For the execution of the
Synthetic workload and GoCJ based benchmark dataset,
50 heterogeneous (in terms of computation power) are used.
The computation of these VMs ranges from 100 MIPs to
7000 MIPS.

A. EXPERIMENTAL EVALUATION
Various performance metrics, including Makespan, through-
put, average resource utilization (ARUR), SLA violation,
energy consumption etc., are considered for performance
investigation. The Cloud end-users are always concerned
about the response time with minimum SLA violation,
whereas the Cloud service providers are more concerned
about the revenue generations. We have utilized ARUR,
Throughput, Makespan, and ART to investigate the perfor-
mance of our proposed approach against the available con-
temporary task scheduling approaches. The obtained results
and the discussion is delineated below.

Figure 3 plots and explains the results regarding the
Makespan attained for all the presented approaches two
renowned and large-scale datasets such as HCSP dataset
instances (i.e., C-hilo, C-lohi, I-hilo, and I-lohi) and GoCJ
and on Synthetic workload. The results have shown that
the proposed D-RALBA approach dominated the rest of the
approaches concerning the Makespan on the C-Hilo dataset
instance. Figure 3a shows that DRALBA consumes 54.82 %,
50.16 %, 52.06 %, and 14.90 % less execution time (for
the HCSP dataset instances) as compared to the RALBA,
Dynamic MaxMin, DLBA, and PSSELB respectively. For
the C-Lohi dataset, the PSSELB showed 10 % improve-
ment as compared to the proposed approach and also has
been able to lead the rest of the two compared approaches.
Dynamic MaxMin and PSSELB have shown moderate per-
formance behaviour. The RALBA approach shown a very
poor Makespan performance on the C-hilo dataset as com-
pared to the rest of the approaches; however, behaviour simi-
lar to Dynamic MaxMin and DLBA is observed for the other
three dataset instances.

On the Lohi dataset, most of the tasks are of smaller
size and the heterogeneity of resources is lower as com-
pared to Hilo dataset instances. The proposed and PSSELB
have shown almost similar behaviour for the C-Hilo dataset
instance.

VOLUME 9, 2021 61291



S. Nabi et al.: DRALBA: Dynamic and Resource Aware Load Balanced Scheduling Approach for Cloud Computing

FIGURE 3. Makespan comparison on various datasets.

The next set of experiments are performed on Google like
a realistic workload called GoCJ and are shown in Figure 3b.
From the results, it can be seen that the proposed DRALBA
approach has shown 57.83 %, 46.51 %, 54.93 %, and 8.43 %
improvement as compared to RALBA, Dynamic MaxMin,
DLBA, and PSSELB respectively. For the last set of exper-
iments, the Synthetic workload was considered for the simu-
lation experiments. The results concerning the Makespan are
then plotted in Figure 3c. Figure 3c shows that the proposed
DRALBA approach has been able to reduce the Makespan by
75.19 %, 63.84 %, and 80.28 % improvement as compared to
RALBA, Dynamic MaxMin, DLBA respectively. However,
the PSSELB has been able to reduce dramatically, and thus
15.85 % decrease is revealed as compared to the proposed
approach.

The in-depth investigation shows that the proposed
approach has been able to produce the best makespan for two
of the renowned datasets. This is because DRLABA maps the
tasks in a way that keeps all the resources busy evenly during
the execution of tasks on the available resources.

All these results asserts that both these approaches have
the potential to schedule the resources in an effective way
and can lead to more customer satisfaction as well as efficient
resources utilization.

The results concerning the Throughput obtained for all the
presented approaches on three different datasets (i.e., HCSP
dataset instances (i.e., C-hilo, C-lohi, I-hilo, and I-lohi) and
GoCJ and on Synthetic workload) are shown in Figure 4.

Figure 4a shows that DRALBA has been able to increase
the throughput on the average 48.67 %, 57.30 %, 58.34 %,
and 17.69 % (for the HCSP dataset instances) as compared
to the RALBA, Dynamic MaxMin, DLBA, and PSSELB
respectively. For the C-Lohi dataset, the PSSELB showed
8.67 % improvement as compared to the proposed approach
and also has been able to lead the rest of the two compared
approaches. This is because in C-Lohi dataset, most of the
jobs are of a shorter size and thus PSSELB executes shorter
deadline tasks very quickly. Dynamic MaxMin and PSSELB
have shown moderate performance behaviour. The RALBA
approach shown a very poor Makespan performance on the
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FIGURE 4. Throughput comparison on various datasets.

C-hilo dataset as compared to the rest of the approaches;
however, behaviour similar to Dynamic MaxMin and DLBA
is observed for the other three dataset instances.

The next set of experiments are performed on Google like
a realistic workload called GoCJ and are shown in Figure 4b.
From the results, it can be seen that the proposed DRALBA
approach has shown 72.09 %, 78.10 %, 117.44 %, and
24.67 % improvement as compared to RALBA, Dynamic
MaxMin, DLBA, and PSSELB respectively. The last set
of simulation experiments were performed on the Synthetic
workload, and the results concerning the attained Throughput
are shown in Figure 4c. Figure 4c revealed that the proposed
DRALBA approach has been able to increase the Throughput
by 65.34 %, 40.31 %, and 58.80 % as compared to RALBA,
Dynamic MaxMin, and DLBA respectively. Again similar to
Makespan results for the synthetic workload, the PSSELB has
been able to reduce dramatically, and thus 17.49 % decrease
is revealed as compared to the proposed approach.

Another important parameter used for the evaluation of
task scheduling heuristics is average resource utilization
(ARUR). The simulation experiments were executed on four

different instances of the HCSP dataset, and results are plot-
ted on Figure 5a. The proposed DRALBA and PSSELB
approach resulted in higher ARUR (0.98 and 0.96, respec-
tively) as compared to the other contemporary approaches.
Poor resource utilization (0.11) is observed for the DLBA
approach. The RALBA approach has shownmoderate ARUR
(0.28) performance for the I-Hilo dataset and the ARUR
has dropped to 0.11 for the C-Hilo dataset instance. On the
average 80 %, 23 %, 19 %, 17 %, and 60 % resource utiliza-
tion has been observed for the DRALBA, RALBA, Dynamic
Maxmin, DLBA, and PSSELB respectively. All these facts
show that the proposed DRALBA followed by the PSSELB
approach involves all the computing resources equally during
the task scheduling and thus very load-balanced scheduling
of tasks is obtained. Moreover, the ARUR also depends on
the properties of jobs in the datasets. For I-hilo and C-Lohi
datasets, the proposed approach and PSSLEB obtained higher
ARUR. Though the ARUR is lowered for the PSSELB on
the C-Hilo and i-lohi datasets and the proposed DRALBA
approach manifests steady performance for the HCSP dataset
instances. From the above discussion, we can conclude that
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FIGURE 5. ARUR comparison on various datasets.

DRALBA provides a more steady and scalable performance
in terms of resource utilization.

The experiments were then executed on google like
real dataset, namely GoCJ, to investigate the performance
of the proposed approach against the other contemporary
approaches. The results concerning the attained ARUR of all
the compared approaches, including the proposed approach
are illustrated in Figure 5c. Again the proposed approach
has dominated the rest of the approaches except the PSSELB
approach. This time the PSSELB has shown an improvement
of 5 % against the proposed approach. From the results,
it can be seen that the proposed DRALBA and PSSELB
have shown 58.83 %, 64.85 %, 67.45 %, and 61.16 %,
66.84 %, 69.29 % against improvement as compared to
RALBA, Dynamic MaxMin, and DLBA respectively. The
simulation experiments were then extended and executed on
the synthetic workload to see a more close look at the per-
formance of the proposed approach against the available con-
temporary approaches. The experiments were then performed

and obtained ARUR results were then plotted in Figure 5b.
Figure 5b reveals that the proposed DRALBA approach has
been able to increase the ARUR by 72.00 %, 77.33 %,
78.67 %, and 13.33 % as compared to RALBA, Dynamic
MaxMin, DLBA and PSSELB respectively.

The users of the Cloud aremainly interested in the response
time. The final set of the simulation is executed for all
the compared approaches and average response time (ART)
results are plotted in Figure 6. Like other parameters, the sim-
ulations were performed on the three chosen datasets consid-
ering ART evaluation metric, and the obtained results were
plotted in Figure 6a, Figure 6c, and Figure 6b.

The discussion about each of the attained results is illus-
trated as follows. Figure 6a plots the behaviour of the pro-
posed DRALBA and other four contemporary approaches
considering the ART results. This time the Dynamic Maxmin
approach has dominated the rest of the task scheduling heuris-
tics on all of the HCSP dataset instances. The average ART
of all the datasets is 4.85, 15.89, 2.83, 10.33, and 4.87 for
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FIGURE 6. Avg response time comparison on various datasets.

DRALBA, RALBA,DynamicMaxmin, DLBA, and PSSELB
respectively. Despite this fact, the proposed approach still
has outperformed having an ART of 4.85 (second-best ART)
against the rest of compared task scheduling approaches.
The Dynamic Maxmin utilizes the faster machines more
frequently and thus provides the best response time; however,
most of the slower machines remain idle which leads to
poor makespan, and also the average resource utilization is
decreased. The DRALBA approach employs a load-balanced
task mapping over the available resources, thus utilizing all
the machines equally achieving higher resource utilization,
the lowest execution time for task scheduling, and a moderate
ART.

The experiments were then extended and executed using
the GoCJ dataset and the ART comparison results are then
plotted in Figure 6c. The results have shown an improvement
of 44.97 %, 38.74 %, and 31.20 % in the average response
time against RALBA, DLBA, and PSSELB respectively.
However, the Dynamic Maxmin lead the proposed approach
by 9.47 %.

For a more in-depth investigation, the experiments were
then performed for all the contemporary approaches and com-
pared against the proposed DRALBA approach by employing
a synthetic workload dataset. The results concerning the aver-
age response time are illustrated in Figure 6b. From the results
in Figure 6b, it is observed that DRALBA and Dynamic
Maxmin have shown almost similar behavior. The PSSELB
has revealed a slight improvement (3-4 %) as compared to
DRALBA and Dynamic Maxmin approaches. The RALBA
and DLBA have shown poor response time against the rest
of the scheduling approaches. All these results assert that
the proposed DRALBA approach has shown remarkable per-
formance against the compared task scheduling heuristics
concerning ARUR, average response time, Makespan, and
Throughput.

The discussion concerning the obtained results for the
compared approaches is presented to highlight important
aspects of the each of the algorithm and draw the con-
clusions about the behavior of each of the algorithm in
depth. Moreover, see how the selection of specific dataset
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for the evaluation impacts the behavior of each of the
approach.

Among the compared approaches, the proposed approach
has shown substantial performance as compared to the rest of
the approaches for all the datasets concerning the Makespan,
ARUR, ART, and throughput metrics. Similarly, the PSSELB
has also shown a consistent behavior for all the datasets and
been a keen competitor against the proposed approach.

The Cloud service providers are mainly interested in effi-
cient utilization of the available resources as well as their
customer satisfaction. If the resources are not utilized effi-
ciently it may to lead to high response time and large amount
of energy footprints. The proposed approach being a resource
aware scheduling approach has the ability to map the task in
a balanced way keeping in view the available resources. This
fact is endorsed by the average resource utilization results
(i.e., 0.98 for HCSP dataset, 0.75 for Synthetic workload
(improve ARUR by 72.00 %, 77.33 %, 78.67 %, and 13.33 %
as compared to RALBA, Dynamic MaxMin, DLBA and
PSSELB respectively), and 0.77 for GoCJ (i.e., the second
best attained ARUR)). For large dataset like HCSP which is
comprised of 1024 tasks and 32 VMs, the ARUR has raised
to 98 % which confirms its scalability and the ability to map
the resources in a balanced way.

From the comparative analysis it can be seen that
DRALBA consumes 54.82 %, 50.16 %, 52.06 %, and
14.90 % less execution time (for the HCSP dataset instances)
and 57.83 %, 46.51 %, 54.93 %, and 8.43 % for improvement
(for GoCJ dataset) as compared to the RALBA, Dynamic
MaxMin, DLBA, and PSSELB respectively. The PSSELB
approach has shown improved results for the synthetic work-
load dataset being a second choice for the scheduling. This
means that load-balanced mapping of the tasks on the avail-
able not only lead to better resource utilization but also
decreases the execution time of the tasks.

V. CONCLUSION AND FUTURE WORK
In this research, a resource-aware dynamic task schedul-
ing approach is proposed and implemented. Extensive
simulations have been performed using three renowned
large-scale dataset to see the performance of the pro-
posed approach against the contemporary approaches. The
DRALBA approach employs a load-balanced task mapping
over the available resources, thus utilizing all the machines
equally achieving higher resource utilization, the lowest exe-
cution time for task scheduling, and a moderate ART. The
DRALBA approach has revealed significant improvements in
terms of attained ARUR, throughput, and Makespan. For the
synthetic dataset a minimum of 13.33 % against the PSSELB
approach whereas significant improvement i.e., 78.67 % has
been seen against the DLBA approach. The task schedul-
ing in multi-Cloud environment is challenging and in our
future work, we will propose an efficient task scheduling
approach. The future work also aims to propose a task and
resource-aware scheduling approach for efficient mapping of
tasks on VMs in CDCs.
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