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ABSTRACT We propose and analyze a business model for a set of operators that use the same physical
network. Each operator is entitled to a share of a network operated by an Infrastructure Provider (InP)
and uses network slicing mechanisms to request network resources as needed for service provision. The
network operators become Network Slice Tenants (NSTs). The InP performs the resource allocation based
on a vector of weights chosen selfishly by each NST. The weights distribute the NST’s share of resources
between its subscribers in each cell. We model this relationship as a game propose a solution for the Nash
equilibrium in which each NST chooses weights equal to the product of its share by the ratio between the
total number of subscribers in the cell and the total number of subscribers in the network.We characterize the
proposed solution in terms of subscription ratios and fractions of subscribers, for different cell capacities and
user sensitivities. The proposed solution provides the exact values for the Nash equilibrium if the cells are
homogeneous in terms of normalized capacity, which is a measure of the total amount of resources available
in the cell. Otherwise, if the cells are heterogeneous, it provides an accurate approximation. We quantify the
deviation from the equilibrium and conclude that it is highly accurate.

INDEX TERMS Competition, network economics, network slice tenants, network slicing, resource
allocation.

I. INTRODUCTION
The current mobile network architecture utilizes a relatively
monolithic access and transport framework to accommodate
a variety of services such as mobile traffic for smartphones,
OTT content, feature phones, data cards, and embeddedM2M
devices. It is anticipated that this architecture will not be
flexible and scalable enough to support the coming services,
which demand very diverse use cases and sometimes extreme
requirements—in terms of performance, scalability and avail-
ability. Furthermore, the introduction of new network ser-
vices should be made more efficiently [1].

In the above scenario, network slicing is gaining an increas-
ing importance as an effective way to introduce flexibility
in the management of network resources. A network slice
is a collection of network resources and functions, selected
in order to satisfy the requirements of the service(s) to be
provided by the slice in terms of both QoS and functionality.
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Moreover, resource allocation to slices must be done in a way
that ensures a certain degree of isolation between slices so
that traffic variations in one slice do not negatively impact the
performance of other slices. An enabling aspect of network
slicing is virtualization. Virtualization of network resources
allows operators to share the same physical resource in a flex-
ible and dynamic manner to exploit the available resources
more efficiently, thus allowing to support a higher traffic load
with the same amount of resources [2].

Within the above context, we envision a scenario where
a set of network operators use network slicing mechanisms
to request network resources as needed for service provi-
sion. The InP is responsible for the network operation and
maintenance, while the network operators become Network
Slice Tenants (NSTs) .1 The NSTs are entitled to a share

1We can also envision other emergent players becoming NSTs, e.g., OTT
service providers. Even Vertical Industry players may take this role when
needing connectivity services, e.g., automotive verticals providing enter-
tainment onboard, assisted driving and passenger safety; or traffic agencies
needing traffic road state monitoring [3]–[5].
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of the network resources. This entitlement may result from
diverse scenarios, e.g., the operators owned the networks and
decided to pool the networks and to outsource their operation
to an InP.

We propose a business model where the NSTs provide
service to end users. This service may be characterized by a
series of performance constraints (e.g., transmission rate and
delay) and each NST gets revenues from its subscribers. In
order to support the service, the NSTs request dynamically
access and core network resources from an InP. The InP
works as a supporting unit to the NSTs. As a motivation
example, we describe the scenario and the model in terms of
mobile service operators and radio access networks. In this
example, resources would refer to the radio spectrum in each
cell of the network and the equipment necessary to transmit
over it.

Our work is related to several other works on resource
allocation between operators within the context of network
sharing. There is a subset of these works, e.g., [6], in which
the operators take no decision at all, and it is the infrastructure
owner who allocates resources among the operators in order
to maximize some sort of network utility. In another subset,
e.g., [7], the operators do take decisions that influence the
resource allocation, and the decisions are of a strategic nature,
i.e., each decision influences and it is influenced by each other
decision. However, these works fail to model the concurrent
strategic interaction that is also present when the operators
compete against each other for providing service to the users.
We aim to address this limitation by explicitly modeling the
simultaneous strategic interaction between operators in both
the resource allocation and the service provision ‘‘markets’’.
The above two works are discussed in Section II.

Our work analyzes how independent NSTs compete
against each other following the business model described
above. Our contributions are the following ones:

1) We show how the strategic interaction between the
NSTs both in the provision of the service and in the
slicing of the network can be modeled as a game, where
the strategy is a weighted distribution of the NST’s
share of the resources between the cells.

2) We propose a solution for the Nash equilibrium in
which the NST chooses weights equal to the product of
its share by the ratio between the total number of sub-
scribers in the cell and the total number of subscribers
in the network. This equilibrium results in each NST
using a fraction of the resources in each cell equal to its
share, not as the result of a centralized decision made
by the InP, but as the result of a game where each NST
acts selfishly.

3) We characterize the proposed solution for different cell
capacities and user sensitivities.

4) We prove that the proposed solution provides the exact
values at the equilibrium if the cells are homogeneous
in terms of normalized capacity, which is a measure of
the available resources in the cell normalized to the ser-
vice price, the number of users and the no-subscription

option valuation. Otherwise, if the cells are heteroge-
neous, it provides an accurate approximation of the
equilibrium. We quantify the deviation from the equi-
librium and conclude that it is highly accurate.

The paper is structured as follows. In Section II, the related
work is presented and discussed. In Section III, the model for
the NSTs, the users, and the InP is described. In Section IV,
a strategic game is formulated for the interaction between
the NSTs, a solution for the Nash equilibrium is proposed
and its exactness is discussed. In Section V, we describe
the experimental setup. In Section VI, we characterize the
solution and quantify the exactness of the proposed solution.
And finally, Section VII draws the conclusions.

II. RELATED WORK
Our work focuses on the strategic interaction that takes place
between tenants in a network slicing scenario. In our work,
this interaction between the NSTs is double-sided: there is
one interaction due to the competition for the service provi-
sion to the users; and another one due to the procurement of
resources from the InP.

As regards the service competition, this work draws on
previous works by the authors on the provision of services
based on different kinds of resources. For example, in [8],
the utility that users derive depends on the sensing rate that
each service provider is able to acquire and use for composing
the service it offers. And in [9], the net data rate that each
service provider is able to acquire for building a data-based
service determines how attractive the service is for the users.

As regards the resource procurement, we borrow the ideas
from the Fisher market model, which provides us with the
rationale for the resource allocation rule, as described in
Section III-A. The model basically comprises a set of buyers
aiming to purchase multiple goods in a way that maximizes
their utility subject to budget constraints. This model has
also been borrowed by recent proposals on resource alloca-
tion mechanisms. In [10], the allocation of computational
resources to users is analyzed and the budget may have a
monetary interpretation. And in [7], radio network resources
are allocated to network slices, and the budget derives from an
initial lease of resources from the NSTs to a common network
pool operated by the InP.

Apart from the proposals based on the Fisher market,
there are other proposals for allocating resources to service
providers (e.g., MVNOs, tenants, SaaS providers, . . . ). A
set of proposals comes from the Kelly mechanism, which
is a mechanism for allocating resources in a network orig-
inally proposed by F. Kelly [11], [12], within the context
of rate allocation and control in communication networks.
It resembles the Fisher market in that the users also aim
to maximize the utility when buying the resources. Here,
however, there is no per-user budget constraint, but only
an aggregate resource constraint. It has been shown that an
efficient resource allocation can be achieved using a pricing
mechanism known as Kelly mechanism, under the assump-
tion that the users are price-takers. The Kelly mechanism
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has been borrowed by resource allocation mechanisms for
cloud computing [13] and for network slicing [14]. Another
set of proposals incorporate auctions. Reference [15] pro-
poses first-price auctions and VCG auctions for allocating a
resource to service providers, while [16] proposes a combi-
natorial auction that borrows elements from the VCG auction
to allocate resources bundles to MVNOs. In both sets of
proposals, the service providers interact strategically, as in
our work. However, the resources are owned by the InP, who
collects revenues from the service providers, either through
a pricing mechanism ( [13], [14]) or through an auction (
[15], [16]). These scenarios differ from our work, from [10]
and from [7]. In these three works, the resources are not
owned by the InP, but by the tenants themselves, who pool
the resources and entrust their operation to the InP. There
is no revenue to collect by the InP, but only to respect each
tenant’s contribution share. Finally, there are some proposals
for resource allocation where the InP maximizes the overall
network rate, under the quality constraints imposed by the
users and the MVNOs, like in [6], [17]. In these proposals,
however, the MVNOs do not take any decision, which is an
unrealistic scenario viewed from our approach.

All in all, our work resembles [7] as regards the resource
procurement is concerned. First, the tenants own the infras-
tructure and entrust their operation to the InP. And second,
the allocation is of a hierarchical nature, where the tenants
are involved in the allocation—as opposed to a centralized
scheme, where the InP decides and executes the complete
allocation to all tenants. Within this framework, the Fisher
market is an appropriate model for the allocation of resources
between the tenants. However, our work differs importantly
from [7] in that we model the tenants and the users as dif-
ferent agents with their particular incentives, which are the
profits and the user utility, respectively. In [7], each tenant
operates as a proxy of its subscribers; this may fail to properly
model the tenant incentives and the corresponding business
model. This difference has also an important implication in
the user behavior modeling: while in our work the number of
subscribers for each tenant depends on the tenant allocation
decision, in [7] the number of subscribers is independent from
the decision, since the number of subscribers is fixed a priori
as a parameter.

The adoption of game theory by works on resource allo-
cation in the context of network slicing is currently popular.
Two references that exemplify this trend are [18] and [19].
These two works use game theory as a means to distribute
a (resource allocation) optimization problem among the rel-
evant agents: the IoT gateways (GWs) in [18] and the
MVNOs in [19], since the centralized version of the resource
allocation problem is not realistic and/or computationally
tractable. Nevertheless, there are some important differences
between these two references and our manuscript. Firstly,
the agents (GWs and MVNOs, respectively) do not compete
for the users (IoT devices and mobile users, MUs, respec-
tively), but they are given instead as model parameters (fixed
and random, respectively), whereas in our work, the agents

(NSTs) compete strategically for the users. And secondly,
the formulated games (cooperative coalitional games and
non-cooperative congestion games, respectively) are used as
a means for distributing an algorithm, while in our work,
the game is the model, and we do not prescribe any algorithm.

This work takes our analysis and results in [20] as a starting
point, and it goes far beyond them, since they are preliminary
and not analytical. Indeed, the model described in [20] does
not contemplate the possibility of a no-subscription option for
the users, and does not provide an analytical expression for
the Nash equilibrium (and, consequently, does not provide
any solution characterization). These limitations are over-
come by the current work, which also provides a deeper dis-
cussion of the results, where the classification of the scenarios
and the selection of the parameters are much more elaborate
than in [20].

III. MODEL
In this section, we propose a model amenable for the analysis
of the service provision by NSTs, within a network slicing
framework. The notation used is summarized in Table 1.

TABLE 1. Summary of notation.

A. SYSTEM MODEL
We focus onmobile service operators and, specifically, on the
radio access network. Then, the network consists of a set of
cells B = {1, . . . ,B} and their resources, where B is the
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number of cells. The network resources are managed by an
InP and used by a set S = {1, . . . , S} of NSTs, where S is the
number of NSTs. The resources of a cell j ∈ B are the radio
resources of the cell. The total amount of resources available
in cell j is denoted by c(j), and we refer to it as the capacity of
cell j.

The resources requested by the NSTs are used to deliver
service to a set U = {1, . . . ,U} of users, where U is the
number of users.

We define the following subsets of users: U (j), the users
in cell j; Ui, the subscribers of NST i; and U (j)

i = U (j)
∩ Ui,

the subscribers of NST i in cell j.
NST i is entitled to a share si of the total amount of

resources available in the network, such that
∑

i∈S si = 1.
As stated in the introduction, this entitlement may typically
result from the operators’ decision to pool the networks and
to outsource their operation to the InP.

The NST allocates the resource for providing service to its
subscribers in the following way. NST i distributes its share
among its subscribers, assigning a weight ω(j)

i to U (j)
i , such

that ω(j)
i > 0 and

∑
j∈B ω

(j)
i = si ≤ 1. The weight assignment

decision is notified to the InP, who proceeds to perform the
actual resource allocation in each individual cell. The InP
allocates an amount of resources to the set U (j)

i given by

R(j)i =
ω
(j)
i∑

t∈S ω
(j)
t

c(j). (1)

This allocation scheme is known as ‘‘proportional-share
algorithm’’ [7], [10].

Furthermore, in this allocation scheme, NST i chooses
weight ω(j)

i for the set of its subscribers in cell j and the
InP performs the actual resource allocation in each individ-
ual cell according to (1). Proceeding in such indirect way,
the capacity constraint in each cell is automatically enforced,
i.e.,

∑
i∈S R

(j)
i = c(j),∀j ∈ B.

The rationale of the above allocation rule draws from the
Fisher market model. The Fisher market is one of the most
fundamental models within mathematical economics [21].
The setting is that of a set of buyers (i = 1, . . . , n) aiming
to purchase quantities (xi,j) of multiple goods (j = 1, . . . ,m),
each one under a limited and fixed supply (

∑
i xi,j ≤ cj)

and given a price system (pj), in a way that maximizes
their utility (ui(xi,1, . . . , xi,m)) subject to budget constraints
(
∑

j pjxi,j ≤ Bi). In such a setting, the outcome consist-
ing of a goods allocation and a price system where supply
equals demand (cj =

∑
i xi,j) is known as market equi-

librium, and has the property that the buyers spend their
entire budget. A market equilibrium for the Fisher market is
guaranteed to exist under mild conditions [22]. Note that this
market model assumes that prices are taken by the buyers
as given, an assumption that is commonly known as price
taking. It is also known that a market equilibrium is efficient,
that is, maximizes the sum of the utilities of the buyers.
When the Fisher market is formulated not in terms of quan-
tities xi,j but in terms of allocated budgets (bi,j = pjxi,j),

the supply-equal-to-demand equilibrium condition can be
stated as pjcj =

∑
bi,j, which explicitly gives an expression

for the prices: pj =
∑
bi,j/cj [23]. The analogy between the

Fisher market and our resource allocationmodel is as follows:
the NSTs are the buyers, the resources available at one cell are
one good, the NST’s share is the buyer’s budget, the weight
is the part of the budget that each buyer spends on each good,
and the utility will be set to the NST’s profit. Under such an
analogy, the allocation rule (1) would be efficient provided
that the NSTs were not aware of the whole expression but
only of R(j)i = ω

(j)
i /pj, where the underlay price systemwould

be pj =
∑

t∈S ω
(j)
t /c

(j). This provides a rationale for the allo-
cation rule (1). However, in the scenario under study, in which
the NSTs are aware of (1), the setting is no longer price taking
but strategic, that is, a game, and the equilibrium allocation
will be given not by a market equilibrium, but by a Nash
equilibrium, which is typically an inefficient allocation [22],
i.e., does not maximize the sum of the utilities of the NSTs.

B. ECONOMIC MODEL
Each NST provides service to users based on the resource
allocation agreed with the InP, according to the description
made above. Pricing for the service provision consists of
a flat-rate price pi. We assume that variable costs incurred
by the NSTs are zero, so that only fixed costs are incurred.
Furthermore, since the fixed costs are not relevant to the
weight decision made by the NSTs, they are not included in
the analysis.

In our model, the user choice is the choice of one of the
NSTs in S. We use a discrete-choice model for the modeling
of the users’ choices, which is frequently used in economet-
rics [24]. Specifically, given a discrete set of options, the
utility of a user u ∈ U (j) making the choice i is assumed to
be equal to v(j)i + κu,i: the term v(j)i encompasses the objective
aspects of option i and is the same for all users in U (j)

i , while
κu,i is an unobserved user-specific value that is modeled on
the global level as a random variable. From the distribution
of these i.i.d. variables, one can compute the probability
that a user selects option i, and when the user population
size is sufficiently large, this is a good approximation of the
proportion of users making that choice.

To model the objective part of the users’ utility, each sub-
scriber pays the price pi to NST i, and receives service in cell j
supported by an amount of resources r (j)i . Our model focuses
primarily on elastic traffic, where the users can adapt to the
available amount of resources and their utility is an increasing
and concave function of the amount of resources received.
Such utility function reflects the fact that user satisfaction
increases with the amount of resources received, but exhibits
diminishing returns. Following [25], we propose

v(j)i = µ log
(
r (j)i /pi

)
. (2)

Firstly, utility depends logarithmically on the amount of
resources, as there is increasing evidence that user experi-
ence and satisfaction in telecommunication scenarios follow
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logarithmic laws [26]. Secondly, the dependence on the price
is through a negative logarithm, instead; or in other words,
the ratio r (j)i /pi is proposed to be the relevant magnitude for
the utility. And thirdly, µ > 0 is a sensitivity parameter.
To model the unobserved user-specific part of the utility,

following the literature on discrete-choicemodels, we assume
that each user-specific random variable κu,i follows a Gumbel
distribution of mean 0 and parameter ν. The choice of the
Gumbel distribution allows us to obtain a logistic function,
as shown below.

With the users’ utility modeled as stated above, it can be
shown [27] that the number of users n(j)i that subscribe to
NST i over the total number of users in cell j, n(j), is

n(j)i
n(j)
=

(r (j)i /pi)
α∑

t∈S (r
(j)
t /pt )α + (r (j)0 /p0)

α
, i ∈ S, j ∈ B, (3)

where α = µ/ν is the user sensitivity parameter (it models
the sensitivity to the resources-to-price ratio), and r (j)0 /p0
is related to the utility of not subscribing, v(j)0 , through (2):

r (j)0 /p0 = ev
(j)
0 /µ. Note that the no-subscription option does

not correspond to any network slice in S and therefore no
weights are assigned to it. The case in which all users in cell j
subscribe (i.e., a user in that cell will always be better off
by subscribing than by not doing it) is captured by letting
v(j)0 → −∞ or, equivalently, setting r (j)0 = 0. In practice,
this case corresponds to a more general situation in which the
utility of subscribing to some of the NSTs clearly outweighs
the no-subscription option, that is, r (j)i /pi � r (j)0 /p0 for some
i ∈ S. Note also that n(j), j ∈ B, are taken as constants,
though in a real system they would be random processes due
to users mobility. We assume that, at every cell, entries and
exits of users are in balance. Thus, the stationary distribution
of the number users in a cell can be modeled as a Poisson ran-
dom variable (see [28], [29] for further details). The squared
coefficient of variation of the Poisson distribution is inversely
proportional to its mean. Then, if the mean number of users in
each cell is moderately high, taking n(j) as a constant equal to
the mean number of users in the cell j would be a reasonable
simplification.

We assume that the users are price-takers, which is a sensi-
ble assumption when there are a sufficiently high number of
users in each cell.

As argued in the next section, we assume that the service
price is the same for every NST:

pi = p, ∀i ∈ S. (4)

Besides, without any loss of generality, we set p0 = 1 to
reduce the number of parameters. The number of subscribers
to NST i in cell j is then given by

n(j)i =n
(j) (r (j)i )α∑

t∈S (r
(j)
t )α + (p r (j)0 )α

, i∈S, j∈B. (5)

We assume that the resources allocated by the InP to NST i
at a cell are equally shared among the users in U (j)

i , that is,

on average, the amount of resources supporting the service to
a user is

r (j)i =
R(j)i
n(j)i

, i ∈ S, j ∈ B. (6)

Taking into account (1), the amount of resources assigned
to a user is

r (j)i =
ω
(j)
i∑

t∈S ω
(j)
t

c(j)

n(j)i
, i ∈ S, j ∈ B (7)

and substituting (7) into (5), we come to∑
t∈S

(
ω
(j)
t

n(j)t

)α
+

(
pr (j)0
c(j)

∑
t∈S ω

(j)
t

)α
n(j)

=
(ω(j)

i )α

(n(j)i )α+1
, i ∈ S; j ∈ B. (8)

Let σ (j) denote the subscription ratio in cell j, that is, the
fraction of users in cell j that subscribe to an NST:

σ (j)
=

1
n(j)

∑
i∈S

n(j)i , j ∈ B; (9)

and let

γ (j)
=

c(j)

n(j)p r (j)0
, j ∈ B. (10)

We refer to γ (j) as the normalized capacity of cell j, and
it represents the capacity per monetary unit and per user
(assuming that the cell capacity is shared equally between
all of them) normalized by the virtual capacity of the
no-subscription option, r (j)0 .

The next proposition states that the subscription ratio σ (j)

depends on the normalized capacity γ (j), on the user sensitiv-
ity α through

β =
α

α + 1
< 1, (11)

and on the weights in cell j of all the NSTs (i.e., ω(j)
i , i ∈ S).

Proposition 1: 1) If r (j)0 > 0, then the value of σ (j) is
the unique solution in (0, 1) of the equation

σ (j)
−

(
γ (j)

)β ∑t∈S

(
ω
(j)
t

)β
(∑

t∈S ω
(j)
t

)β (1− σ (j)
)1−β

= 0.

(12)

2) If r (j)0 = 0, then σ (j)
= 1.

All the proofs are deferred to the Appendix.
In the general case (i.e., when r (j)0 > 0), the previous

proposition does not provide a closed-form expression for the
subscription ratio σ (j), but a non-linear equation from which
it can be obtained numerically. The following propositions
provide some useful insight by establishing some properties
of σ (j) as a function of the normalized capacity and the
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user sensitivity. Some of these results confirm what intu-
ition suggests. For example, for given fixed values of the
weights, it seems intuitive that the subscription ratio σ (j) is an
increasing function of the normalized capacity γ (j), and that a
subscription ratio as close as desired to 1 can be obtained by
increasing γ (j) sufficiently. The impact of the network shares
is examined later in Proposition 5.
Proposition 2: For given fixed values of ω(j)

i , i ∈ S,
the subscription ratio σ (j) is an increasing function of γ (j) and

lim
γ (j)→0

σ (j)
= 0 (13)

lim
γ (j)→∞

σ (j)
= 1. (14)

Proposition 3:

lim
β→0

σ (j)
=

S
1+ S

(15)

lim
β→1

σ (j)
= min

(
1, γ (j)). (16)

Let ρ(j)i denote the fraction of subscribers in cell j that
subscribe to NST i:

ρ
(j)
i =

n(j)i∑
t∈S n

(j)
t

=
n(j)i

σ (j)n(j)
. (17)

This fraction can be expressed as a function of the weights
at that cell as given in the following proposition.
Proposition 4: For each cell j ∈ B and each NST i ∈ S

ρ
(j)
i =

(ω(j)
i )β∑

t∈S (ω
(j)
t )β

. (18)

IV. GAME MODEL AND ANALYSIS
The revenue of NST i is equal to the total amount charged to
its subscribers, that is,

5i = p
∑
j∈B

n(j)i , i ∈ S. (19)

Using (17) we can express the revenue as follows:

5i = p
∑
j∈B

n(j)σ (j)ρ
(j)
i , i ∈ S, (20)

which depends not only on the weights ω(j)
i set by NST i,

but also on the weights set by the other NSTs. Each NST is
assumed to operate in order to maximize its revenues.

We assume that the competition is not in terms of prices.
Instead, we analyze the competition between the NSTs in
terms of quality of service. A scenario where the user sub-
scription is driven by the currently received quality of service
and not by the price is not uncommon (see, e.g., [30]).We pro-
vide three alternative rationales for this situation:

1) That a regulatory authority is enforcing price control
over the provision of the service, i.e., the service price
is fixed by the authority and therefore not under the
control of the operators/tenants.

2) That the service price is agreed on a long-term contract,
e.g., as part of a bundled offer.

3) That the operators/tenants are wholesale roaming ser-
vice providers, i.e., that they provide the service to
roaming users. We provide three examples of this
scenario:
• An example currently in exploitation is a mobile
communication service. The users pay their home
operator according to their retail contract; the
home operator signs roaming contracts with sev-
eral local operators; and the local operators request
the resources from the InP-operated pool and com-
pete to provide service to the roaming users. The
roaming contracts will fix the revenue per user
served by a local operator, so that the local oper-
ators can only compete in QoS.

• A near-future scenario would be a roadside assis-
tance service. The drivers would pay their car
manufacturer for the service; the car manufacturer
would sign contracts with several local assistance
service providers (each one having a partner-
ship agreement with a local operator). And the
local service provider/operators would request the
resources from the InP-operated pool and compete
to provide service to the drivers.

• An advertiser-funded streaming service. Visi-
tors to shopping malls would be willing to
stream advertiser-funded content provided they
are not consuming their data cap. The con-
tent provider would sign contracts with local
micro-operators having deployed WiFi infras-
tructure in the premises, each provider commit-
ting to pay a tariff per connected shopper. Each
micro-operator would request the resources from
the InP-operated pool and compete to provide ser-
vice to the shoppers.

The analysis is focused, therefore, on how each NST sets
the weight ω(j)

i in cell j in order to attract as many users
as possible. The vector of weights set by NST i, with one
component ω(j)

i for each j ∈ B, is denoted by wi ∈ (0, 1)B.
To decide on its strategy NST i has to solve the following

revenue maximization problem:

max
wi

5i(wi,w−i)

subject to
∑
j∈B

ω
(j)
i ≤ si

wi ∈ (0, 1)B, (21)

where −i refers to all NSTs other than NST i and, hence,
w−i ∈ (0, 1)(S−1)B.

As shown above, there is a strategic dependence of the
revenue of NST i on the weights set by the competing
NSTs. This fact allows us to model the combined rev-
enue maximization problems as a strategic game. We will
use a simultaneous one-shot game model for the analysis.
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The solution for the game, i.e., a strategy for each NST
facing the interrelated maximization problems stated in (21),
is the Nash equilibrium. In the Nash equilibrium, the weights
that each NST chooses in each cell are such that it gets no
revenue improvement from changing the weights assuming
that the competitor NSTs do not deviate from the equilibrium
weights. Note that the Nash equilibrium does not provide by
itself any prescription for the competing NSTs about how
to reach the equilibrium. Note that the Nash equilibrium
does not provide by itself any prescription for the competing
NSTs about how to reach the equilibrium, and that this it is
not necessarily optimal. We have postponed for future work
the quantification of its optimality in terms of the price of
anarchy.

Let Bi(w−i) be the best response function for NST i, which
assigns the solution of (21) to each w−i. If w∗i i∈S is a Nash
equilibrium, thenw∗i ∈ Bi(w∗−i) for all i ∈ S. Now, to find the
Nash equilibrium to our problem we try to solve the equation
wi = Bi(w−i) for a generic i ∈ S, so that it holds for all NSTs
simultaneously.

We propose the following form for the Nash equilibrium,
which we refer to as the proposed solution:

ω
(j)
i =

σ (j)n(j)∑
k∈B σ

(k)n(k)
si, i ∈ S, j ∈ B. (22)

In this solution, each NST chooses, for each cell, a weight
equal to the product of its share by the ratio between the total
number of subscribers in the cell and the total number of
subscribers in the network. It should be noted that: (i) Eq. (22)
does not provide by itself a solution for the weights in the
equilibrium, since in this expression the weights depend on
the subscription ratios, which in turn depend on the weights
(see Proposition 1); (ii) the solution that can be derived
from (22) is exact (i.e., it is exactly equal to the Nash equi-
librium) when the normalized capacities of the cells satisfy
certain requirements (to be specified below), and it is a very
accurate approximation otherwise.

Next, we address these two issues. First we show how the
form of the solution given in (22) can be used to obtain the
actual solution and study the properties of the solution. Then,
we present the condition under which the proposed solution
is exact, and provide the mathematical arguments that lead to
this result. Finally, in Section VI an extensive set of numerical
experiments is used to show that, when the proposed solution
is not exact, it provides a highly accurate approximation.

Substituting (22) into (12) we obtain

σ (j)
−

(
γ (j)

)β∑
t∈S

sβt
(
1− σ (j)

)1−β
= 0, (23)

from where the value of σ (j) can be obtained numerically,
with low complexity and in a scalable way. Also, σ (j) solely
depends on the normalized capacity of the cell and on
the share of all NSTs, so that each tenant could calculate
its weights for the proposed solution without knowing the
weights chosen by the others, which preserves privacy of their

business strategies.We observe that σ (j) solely depends on the
normalized capacity of the cell and on the share of all NSTs.
Similarly, substituting (22) into (18) yields

ρ
(j)
i = ρi, (24)

where

ρi =
sβi∑
t∈S s

β
t

, i ∈ S. (25)

This tells us that, in each cell, the subscribers to the service are
split proportionally between the NSTs with the coefficients
sβi . We observe that ρ(j)i = ρi solely depends on the shares of
the NSTs and on β, and, consequently, it is the same across all
cells. From these results, each NST can calculate its weights
corresponding to the proposed solution by solving (23) and
then applying (22). For this, the only information required is
the normalized capacity in all cells, the number of users in all
cells, and the share of all tenants.

As a complementary result to that of Proposition 2, the
following proposition establishes that in the equilibrium the
subscription ratio in all cells is maximum if all NSTs have
the same share.
Proposition 5: For given fixed values of the normalized

capacities γ (j), j ∈ B, the subscription ratio in each cell is
maximum when all NSTs are allocated the same share

si =
1
S
, i ∈ S (26)

and is minimumwhen a single NSTs is allocated all resources

si = 1, i ∈ S and st = 0, t ∈ S \ {i}. (27)

In other words, if

σ
(j)
max=max

{
σ (j)
: si ∈ [0, 1], i ∈ S;

∑
i∈S

st = 1

}
(28)

σ
(j)
min=min

{
σ (j)
: si ∈ [0, 1], i ∈ S;

∑
i∈S

st = 1

}
(29)

σ
(j)
max and σ

(j)
min can be obtained as the solutions to

σ
(j)
max − S

1−β
(
γ (j)

)β (
1− σ (j)

max

)1−β
= 0 (30)

σ
(j)
min −

(
γ (j)

)β (
1− σ (j)

min

)1−β
= 0. (31)

When all cells have the same normalized capacity,
from (23) we see that the subscription ratio is the same for
all cells. Furthermore, when r (j)0 = 0 we have σ (j)

= 1
(Proposition 1). Thus, if r (j)0 = 0, j ∈ B, the subscription
ratio is also the same for all cells. In practice, the latter case
captures those scenarios in which the normalized capacity of
all cells is sufficiently high, so that all (or nearly all) users
subscribe to an NST.

These observations are summarized in the next proposition,
which also draws additional conclusions.
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Proposition 6: If one of the two following conditions is
satisfied:
• r (j)0 = 0, j ∈ B
• γ (j)

= γ, j ∈ B
then:

1) The subscription ratio is the same in all cells:
σ (j)
= σ, j ∈ B. (32)

2) The weights of the proposed solution become

ω
(j)
i =

n(j)

n
si, i ∈ S, j ∈ B. (33)

We would like to note that (33), which shows that the
equilibrium strategy for an NST is to distribute its share
proportionally to the number of users in each cell, is not the
result of a centralized decision made by the InP, but the result
of a game where each NST acts selfishly.

Under the condition of Proposition 6 the solution to the
Nash equilibrium problem given by (33) is exact and all
results derived from the proposed solution hold exactly. If
none of the conditions of Proposition 6 is met, then the pro-
posed solution and the rest of the results are approximate only,
although with high accuracy as will be shown in Section VI.
In the remainder of this section we discuss the arguments

that support the exactness, and also the uniqueness, of the
proposed solution when the required conditions are met.

We derive the solution to the revenue maximization prob-
lem of NST i, which will yield the best response func-
tionBi(w−i). The Karush-Kuhn-Tucker conditions (KKT) for
NST i are as follows:

∇5i(wi) = µi∇

∑
j∈B

ω
(j)
i − si

 (34)

µi ≥ 0, (35)∑
j∈B

ω
(j)
i − si ≤ 0, (36)

µi

∑
j∈B

ω
(j)
i −si

 = 0. (37)

The next proposition gives expressions for the first and sec-
ond derivatives of 5i with respect to the weights of NST i
Proposition 7: For j, k ∈ B, j 6= k , we have

∂5i

∂ω
(j)
i

=
pβn(j)σ (j)ρ

(j)
i

ω
(j)
i (1− βσ (j))

×

(
(1−β)(1−ρ(j)i )σ (j)

+(1−x(j)i )(1−σ (j))
)
,

(38)

∂25i

∂ω
(j)
i ∂ω

(k)
i

= 0 (39)

and (40) as shown at the bottom of the page, where

x(j)i =
ω
(j)
i∑

t∈S ω
(j)
t

. (41)

The condition (34) can be simplified as

∂5i

∂ω
(j)
i

= µi, j ∈ B. (42)

Now, from (38) it is immediate that µi = ∂5i/∂ω
(j)
i > 0,

which combined with (37) shows that the constraint of (36)
must be active for all optimal points:∑

j∈B
ω
(j)
i = si. (43)

The next proposition states that when the subscription ratio
is the same across all cells, the proposed solution, which in
that case takes the form given in (33), satisfies the necessary
KKT conditions.
Proposition 8: Under the condition of Proposition 6, the

weights of (33) and the multiplier

µi =
pβnσρi

si(1− βσ )
((1− β)(1− ρi)σ + (1− si)(1− σ )) ,

(44)

satisfy the conditions (34)–(37).
From the above result, we can only conclude that the

proposed solution meets the necessary conditions to be a
maximum point. Nevertheless, from (40) it can be seen that

lim
σ (j)→1

∂25i

∂
(
ω
(j)
i

)2 =−pβn(j)ρ(j)i(
ω
(j)
i

)2
×

(
1− ρ(j)i

)(
1−β + 2βρ(j)i

)
< 0. (45)

Thus, if the subscription ratios are sufficiently close to 1,
we have that ∂25i/∂

(
ω
(j)
i

)2
< 0, which along with (39)

implies the strict convexity of the maximization problem
of (21). In this case, the KKT conditions are also sufficient,
and if there is a maximum point, it is unique.

We recall that the subscription ratio in a cell is high (i.e.,
close to 1) in the following cases:
• The normalized capacity of the cell is sufficiently high,
so that nearly all users subscribe to an NST (Proposi-
tions 1 and 2).

• The user sensitivity is low and the number of NSTs is
high (Proposition 3).

∂25i

∂
(
ω
(j)
i

)2 = pβn(j)σ (j)ρ
(j)
i(

ω
(j)
i

)2 (
1− σ (j)

1− βσ (j)

((
ρ
(j)
i − x

(j)
i

)2 β

1− βσ (j)

(
1− σ (j)

1− βσ (j) − σ
(j)
)
+

(
x(j)i
)2

+β
(
1− ρ(j)i

)(
3ρ(j)i − 2x(j)i

)
− ρ

(j)
i

)
−

(
1− ρ(j)i

)(
1− β + 2βρ(j)i

))
(40)

76510 VOLUME 9, 2021



L. Guijarro et al.: Competition Between Service Providers With Strategic Resource Allocation

• The user sensitivity is high and the normalized capacity
is close to 1 or higher (Proposition 3).

When none of the conditions above is satisfied we are not
able to provide mathematical guarantees on the solution. To
validate the properties of the proposed solution under more
general conditions, we have conducted an extensive set of
numerical experiments under a wide range of conditions,
as reported in the next section. In all our experiments the
numerical solution was equal to the proposed solution, when
the condition of Proposition 6 was satisfied, and very close to
the proposed solution otherwise.

V. SETUP OF THE NUMERICAL EXPERIMENTS
In our numerical experiments we distinguish two cases,
which we refer to as homogeneous cells and heterogeneous
cells. In the homogeneous cells case the condition of Proposi-
tion 6 is satisfied (and hence the subscription ratio is the same
across all cells), while the heterogeneous cells case is the gen-
eral one. As stated in Section IV, if cells are homogeneous the
proposed solution is an exact solution, while otherwise it is an
approximation. In the next section we discuss the properties
of the proposed solution when cells are homogeneous, and
establish the accuracy of the approximation by quantifying its
deviation from the equilibrium when cells are heterogeneous.

For the proposed solution, the subscription ratios σ (j) at the
equilibrium are obtained by solving numerically (23), and the
fractions of subscribing users ρi at the equilibrium have been
obtained by applying (25). This has been done in both cases:
homogeneous cells and heterogeneous cells.

Additionally, in the two cases mentioned, the game has
also been solved numerically by means of asynchronous
best-response dynamics (ABRD). Note that, in this work,
the ABRD is borrowed as an algorithm for the numerical
computation of the Nash equilibrium, not as a model for the
dynamic behavior of the NSTs. In our ABRD implementa-
tion, starting from w(r)

i = si/B, the weights are recalculated
in repeated steps until they converge to almost fixed values.
In each step, NSTs are ordered randomly and each of them
calculates sequentially its best response (21). Best responses
are calculated numerically by means of a heuristic optimiza-
tion algorithm based on the cuckoo search algorithm [31].
This is a gradient-free algorithmwith a complexity that grows
exponentially with B and S, but in these experiments it has
turned out that ABRD does not require a high accuracy in the
best response. Besides, ABRD convergence is fast: from an
initial state, only about 10 iterations are required.

The pseudocode of ABRD procedure is:
procedure ABRD(S)

for i ∈ S do
for r ∈ B do w(r)

i = si/B
end for

end for
repeat

randomize order of elements in S
for i ∈ S do

wi = Bi(w−i)
end for

until variations of wi,∀i ∈ S are under a threshold
end procedure
We have verified that ABRD converged in all cases, and

that, in the homogeneous cells case, the results obtained
matched exactly with those given by the proposed solution.
On the other hand, the results obtained through ABRD in
the heterogeneous cells case have been compared with those
of the proposed solution to evaluate the accuracy of the
approximation given by the latter.

When cells are heterogeneous the proposed solution does
not provide the exact equilibrium. In the numerical exper-
iments for the heterogeneous cells case, to distinguish the
proposed solution from the exact one, we denote by w̃(r)

i , ρ̃i
and σ̃ (r), respectively, the weights, fractions of subscribers
and subscription ratios at the equilibrium, computed from the
proposed solution; and keep the original notation (w(r)

i , ρ(r)i
and σ (r)) for the results obtained with ABRD.

To verify the accuracy of the proposed solution, in the
next Section, its deviation from the exact solution is assessed
over a wide range of the system parameters. For doing so,
a diversity of scenario types is considered, each type with a
different number of NSTs, number of cells, value of α and
range of γ (r). For each type of scenario, 1000 scenarios are
solved with both the proposed solution and ABRD. In each
scenario, each γ (r), r ∈ B, has been generated randomly
with uniform distribution in the range [γmin, γmax], and the
shares have been generated as an equiprobable random vector
in the (S − 1)-simplex {(s1 . . . sS ) ∈ RS

|
∑

i∈S si =
1, si ≥ 0.1}. The relative deviations of the subscription
ratio, ε(σ̃ (r)), and of the fraction of subscribers, ε(ρ̃i), are
registered for all scenarios. They are calculated as follows:
ε(σ̃ (r)) = (σ̃ (r)

− σ (r))/σ (r) and ε(ρ̃i) = (ρ̃i − ρ
(r)
i )/ρ(r)i .

VI. RESULTS AND DISCUSSION
In this section we discuss the properties of the proposed solu-
tion when cells are homogeneous, and establish the accuracy
of the approximation by quantifying its deviation from the
equilibrium when cells are heterogeneous.

A. HOMOGENEOUS CELLS
When conditions of Proposition 6 are satisfied, there is a
unique value of γ , and

• the subscription ratio is the same in all cells and can be
obtained from (23), making σ (r)

= σ , and depends on
γ , on the shares and on α,

• and the exact fractions of subscribers are given by (25),
and depend on the shares and on α, but not on γ .

We first discuss the results for a scenario where all NSTs
have the same share (si = 1/S, i ∈ S). In this case, the frac-
tion of subscribers of each NST is 1/S, and the subscription
ratio is σ = σ (j)

max given by (28).
In Figs. 1 and 2, the subscription ratio is represented as

a function of the number of NSTs, for γ = 1 and different
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FIGURE 1. Subscription ratio at the equilibrium as a function of the
number of NSTs for different values of α.

FIGURE 2. Subscription ratio at the equilibrium as a function of the
number of NSTs for different values of γ .

values of α (Fig. 1) and for α = 3 and different values of
γ (Fig. 2). In all cases, as the number of NSTs increases,
the subscription ratio increases, as can be derived from (28)
(note that 1 − β > 0). This can be interpreted as that an
increase in the diversity of the service offering increases the
subscription ratio. Fig. 1 also shows that the subscription
ratio increases with the user sensitivity. Fig. 2 also shows,
in accordance with Proposition 2, that the greater the normal-
ized capacity, the greater the subscription ratio. For γ = 4,
the subscription ratio is close to 1, which means that if the
normalized capacity is high enough, the result is practically
the same as for r (r)0 = 0 in all cells.
We now investigate how the asymmetry between the NSTs

in terms of share affects the results. For this, we illustrate
a scenario with 4 NSTs and α = 3, and show the results
obtained as a function of the share of one of them.

Fig. 3 shows NST 1’s fraction of subscribers at the equi-
librium as a function of its share in two different situations:
one in which the remaining share is shared equally between
the rest of NSTs (s2 = s3 = s4 = (1 − s1)/3) and
another one in which one NST keeps all the remaining share
(s2 = 1 − s1, s3 = s4 = 0). From (25), it is easy to show
that the second situation (the one in which the remaining
share is distributed as unequally as possible) is the most
favorable for NST 1; thus, the corresponding curve represents
the maximum fraction of subscribers that NST 1 can obtain.

FIGURE 3. Maximum and minimum NST 1’s fraction of subscribers at the
equilibrium as a function of its share.

FIGURE 4. Subscription ratio at the equilibrium as a function of the term∑
t∈S sβt (share equality) for different values of γ .

It can also be checked that the first situation, in which the
remaining share is distributed equally, is themost unfavorable
for NST 1, and now the curve represents the minimum frac-
tion of subscribers. For any other distribution of the remaining
share, the curve would run between these two bounds.

Fig. 4 shows the subscription ratio as a function of the
factor

∑
t∈S s

β
t for several values of γ . This factor depends on

the degree of share equality and, together with γ β , determines
the result of (23). The figure shows that the higher the normal-
ized capacity and the share equality, the higher the subscrip-
tion ratio (Proposition 2). Also, according to Proposition 5,
the maximum values of σ correspond to si = 1/4, when all
shares are equal, and the minimum values are when a single
NST takes all the share (s1 = 1, s2 = s3 = s4 = 0).

B. HETEROGENEOUS CELLS
When cells are heterogeneous the proposed solution does
not provide the exact equilibrium, but here we show that
it provides an accurate approximation. Note that, although
NST i’s fraction of subscribers obtained with the proposed
solution (ρ̃i) is the same for all cells, the one obtained with
ABRD (ρ(r)i ) is not. Besides, neither of the two subscription
ratios (σ (r) or σ̃ (r)) is the same for all cells.

The plots in Figs. 5–7 correspond to a scenario with
4 NSTs, 5 cells and α = 3. NST 1’s share ranges from 0 to 1

76512 VOLUME 9, 2021



L. Guijarro et al.: Competition Between Service Providers With Strategic Resource Allocation

FIGURE 5. NST 1’s weights at the equilibrium as a function of NST 1’s
share, compared with the proposed solution.

FIGURE 6. Subscription ratios in each cell at the equilibrium as a function
of NST 1’s share, compared with the proposed solution.

and the remaining share is equally distributed between the
rest of NSTs. The numbers of users are (n(1), . . . , n(5)) =
(100, 200, 300, 400, 500), and the values of c(r) and r (r)0 have
been chosen so that (γ (1), . . . , γ (5)) = (0.25, 0.5, 1, 2, 4).
The marks represent the values obtained with ABRD, while
the dashed lines represent the results of the proposed solution.

As seen in Figs. 5, NST 1’s weights obtained with ABRD
are very close to the proposed solution. In the cells with lower
γ (r) (cells 1, 2 and 3), they are slightly below the proposed
solution, while in the cells with higher γ (r) (cells 4 and 5) they
are slightly above. The subscription ratios in each cell are
represented in Fig. 6, where the values obtained with both
methods can hardly be distinguished from each other. Finally,
in Fig. 7 it can be seen that NST 1’s fractions of subscribers
are almost the same at all the cells, and that they are very
close to the result of the proposed solution, which in fact is
the same for all cells. Just like with the weights, the fractions
of subscribers obtained with ABRD are slightly lower than
those of the proposed solution in the cells with lower γ (r),
and slightly higher in the cells with higher γ (r).
These results suggest that the proposed solution provides

a very good approximation of the equilibrium in a general
case. In order to ensure the validity of this approach for a
wide range of the system parameters, we have evaluated the
relative deviations of the subscription ratio, ε(σ̃ (r)), and of

FIGURE 7. NST 1’s fraction of subscribers in each cell at the equilibrium
as a function of NST 1’s share, compared with the proposed solution.

FIGURE 8. Histograms of the relative deviation (in percentage) of the
subscription ratios and fractions of subscribers with the proposed
solution (4 NSTs, 20 cells, α = 3, γ (r ) ∈ [0.25,4]).

the fraction of subscribers, ε(ρ̃i), for a diversity of scenarios
as described in Section V.

Fig. 8 shows the histograms for the relative deviation
(expressed as percentages) of the subscription ratio (ε(σ̃ (r)))
and of the fraction of subscribers (ε(ρ̃i)) in one type of
scenario with 4 NSTs, 20 cells, α = 3 and γ (r)

∈ [0.25, 4].
We see that the values of the relative deviation of the fraction
of subscribers are distributed almost symmetrically around 0
and most values are below 1%. The relative deviation of
the subscription ratio is even smaller (most values are below
0.1%) and that negative values are more frequent, which
suggests that the proposed solution tends to provide an
underestimate.

Finally, Table 2 shows the 90th and 95th percentiles of the
module of ε(ρ̃i) and ε(σ̃ (r)) for a wide range of scenarios. It
is observed that the deviations are slightly higher when γ (r)

values are smaller (in the range [0.25, 0.5]). But even in the
worst case, the 95th percentile of |ε(ρ̃i)| is below 4.2% and
the 95th percentile of |ε(σ̃ (r))| is below 0.32%.
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TABLE 2. Percentiles of the module of ε(ρ̃i ) and ε(σ̃ (r )) (in percentage).

VII. CONCLUSION
In this work, a business model is proposed and analyzed
where the NSTs provide mobile communications services to
final users and provision themselves from a resource pool
operated by an InP by means of network slicing mechanisms.
We propose a solution for the Nash equilibrium of the com-
petition between the NSTs, where each NST strategically
distributes its share of the resources among its subscribers.
The proposed solution has the following properties:
• It provides the exact values at the equilibrium if the
cells are homogeneous in terms of normalized capacity.
In this case, the subscription ratio is the same in all cells.

• Otherwise, if the cells are heterogeneous, it provides an
accurate approximation of the equilibrium.

• In each cell, the subscription ratio increases with the nor-
malized capacity, and depends on the share distribution,
being maximum when all shares are equal.

• Each NST obtains a fraction of subscribers which is the
same in all cells. It depends only on its share, the user
sensitivity and the share distribution, and is minimum
when the shares of all the other NSTs are equal.

APPENDIX A
PROOFS
A. LEMMAS
Let

fa,β (x) = x − a(1− x)1−β , a ≥ 0, 0 ≤ β < 1. (46)

Lemma 1: The function fa,β (x) has one, and only one, root
in [0, 1). Moreover, if a > 0 the root lies in (0, 1).

Proof: If a = 0 the proof is immediate, so we focus on
the case a > 0.
Clearly, fa,β (x) is continuous in [0, 1], fa,β (0) = −a < 0

and fa,β (1) = 1 > 0. Thus, fa,β (x) has a root in (0, 1).
Furthermore,

f ′a,β (x) = 1+
a(1− β)
(1− x)β

> 0, x ∈ (0, 1), (47)

in other words, fa,β (x) is increasing in (0, 1). Consequently,
fa,β (x) has a unique root in (0, 1).

Let z(a, β) be the root of fa,β (x) in [0, 1). Lemma 1 guaran-
tees that the function z(a, β) is well-defined. Moreover, since

∂fa,β (x)
∂x

= 1+
a(1− β)

(1− x)β
> 0, (48)

for all x ∈ [0, 1), a ≥ 0 and 0 ≤ β < 1, by the implicit
function theorem it follows that z(a, β) is a continuously
differentiable function.
Lemma 2: The function z(a, β) is increasing with respect

to a.
Proof: From z−a(1−z)1−β = 0, it follows immediately

that

∂z
∂a
=

(
1+

a(1− β)

(1− z)β

)−1
> 0. (49)

Lemma 3: Let

g(x) = xβ1 + · · · + x
β
n , (50)

with β < 1, defined in the domain

D = {(x1, . . . , xn) : xi ≥ 0; x1 + · · · + xn = 1}. (51)

Then,

max
D

g(x) = g(x∗) = n1−β , (52)

where x∗ = (1/n, . . . , 1/n) is the unique maximum point in
D, that is, g(x) < g(x∗) for all x ∈ Dr {x∗}.

Proof: We first consider the maximization in D0 =

{(x1, . . . , xn) : xi > 0; x1 + · · · + xn = 1} ⊂ D. It is easy
to check that g(x) is strictly concave in D0. Thus, the KKT
conditions are both necessary and sufficient for a point x to
be a maximum in D0.
The KKT conditions are

∂g
∂xi
=

β

x1−βi

= λ, (53)

x1 + · · · + xn = 1, (54)

whose only solution is x1 = · · · = xn = 1/n, and hence
maxD0 g(x) = n1−β .
Now suppose that k of the xi’s are zero, with 1 ≤ k ≤ n.

Assume, without any loss of generality, they are the first k ,
and let Dk = {(x1, . . . , xn) : x1 = · · · = xk = 0; xi > 0, i =
k + 1, . . . , n; x1 + · · · + xn = 1} ⊂ Dr D0
Applying the above result for the maximization over

D0 to the maximization over Dk , we may conclude that
maxDk g(x) = (n− k)1−β < n1−β = maxD0 g(x).
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Therefore, we can assert that maxD g(x) = maxD0 g(x) =
g(x∗) = n1−β .
Lemma 4: Let

g(x) = xβ1 + · · · + x
β
n , (55)

with β < 1, defined in the domain

D = {(x1, . . . , xn) : xi ≥ 0; x1 + · · · + xn = 1}. (56)

Then,

min
D
g(x) = g(x∗) = 1. (57)

Proof: Since β < 1, it is clear that g(x) ≥ x1+· · ·+xn =
1. Furthermore, g(1, 0, . . . , 0) = · · · = g(0, 0, . . . , 1) = 1.
Therefore, minD g(x) = 1.

B. PROOF OF PROPOSITION 1
When r (j)0 > 0, we can rewrite (8) as(

ω
(j)
i

n(j)i

)α
=

n(j)i
n(j)

(∑
t∈S

(
ω
(j)
t

n(j)t

)α
+

(∑
t∈S ω

(j)
t

n(j)γ (j)

)α)
,

× i ∈ S, j ∈ B. (58)

Now, adding (58) overall i ∈ S yields∑
t∈S

(
ω
(j)
t

n(j)t

)α
= σ (j)

∑
t∈S

(
ω
(j)
t

n(j)t

)α
+ σ (j)

(∑
t∈S ω

(j)
t

n(j)γ (j)

)α
,

× j ∈ B, (59)

which can be rewritten as∑
t∈S

(
ω
(j)
t

n(j)t

)α
=

σ (j)

1− σ (j)

(∑
t∈S ω

(j)
t

n(j)γ (j)

)α
, j ∈ B. (60)

Substituting (60) into (58) and solving for n(j)i yields

n(j)i
n(j)
=

(
1− σ (j)

)1−β (
γ (j)

)β (
ω
(j)
i

)β
(∑

t∈S ω
(j)
t

)β ,
× i ∈ S, j ∈ B, (61)

where β = α/(α + 1) < 1.
Finally, adding (61) overall i ∈ S, we obtain

σ (j)
−

(
γ (j)

)β ∑t∈S

(
ω
(j)
t

)β
(∑

t∈S ω
(j)
t

)β (1− σ (j)
)1−β

= 0, j ∈ B.

(62)

The application of Lemma 1 guarantees that (62) has a
unique solution in (0, 1).
In the case r (j)0 = 0, we can rewrite (8) as(

ω
(j)
i

n(j)i

)α
=
n(j)i
n(j)

∑
t∈S

(
ω
(j)
t

n(j)t

)α
, i ∈ S, j ∈ B. (63)

Adding this equality overall i ∈ S immediately leads to
σ (j)
= 1.

C. PROOF OF PROPOSITION 2
The first part of the proposition follows immediately by
applying Lemma 2 with

a =
(
γ (j)

)β ∑t∈S

(
ω
(j)
t

)β
(∑

t∈S ω
(j)
t

)β , (64)

which clearly increases with γ (j).
From (64) it follows that

lim
γ (j)→0

σ (j)
= lim

a→0
z(a, β) = z(0, β) = 0. (65)

Now, from the definition of z(a, β) and (46) we have

a =
z(a, β)(

1− z(a, β)
)1−β < 1

1− z(a, β)
. (66)

Thus, 1− 1/a < z(a, β) < 1, and consequently,

lim
γ (j)→∞

σ (j)
= lim

a→∞
z(a, β) = 1. (67)

D. PROOF OF PROPOSITION 3
We first show that

lim
β→0

z(a, β) =
a

1+ a
, (68)

lim
β→1

z(a, β) = min(1, a). (69)

It is clear that

lim
β→0

fa,β
( a
1+ a

)
= lim
β→0

(
a

1+ a
−

a
(1+ a)1−β

)
= 0.

(70)

Hence the result in (68) follows from the continuity of
fa,β (x) and the definition of z(a, β).
Likewise, if a < 1, we have

lim
β→1

fa,β (a) = lim
β→1

(
a− a(1− a)1−β

)
= 0, (71)

and hence

lim
β→1

z(a, β) = a, if a < 1. (72)

We now turn to the case a = 1. For every ε > 0 (we assume
without restriction of generality that ε < 1), we take δ =
log(1 − ε)/ log(ε) > 0 such that if |1 − β| = 1 − β < δ,
we have

fa,β (1− ε) = 1− ε − ε1−β

< 1− ε − ε
log(1−ε)
log(ε) =1− ε−(1− ε)=0. (73)

We thus have fa,β (1 − ε) < 0 and fa,β (1) = 1 > 0.
Consequently, 1− ε < z(a, β) < 1, and therefore |z(a, β)−
1| < ε, which proves that

lim
β→1

z(1, β) = 1. (74)
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Consider now the case a > 1. Since f
(
1 − a−1/(1−β)

)
=

−a−1/(1−β) < 0, we have

1− a
−1
1−β < z(a, β) < 1. (75)

This, together with the fact that

lim
β→1

1− a
−1
1−β = 1. (76)

yields

lim
β→1

z(a, β) = 1, if a > 1. (77)

Finally, combining (72), (74) and (77) we obtain the result
in (69).

Now we set a as in (64) and note that

lim
β→0

a = S, (78)

lim
β→1

a = γ (j). (79)

These, together with (68) and (69), and the continuity of
z(a, β) completes the proof of the proposition.

E. PROOF OF PROPOSITION 4
The expression (18) follows immediately by combining (17)
with (61) and (62).

F. PROOF OF PROPOSITION 5
The proof is straightforward by applying Lemma 2, with

a =
(
γ (j)

)β∑
t∈S

sβt , (80)

along with Lemma 3 and Lemma 4.

G. PROOF OF PROPOSITION 6
The first conclusion was justified in the discussion preceding
the proposition, and the second is obtained by substitut-
ing (32) into (22).

H. PROOF OF PROPOSITION 7
Taking derivatives of (20) yields

∂5i

∂ω
(j)
i

= n(j)
∂σ (j)

∂ω
(j)
i

ρ
(j)
i + n

(j)σ (j) ∂ρ
(j)
i

∂ω
(j)
i

(81)

∂25i

∂
(
ω
(j)
i

)2 = n(j)
∂2σ (j)

∂
(
ω
(j)
i

)2 ρ(j)i
+ 2n(j)

∂σ (j)

∂ω
(j)
i

∂ρ
(j)
i

∂ω
(j)
i

+ n(j)σ (j) ∂
2ρ

(j)
i

∂
(
ω
(j)
i

)2 (82)

The derivatives of ρ(j)i and σ (j) are obtained from (18)
and (12), respectively. Note that in the latter case implicit
differentiation must be used.

Clearly, ρ(j)i and σ (j) are independent of ω(k)
i for all k ∈

B \ {j}, i ∈ S and, thus,

∂25i

∂ω
(j)
i ∂ω

(k)
i

= 0. (83)

After some algebra we get

∂ρ
(j)
i

∂ω
(j)
i

=
β

ω
(j)
i

ρ
(j)
i (1− ρ(j)i ), (84)

∂σ (j)

∂ω
(j)
i

=
1− σ (j)

1− βσ (j)

βσ (j)

ω
(j)
i

(ρ(j)i − x
(j)
i ), (85)

∂2ρ
(j)
i

∂
(
ω
(j)
i

)2 = −β(
ω
(j)
i

)2 ρ(j)i (1− ρ(j)i )(1− β + 2βρ(j)i ) (86)

∂2σ (j)

∂
(
ω
(j)
i

)2 = 1− σ (j)

1− βσ (j)

βσ (j)(
ω
(j)
i

)2(1− 2σ (j)
+β

(
σ (j)

)2(
1− βσ (j)

)2
×β(ρ(j)i − x

(j)
i )+βρ(j)i (1− ρ(j)i )−ρ(j)i +

(
x(j)i
)2)
(87)

Finally, substituting these expressions into (81) and (82)
we obtain, after some algebra, (38) and (40).

I. PROOF OF PROPOSITION 8
From the expression of the weights ω(j)

i , see (33), it is clear
that

∑
j∈B ω

(j)
i = si, and thus the conditions (36) and (37) are

satisfied.
Since the condition of Proposition 6 is met, we have σ (j)

=

σ , and from the expression of the weights it follows that
ρ
(j)
i = ρi, where ρi is given in (25), and x

(j)
i = si. Substituting

these into (38) and recalling that (34) is equivalent to (42),
we obtain (44). Finally, from (44) it is clear that µi > 0 and
therefore (35) is satisfied.
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